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Gardner’s deformations of the graded Korteweg–de Vries
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P.O. Box 407, 9700 AK Groningen, The Netherlands
2Department of Higher Mathematics, Ivanovo State Power University, Rabfakovskaya str. 34,
Ivanovo 153003, Russia

(Received 14 September 2011; accepted 23 August 2012; published online 3 October 2012)

We solve the Gardner deformation problem for the N = 2 supersymmetric
a = 4 Korteweg–de Vries equation [P. Mathieu, “Supersymmetric extension of
the Korteweg–de Vries equation,” J. Math. Phys. 29(11), 2499–2506 (1988)]. We
show that a known zero-curvature representation for this super-equation yields the
system of new nonlocal variables such that their derivatives contain the Gardner
deformation for the classical KdV equation. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4754288]

I. INTRODUCTION

The classical problem of construction of the Gardner deformation1 for an infinite-dimensional
completely integrable system of evolutionary partial differential equations essentially amounts
to finding a recurrence relation between the integrals of motion. For the N = 2 supersymmet-
ric generalizations of the Korteweg–de Vries (KdV) equation,2, 3 the deformation problem was
posed when the integrable triplet of such super-systems was discovered. Various attempts to solve
it were undertaken since then (e.g., see Ref. 2) but the progress was limited. In particular, in
Ref. 4 we prove the “no-go” theorem stating that a classical polynomial Gardner deformation for the
N = 2 supersymmetric a = 4 KdV equation does not exist within the superfield formalism (but that
in principle, the deformation may exist whenever the superfields split in components), cf. Ref. 2.
This is in contrast with the N = 1 sKdV case when the two approaches yield the supersymmetry-
invariant deformation.3 The first solution for the N = 2, a = 4 SKdV in the triplet a ∈ {–2, 1, 4}
was achieved in Ref. 4. We then presented the two-step solution of the deformation problem: We
obtained the Gardner deformation for the Kaup–Boussinesq equation, which is the bosonic limit of
the super-equation that precedes the N = 2, a = 4 super-KdV in its hierarchy. We thus derived the
recurrence relation between the Hamiltonians of the bosonic limit hierarchy and then we showed
how each conserved density is extended to the super-density for the N = 2 super-system. In other
words, we deformed the bosonic subsystem of the super-equation at hand within the frames of the
classical scheme,1 whence we recovered the full N = 2 supersymmetry-invariance.

In this paper we re-address, from a basically different viewpoint, the Gardner deformation
problem for a vast class of (not necessarily supersymmetric) KdV-like systems. Namely, in Ref. 4 we
emphasized the geometric similarity of the Gardner deformations and zero-curvature representations,
each of them manifesting the integrability of nonlinear systems (cf. Refs. 5 and 6). Indeed, both
constructions generate infinite sequences of nontrivial integrals of motion. However, the standard
Lax approach relies on the calculus of pseudodifferential operators whereas the Gardner technique
is more geometric and favourable from a computational viewpoint. We stress that, in general, the
two constructions are not equivalent, although they provide coinciding results. It is precisely this
correspondence which we study in this paper for the graded KdV systems.

a)Electronic mail: A.V.Kiselev@rug.nl.
b)Author to whom correspondence should be addressed. Electronic mail: krutov@math.ispu.ru.
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Developing further the approach of Ref. 7, we reformulate the Gardner deformation problem for
the graded extensions of the KdV equation in terms of constructing parameter-dependent families
of new bosonic and fermionic variables. We require that the “nonlocalities” possess two defining
properties:8, 9 on one hand, they should reproduce the classical Gardner deformation from Ref. 1
under the shrinking of the N = 2 super-equation back to the KdV equation. On the other hand, we
consider the nonlocalities that encode the parameter-dependent zero-curvature representations for
the super-systems at hand. In this reformulation, we solve Mathieu’s open problem 2 of Ref. 3 for
the N = 2 supersymmetric a = 4-KdV equation. However, our approach is applicable to a much
wider class of completely integrable (super-)systems.

This paper is structured as follows. We first fix some notation and compare the notions of
Gardner’s deformations and zero-curvature representations by using their unifying description in
terms of nonlocal structures for partial differential equations (PDE). In Sec. III we proceed with
this correspondence for Z2-graded systems of evolutionary PDE and solve the Gardner deformation
problem for the N = 2, a = 4 SKdV (29). The nature of the new solution is geometric and it
presents an alternative to the analytic two-step algorithm that works for graded systems and which
we reported earlier in Ref. 4.

II. PRELIMINARIES

In this section we briefly recall some basic notions and facts and fix the notation, which follows
Refs. 10–13; we refer to the book13 for further details.

Let �n be an n-dimensional manifold, 1 ≤ n < ∞, let π : Em + n → �n be a vector bundle over
�n of fiber dimension m. In what follows we let n = 2 so that x1 = x and x2 = t are the independent
variables; we have that m = 1 for the Korteweg–de Vries equation, m = (1|1) for the Z2-graded N =
1 supersymmetric KdV equation, and we let m = (2|2) for the N = 2 SKdV, see Refs. 2, 3, and 14.
Consider the jet space J∞(π ) of sections of the vector bundle π . The local coordinates on J∞(π ) are
composed by the coordinates xi on �n, coordinates uj along the fibers of π , and coordinates u j

σ along
the fibers of J∞(π ) → �; here σ is a multi-index that labels the partial derivatives of a field uj, so
that u j

∅
≡ u j . The commuting vector fields d

dxi = ∂/∂xi + ∑
k,σ uk

σ i∂/∂uk
σ on J∞(π ) are called the

total derivatives. The operators d|σ |
dxσ that act on the space of smooth functions on J∞(π ) are defined

inductively by the formula d|σ i |
dxσ i = d|σ |

dxσ ◦ d
dxi . For example, set σ = xt whence d|σ |

dxσ = d
dx ◦ d

dt ; we use

the standard notation
(

d
dx

)3 = d3

dx3 , etc.
Consider a system E of r partial differential equations,

E = {
F�(xi , u j , . . . , uk

I , . . . ) = 0, � = 1, . . . , r
}
.

The system {F� = 0} and all its differential consequences d|σ |
dxσ F� = 0, |σ | ≥ 1 generate the infinite

prolongation of E , which we denote by E∞. The restrictions of d
dxi on E∞ determine the Cartan

distribution C on the tangent space TE∞. Here and in what follows, the notation d
dxi stands for the

restrictions of the total derivatives onto E∞. At each point θ ∈ E∞, there is the decomposition of
the tangent space TθE∞ to the direct sum of the horizontal (spanned by the Cartan distribution) and
the vertical vector spaces, TθE∞ = Cθ ⊕ VθE∞. Let �1,0(E∞) = Ann C and �0,1(E∞) = Ann VE∞

be the C∞(E∞)-modules of contact 1-forms and horizontal 1-forms vanishing on C and VE∞,
respectively. Let �r (E∞) denote the C∞-module of r-forms on E∞. We have the decomposition
�r (E∞) = ⊕

q+p=r �p,q (E∞), where �p,q (E∞) = ∧p
�1,0(E∞) ∧ ∧q

�0,1(E∞). According to this
decomposition, the exterior differential splits to the sum d = d̄ + dC of the horizontal differential
d̄ : �p,q (E∞) → �p,q+1(E∞) and the vertical differential dC : �p,q (E∞) → �p+1,q (E∞).

The differential d̄ can be expressed in coordinates by its actions on the elements φ ∈ C∞(E∞)
= �0,0(E∞), whence

d̄φ =
∑

i

d
dxi (φ) dxi .

This be our working formula.
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A. Zero curvature representations and coverings

Consider the tensor product over the ring of C-valued smooth function on E∞ of the exterior
algebra �̄(E∞) = ∧∗

�i,0(E∞) with a finite-dimensional complex Lie algebra g. The product is
endowed with the bracket [Aμ, Bν] = [A, B]μ∧ν for μ, ν ∈ �̄(E∞) and A, B ∈ g. The tensor
product �̄(E∞) ⊗ g(C) is a differential graded associative algebra with respect to the multiplication
Aμ · Bν = (A · B)μ∧ν induced by the ordinary matrix multiplication so that

d̄(ρ · σ ) = d̄ρ · σ + (−1)rρ · d̄σ

for ρ ∈ �̄r (E∞) ⊗ g(C) and σ ∈ �̄s(E∞) ⊗ g(C), whereas

[ρ, σ ] = ρ · σ − (−1)rsρ · σ.

The elements of C∞(E∞) ⊗ g will be called the g-matrices.10

Definition 1 (Ref. 10): A horizontal 1-form α ∈ �̄1(E∞) ⊗ g is called the g-valued zero-
curvature representation for the equation E if the Maurer–Cartan condition holds:

d̄α = 1

2
[α, α]. (1)

If α = ∑n
i=1 Ai dxi , where Ai ∈ g, is a g-valued zero-curvature representation for E , then we have

d̄α − 1

2
[α, α] =

∑
i< j

( d
dxi A j − d

dx j Ai )dxi ∧ dx j −
∑
i< j

[Ai , A j ]dxi ∧ dx j .

Therefore, Eq. (1) is equivalent to the following set of conditions upon the g-matrices Ai:
d

dx j Ai − d
dxi A j + [Ai , A j ] = 0, ∀i, j = 1, . . . , m : i �= j. (2)

The most interesting zero-curvature representations for E are those which contain a non-
removable spectral parameter; in this case the system E is integrable. (The parameter is removable
if one obtains gauge-equivalent zero-curvature representations, see Sec. II C for details, at different
values of the parameter; otherwise, the parameter is non-removable).

We recall that n is the dimension of the base �n for the vector bundle π . From now on, we
consider mainly (1 + 1)-dimensional systems, i.e., we let n = 2 and interpret one independent
variable as the time t and the other as the spatial coordinate x. With the conventions n = 2, x1 = x,
x2 = t, A1 = A, and A2 = B, the Maurer–Cartan equations (1) and (2) read

d
dt A − d

dx B + [A, B] = 0. (2′)

This is the compatibility condition for the auxiliary linear system


x = A
, 
t = B
,

where 
 is the wave function and the matrices A and B belong to the tensor product of a matrix Lie
algebra g and the ring C∞(E∞) of smooth functions on the prolongation E∞. If the matrices A and
B depend on the non-removable spectral parameter, then the equation E is integrable.15

The construction of Gardner’s deformations1 is another way to prove the integrability of evolu-
tion equations E .

Definition 2 (Gardner’s deformation (Ref. 1)): Let E = {ut = f (x, u, ux , . . . , uk)} be a sys-
tem of evolutionary partial differential equations upon the unknowns u(x, t) in two variables. Let
Eε = {ũt = fε(x, ũ, ũx , . . . , ũk̃ ; ε) | fε ∈ im d

dx } be a deformation of E such that at each point
ε ∈ I ⊆ R there exists the Miura contraction mε = {u = u(ũ, ũx , . . . ; ε)} : Eε → E . Then the pair
(Eε,mε) is the Gardner deformation for the system E .

One obtains the recurrence relations between the conserved densities ũn(x, u, ux , . . .) for E
using the contraction mε and the expansion ũ = ∑+∞

n=0 ũnε
n of the deformed unknowns ũ in ε.

In the recent paper9 we understood Gardner’s deformations in the extended sense, namely, in
terms of coverings over PDE and diagrams of coverings. The zero-curvature representations and
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Gardner’s deformations can be considered as such geometric structures16 that obey some extra
conditions.

Definition 3 (Ref. 12): Let E be a differential equation that admits the nonempty infinite
prolongation E∞. A covering over the equation E is another (usually, larger) system of partial
differential equations Ẽ endowed with the n-dimensional Cartan distribution C̃ and such that there
is a mapping τ : Ẽ → E∞ for which, at each point θ ∈ Ẽ the tangent map τ *, θ is an isomorphism of
the plane C̃θ to the Cartan plane Cτ (θ) at the point τ (θ ) in E∞.

The construction of a covering over E means the introduction of new variables such that their
compatibility conditions lie inside the initial system E∞. In practice (see Ref. 13), it is the rules to
differentiate the new variable which are specified in a consistent way; this implies that those new
variables acquire the nature of nonlocalities if their derivatives are local but the variables themselves
are not (e.g., consider the potential v = ∫

u dx satisfying vx = u and vt = −uxx − 3u2 for the KdV
equation ut + uxxx + 6uux = 0). Whenever the covering is indeed realized as the fibre bundle
τ : Ẽ → E , the forgetful map τ discards the nonlocalities.

In these terms, the zero-curvature representations and Gardner’s deformations are coverings of
special kinds (see Examples 2 and 4 below). In this paper we use the geometric similarity of the two
notions and construct new Gardner’s deformations from known zero-curvature representations (but
this is not always possible).

Example 1 (A zero-curvature representation for the KdV equation): Consider the Korteweg–de
Vries equation1

EKdV = {ut + uxxx + 6uux = 0} (3)

and its Lax representation1, 11, 15

Lt = [L,A],

where

L = d2

dx2 + u, A = −4 d3

dx3 − 6u d
dx − 3ux . (4)

The linear auxiliary problem17 is

ψxx + uψ = λψ,

−4ψxxx − 6uψx − 3uxψ = ψt ,

By definition, put ψ0 = ψ and ψ1 = ψx. We obtain

ψ0;x = ψ1,

ψ1;x = (λ − u)ψ0,

ψ0;t = −4 d
dx ((λ − u)ψ0) − 6uψ1 − 3uxψ0 = uxψ0 + (−4λ − 2u)ψ!,

ψ1;t = (−4λ2 + 2uλ + 2u2 + ux )ψ0 + (−ux )ψ1.

We finally rewrite this system as two matrix equations,17(
ψ0;x

ψ1;x

)
︸ ︷︷ ︸

ψx

=
(

0 1

λ − u 0

)
︸ ︷︷ ︸

A

(
ψ0

ψ1

)
︸ ︷︷ ︸

ψ

(
ψ0;t

ψ1;t

)
︸ ︷︷ ︸

ψt

=
(

ux −4λ − 2u

−4λ2 + 2uλ + 2u2 + uxx −ux

)
︸ ︷︷ ︸

B

(
ψ0

ψ1

)
.

︸ ︷︷ ︸
ψ

This yields an sl2(C)-valued zero-curvature representation αKdV = Adx + Bdt for the KdV equation
(3). The representation αKdV was rediscovered in Ref. 18.
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Example 2 (Zero-curvature representations as coverings): Let g := sl2(C) as above. We intro-
duce the standard basis e, h, f in g such that

[e, h] = −2e, [e, f ] = h, [ f, h] = 2 f.

We consider, simultaneously, the matrix representation

ρ : sl2(C) → {M ∈ Mat(2, 2)| tr M=0}
of g and its representation � in the space of vector fields with polynomial coefficients on the complex
line with the coordinate w:

ρ(e) =
(

0 1

0 0

)
, ρ(h) =

(
1 0

0 −1

)
, ρ( f ) =

(
0 0

1 0

)
,

�(e) = 1 · ∂/∂w, �(h) = −2w · ∂/∂w, �( f ) = −w2 · ∂/∂w.

Let us decompose the matrices Ai (which occur in the zero-curvature representation α = ∑
iAidxi)

with respect to the basis in the space ρ(g),

Ai = a(i)
e ⊗ ρ(e) + a(i)

h ⊗ ρ(h) + a(i)
f ⊗ ρ( f ), (5)

for a(i)
j ∈ C∞(E∞).
To construct the covering Ẽ over E∞ with a new fiber variable w over E∞ (the “nonlocality”),

we switch from the representation ρ to �. We thus obtain the vector fields

VAi = a(i)
e ⊗ �(e) + a(i)

h ⊗ �(h) + a(i)
f ⊗ �( f ) (5′)

such that the prolongations of the total derivatives di

dxi to Ẽ are defined by the formula

d̃
dxi = d

dxi − VAi . (6)

The extended derivatives act on the nonlocal variable w as follows,
d̃

dxi w = dw�(−VAi ).

Remark 1: The commutativity of the prolonged total derivatives,
[

d̃
dxi ,

d̃
dx j

] = 0 with i �= j, is
equivalent to the Maurer–Cartan equation (2): Indeed, we have that

0 = [ d̃
dxi ,

d̃
dx j ] = [ d

dxi − VAi ,
d

dx j − VA j ] = [ d
dxi ,

d
dx j ] − [ d

dxi , VA j ] − [VA j ,
d

dx j ] + [VAi , VA j ] =

= −V d
dxi Ai

+ V d
dx j Ai

+ V[Ai ,A j ] = V d
dx j Ai − d

dxi A j +[Ai ,A j ]
⇔ d

dx j Ai − d
dxi A j + [Ai , A j ] = 0.

This motivates the choice of the minus sign in (6).

Example 3 (A one-dimensional covering over the KdV equation): One obtains the covering over
the KdV equation from the zero-curvature representation α (see Example 1) by using representation
(5′) in the space of vector fields. Applying (5′) to the matrices A, B ∈ sl2(C), we construct the
following vector fields with the nonlocal variable w:

VA = (1 − (λ − u)w2) · ∂/∂w,

VB = [
(−4λ − 2u) − 2uw − (−4λ2 + 2uλ + 2u2 + uxx )w2

] · ∂/∂w.

The prolongations of the total derivatives act on w by the rules

wx = −1 + (λ − u)w2, (7a)

wt = − (
(−4λ − 2u) − 2uxw − (−4λ2 + 2uλ + 2u2 + uxx )w2

)
. (7b)

We thus obtain the one-dimensional covering over the KdV equation (3). It depends on the non-
removable12 spectral parameter λ. In what follows we show that this covering is equivalent to the
covering (12) which is derived from Gardner’s deformation (11) of the KdV equation (3).
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B. The projective substitution and nonlinear representations of Lie algebras
in the spaces of vector fields

Suppose g is a finite-dimensional Lie algebra. We shall use the projective substitution7 to
construct a covering over the equation E starting from a g-valued zero-curvature representation
for E .

Let M be an m-dimensional manifold with local coordinates

v = (v1, v1, . . . , vm) ∈ M, and put ∂v = (∂v1 , ∂v2 , . . . , ∂vm )t.

For any g ∈ g ⊆ gln(C), its representation Vg in the space of vector fields on M is given by the
formula

Vg = vg∂v.

We note that Vg is linear in vi . By construction, the representation preserves the commutation
relations in the initial Lie algebra g:

[Vg, V f ] = [vg∂v, v f ∂v] = v[g, f ]∂v = V[g, f ], f, g ∈ g.

At all points of M where v1 �= 0 we consider the projection

π : vi → wi = μvi/v1, μ ∈ R (8)

and its differential dπ : ∂v → ∂w. The transformation π yields the new coordinates on the open
subset of M where v1 �= 0 and on the corresponding subset of TM:

w = (μ,w2, . . . , wm), ∂w = (− 1

μ

m∑
i=2

wi∂wi , ∂w2 , . . . , ∂wm )t.

Consider the vector field Wg = dπ (Vg). In coordinates, we have

Wg = wg∂w. (9)

We note that, generally, Wg is nonlinear with respect to wi . The commutation relations between the
vector fields of such type are also inherited from the relations in the Lie algebra g:

[Wg, W f ] = [dπ (Vg), dπ (V f )] = dπ ([g, f ]) = dπ (V[g, f ]) = W[g, f ].

Using representation (9) for the matrices A and B that determine the zero-curvature represen-
tation αKdV = Adx + Bdt for the KdV equation, we obtain their realizations in terms of the vector
fields:

WA = 1

μ
(−λw2 + μ2 + uw2) ∂/∂w,

WB = 1

μ
(−uxxw

2 − 2uxμw + 4λ2w2 − 4λμ2 − 2λuw2 − 2μ2u − 2u2w2) ∂/∂w.

Therefore, the prolongations of the total derivatives act on the nonlocality w as follows:

wx = − 1

μ
(−λw2 + μ2 + uw2), (10a)

wt = − 1

μ
(−uxxw

2 − 2uxμw + 4λ2w2 − 4λμ2 − 2λuw2 − 2μ2u − 2u2w2). (10b)

The parameter μ is removable by the transformation w → μw, which rescales it to unit. Applying
this transformation to (10), we reproduce the covering (7).
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Example 4 (A covering which is based on Gardner’s deformation): Consider the Gardner
deformation1 of the KdV equation (3),

Eε = {
ũt = −(ũxx + 3ũ2 − 2ε2ũ3)x

}
, (11a)

mε = {
u = ũ − εũx − ε2ũ2

}
: Eε → E0. (11b)

Expressing ũx from (11b) and substituting it in (11a), we obtain the one-dimensional covering
over the KdV equation,

ũx = 1

ε
(ũ − u) − εũ2, (12a)

ũt = 1

ε
(uxx + 2u2) + 1

ε2
ux + 1

ε3
u +

(
−2ux − 2

ε
u − 1

ε3

)
ũ +

(
2εu + 1

ε

)
ũ2, (12b)

We claim that covering (12) is equivalent to the covering that was obtained in p. 277 of Ref. 12
for the KdV equation. To prove this, we first put ũ = −ṽ/ε. We have

− ṽ

ε
= − 1

ε2
ṽ − 1

ε
u − 1

ε
ṽ2,

in other words

ṽx = u +
(

ṽ + 1

2ε

)2

− 1

4ε2
.

Next, we put p = ṽ + 1/(2ε), whence we obtain

px = u + p2 − 1

4ε2
, (13a)

pt = −uxx − 2u2 − 1

2ε2
u + 1

4ε4
− 2ux p − (2u + 1

ε2
)p2. (13b)

Dividing (7) by w2, we conclude that

wx = −1 + (λ − u)w2,

wx

w2
= − 1

w2
− u + λ.

On the other hand, we put p = 1/w, whence px = −wx/w
2, and set λ = 1/(4ε2). This brings (7) to

the same notation as in formulas (13),

px = u + p2 − λ,

pt = −uxx − 2u2 − 2λu + 4λ2 − 2ux p − (2u + 4λ)p2.

The corresponding one-form of the zero-curvature representation for the KdV equation is equal to

αKdV
2 =

(
0 λ − u

1 0

)
dx +

(
−ux −4λ2 + 2λu + 2u2 + uxx

−4λ − 2u ux

)
dt. (14)

In Sec. II C we show that this zero-curvature representation is also equivalent to αKdV from
Example 1.

C. Gauge transformations

Let G be the Lie group of the Lie algebra g (so that G = SL2(C) in the previous example). Given
an equation E , for any zero-curvature representation α there exists the zero-curvature representation
αS such that

αS = d̄ S · S−1 + S · α · S−1, S ∈ C∞(E∞) ⊗ G. (15)
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The zero-curvature representation αS is called gauge-equivalent to α and S is the gauge transfor-
mation. Suppose α = Ai dxi. The gauge transformation S acts on the components Ai of α as follows

AS
i = d

dxi (S)S−1 + S Ai S−1. (15′)

Example 5 (The relation between the coverings which stem from gauge equivalent zero curvature
representations): Let g = sl2(C) and G = SL2(C). Suppose S ∈ SL2(C), so that

S =
(

s1 s2

s3 s4

)
, det S = 1.

Let α = ∑
iAidxi be a zero-curvature representation for an equation E . Using decomposition (5) for

Ai ∈ sl2(C), we inspect how the gauge transformation S acts on the components of α:

AS
i = d

dxi (S)S−1 + S(a(i)
e ⊗ ρ(e) + a(i)

h ⊗ ρ(h)a(i)
e ⊗ ρ( f ))S−1 =

= d
dxi (S)S−1 + a(i)

e ⊗ (S · ρ(e) · S−1) + a(i)
h ⊗ (S · ρ(h) · S−1) + a(i)

e ⊗ (S · ρ( f ) · S−1).

We have that

d
dxi (S)S−1 =

(
s1;i s4 − s2;i s3 s2;i s1 − s1;i s2

s3;i s4 − s4;i s3 s4;i s1 − s3;i s2

)
=

(
s1;i s4 − s2;i s3 s2;i s1 − s1;i s2

s3;i s4 − s4;i s3 −s1;i s4 + s2;i s3

)
=

= (s2;i s1 − s1;i s2)ρ(e) + (s1;i s4 − s2;i s3)ρ(h) + (s3;i s4 − s4;i s3)ρ( f ),

S · ρ(e) · S−1 =
(

−s1s3 s2
1

−s2
3 s1s3

)
= (s2

1 )ρ(e) + (−s1s3)ρ(h) + (−s2
3 )ρ( f ),

S · ρ(h) · S−1 =
(

s1s4 + s2s3 −2s1s2

2s3s4 −s1s4 − s2s3

)
= (−2s1s2)ρ(e) + (s1s4 + s2s3)ρ(h) + (2s3s4)ρ( f ),

S · ρ( f ) · S−1 =
(

s2s4 −s2
2

s2
4 −s2s4

)
= (−s2

2 )ρ(e) + (s2s4)ρ(h) + (s2
4 )ρ( f ).

We finally obtain

AS
i = (s2;i s1 − s1;i s2 + s2

1 a(i)
e − 2s1s2a(i)

h − s2
2 a(i)

f ) ⊗ ρ(e)+

+ (s1;i s4 − s2;i s3 − s1s3a(i)
e + (s1s4 + s2s3)a(i)

h + s2s4a(i)
f ) ⊗ ρ(h)+

+ (s3;i s4 − s4;i s3 − s2
3a(i)

e + 2s3s4a(i)
h + s2

4 a(i)
f ) ⊗ ρ( f ).

Passing to the vector field representation of AS
i by using formula (5′), we have

VAS
i

= (s2;i s1 − s1;i s2 + s2
1 a(i)

e − 2s1s2a(i)
h − s2

2 a(i)
f ) ⊗ �(e)+

+ (s1;i s4 − s2;i s3 − s1s3a(i)
e + (s1s4 + s2s3)a(i)

h + s2s4a(i)
f ) ⊗ �(h)+

+ (s3;i s4 − s4;i s3 − s2
3 a(i)

e + 2s3s4a(i)
h + s2

4 a(i)
f ) ⊗ �( f ). (16)

In other words, whenever we start from the covering of E associated with a zero-curvature represen-
tation α, such that the differentiation rules for the nonlocality w are

d
dxi (w) = −a(i)

e + 2a(i)
h w + a(i)

f w2,
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we obtain the covering which is associated with αS:

d
dxi (wS) = −(s2;i s1 − s1;i s2 + s2

1 a(i)
e − 2s1s2a(i)

h − s2
2 a(i)

f )+

+ 2(s1;i s4 − s2;i s3 − s1s3a(i)
e + (s1s4 + s2s3)a(i)

h + s2s4a(i)
f )wS+

+ (s3;i s4 − s4;i s3 − s2
3 a(i)

e + 2s3s4a(i)
h + s2

4 a(i)
f )w2

S. (17)

We shall use this relation between the two coverings in the search of the gauge transformations
between known zero-curvature representations for the KdV equation.

Example 6 (Gauge transformations between zero-curvature representations for the KdV equa-
tion): Let us find the gauge transformations that bring coverings (7) and (12) to the form (13).

For the transformation (7)→(13) we have

px = u + p2 − λ = −(s2;x s1 − s1;x s2 + s2
1 − s2

2 (λ − u)+
− 2(s1;x s4 − s2;x s3 − s1s3 + s2s4(λ − u))p−
− (s3;x s4 − s4;x s3 − s2

3 + s2
4 (λ − u))p2).

Solving this equation for si, we find a unique solution s2 = s3 = i, s1 = s4 = 0:

S =
(

0 i

i 0

)
, S−1 =

(
0 −i

−i 0

)
. (18)

The matrices of the zero curvature representations corresponding to the coverings (7) and (13) are
related as follows: (

0 i

i 0

) (
0 1

λ − u 0

)(
0 −i

−i 0

)
=

(
0 λ − u

1 0

)
.

On the other hand, for the transformation (12)→(13) we have

px = u + p2 − 1

4ε2
= −(s2;x s1 − s1;x s2 − s2

1
u

ε
+ s1s2

1

ε
− s2

2ε+

− 2(s1;x s4 − s2;x s3 + s1s3
u

ε
− (s1s4 + s2s3)

1

2ε
+ s2s4ε)p−

− (s3;x s4 − s4;x s3 + s2
3

u

ε
− s3s4

1

ε
+ s2

4ε)p2).

Solving this equation for si, we find a solution s1 = i/
√

ε, s2 = i/(2ε
√

ε), s3 = 0, s4 = i
√

ε.
Therefore,

S =
(

i/
√

ε i/(2ε
√

ε)

0 −i
√

ε

)
, S−1 =

(
−i

√
ε −i/(2ε

√
ε)

0 i/
√

ε

)
, (19)

The matrices of the zero-curvature representations corresponding to coverings (12) and (13) satisfy
the relation(

i/
√

ε i/(2ε
√

ε)

0 −i
√

ε

)(
0 1

4ε2 − u

1 0

)(
−i

√
ε −i/(2ε

√
ε)

0 i/
√

ε

)
=

(
1
2ε

u
ε

−ε − 1
2ε

)
.

Let us remember that in Example 1 we derived the zero-curvature representation for the KdV
equation from its Lax pair. Having done that, we also revised the transition from this zero-curvature
representation to the Gardner deformation of the KdV equation. In Sec. III we extend this approach
and find the generalizations of Gardner’s deformation (11) for graded systems, in particular, for the
N = 1 and N = 2 supersymmetric Korteweg–de Vries equations.
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III. GRADED SYSTEMS

A. Lie super-algebras

We recall first the definition of the Lie super-algebra.14, 19, 20 Let A be an algebra over the field C
and Z2 = Z/2Z = {0̄, 1̄} be the group of residues modulo 2. An algebra A is called a super-algebra
if A can be decomposed as the direct sum A = A0̄ ⊕ A1̄ such that

A0̄ · A0̄ ⊂ A0̄, A0̄ · A1̄ ⊂ A1̄, A1̄ · A1̄ ⊂ A0̄.

A nonzero element of A0̄ or A1̄ is called homogeneous (respectively, even or odd). Let p(a) = k if
a ∈ Ak for k ∈ Z2. The number p(a) is the parity of a.

The super-algebra g is a Lie super-algebra if it is endowed with the linear multiplication [· , ·]
that satisfies the equalities

[x, y] = −(−1)p(x)p(y)[y, x], (20)

[x, [y, z]] = [[x, y], z] + (−1)p(x)p(y)[y, [x, z]], (21)

here x, y, and z are arbitrary elements of A and x, y are presumed homogeneous.
The super-matrix structure of a matrix is achieved whenever the parity is assigned to its rows

and columns. We choose the super-matrix structure such that rows (respectively, columns) which are
assigned the even parity always precede the rows (columns) of odd parity.19 The parity of the matrix
element is determined by the sum of the parity of its column and the parity of its row. If a matrix has
r even and s odd rows and p even and q odd columns, then its dimension is said to be equal to (r|s)
× (p|q). In particular, we shall use the shorthand notation (p|q) for the dimension (p|q) × (p|q).
We denote by Mat(p | q;A) the set of all matrices of dimension (p|q) with elements that belong the
super-algebra A.

Let us introduce the super-matrix structure on the space Mat(p | q;A). Consider a matrix

X = (
R S
T U

) ∈ Mat(p | q;A) and set

p(X ) = 0̄ if p(Ri j ) = p(Ui j ) = 0̄, p(Ti j ) = p(Si j ) = 1̄;

p(X ) = 1̄ if p(Ri j ) = p(Ui j ) = 1̄, p(Ti j ) = p(Si j ) = 0̄.

Taking into account the graded skew-symmetry (20) of the bracket [·, ·], we define the Lie super-
algebra structure on the space Mat(p | q;A) by the formula

[X, Y ] = XY − (−1)p(X )p(Y )Y X, X, Y ∈ Mat(p | q;A). (22)

The Lie super-algebras gl(m | n) � Mat(m | n,C) and sl(m | n) = {X ∈ gl(m | n)| str X = 0},
where str

(
R S
T U

) = tr R − tr U , are called the general linear and special linear Lie super-algebras,

respectively.
To calculate the super-commutator [X, Y ] of two nonhomogeneous elements X and Y, we first

split X = X 0̄ + X 1̄ and Y = Y0̄ + Y1̄ so that p(X 0̄) = p(Y0̄) = 0̄ and p(X 1̄) = p(Y1̄) = 1̄. Using (22),
we obtain

[X, Y ] = [X 0̄ + X 1̄, Y0̄ + Y1̄] = [X 0̄, X 0̄] + [X 0̄, Y1̄] + [X 1̄, Y0̄] + [X 1̄, Y1̄] =

= (X 0̄Y0̄ − Y0̄ X 0̄) + (X 0̄Y1̄ − Y1̄ X 0̄) + (X 1̄Y0̄ − Y0̄ X 1̄) + (X 1̄Y1̄ + Y1̄ X 1̄). (23)

The super-determinant, or the Berezinian of an invertible matrix X = (
R S
T U

) ∈ gl(m | n) is given

by the formula14

sdet

(
R S
T U

)
= det(R − SU−1T )

det U
.

Example 7: In what follows, we shall use the Lie super-algebra sl(1 | 2) � sl(2 | 1), see
Ref. 21. Its representation in the space Mat(2 | 1;C) is given by the eight basic vectors, four
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even: E+ , E− , H, and Z, and four odd: F+ , F− , F̄+, and F̄−, where

E+ =
⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠ E− =

⎛
⎝ 0 0 0

1 0 0
0 0 0

⎞
⎠ H =

⎛
⎝ 1/2 0 0

0 −1/2 0
0 0 0

⎞
⎠ Z =

⎛
⎝ 1/2 0 0

0 1/2 0
0 0 1

⎞
⎠

F+ =
⎛
⎝ 0 0 0

0 0 0
0 1 0

⎞
⎠ F− =

⎛
⎝ 0 0 0

0 0 0
1 0 0

⎞
⎠ F̄+ =

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ F̄− =

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠.

The elements of the basis satisfy the following commutation relations:

[H, E±] = ±E± [H, F±] = ± 1
2 F± [H, F̄±] = ± 1

2 F̄±

[Z , H ] = [Z , E±] = 0 [Z , F±] = 1
2 F± [Z , F̄±] = − 1

2 F̄±

[E±, F±] = [E±, F̄±] = 0 [E±, F∓] = −F± [E±, F̄∓] = F̄±

[F±, F±] = [F̄±, F̄±] = 0 [F±, F∓] = [F̄±, F̄∓] = 0 [F±, F̄±] = E±

[E+, E−] = 2H [F±, F̄∓] = Z ∓ H.

The Lie super-algebra sl(2 | 1) contains the Lie algebra sl(2,C) as a subalgebra. The vectors E±

and H form a basis in sl(2,C).
The Lie super-group SL(2|1), which corresponds to the Lie super-algebra sl(2 | 1), consists of

the matrices with unit Berezinian: SL(2 | 1) = {S ∈ GL(2 | 1) | sdet S = 1}.

Remark 2: Consider the following three subgroups of the Lie super-group SL(2|1):

G+ =
{(

1 B

0 1

)}
, G0 =

{(
A 0

0 D

)}
, G− =

{(
1 0

C 1

)}
.

Each matrix S ∈ SL(2|1) can be represented22 as a product S = S+ S0S− , where S+ ∈ G+ , S0 ∈
G0, S− ∈ G− . Due to the multiplicativity of the Berezinian, sdet S = sdet S+ · sdet S0 · sdet S− = 1,
and in view of the obvious property sdet S+ = sdet S− = 1 for all elements of the groups G+ and
G− , we conclude that sdet S0 = 1 for all S0 ∈ G0.

For the Lie super-group SL(2|1), the dimension of the matrix D is equal to 1 × 1 and the
dimension of the matrix A is equal to 2 × 2. Let us show that G0 � GL(2|0). The condition sdet S0 = 1
for the matrix S0 ∈ SL(2|1) implies the equality det A = det D of the usual determinants of A and
D. Therefore, to each matrix A ∈ GL(2|0) we can put into correspondence the matrix SA ∈ G0 by

setting SA = (
A 0
0 det A

)
and conversely, to each matrix S = (

A 0
0 D

) ∈ G0 we associate the matrix A

from GL(2|0).

B. Zero-curvature representations of graded extension of the KdV equation

The graded extension of the Maurer–Cartan equation (2) has the form

d
dx j Ai − d

dxi A j + [Ai , A j ] = 0, ∀i, j = 1, . . . , m : i �= j. (24)

Let us study in more detail the geometry of the N = 1 and N = 2 supersymmetry-invariant general-
izations of the Korteweg–de Vries equation.2, 23

1. N = 1 supersymmetric Korteweg–de Vries equation

The N = 1 supersymmetric generalization of the KdV equation (3) is the sKdV equation23

φt = −φxxx − 3(φDφ)x , D = ∂

∂θ
+ θ

d

dx
, (25)
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where φ(x, t, θ ) = ξ + θu is a complex fermionic super-field, θ is the Grassmann (or anti-commuting)
variable such that θ2 = 0, the unknown u is the bosonic field, and ξ is the fermionic field. By using
the expansion φ(x, t, θ ) = ξ + θu in (25), we obtain

ut =−uxxx − 6uux + 3ξξxx , (26a)

ξt = − ξxxx − 3(uξ )x . (26b)

The KdV equation (3) is underlined in (26a).

Example 8 (Zero-curvature representation and Gardner’s deformation of the sKdV equation):
We claim that the sKdV equation (26) admits the sl(2 | 1)-valued zero-curvature representation

αN=1 = AN=1
1 dx + B N=1

1 dt,

where

AN=1
1 =

⎛
⎜⎝

− 1
2ε

−u + 1
4ε2 ξ

1 − 1
2ε

0

0 −ξ − 1
ε

⎞
⎟⎠,

B N=1
1 =

⎛
⎜⎝

1
2ε−3 − ux 2u2 + uxx − ξξx + 1

2ε−2u − 1
4ε−4 −ξxx − 2ξu − 1

2ε−1ξx − 1
2ε−2ξ

−2u − ε−2 1
2ε−3 + ux −ξx − ξε−1

−ξx + ξε−1 ξxx + 2ξu − 1
2ε−1ξx + 1

2ε−2ξ ε−3

⎞
⎟⎠.

Let us construct the generalization SN=1 ∈ SL(2|1) of gauge transformation (19) where
we had S ∈ SL2(C) � SL(2 | 0). Taking into account Remark 2, we consider the ansatz SN=1

= SN=1
+ SN=1

0 SN=1
− , where Sν ∈ Gν , ν ∈ {+ , 0, − }. Bearing in mind that SL2(C) � SL(2 | 0)

⊂ GL(2 | 0), we construct S by using the following scheme:

(1) we obtain an element SN=1
0 by the multiplication of S from right and left by some matrices

from GL(2|0);
(2) we specify the matrices SN=1

+ and SN=1
− .

We construct the matrix SN = 1 as follows

SN=1 =

⎛
⎜⎝

−1 − 1
2ε−1 0

0 ε 0

0 0 −ε

⎞
⎟⎠ =

=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
SN=1+

⎛
⎜⎝

i
√

ε i
√

ε/ε2 0

0 i
√

ε 0

0 0 −ε

⎞
⎟⎠

S︷ ︸︸ ︷⎛
⎜⎜⎝

i/
√

ε i/(2ε
√

ε) 0

0 −i
√

ε 0

1 0 1

⎞
⎟⎟⎠

⎛
⎜⎝

1 ε−1 0

0 1 0

0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
SN=1

0

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
SN=1−

.

(27)

By applying the gauge transformation SN = 1 to the zero-curvature representation αN = 1, we
obtain the gauge-equivalent zero-curvature representation β for the sKdV equation (26):

βN=1 = (αN=1)SN=1 = AN=1
2 dx + B N=1

2 dt, (28)
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where

AN=1
2 =

⎛
⎜⎝

0 ε−1u ε−1ξ

−ε −ε−1 0

0 ξ −ε−1

⎞
⎟⎠,

B N=1
2 =

⎛
⎜⎝

ux − uε−1 1
ε
(−2u2 − uxx + ξξx ) − 1

ε2 ux − 1
ε3 u 1

ε
(−ξxx − 2ξu) − 1

ε2 ξx − 1
ε3 ξ

2uε + ε−1 ux + uε−1 + ε−3 ξx + ξε−1

−ξ;xε + ξ −ξxx − 2ξu ε−3

⎞
⎟⎠.

Let us recall that formula (9) yields the representation of the matrices AN=1
2 and B N=1

2 in terms
of vector fields. By this argument, from the zero-curvature representation βN = 1 we obtain the two-
dimensional covering over the sKdV equation (26); one of the two new nonlocal variables is bosonic
(let us denote it by ũ) and the other, ξ̃ is fermionic:

ũx = − ũ2ε + (ũ − u)ε−1 − ξ̃ ξ,

ξ̃x = − ξ̃ ũε + (ξ̃ − ξ )ε−1,

ũt = 1

ε3
(2ũ2uε4 + ũ2ε2 − 2ũuε2 − 2ũuxε

3 − ũ + 2u2ε2 + u + uxxε
2 + uxε − ξ̃ ũξxε

4+

+ ξ̃ ξxxε
3 + ξ̃ ξ ũε3 + 2ξ̃ ξuε3 − ξξxε

2),

ξ̃t = 1

ε3
(−ũξxε

3 + ξxxε
2 + ξxε + 2ξ̃ ũuε4 + ξ̃ ũε2 − ξ̃uε2 − ξ̃uxε

3 − ξ̃ − ξ ũε2 + 2ξuε2 + ξ ).

We now express the local variables u and ξ from ũx and ξ̃x and substitute them in ũt and ξ̃t . We thus
obtain the Gardner deformation3 of sKdV equation (26):

Eε =
{

ũt = 6ũ2ũxε
2 − 6ũũx − ũxxx − 3ξ̃ ũξ̃xxε

2 + 3ξ̃ ξ̃ xx − 3ξ̃ ξ̃x ũxε
2,

ξ̃t = 3ũ2ξ̃xε
2 − 3ũξ̃x − ξ̃xxx + 3ξ̃ ũũxε

2 − 3ξ̃ ũx

}
,

mε =
{

u = ũ − εũx + ε2(ξ̃ ξ̃xε
2−ũ2), ξ = ξ̃ − εξ̃x − ε2ξ̃ ũ

}
: Eε → EsKdV.

This deformation can also be obtained by using super-field formalism.3 The original Gardner defor-
mation (11) of the KdV equation (3) is underlined in the above formulas.

2. N = 2 supersymmetric Korteweg–de Vries equation

Let us consider the four-component generalization of the KdV equation (3), namely, the N = 2
supersymmetric Korteweg–de Vries equation (SKdV):2

ut = −uxxx + 3
(
uD1D2u

)
x + a − 1

2

(
D1D2u2

)
x + 3au2ux , Di = ∂

∂θi
+ θi · d

dx
, (29)

where

u(x, t ; θ1, θ2) = u0(x, t) + θ1 · u1(x, t) + θ2 · u2(x, t) + θ1θ2 · u12(x, t) (30)

is the complex bosonic super-field, θ1, θ2 are Grassmann variables such that θ2
1 = θ2

2 = θ1θ2

+ θ2θ1 = 0, u0, u12 are bosonic fields, and u1, u2 are fermionic fields. Expansion (30) converts
(29) to the four-component system

u0;t = −u0;xxx + (
au3

0 − (a + 2)u0u12 + (a − 1)u1u2
)

x , (31a)

u1;t = −u1;xxx + (
(a + 2)u0u2;x + (a − 1)u0;x u2 − 3u1u12 + 3au2

0u1
)

x
, (31b)
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u2;t = −u2;xxx + (−(a + 2)u0u1;x − (a − 1)u0;x u1 − 3u2u12 + 3au2
0u2

)
x , (31c)

u12;t = −u12;xxx − 6u12u12;x + 3au0;x u0;xx + (a + 2)u0u0;xxx

+ 3u1u1;xx + 3u2u2;xx + 3a
(
u2

0u12 − 2u0u1u2
)

x
. (31d)

The KdV equation is underlined in (31d). The SKdV equation is most interesting (in particular,
bi-Hamiltonian, whence completely integrable) if a ∈ {–2, 1, 4}, see Refs. 2, 4, and 24. Let us
consider the bosonic limit u1 = u2 = 0 of system (31): by setting a = − 2 we obtain the triangular
system which consists of the modified KdV equation upon u0 and the equation of KdV-type; in the
case a = 1 we obtain the Krasil’shchik–Kersten system; for a = 4, we obtain the third equation
in the Kaup–Boussinesq hierarchy. A Gardner deformation of the Kaup–Boussinesq system was
constructed in Ref. 4.

The Gardner deformation problem for the N = 2 supersymmetric a = 4 KdV equation was
formulated in Ref. 2. In the paper4 it was shown that one cannot construct such a deformation under
the assumptions that, first, the deformation is polynomial in E , second, it involves only the super-
fields but not their components, and third, it contains the known deformation (11) under the reduction
u0 = 0, u1 = u2 = 0. Therefore, we shall find a graded generalization of Gardner’s deformation (11)
for the system of four Eqs. (31) treating it in components but not as the single Eq. (29) upon the
super-field.

The SKdV equation (31) admits25 the sl(2 | 1)-valued zero-curvature representation αN = 2

= Adx + Bdt such that

A =

⎛
⎜⎝

η − iu0 η2 − 2iηu0 − u2
0 − u12 −u2 − iu1

1 η − iu0 0

0 u2 − iu1 2η − 2iu0

⎞
⎟⎠, (32a)

B =

⎛
⎜⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎟⎠, (32b)

where the elements of B are as follows:

b11 = − 4η3 − 2ηu0;x i − 4u3
0i + 6u0u12i + 4u0u0;x + u0;xx i − u12;x + 4u2u1i,

b12 = − 4η4 + 4η3u0i + 2η2u12 − 4ηu3
0i + 8ηu0u12i + 2ηu0;xx i − 4u4

0 − 2u2
0u12−

− 4u0u0;xx + 2u2
12 − 4u2

0;x + u12;xx − u2u2;x + 4u2u1ηi − 8u2u1u0 − u1u1;x ,

b13 = − ηu2;x − ηu1;x i − 5u0u2;x i + 5u0u1;x + u2;xx + u1;xx i + 2u2η
2 + 2u2ηu0i−

− 8u2u2
0 + 2u2u12 − 4u2u0;x i + 2u1η

2i − 2u1ηu0 − 8u1u2
0i + 2u1u12i + 4u1u0;x ,

b21 = 2(−2η2 − 2ηu0i + 2u2
0 − u12),

b22 = − 4η3 + 2ηu0;x i − 4u3
0i + 6u0u12i − 4u0u0;x + u0;xx i + u12;x + 4u2u1i,

b23 = u2;x + u1;x i − 2u2η − 4u2u0i − 2u1ηi + 4u1u0,

b31 = u2;x − u1;x i + 2u2η + 4u2u0i − 2u1ηi + 4u1u0,
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b32 = − ηu2;x + ηu1;x i − 5u0u2;x i − 5u0u1;x − u2;xx + u1;xx i − 2u2η
2 − 2u2ηu0i+

+ 8u2u2
0 − 2u2u12 − 4u2u0;x i + 2u1η

2i − 2u1ηu0 − 8u1u2
0i + 2u1u12i − 4u1u0;x ,

b33 = 2(−4η3 − 4u3
0i + 6u0u12i + u0;xx i + 4u2u1i).

We claim that the parameter η ∈ C is non-removable from A and B under gauge transformation.

Remark 3: Let us recall that the vectors Z, H, and E± that belong to sl(2 | 1) generate a basis in
gl(2,C) (see the respective formulas on p. 22 in Example 7). We notice that the vector Z commutes
with any other vector from gl(2,C).

The reduction u0 = u1 = u2 = 0 converts zero-curvature representation (32) to the gl(2,C)-
valued zero-curvature representation of the KdV equation (3),

AKdV =

⎛
⎜⎝

η η2 − u12 0

1 η 0

0 0 2η

⎞
⎟⎠,

BKdV =

⎛
⎜⎝

−4η3 − u12;x −4η4 + 2η2u12 + 2u2
12 + u12;xx 0

2(−2η2 − u12) −4η3 + u12;x 0

0 0 −8η3

⎞
⎟⎠.

Taking into account Remark 3, we obtain the sl(2,C)-valued zero-curvature representation (14) for
the KdV equation (3) by omitting the summands η ⊗ Zdx and − 4η3 ⊗ Zdt in AKdV and BKdV and
by denoting η2 = λ.

Proposition 1: The N = 2 supersymmetric a = 4 Korteweg–de Vries equation (31) admits the
(1|1)-dimensional Z2-graded covering, which is given in formulas (35) and (36) and which is such
that, under the reduction u0 = u1 = u2 = 0 of (31) to the KdV equation (3) and the consistent
trivialization f := 0 in (35a) and (36a), see also (37), it reduces to the known Gardner deformation
of (3) in the form of (12).

Proof: Let us extend the gauge transformation (19), which was determined by the element S of
the Lie group SL(2,C). We let

SN=2 =

⎛
⎜⎝

−1 − 1
2ε−1 0

0 ε 0

0 0 −ε

⎞
⎟⎠. (33)

Acting by gauge transformation (33) on zero-curvature representation (32), we obtain the graded
zero-curvature representation that contains the “small” zero-curvature representation which, in turn,
originates from (12) and is gauge-equivalent to (14) for the KdV equation (3). Specifically, we have
that

A =

⎛
⎜⎝

iu0 ε−1(u2
0 + u12) − iε−2u0 ε−1(u2 − iu1)

−ε iu0 − ε−1 0

0 u2 + iu1 2iu0 − ε−1

⎞
⎟⎠, (34a)

B =

⎛
⎜⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎟⎠, (34b)
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where the elements of the matrix B are as follows,

b11 =4iu3
0 − 6iu0u12 + 4u0u0;x − iu0;xx − u12;x − 4iu2u1 + ε−1(2u2

0 − u12 − iu0;x ) − iε−2u0,

b12 =ε−1(4u4
0 + 2u2

0u12 + 4u0u0;xx − 2u2
12 + 4u2

0;x − u12;xx + u2u2;x + 8u2u1u0 + u1u1;x )+

+ ε−2(2iu3
0 − 4iu0u12 + 4u0u0;x − iu0;xx − u12;x − 2iu2u1) + ε−3(u2

0 − u12 − iu0;x )−

− iε−4u0,

b13 =ε−1(−5iu0u2;x − 5u0u1;x − u2;xx + iu1;xx + 8u2u2
0 − 2u2u12 − 4iu2u0;x − 8iu1u2

0+

+ 2iu1u12 − 4u1u0;x ) + ε−2(−u2;x + iu1;x − 3iu2u0 − 3u1u0) + ε−3(−u2 + iu1),

b21 =2ε(−2u2
0 + u12) + 2iu0 + ε−1,

b22 =4iu3
0 − 6iu0u12 − 4u0u0;x − iu0;xx + u12;x − 4iu2u1 + ε−1(−2u2

0 + u12 + iu0;x )+

+ iε−1u0 + ε−3,

b23 =u2;x − iu1;x + 4iu2u0 + 4u1u0 + ε−1(u2 − iu1),

b31 =ε(−u2;x − iu1;x + 4iu2u0 − 4u1u0) + u2 + iu1,

b32 =5iu0u2;x − 5u0u1;x − u2;xx − iu1;xx + 8u2u2
0 − 2u2u12 + 4iu2u0;x + 8iu1u2

0 − 2iu1u12−

− 4u1u0;x + ε−1u0(iu2 − u1),

b33 =2(4iu3
0 − 6iu0u12 − iu0;xx − 4iu2u1) + ε−3.

The projective substitution (8) yields the two-dimensional covering over the N = 2, a = 4 SKdV
equation. Under the reduction u0 = u1 = u2 = 0 the covering contains (12), which is equivalent to
Gardner’s deformation (11) of the KdV equation (3). The x-components of the derivation rules for
the nonlocalities w and f are

wx =−εw2 + ε−1(w − u12) − f u2 − i f u1 − ε−1u2
0 − ε−2iu0, (35a)

fx = − εw f − iu0 f + ε−1( f − u2 + iu1); (35b)

here and in what follows we underline the covering (12) that encodes the “small” Gardner deformation
for the KdV equation. The t-components of the “large” covering over the N = 2, a = 4 SKdV are

wt =ε(−4w2u2
0+2w2u12 − f wu2;x − i f wu1;x + 4i f u2wu0 − 4 f u1wu0) + 2iw2u0+

+ 8wu0u0;x−2wu12;x − 5i f u0u2;x + 5 f u0u1;x + f u2;xx + i f u1;xx + f u2w − 8 f u2u2
0+

+ 2 f u2u12 − 4i f u2u0;x + i f u1w − 8i f u1u2
0 + 2i f u1u12 + 4 f u1u0;x + ε−1(w2 + 4wu2

0−

−2wu12 − 2iwu0;x − 4u4
0 − 2u2

0u12 − 4u0u0;xx+2u2
12 − 4u2

0;x+u12;xx − i f u2u0+

+ f u1u0 − u2u2;x − 8u2u1u0 − u1u1;x ) + ε−2(−2iwu0 − 2iu3
0 + 4iu0u12 − 4u0u0;x+

+ iu0;xx+u12;x + 2iu2u1) + ε−3(−w − u2
0+u12 + iu0;x ) + ε−4iu0, (36a)
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ft =2εw(−2 f u2
0 + f u12) + (−wu2;x + iwu1;x + 2i f wu0 − 4i f u3

0 + 6i f u0u12 + 4 f u0u0;x+

+ i f u0;xx − f u12;x + 4i f u2u1 − 4iu2wu0 − 4u1wu0) + ε−1(5iu0u2;x + 5u0u1;x + u2;xx−

− iu1;xx + f w + 2 f u2
0 − f u12 − i f u0;x − u2w − 8u2u2

0 + 2u2u12 + 4iu2u0;x + iu1w+

+ 8iu1u2
0 − 2iu1u12 + 4u1u0;x ) + ε−2(u2;x − iu1;x − i f u0 + 3iu2u0 + 3u1u0)+

+ ε−3(− f + u2 − iu1). (36b)

It is noteworthy that the reduction u0 = u1 = u2 = 0 in (31) eliminates the presence of the fermionic
variables f in (35a) and (36a) so that there remains only (12) in the bosonic sector:

wx = − εw2 + ε−1(w − u12), (37a)

wt =2εw2u12 − 2wu12;x + ε−1(w2 − 2wu12 + 2u2
12 + u12;xx ), (37b)

fx = − εw f + ε−1 f, (37c)

ft =2εw f u12 − f u12;x + ε−1 f (u12 − w) − ε−3 f. (37d)

This proves our claim. �
In contrast with Gardner’s deformation of N = 1 sKdV equation (see Example 8), covering (35)

and (36), which we obtain for N = 2 supersymmetric a = 2 KdV equation, cannot be expressed in
terms of the super-field.

We finally remark that the reduction u0 = 0, u1 = 0 (and the change of notation u2 → ξ , u12

→ u) maps this covering over the N = 2, a = 4 SKdV equation to the covering which was constructed
in Example 8 for the N = 1 supersymmetric Korteweg–de Vries equation (25).

IV. CONCLUSION

By now the Gardner deformation problem for the N = 2 supersymmetric a = 4 Korteweg–
de Vries equation (see Ref. 3) is solved. In this paper we have found the solution which is an
alternative to our previous result in Ref. 4. Namely, we introduced the nonlocal bosonic and
fermionic variables in such a way that the rules to differentiate them are consistent by virtue of
the super-equation at hand and second, the entire system retracts to the standard KdV equation
and the classical Gardner deformation for it1 under setting to zero the fermionic nonlocal variable
and the first three components of the N = 2 superfield in (29). At the same time, the structure under
study is equivalent to the sl(2 | 1)-valued zero-curvature representation for this super-equation; the
zero-curvature representation contains the non-removable spectral parameter, which manifests the
integrability.

Our new solution of Mathieu’s open problem 2 (see Ref. 3) relies on the interpretation of both
Gardner’s deformations and zero-curvature representations in similar terms, as a specific type of
nonlocal structures over the equation of motion.13 However, we emphasize that generally there is no
one-to-one correspondence between the two constructions, so that the interpretation of deformations
in the Lie-algebraic language is not always possible. Because this correlation between the two
approaches to the integrability was not revealed in the canonical formulation of the deformation
problem,3 there appeared some attempts to solve it within the classical scheme but the progress was
partial.2, 26 Still, the use of zero-curvature representations in this context could have given the sought
deformation long ago.

Let us also notice that projective substitution (8) correlates the super-dimension of the Lie
algebra in a zero-curvature representation for a differential equation with the numbers of bosonic
and fermionic nonlocalities over the same system: a subalgebra of gl(p | q) yields at most p − 1
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bosonic and q fermionic variables. This implies that, for a covering over the N = 2 supersymmetric
KdV equation (29) to extend the Gardner deformation (11) in its classical sense mε : Eε → E (see
Refs. 1, 2, and 9), the extension Eε must be the system of evolution equations upon two bosonic
and two fermionic fields. Therefore, one may have to use the sl(3 | 2)-valued zero-curvature rep-
resentations. This outlines the working approach to a yet another method of solving the Gardner
deformation problem for the N = 2 supersymmetric Korteweg–de Vries systems (29), which we
leave as a new open problem.
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