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ABSTRACT
Wojtak, Hansen & Hjorth have recently claimed to confirm general relativity (GR) and to
rule out the tensor–vector–scalar (TeVeS) gravitational theory based on an analysis of the
gravitational redshifts of galaxies in 7800 clusters. However, their ubiquitous modelling of
the sources of cluster gravitational fields with Navarro–Frenk–White mass profiles is neither
empirically justified out to the necessary radii in clusters, nor germane in the case of TeVeS.
Using MONDian (where MOND stands for MOdified Newtonian Dynamics) isothermal sphere
models consistently constructed within MOND (equivalent to TeVeS models), we can fit the
determined redshifts no worse than does GR with dark haloes. Moreover, Wojtak, Hansen &
Hjorth have inappropriately used the simple MOND interpolating function for the μ function
of the scalar field of TeVeS; the consequent MOND effective interpolating function turns out
to enhance the gravitational potential, and so contributes to the discrepancy which forms the
basis of their claims.
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In a recent paper, Wojtak, Hansen & Hjorth (2011, hereafter WHH)
analyse the pattern of spectroscopic redshifts for galaxies in 7800
clusters from the Seventh Data Release of the Sloan Digital Sky
Survey. The motion of a galaxy in a cluster engenders a redshift or
blueshift of its spectral lines; the equivalent velocities are typically
of the order of 600 km s−1. WHH make a good case that they are
able to dig out the superimposed gravitational redshift, which is
equivalent to a velocity of the order 10 km s−1, by stacking data
from all clusters and measuring the displacement of the redshift
distribution’s centroid with growing radial coordinate r in the typical
cluster.

However useful their technique may turn out to be, WHH draw
from it erroneous conclusions that: (i) general relativity (GR) is con-
firmed by the observed redshift pattern; (ii) the f (R) gravity theory
(Carroll et al. 2004) may well be compatible with the data; and (iii)
the tensor–vector–scalar theory (TeVeS, Bekenstein 2004; Skordis
2009), an early relativistic gravity implementation of the MOdified
Newtonian Dynamics (MOND) paradigm (Milgrom 1983), which
claims to describe galaxy dynamics without dark matter, is ruled
out. In the discussion that follows, we will refer to MOND and
Newtonian masses, meaning the dynamical mass required by each
named theory to account for the kinematics of galaxies or gas in a
cluster.

Let us recall that in the above-mentioned theories, as well as in
any other metric gravitational theory endowed with the usual weak
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field limit, g00 ≈ −c2 − 2�, the gravitational redshift is quantified,
to first order, by the same gravitational potential � which controls
the motion of galaxies in their parent clusters, etc. (Misner, Thorne
& Wheeler 1971). The gravitational redshift suffered by a galaxy
situated at radial position r should follow from the formula z =
−�(r)c−2 [with �(∞) = 0; gravitational potential is negative].
This is a straight consequence of the Einstein equivalence principle
which is implemented in all such theories (Will 1986). We note
that the gravitational redshift combined with gravitational lensing
could be a test of theories in which the two Newtonian potentials
(the first-order terms of g00 and grr) differ. This is not the case with
TeVeS or with other suggested relativistic extensions of MOND,
such as Einstein–Aether theories or BIMOND, and, in any case, it
is not a comparison done by WHH.

WHH determine �(r) in a cluster, by matching the dispersion
of galaxy velocities in their stacked cluster with the best-fitting
NFW halo model (which emerges from cosmic N-body simulations
within GR, Navarro, Frenk & White 1997), and appealing to a
standard assumption about the predominant shapes of galaxy orbits.
Actually they determine the gravitational shift relative to that of light
emerging from the centre of the cluster, so their result is presented
as a blueshift: �z = [�(0) − �(r)]/c2 < 0. Now, were �(r) inferred
directly from galaxy velocity dispersions, the curve �(r) versus r
would have to be the same for all metric theories with a standard
weak field limit. Thus, how did WHH get their fig. 2 where the
redshift curve for TeVeS lies well below GR’s?

While the gravitational redshift by itself is in no sense a test of
competing theories of gravity (as long as all respect the equivalence
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principle), it can be a test of the mass distribution in the outer parts
of clusters, that is, the mass distribution that may be implied by a
particular theory. For clusters in general, the mass distribution can
be measured dynamically, by the motion of galaxies or the density
and temperature distribution of hot gas, but these techniques work
out to r = 1–2 Mpc at most. Yet WHH purport to observationally
determine the gravitational redshift, and hence the potential, out to
6 Mpc. What do they assume about the mass distributions in these
outer regions in light of competing theories of gravity?

For GR with dark matter, WHH assume that the mass distribution
out to 6 Mpc, four times the typical virial radius, is well described by
the popular NFW profile (Navarro et al. 1997). They pick that NFW
model, specified by a virial radius and a concentration parameter,
which best fits the velocity dispersion data of the average cluster
within about 1 Mpc from the centre. Now in a NFW halo beyond
the virial radius of 1–2 Mpc, the density mass distribution falls as
1/r3. It must be emphasized that this behaviour is an assumption;
there is no independent tracer of the mass distribution out to 6 Mpc
where the cluster may not be in virial equilibrium and may still be
accreting.

MOND/TeVeS is less flexible; as presently understood, the the-
ory unavoidably yields an asymptotically logarithmically rising po-
tential which is equivalent to a ‘phantom’ dark matter density falling
as 1/r2 in the outer regions (phantom in the sense of dark matter that
one would suppose to be present were one to analyse the problem
Newtonianly). Thus, the effective density declines more slowly than
for the assumed NFW profile. One might suppose that this is the
reason for the different curves in fig. 2 of WHH: MOND/TeVeS
produces more potential in the outer regions of clusters than does
GR for an equal true mass distribution in the inner regions. In their
supplementary material, WHH admit that the mass distribution is
uncertain in the outer regions but claim that the GR result is fairly
insensitive to the actual exponent of a power-law density distribu-
tion.

However, the actual problem is primarily one of scaling. In their
test of the MOND/TeVeS scenario, WHH again assume a NFW
mass distribution, but one scaled down to 80 per cent of the New-
tonian dynamical mass. That is to say, the discrepancy between the
observed and dynamical masses is reduced from a factor of 6 to
a factor of 5 (in clusters some unseen matter is also required by
MOND, Sanders 2003). This assumption is based on an analysis
of clusters by Pointecouteau & Silk (2005). However, as pointed
out by Milgrom (2008), these authors used too small a value of a0.
The actual ratio of MOND to Newtonian mass should be more like
50 per cent (see fig. 10 of Sanders & McGaugh 2002, for results
based upon about 90 X-ray-emitting clusters), and this factor de-
creases with radius (Angus et al. 2007).

However, the NFW profile is not particularly germane to the
MOND/TeVeS world view; the profile arises in GR cosmological
simulations. Therefore, we have calculated �z using instead as
source the mass distribution of a MONDian isothermal sphere with
a velocity dispersion of 600 km s−1. The MOND potential difference
was calculated using the MOND equation (Milgrom 1983, here and
henceforth �′ ≡ ∂�/∂r and �N is the usual Newtonian potential)

μ̃(�′) �′ = �N
′, (1)

with the ‘standard’ interpolating function (Milgrom 1983; Famaey
& Binney 2005)

μ̃(�′) = �′/a0√
1 + �′2/a2

0

. (2)

Figure 1. Gravitational redshift with respect to the centre of the cluster
following WHH. The dashed curve is that of GR plus the NFW model
which best fits the run of velocity dispersion in the central regions of the
average cluster. The solid curve is that of the MOND/TeVeS isothermal
sphere with a central velocity dispersion of 600 km s−1. For comparison, the
dotted curve shows the NFW model with mass reduced by 36 per cent in the
context of TeVeS/MOND. The data points are from WHH’s paper.

The total mass of our MONDian isothermal sphere is 1.45 ×
1014 M� (MONDian isothermal isothermal spheres have finite
mass). By comparison, we require a mass of about 4 × 1014 M� for
the NFW halo out to 6 Mpc to emulate WHH’s GR results. Thus,
the MOND dynamical mass is only 36 per cent of the Newtonian
dynamical mass within 6 Mpc, not 80 per cent.

The results are displayed in Fig. 1 along with the data of WHH
(comparable to their fig. 2). The line-of-sight integration for the
mean gravitational redshift at a particular projected radius was,
following WHH, carried out on the assumption that the galaxies
were distributed as the total mass distribution. The solid curve is
the MOND prediction and the dashed line is that of GR plus NFW
haloes. We see that, while the MOND curve does lie below the GR
curve, both are consistent with the observations. The data do not
distinguish between the predictions of the two theories because the
natural mass distribution in the outer regions is different for GR
and MOND. The two curves almost coincide within 1 Mpc from the
centre, as they should, since the mass distributions and potentials
coincide here, becoming different only in the outer regions.

Independent of the issue of the mass distribution in the outer
reaches of a cluster, WHH made a conceptual error in their specif-
ically TeVeS calculation of the gravitational redshift. In GR, �

coincides with �N, the latter being sourced by baryonic and dark
matter. Although TeVeS comprises two metrics, primitive and phys-
ical, light and matter propagate exclusively on the physical metric.
The potential � is related to the physical metric in just the way
�N is related to GR’s metric. TeVeS also includes a scalar field φ

satisfying a non-linear field equation, formulated on the primitive
metric, which is defined with the help of a specific function μ of the
gradient of φ. This equation has the consequence that in a spherical
cluster

μ(φ′) φ′ = k

4π
�N

′, (3)

where k is a small coupling constant (Bekenstein 2004) which WHH
assume to be k = 0.01. As in the MOND paradigm, �N here is
considered to be sourced only by the baryonic matter. The two
metrics in TeVeS are so related that to linear order

� = �N + φ. (4)
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By contrast to WHH’s procedure to be summarized below, in
our TeVeS analysis of the gravitational redshift, we have worked
directly with the full MOND equation, equation (1), using the ‘stan-
dard’ form of μ̃. This procedure is entirely permissible when spher-
ical symmetry is obtained since, as shown by equation (4), the scalar
φ plus the Newtonian potential combine in TeVeS to provide the
effective weak field potential �, which yields directly the grav-
itational redshift. It is unnecessary to consider the scalar field φ

separately as WHH did.
While WHH took �N in their TeVeS analysis to be a fraction

80 per cent of the �N required by the velocity dispersions in Newto-
nian gravity, we have argued above that the fraction should be more
like a third. To determine � from equation (4), WHH computed φ

through equation (3) using the prescription

μ(φ′) =
√

k lφ′

1 + √
k lφ′ , (5)

where l is the TeVeS scale of length [whose relation to the MOND
acceleration scale WHH take to be a0 = √

κ/(4πl) based on
Bekenstein 2004]. They justify this choice of μ because in MOND’s
versatile equation (1) an often-used choice is the ‘simple’ interpo-
lating function (Famaey & Binney 2005)

μ̃(�′) = �′/a0

1 + �′/a0
. (6)

However, there is a confusion here. In TeVeS μ and μ̃ are differ-
ent functions (Bekenstein 2004). WHH’s choice (5) corresponds,
by equations (59)–(61) of that reference, to the relation

�′/a0 = μ̃

1 − μ̃

1

1 − (
1 + k

4π

)
μ̃

. (7)

This being quadratic, WHH’s choice of μ(φ′) corresponds to a
double-valued interpolation function μ̃(�′). One of its branches is
physically ruled out because it gives μ̃ > 1. The permissible branch
is plotted in Fig. 2 for WHH’s choice k = 0.01. For a given source,
it implies a significantly stronger gravitational field than do either
of the well-tested ‘simple’ and ‘standard’ functions also shown (see

Figure 2. In this plot of μ̃ versus �′ (in units of a0), the thick solid curve
depicts the interpolation function for WHH’s choice of μ(φ′) (equation 5)
and k = 0.01, while the light solid and dashed curves are for the well-
tested ‘simple’ and ‘standard’ interpolation functions, equations (6) and (2),
respectively.

equation 1). It is thus no wonder that WHH predict too deep a cluster
potential, as reflected by their TeVeS gravitational redshift curve in
fig. 2 of WHH.

However, how does WHH’s implied MOND interpolation func-
tion, when combined with a mass distribution natural to MOND,
fare in light of the cluster data? We have repeated our calculation
using a MONDian isothermal sphere source with MOND’s equa-
tion (1), but this time with the interpolation function represented
by the solid thick curve in Fig. 2. A source with 80 per cent of the
Newtonian mass does lead to agreement with WHH’s gravitational
redshift prediction of −22 km s−1 at the cluster centre, but pushes
the predicted central galaxy velocity dispersion up to 850 km s−1, a
number excluded by the data. The dispersion can be brought down
to the observed level by reducing the source mass to 20 per cent of
Newtonian, in which case the central gravitational redshift is down
to −13.6 km s−1 and the redshift curve is a bit closer to the GR one
than shown in Fig. 1. Use of WHH’s implied interpolation func-
tion undeniably eases MOND’s need for dark matter in clusters. It
should be remarked, however, that WHH’s interpolation function
has hardly been tested with galaxy rotation curves, an area in which
MOND with the usual interpolation functions is very successful.

To conclude, WHH’s far-reaching claims do not stand up under
close scrutiny. The NFW profile which they assume everywhere is
not supported by independent evidence out to the radial distances
which they explore, and its use in the context of TeVeS is unnatu-
ral. In our test of TeVeS/MOND, a mass distribution consistently
constructed within MOND gives predictions for the redshift in no
way inferior to those obtained by WHH for GR. Thus, WHH’s claim
that GR explains the gravitational redshift measurements better than
does TeVeS/MOND is baseless. None the less, increased precision
in the measurement of the gravitational redshift might make it pos-
sible in the future to distinguish between GR with NFW haloes and
TeVeS/MOND.
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