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Abstract

We derive the parity- and time-reversal-violating nuclear interactions stemming from the QCD θ̄

term and quark/gluon operators of effective dimension 6: quark electric dipole moments, quark and
gluon chromo-electric dipole moments, and two four-quark operators. We work in the framework
of two-flavor chiral perturbation theory, where a systematic expansion is possible. The different
chiral-transformation properties of the sources of time-reversal violation lead to different hadronic
interactions. For all sources considered the leading-order potential involves known one-pion exchange,
but its specific form and the relative importance of short-range interactions depend on the source.
For the θ̄ term, the leading potential is solely given by one-pion exchange, which does not contribute
to the deuteron electric dipole moment. In subleading order, a new two-pion-exchange potential
is obtained. Its short-range component is indistinguishable from one of two undetermined contact
interactions that appear at the same order and represent effects of heavier mesons and other short-
range QCD dynamics. One-pion-exchange corrections at this order are discussed as well.

http://arxiv.org/abs/1106.6119v1


1 Introduction

There are three sources of CP violation in the lowest-dimension operators of the Standard Model. Due
to its flavor-changing properties, the phase of the CKM matrix is the best known and investigated
source (see, for example, Ref. [1]). The recent discovery of neutrino masses opens up the possibility of
analogous leptonic CP violation [2]. The third possible source comes from the θ̄ term in QCD [3]. Flavor-
conserving quantities, in particular hadronic, nuclear, and atomic electric dipole moments (EDMs), are
sensitive probes of this qualitatively different mechanism of CP violation. EDMs require the simultaneous
violation of parity (P ) and time-reversal (T ); for a review, see Ref. [4].

Years of careful experimental investigation have set stringent bounds on the neutron EDM, |dn| <
2.9 · 10−26 e cm [5]. This upper limit points to a tiny value for the θ̄ parameter, θ̄ <∼ 10−10, despite
the naive-dimensional-analysis expectation that it be of O(1). Besides the neutron EDM, there are
measurements on atomic EDMs. The leading contribution in a paramagnetic system comes from the EDM
of the unpaired electron. In contrast, a diamagnetic atom has zero total electron angular momentum,
and the main contribution to the atomic EDM comes from the nuclear Schiff moment (SM), the residual
electron-nucleus interaction generated by the distribution of the EDM throughout the nuclear region. A
less stringent bound on the proton EDM, |dp| < 7.9 · 10−25 e cm, is extracted from the EDM of the 199Hg
atom [6] through a calculation of the nuclear SM [7]. Atomic EDMs can also receive contributions from
higher nuclear moments that violate T , such as the magnetic quadrupole moment (MQM).

The unnaturally small value of θ̄ leaves room for other flavor-diagonal sources of T violation, which
have their origin in physics beyond the Standard Model, at a high-energy scale M/T . Well below the new
physics scale, these effects manifest themselves in interactions between Standard Model fields represented
by higher-dimension T -violating (TV) operators, suppressed by more and more powers of M/T . We expect
the most important TV effects to be captured by the operators of lowest dimension [8, 9, 10, 11], the
dimension-6 quark electric and chromo-electric dipole moments (qEDM and qCEDM), gluon chromo-
electric dipole moment (gCEDM), and TV four-quark (FQ) operators.

A recent renewal of the longstanding interest in EDMs comes from a new generation of experiments,
which will improve the precision of EDM observables significantly. It is expected that the current bound
on the neutron EDM will be pushed down to 10−27−10−28 e cm [12] using high-density ultra-cold neutron
sources at SNS [13] and ILL+PSI [14]. It has also been proposed that the EDM of charged particles could
be measured in storage-ring experiments [15]. In addition to the proton, we could see a measurement
of the deuteron EDM with a projected precision of |dd| <∼ 10−29 e cm. A measurement on 3He is also a
possibility. These measurements probe dimension-6 sources at scales comparable to the scale reached at
the LHC, so they could very well turn up positive signals.

Calculating hadronic and nuclear EDMs (and higher moments) directly from QCD with TV sources is
a daunting task, although progress has been made for nucleons, in the case of θ̄, using lattice simulations
[16]. An alternative is to use a low-energy effective field theory (EFT) of QCD, chiral perturbation theory
(ChPT) [17, 18] (for a review, see for example Ref. [19]). In this case, we can describe hadronic and
nuclear observables in a controlled expansion with minimal dynamical assumptions, where the symmetries
of QCD —in particular the chiral SUL(2) × SUR(2) symmetry for two quark flavors— are respected
order by order. While the simplest T -violating (TV) interactions have been known for a long time
[20, 21, 22, 23, 24], a comprehensive analysis —similar to the well-known T -conserving (TC) sector— of
the TV chiral Lagrangian from the θ̄ term [25] and the dimension-6 sources [26] has only been performed
recently.

In the case of the nucleon EDM, one finds that, for T violation from the θ̄ term, the leading contri-
butions come from the pion cloud, where the pion couples to the nucleon via a non-derivative P - and
T -odd interaction, and from shorter-range interactions. The former is purely isovector, and provides an
estimate of the EDM: the characteristic lnmπ, with mπ the pion mass, is not expected to be canceled
by short-range contributions and thus provides the bound on θ̄ mentioned above [20, 21, 23]. One can
extend the calculation to the full electric dipole form factor (EDFF) as well [23], where in leading orders
the radius, a contribution to the nucleon SM, is predicted [22]. However, because of two possible short-
range structures, isoscalar and isovector, even measurements of both neutron and proton EDMs would
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be insufficient to determine the three unknown parameters that appear at leading order.
When dimension-6 sources are included in the picture, one finds that the qCEDM generates a nucleon

EDFF that is not distinguishable from the one stemming from θ̄ [24]. Furthermore, while the momentum
dependence of the EDFF is qualitatively different if the qEDM or the gCEDM, rather than θ̄ or the
qCEDM, are the dominant sources of T violation, a measurement of the neutron and proton EDMs
alone can be fitted equally well by any of these sources. It is clear, then, that to pinpoint the dominant
mechanism(s) of T violation at high energy, more observables are needed, and nuclear EDMs are natural
candidates.

Nuclear EDMs and other moments receive various contributions. There are, of course, contributions
from the individual nucleons’ EDMs. In the deuteron the isovector component cancels, while in 3He
one can expect a cancellation between the contributions of the two nearly anti-aligned protons. Thus,
nuclear EDMs, in particular the deuteron’s [27, 28], are sensitive to a different combination of hadronic
TV parameters than the neutron EDM. However, these one-nucleon contributions are modified from their
“in-vacuum” counterparts because the nucleons are not free but bound in the nucleus. There are many-
nucleon effects that are TV. First, the TV component of the pion cloud can generate a TV pion-exchange
interaction among nucleons, and no symmetry forbids interactions of shorter range, either. These TV
nuclear forces will mix-in components of the nuclear wave function that do not appear in the absence
of TV. It is a source of polarization effects for the entire nucleus. Second, there may be multi-nucleon
contributions to the TV coupling of the photon; such TV currents can be generated by either pion
exchange or shorter-range dynamics.

TV one-pion exchange (OPE) has long been recognized as an important component of the TV two-
nucleon (NN) potential, and expressed [29, 30] in terms of three non-derivative pion-nucleon couplings
[31], associated with isospin I = 0, 1, 2. So far, the analysis of TV nuclear effects has been based on
tree-level potentials where OPE is sometimes supplemented by the single exchange of heavier mesons,
the eta [32], rho [33], and omega [33] being most popular. Allowing sufficiently many couplings of these
mesons to nucleons one can produce [34] the most general short-range TV NN local interaction with one
derivative [35]. This is the TV analog of the DDH approach [36] for nuclear TC P violation (PV).

The contributions from such potentials to the deuteron and 3He EDMs have been calculated in the
literature under various assumptions. OPE from the I = 2 TV pion-nucleon coupling does not contribute
to the NN system at tree level. It was noticed early on [37] that OPE from the I = 0 TV pion-nucleon
coupling does not contribute to the deuteron EDM, either, but it does for 3He, where it was estimated
with a phenomenological strong-interaction potential [38]. The deuteron EDM that arises from an I = 1
TV exchange of either pion- or shorter-range, together with a separable strong-interaction potential, was
calculated in Ref. [37]. The effects of OPE on the deuteron EDM and MQM were calculated using both
zero-range and phenomenological strong-interaction potentials in Ref. [39]. More recent calculations of
the deuteron EDM and MQM [34] and of the 3He EDM [40] have considered other TV contributions
besides those from the TV potential, and used more modern, “realistic” strong-interaction potentials.
Meson-exchange currents were found small in the deuteron [34], and neglected in 3He [40]. The TV-
potential contributions are consistent with earlier results; they are dominated by OPE from the I = 1
pion-nucleon coupling in the case of the deuteron [34], and from all three pion-nucleon couplings in the
case of 3He [40].

TV moments of heavier nuclei are more difficult to calculate. It has been argued [29] that the TV
potential can lead to an enhancement over the nucleon EDM thanks to the near-degeneracy of levels of
opposite parity, while meson-exchange currents are comparatively small. The size of the effect can be
estimated through the single-particle potential obtained by averaging the NN potential over a closed
nuclear core. The OPE from the I = 0, 2 pion-nucleon couplings are proportional to the nuclear I3,
(N − Z)/A [29, 30, 41], while the OPE from the I = 1 coupling does not have such a suppressing factor
[30, 41]. It has also been found that the matrix elements from the rho and omega are small compared to
the I = 1 pion contribution [33]. EDMs and MQMs (for example from I = 0 OPE [29]) and SMs [42] of
several interesting nuclei have been estimated. A sample of recent SM calculations can be found in Refs.
[7, 43].

There are, of course, other nuclear tests of TV, see for example Ref. [44]. The most promising for
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effects of the TV nuclear interaction seems to be neutron scattering [45]. On the proton [46] and deuteron
[47], TV neutron scattering is again dominated by OPE, but sensitive mostly to the I = 0, 2 and I = 0, 1
couplings, respectively. For heavy nuclei, one can again obtain estimates using the single-particle potential
[30, 44].

For consistency, we would like to describe nuclear TV observables in the same framework used for the
calculation of the nucleon EDM. The non-analytic behavior of the nucleon EDM in mπ and the domi-
nance of OPE in nuclear observables point to the need of a framework that can account for both effects
simultaneously, with chiral symmetry playing a central role. In fact, different sources of T violation have
different transformation properties under chiral symmetry. As a consequence, the relative importance of
various pion-nucleon and short-range interactions is not the same for all sources. Here we use the chiral
Lagrangian built in Refs. [25, 26], where TV interactions stemming from the θ̄ term and the dimension-6
sources were constructed and ordered according to the same power counting used to order TC interactions
in ChPT.

In addition to consistency between one- and few-nucleon TV interactions, nuclear TV also requires
consistency between TV and TC forces, in order there to be no mismatch in the off-shell behaviors of
the various ingredients. Of course, off-shell effects are dependent on the choice of fields, while physical
quantities are not, provided the same choice of fields has been made throughout the calculation. As far as
TV nuclear interactions are concerned, phenomenological TC models bring additional uncertainties, such
as the choice of zero-range or finite-range interactions and the role of heavy mesons. On the other hand,
ChPT has been extended to multi-nucleon systems [48], leading to the derivation of TC nuclear forces
and currents. This opens up the possibility of describing all necessary ingredients in a single framework.

The goal of this paper is to provide the first step in the extension of TV interactions in the EFT to the
multi-nucleon sector where OPE is treated non-perturbatively. Some of us have recently looked at the
deuteron’s PV, TV electromagnetic moments in an EFT where pions are treated in perturbation theory
[28]. In this case, the size of uncertainties is set by the relatively low scale where OPE becomes significant.
Treating OPE non-perturbatively extends the EFT to higher momenta and improves convergence. The
TV nuclear potential is the most important ingredient in this extension, and here we derive it for the
most important TV sources. This is the TV potential to be used, for example, with the TC, parity-
conserving (PC) potentials from Refs. [49, 50, 51, 52, 53, 54, 55]. The construction here is similar to
that of the TC PV potential [56, 57, 58], which extends the EFT from the TC, PV one-nucleon sector
[59] to multi-nucleon systems. Such a framework provides an alternative to the DDH approach [36],
allowing for a model-independent analysis of nuclear TC PV phenomena [60, 61]. Our present TV PV
EFT framework stands in respect to previous approaches like this TC PV EFT framework with respect
to the DDH approach.

As we are going to see, the form of the TV potential at a given order in the chiral expansion depends
on the source. For the dimension-6 sources, all non-derivative pion-nucleon couplings appear at leading
order, although these sources differ in the relative strength of the I = 2 pion-nucleon coupling and
short-range interactions. For these sources, the leading-order potential is sufficient for most applications
we envision. The situation is different for the θ̄ term: only the I = 0 pion-nucleon coupling, which
is suppressed in some cases of interest, appears at leading order. For this source, we thus derive the
potential up to subleading order. We show that new elements appear with respect to phenomenological
treatments, such as two-pion exchange (TPE) at the same level as short-range interactions representing
heavier-meson exchange. This richness is a blessing, as it potentially reveals the TV source [24, 28].

The rest of the paper is organized as follows. In the next section, Sect. 2, we present a summary
of basic ChPT ideas and give the TC and TV chiral Lagrangians needed in the following sections. For
processes involving momenta below Mnuc ∼ 100 MeV, pion degrees of freedom can be integrated out
and the dominant TV contact interactions (the leading-order TV potential in the so-called pionless EFT)
are obtained in Sect. 3. The nuclear potential in ChPT, which should apply beyond Mnuc, is then
presented in momentum (Sect. 4) and coordinate (Sect. 5) spaces. (We relegate details of the Fourier
transformation to the Appendix.) In Sect. 6 we discuss the size of different components of the potential
and compare them with phenomenological forms. We draw our conclusions in Sect. 7.
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2 Chiral Perturbation Theory

QCD is characterized by an intrinsic mass scale MQCD ∼ 1 GeV. At momenta Q comparable to the
pion mass, Q ∼ mπ ≪ MQCD, interactions among nucleons and pions are described by the most gen-
eral Lagrangian that involves these degrees of freedom and that has the same symmetries as QCD. A
particularly important role at low energy is played by the approximate symmetry of QCD under the
chiral group SUL(2)× SUR(2) ∼ SO(4). Since it is not manifest in the spectrum, which instead exhibits
an approximate isospin symmetry, chiral symmetry must be spontaneously broken down to the isospin
subgroup SUL+R(2) ∼ SO(3). The corresponding Goldstone bosons can be identified with the pions,
which provide a non-linear realization of chiral symmetry.

Chiral symmetry and its spontaneous breaking strongly constrain the form of the interactions among
nucleons and pions. In particular, in the limit of vanishing quark masses and charges, when chiral
symmetry is exact, pion interactions proceed through a covariant derivative, which in stereographic
coordinates ~π for the pions is [62]

Dµ~π = D−1∂µ~π (1)

with
D = 1 + ~π 2/F 2

π (2)

and Fπ ≃ 186 MeV the pion decay constant. One can also construct the covariant derivative of this
covariant derivative,

DνDµ~π = ∂νDµ~π +
2

F 2
π

(~π Dν~π ·Dµ~π −Dν~π ~π ·Dµ~π) , (3)

and so on. Nucleons are described by an isospin-1/2 field N , and we can define a nucleon covariant
derivative

DµN =

(

∂µ +
i

F 2
π

~τ · (~π ×Dµ~π)

)

N, (4)

where τi, i = 1, 2, 3, are the Pauli matrices in isospin space. We also define D† through N̄D† = DN , and
use the shorthand notation

Dµ
± ≡ Dµ ±D†µ, Dµ

±Dν
± ≡ DµDν + D†νD†µ ±D†µDν ±D†νDµ (5)

and
τiDµ

± ≡ τiDµ ±D†µτi, τiDµ
±Dν

± ≡ τiDµDν + D†νD†µτi ±D†µτiDν ±D†ντiDµ. (6)

When acting on a nucleon bilinear of non-zero isospin, for example Dµ(N̄~τN), the covariant derivative
is meant to be in the adjoint representation, that is, the isospin matrix in Eq. (4) should be replaced by
(tj)ik = iεijk.

At Q ∼ mπ ≪ mN , the nucleon mass, nucleons are essentially non-relativistic; as such the only
coordinate with which their fields vary rapidly is v · x, where v is the nucleon velocity, vµ = (1,~0) in the
nucleon rest frame. It is convenient therefore to use a heavy-nucleon field from which this fast variation
has been removed [63]. This simplifies the gamma-matrix algebra, leaving only the spin operator Sµ,
where Sµ = (0, ~σ/2) in the nucleon rest frame. Below we use the subscript ⊥ to denote the component
of a four-vector perpendicular to the velocity, for example

Dµ⊥ ≡ Dµ − vµ v · D. (7)

Baryon states above the nucleon, such as the delta isobar, can be included in EFT along similar lines,
but for simplicity we do not include them here.

The ChPT Lagrangian in the chiral limit includes all the interactions made out of Dµ~π, N and their
covariant derivatives that are chiral invariant. Chiral symmetry is explicitly broken, however, which
introduces pion interactions that might not include derivatives, but are proportional to powers of the
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symmetry-breaking parameters. Since the explicit breaking of chiral symmetry is small, chiral-symmetry-
breaking operators can be systematically included as a perturbation on the chiral-invariant Lagrangian.
Their forms are also not arbitrary, being instead determined by the chiral transformation properties of
their progenitors in the QCD Lagrangian. The construction of chiral-symmetry-breaking operators from
quark masses and “hard” electromagnetic interactions (those from photons with momenta beyond the
EFT regime) is extensively treated in Refs. [62, 64]. “Soft” interactions via an explicit photon field Aµ

appear in gauge-covariant derivatives,

(Dµπa) → 1

D
(∂µδab − eAµε3ab)πb, (8)

DµN →
[

∂µ +
i

F 2
π

~τ · (~π ×Dµ~π) − ieAµ
1 + τ3

2

]

N, (9)

where e is the proton electric charge, and in gauge-invariant interactions built from the photon field
strength

Fµν = ∂µAν − ∂νAµ. (10)

Approximate chiral symmetry, together with the heavy-baryon formalism, allows us to systematically
expand observables in the mesonic and one-nucleon sectors in powers of Q/MQCD, where Q is the typical
momentum of the process under consideration. The ChPT Lagrangian contains an infinite number of
terms, which can be organized using an integer “chiral index” ∆ and the number f of fermion fields
[17, 62]:

L =

∞
∑

∆=0

∑

f

L(∆)
f , (11)

where ∆ = d+ f/2 − 2 ≥ 0, with d the number of derivatives, powers of the pion mass or of the electric
charge. For processes with at most one nucleon, A = 0, 1, all momenta and energies are typically ∼ Q.
The contribution of a diagram to the amplitude T can then be estimated by

T ∝ QνF(Q/µ), (12)

where F is a calculable function, µ is the renormalization scale, and the counting index ν is

ν = 4 − 2C −A+ 2L+
∑

i

∆i. (13)

Here, C = 1 and L are respectively the number of connected pieces and loops in the diagrams, and i

counts the number of insertions of vertices from L(∆)
f . From Eq. (13) it is apparent that diagrams with

increasingly higher number of loops and non-vanishing-index interactions are increasingly suppressed,
leading to a perturbative expansion. Assigning to loops a characteristic factor Q2/(4π)2 and using naive
dimensional analysis [17, 65, 9] to estimate the EFT parameters, the suppression scale is MQCD ∼ 2πFπ.
Note that in this sector of the theory nucleon recoil is a subleading effect: the nucleon is nearly static.

The ChPT power counting formula (13) cannot directly be applied to processes with A ≥ 2 [66, 48].
Indeed, in diagrams in which the intermediate state consists purely of propagating nucleons —which are
called “reducible”— the contour of integration for integrals over the 0th components of loop momenta
cannot be deformed in way to avoid the poles of the nucleon propagators, thus picking up energies
∼ Q2/mN from nucleon recoil, no longer a subleading effect, rather than ∼ Q. There is also an extra
factor of 4π. These diagrams are therefore enhanced by factors of 4πmN/Q with respect to the ChPT
power counting that assigns Q2/(4π)2 to a loop, and the need to resum them leads to the appearance of
shallow bound states in systems with two or more nucleons, nuclei. Diagrams whose intermediate states
contain interacting nucleons and pions —“irreducible”— do not suffer from this infrared enhancement,
and in them nucleon recoil remains a small effect. Reducible diagrams are thus obtained by patching
together irreducible diagrams with intermediate states consisting of A free-nucleon propagators. Calling
V the sum of all irreducible diagrams, the amplitude can be written schematically as

T = V + V G0V + V G0V G0V + . . . = V + V G0T, (14)
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where G0 is the free-nucleon, non-relativistic Green’s function. Equation (14) is just the Lippmann-
Schwinger equation, which is formally equivalent to a Schrödinger equation with a potential V .

Naive dimensional analysis suggests [66] that irreducible diagrams follow the ChPT power counting
rule (13) with C ≥ 1. While this is true for pion-exchange diagrams, the situation is more complicated
for contact interactions. In fact, it can be shown that the iteration of the singular one-pion exchange
requires for renormalization at the same order a finite number of f = 4 interactions, some of which are
less suppressed than expected on the basis of naive dimensional analysis [67, 68]. On the other hand,
corrections, which should be perturbative, are expected to still conform to dimensional analysis [69, 70].
Since the TV potential is very small, it should be amenable to an expansion in powers of Q/MQCD,
with different contributions organized according to their chiral index ν, or, equivalently, according to the
number of inverse powers of MQCD.

In Sect. 4 we compute the TV nuclear potential, in the case of the QCD θ̄ term up to order ν = 3,
which means up to O(Q2/M2

QCD) with respect to the leading piece. Such a calculation requires the
knowledge of the TC and TV ChPT Lagrangians up to ∆ = 2 and ∆ = 3, respectively. In the remainder
of this section we present the relevant interactions. Throughout, we use nucleon field redefinitions to
eliminate nucleon time derivatives from subleading interactions.

2.1 T -Conserving Chiral Lagrangian

The calculation of the TV potential in ChPT requires certain TC interactions with f = 0, 2, which we
list here. (A more complete list can be found in the literature, for example Refs. [19, 48, 71].) These
interactions stem from the quark (color-gauged) kinetic and mass terms in the QCD Lagrangian.

The leading TC chiral Lagrangian has chiral index ∆ = 0 and is given by

L(0)
f≤2,T =

1

2
Dµ~π ·Dµ~π − m2

π

2D
~π 2 + N̄iv · DN − 2gA

Fπ
Dµ~π · N̄~τSµN, (15)

where gA is the pion-nucleon axial coupling, gA ≃ 1.27. The pion mass term originates in explicit chiral-
symmetry breaking by the average quark mass m̄ = (mu + md)/2 and, by naive dimensional analysis,
m2

π = O(m̄MQCD). Neglecting for the moment isospin-breaking operators, at chiral order ∆ = 1 the
relevant Lagrangian consists of

L(1)
f≤2,T I = − 1

2mN
N̄D2

⊥N +
gA

FπmN
(iv ·D~π) · N̄~τ S · D−N + ∆mN

(

1 − 2~π 2

F 2
πD

)

N̄N. (16)

Here the first two terms are the nucleon kinetic energy and a relativistic correction to the pion-nucleon
coupling, the coefficients of both operators being fixed by Galilean invariance. The third term is the
nucleon sigma term with a coefficient ∆mN = O(m2

π/MQCD). At the next chiral order, ∆ = 2,

L(2)
f≤2,T I = −∆m 2

π

2D2
~π2 +

gA
4Fπm2

N

Dµ~π · N̄~τ
(

SµD2
⊥,− −Dµ

⊥,− S · D⊥,−

)

N

−2gA
Fπ

[

cAD2
⊥Dµ~π − dA

(

1 − 2~π 2

F 2
πD

)

Dµ~π

]

· N̄~τSµN. (17)

The first term is a correction to the pion mass, ∆m2
π = O

(

m4
π/M

2
QCD

)

. The second term represents
further relativistic corrections to the gA term in Eq. (15). The constraints imposed by Lorentz invariance
on Eqs. (16) and (17) agree with the results of Ref. [71], once a field redefinition is used to eliminate
time derivatives acting on the nucleon field from the subleading ∆ = 1 and ∆ = 2 Lagrangians. The
operator with coefficient cA = O

(

1/M2
QCD

)

in Eq. (17) is a contribution to the square radius of the

pion-nucleon form factor, while dA = O
(

m2
π/M

2
QCD

)

is a chiral-symmetry-breaking correction to gA [51],
which provide the so-called Goldberger-Treiman discrepancy.

Isospin-breaking operators in the chiral Lagrangian [64] stem from the quark mass differencemd−mu =
2m̄ε and from quark coupling to photons through the fine-structure constant αem = e2/4π. Here,
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for simplicity, we count ε ∼ 1/3 as O(1) and αem/4π as O(m3
π/M

3
QCD), since numerically αem/4π ∼

εm3
π/(2πFπ)3. Isospin-violating terms first contribute to the ∆ = 1 Lagrangian,

L(1)
f≤2,T/I = − δ̆m

2
π

2D2

(

~π 2 − π2
3

)

+
δmN

2
N̄

(

τ3 −
2π3
F 2
πD

~π · ~τ
)

N, (18)

while at order ∆ = 2,

L(2)
f≤2,T/I = −δm

2
π

2D2
π2
3 +

δ̆mN

2
N̄

[

τ3 +
2

F 2
πD

(

π3~π · ~τ − ~π 2τ3
)

]

N +
β1
Fπ

(

Dµπ3 −
2π3
F 2
πD

~π ·Dµ~π

)

N̄SµN.

(19)

Here δ̆m2
π = O

(

αemM
2
QCD/4π

)

is the leading electromagnetic contribution to the pion mass split-

ting, while the quark-mass-difference contribution, δm2
π = O

(

ε2m4
π/M

2
QCD

)

, is smaller by a power of

εmπ/MQCD. The pion mass splitting, m2
π± −m2

π0 = δ̆m2
π−δm2

π = (35.5 MeV)2 [72], is dominated by the

electromagnetic contribution. The nucleon mass splitting, mn −mp = δmN + δ̆mN = 1.29 MeV [72] also
receives contributions from electromagnetism and from the quark masses. In this case, the quark-mass
contribution δmN is expected to be the largest. By dimensional analysis δmN = O(εm2

π/MQCD), and
lattice simulations estimate it to be δmN = 2.26 ± 0.57 ± 0.42 ± 0.10 MeV [73], which is in agreement
with an extraction from charge-symmetry breaking in the pn → dπ0 reaction [74]. The electromagnetic

contribution is δ̆mN = O (αemMQCD/4π), that is, O
(

εm3
π/M

2
QCD

)

and about the 20% of δmN . Using

the Cottingham sum rule, δ̆mN = −(0.76 ± 0.30) MeV [75], which is consistent with dimensional analy-
sis. The operator with coefficient β1 = O

(

εm2
π/M

2
QCD

)

is an isospin-violating pion-nucleon coupling. At
present there are only bounds on β1 from isospin violation in nucleon-nucleon scattering. For example, a
phase-shift analysis of two-nucleon data gives β1 = (0±9)·10−3 [51, 52], which is comparable to estimates
of β1 from π-η mixing.

For the solution of the Lippmann-Schwinger equation, it is convenient to eliminate the nucleon mass
difference mn −mp from the nucleon propagator and from asymptotic states. This result can be accom-
plished through a field redefinition, defined in Ref. [54]. After the field redefinition, Eqs. (18) and (19)
become

L(1,2)
f≤2,T/I = − 1

2D2

(

δ̆m2
π − δm2

N

)

(

~π2 − π2
3

)

− δm2
π

2D2
π2
3 − (δmN + δ̆mN ) (~π × v ·D~π)3

+
gAδmN

FπmN
iε3abπaN̄τbS · D−N +

β1
Fπ

(

Dµπ3 −
2π3
F 2
πD

~π ·Dµ~π

)

N̄SµN. (20)

We will incorporate isospin-breaking effects in the potential using the Lagrangian (20).

2.2 T -Violating Chiral Lagrangian From θ̄

The lowest-dimension TV operator that can be added to the TC QCD Lagrangian is the dimension-4
θ̄ term. With an appropriate choice of the quark fields q = (u, d)T , the θ̄ term can be expressed as a
complex mass term [76],

L/T4 = m⋆θ̄ q̄iγ5q, (21)

where m⋆ = mumd/ (mu +md) = O
(

m2
π/MQCD

)

and θ̄ is the QCD vacuum angle, here already assumed
to be small as indicated by the bound on the neutron EDM, θ̄ . 10−10. The θ̄ term transforms under
chiral symmetry as the fourth component of an SO(4) vector P = (q̄~τq, q̄iγ5q), whose third component is
responsible for quark-mass isospin violation [64]. TV from the θ̄ term and isospin violation from the quark
mass difference are therefore intrinsically linked; this link appears in certain relations [20, 25] between
the coefficients of TV and isospin-breaking operators in ChPT through a coefficient ρ = (1 − ε2)θ̄/2ε.

The pion-nucleon TV Lagrangian from the QCD θ̄ term was constructed in Ref. [25]. The leading
f ≤ 2 TV interaction generated by the θ̄ term appears at ∆ = 1 and consists of an isoscalar pion-nucleon
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coupling,

L(1)
f=2,/T4 = − ḡ0

FπD
~π · N̄~τN. (22)

The relation to isospin-breaking operators implies that ḡ0 can be expressed in terms of the quark-mass
contribution to the nucleon mass difference, ḡ0 = ρ δmN = O

(

θ̄m2
π/MQCD

)

. Increasing the chiral index
by one, we find a single term,

L(2)
f=2,/T4 = − 2h̄0

F 2
πD

~π ·Dµ~π N̄S
µN, (23)

where h̄0 is an isoscalar two-pion-nucleon coupling, which is related to the coefficient β1 in Eq. (20) by
h̄0 = ρ β1 = O

(

θ̄m2
π/M

2
QCD

)

. The ∆ = 3 operators relevant to the calculation of the TV potential at
order ν = 3 are

L(3)
f=2,/T4 = − 1

Fπ

(

ḡ1
D

− 2ḡ0
∆mN

δmN

δm2
π

m2
π

)(

1 − 2~π 2

F 2
πD

)

π3N̄N

− 1

Fπ

(

∆ḡ0
D

− ḡ0
δm2

π

m2
π

)(

1 − 2~π 2

F 2
πD

)

~π · N̄~τN +
η̄

2Fπ

(

1 − 2~π 2

F 2
πD

)

(Dµ⊥D
µ
⊥~π) · N̄~τN,

+
ḡ0

8m2
NFπD

{

~π · N̄~τ D2
⊥−N + 2

(

1 − ~π 2

F 2
π

)

Dν~π · N̄~τ [Sµ, Sν ]Dµ−N

}

, (24)

where once again we eliminated operators containing nucleon time derivatives and neglected multi-
pion operators. Equation (24) is obtained after rotating away the subleading pion tadpole operator
−(ḡ0δm

2
π/2δmN)π3 from the mesonic TV Lagrangian, as detailed in Ref. [25]. The first operator in Eq.

(24) is the most important contribution of the θ̄ term to the isospin-breaking TV non-derivative coupling
π3N̄N . Its coefficient is of O

(

θ̄εm4
π/M

3
QCD

)

and is suppressed by two powers of mπ/MQCD with respect
to ḡ0. The second term in Eq. (24) is basically a correction to ḡ0 of the same order. Of the TV operators
with two derivatives, η̄ = O

(

θ̄m2
π/M

3
QCD

)

represents a contribution to the radius of the TV pion-nucleon
form factor, while the remaining operators relevant at this order are relativistic corrections to the ḡ0 term
with coefficients fixed by Lorentz invariance. As in the case of the ∆ = 1, 2 TV Lagrangians, the TV
coefficients in Eq. (24) are related to isospin-violating parameters in the ∆ = 3 TC Lagrangian, which
are at present poorly determined (see discussion in Ref. [25]).

For the nuclear potential we will need in addition operators involving more nucleon fields, which are
constructed in the same way as were the f = 0, 2 interactions in Ref. [25]. In the f = 4 sector of the
theory, the first contribution to the Lagrangian comes at ∆ = 2,

L(2)
f=4,/T4 = − 1

FπD
~π ·
(

γ̄sN̄~τN N̄N + 4γ̄σN̄~τSµN N̄SµN
)

, (25)

in terms of two TV parameters γ̄s,σ. Just as for f ≤ 2, here too there is a link with isospin-violating
operators, in this case

L(2)
f=4,T/I =

γs
2
N̄

(

τ3 −
2π3
F 2
πD

~π · ~τ
)

N N̄N + 2γσN̄

(

τ3 −
2π3
F 2
πD

~π · ~τ
)

SµN N̄SµN, (26)

which generate the dominant contributions to the short-range isospin-violating two-nucleon potential
[64, 51]. The isospin-violating coefficients γi = O(εm2

π/F
2
πM

2
QCD) can be seen as low-energy remnants

of ρ-ω mixing [51] and a1-f1 mixing [77]. The TV parameters are related to them by γ̄i = ρ γi =
O(θ̄m2

π/F
2
πM

2
QCD). The operators in Eq. (25) are not relevant for the nuclear potential to the order we

work, but contribute to the three-nucleon TV potential at next order.
The first operators relevant to the calculation of the TV two-nucleon potential are

L(3)
f=4,/T4 =

(

1 − 2~π2

F 2
πD

)

[

C̄1N̄N∂µ(N̄SµN) + C̄2N̄~τN · Dµ(N̄Sµ~τN)
]

, (27)
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where the C̄i are two new TV parameters. These interactions are related to isospin-breaking operators

L(3)
f=4,T/I =

2π3
FπD

[

C1N̄N∂µ(N̄SµN) + C2N̄~τN · Dµ(N̄Sµ~τN)
]

, (28)

with coefficients Ci = O(εm2
π/F

2
πM

3
QCD). The TV parameters are C̄i = ρCi = O(θ̄m2

π/F
2
πM

3
QCD)

and, therefore, contribute to the TV potential at order ν = 3. The coefficients Ci could in principle be
determined from pion production in the two-nucleon system and/or from isospin-violating three-nucleon
forces. However, even lower-order isospin-violating three-nucleon forces are very small [55], so prospects
for extracting Ci from TC data are grim. As before, we do not write in Eq. (27) other interactions that
contain more pion fields.

One can continue the construction of the TV Lagrangian not only to higher orders, but also to more
nucleon fields. For any given f , the dominant TV terms are expected to be those without derivatives that
transform like the fourth component P4, just as in Eq. (25). This type of term will involve an odd number
of pions in addition to the f nucleon fields. It thus contributes at tree level only to (f + 2)/2-nucleon
forces, or to absorption/production/scattering of pions on f/2-nucleon systems. The first short-range
f/2-nucleon TV force comes from four-vectors P that involve one derivative, as in Eq. (27). Since nuclear
forces tend to become less important as f increases (see, for example, Ref. [48]), it is unlikely that terms
with f ≥ 6 need to be constructed. The first f = 6 operators that contribute to the three-nucleon TV
potential appear at next chiral order, ∆ = 4.

2.3 T -Violating Chiral Lagrangian From Dimension-6 Sources

The smallness of θ̄ leaves room for other sources of T violation in the strong interactions, which have
their origin in an ultraviolet-complete theory at a high-energy scale, such as, for example, supersymmetric
extensions of the Standard Model [11]. Well below the scale M/T characteristic of T violation, we expect
TV effects to be captured by the lowest-dimension interactions among Standard Model fields that respect
the theory’s SUc(3) × SUL(2) × UY (1) gauge symmetry. Just above MQCD, strong interactions are
described by the most general Lagrangian with Lorentz, and color and electromagnetic gauge invariance
among the lightest quarks, gluons, and photons. The effectively dimension-6 TV terms at this scale can
be written as [8, 9, 10, 11]

L/T6 = −1

2
q̄ (d0 + d3τ3)σµν iγ5q Fµν − 1

2
q̄
(

d̃0 + d̃3τ3

)

σµν iγ5λaq Ga
µν

+
dW
6
εµνλσfabcGa

µρG
b ρ
ν Gc

λσ +
1

4
ImΣ1

(

q̄q q̄iγ5q − q̄~τq · q̄~τiγ5q
)

+
1

4
ImΣ8

(

q̄λaq q̄λaiγ5q − q̄λa ~τq · q̄λa ~τiγ5q
)

, (29)

in terms of the photon and gluon field strengths Fµν and Ga
µν , the standard products of gamma matrices

γ5 and σµν in spin space, the totally antisymmetric symbol εµνλσ, the Pauli matrix τi in isospin space,
the Gell-Mann matrices λa in color space, and the associated Gell-Mann coefficients fabc.

In Eq. (29) the first (second) term represents the isoscalar d0 (d̃0) and isovector d3 (d̃3) components
of the qEDM (qCEDM). Although these interactions have canonical dimension 5, they originate just
above the Standard Model scale MW from dimension-6 operators [8] involving in addition the carrier of
electroweak symmetry breaking, the Higgs field. They are thus proportional to the vacuum expectation
value of the Higgs field, which we can trade for the ratio of the quark mass to Yukawa coupling, mq/fq.

Writing the proportionality constant as eδqfq/M
2
/T (4πδ̃qfq/M

2
/T ),

d0,3 ∼ O
(

eδ0,3
m̄

M2
/T

)

, d̃0,3 ∼ O
(

4πδ̃0,3
m̄

M2
/T

)

, (30)
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in terms of the average light-quark mass m̄ and the dimensionless factors δ0,3 and δ̃0,3 representing typical

values of δq and δ̃q. The third term in Eq. (29) [9] is the gCEDM, with coefficient

dW ∼ O
(

4πw

M2
/T

)

(31)

in terms of a dimensionless parameter w. The fourth and fifth operators [10, 11] are TV FQ operators,
with coefficients

ImΣ1,8 = O
(

(4π)2σ1,8
M2

/T

)

(32)

in terms of further dimensionless parameters σ1,8. The sizes of δ0,3, δ̃0,3, w, and σ1,8 depend on the exact
mechanisms of electroweak and T breaking and on the running to the low energies where non-perturbative
QCD effects take over. The minimal assumption is that they are O(1), O(gs/4π), O((gs/4π)3), and O(1),
respectively, with gs the strong coupling constant. However they can be much smaller (when parameters
encoding TV beyond the Standard Model are small) or much larger (since fq is unnaturally small). For
discussion and examples, see Refs. [4, 11].

The dimension-6 operators in Eq. (29) have different transformation properties under chiral symmetry.
The isoscalar and isovector qEDM (qCEDM) transform, respectively, as the fourth and third components
of two SO(4) vectors V and W (Ṽ and W̃ ), with

V = 1
2

(

q̄σµν~τq
iq̄σµνγ5q

)

Fµν , W = 1
2

(

−iq̄σµνγ5~τq
q̄σµνq

)

Fµν , (33)

and

Ṽ = 1
2

(

q̄σµν~τλaq
iq̄σµνγ5λaq

)

Ga
µν , W̃ = 1

2

(

−iq̄σµνγ5~τλaq
q̄σµνλaq

)

Ga
µν . (34)

In contrast, the gCEDM and the two TV FQ operators Σ1,8 are singlets of the chiral group, respectively

IW =
1

6
εµνλσfabcGa

µρG
b ρ
ν Gc

λσ (35)

and

Iqq1 =
1

4

(

q̄q q̄iγ5q − q̄~τq · q̄~τiγ5q
)

, (36)

Iqq8 =
1

4

(

q̄λaq q̄λaiγ5q − q̄λa ~τq · q̄λa ~τiγ5q
)

. (37)

They do not break chiral symmetry.
The different chiral properties of various TV sources have profound implications for the form and rela-

tive importance of nucleon-pion and nucleon-nucleon TV couplings in the effective Lagrangian. Effective
interactions are constructed to transform in the same way as the sources at quark/gluon level. Thus, W̃3

leads to interactions proportional to δ̃3 that only appear from θ̄ in the tensor product between P4 and
P3 from the quark-mass-difference term, and are thus proportional to εm̄2θ̄ (for example, the ḡ1 term in
Eq. (24)).

On the other hand, Ṽ4 generates exactly the same interactions as P4, so δ̃0 and θ̄ contribute similarly
to low-energy observables. For qEDM, hadronic interactions arise from integrating out at least one hard
photon, which leads to further breaking of chiral symmetry in the form of tensor products of V and W
with a antisymmetric chiral tensor [64]. The contributions of the qEDM to purely hadronic couplings,
like pion-nucleon or nucleon-nucleon couplings, are suppressed by the electromagnetic coupling constant,
αem/4π ∼ εm3

π/(2πFπ)3. electromagnetic currents. We do not explicitly construct the TV potential
from the qEDM. Because they are chiral invariant, the gCEDM and the two TV FQ operators lead to

10



exactly the same effective interactions, although, of course, with different strengths. The interactions
from gCEDM are the hadronic matrix elements of IW (35) and are proportional to w in Eq. (31), while
those from the TV FQ operators are the hadronic matrix elements of Iqqi in Eqs. (36) and (37) and are
proportional to σi in Eq. (32). For simplicity of notation, in the following w denotes both w and σ1,8,

{w, σ1, σ8} → w. (38)

For none of the dimension-6 sources there is an immediate, useful connection to TC operators as for θ̄.
The pion-nucleon Lagrangian from dimension-6 sources was constructed in detail in Ref. [26]. The

only terms we need in the following belong to the lowest-order Lagrangian,

L(∆π)
f=2,/T6 = − ḡ0

FπD
~π · N̄~τN − ḡ1

FπD
π3 N̄N − ḡ2

FπD
π3 N̄

[

τ3 +
2

F 2
πD

(

π3~π · ~τ − ~π2τ3
)

]

N

− ı̄0
F 2
π

(v ·D~π ×Dµ~π) · N̄Sµ~τN − ı̄1
Fπ

D⊥ ·D⊥~π · N̄~τN. (39)

In this Lagrangian:

• For qCEDM, ∆π = −1. At this order the qCEDM contributes only to the non-derivative couplings
ḡ0 and ḡ1. In contrast to the θ̄ case (24), the elimination of the pion tadpoles induced by the
isovector component W̃3 of the qCEDM generates an interaction of exactly the same chiral form as
other existing interactions, and for simplicity we absorb the tadpole contribution in the ḡi. Then
ḡ0 = O((δ̃0 + εδ̃3)m2

πMQCD/M
2
/T ) and ḡ1 = O(δ̃3m

2
πMQCD/M

2
/T ).

• For qEDM, ∆π = 2. At this order the qEDM contributes also to the non-derivative coupling
ḡ2, which arises from the tensor product of W3 with the antisymmetric chiral tensor generated
by a hard photon. In this case, again after tadpole extermination, ḡ0 = O(αem(δ0 + δ3)(1 +
ε)m2

πMQCD/4πM
2
/T ), ḡ1 = O(αem(δ0 + δ3)m2

πMQCD/4πM
2
/T ), and ḡ2 = O(αemδ3m

2
πMQCD/4πM

2
/T ).

• For chiral-invariant sources, ∆π = −1. It is not possible to construct chiral-invariant, TV pion-
nucleon couplings with zero or one derivatives. The leading TV couplings then contain either
two derivatives or one insertion of the quark mass, and the couplings ḡ0,1 and ı̄0,1 all appear at
the same order. More precisely, after the elimination of the pion tadpole, we find ḡ0 = O(w(1 +
ε2)m2

πMQCD/M
2
/T ) and ḡ1 = O(wεm2

πMQCD/M
2
/T ), while ı̄0,1 = O(wMQCD/M

2
/T ).

In the case of qEDM, we need also the photon-nucleon TV interactions [24, 26]

L(1)
f=2,/T6 = 2N̄

[

d̄0

(

1 − 2~π2

F 2
πD

)

+ d̄1

(

τ3 −
2π3
F 2
πD

~π · ~τ
)]

SµNvνFµν , (40)

with d̄0,1 = O(eδ0,3m
2
π/M

2
/TMQCD) short-range contributions to the nucleon EDM.

The various dimension-6 sources lead to different interactions also in the f ≥ 4 sectors. For the
chiral-invariant sources, there are further leading-order interactions with f = 4,

L(−1)
f=4,/T6 = C̄1N̄N∂µ(N̄SµN) + C̄2N̄~τN · Dµ(N̄~τSµN), (41)

with coefficients C̄1,2 = O(wMQCD/F
2
πM

2
/T ). Note that because of different chiral-transformation prop-

erties, the form of Eq. (41) is different from the contact interactions stemming from θ̄, Eq. (27). For the
remaining dimension-6 sources, the form of contact interactions can be different still. They appear from
tensor products of symmetry-breaking operators and are subleading. The qCEDM and qEDM generate
operators at chiral index ∆ = ∆π + 1, which have schematically the same form as Eq. (25), but a richer
isospin structure. These operators do not contribute to the two-nucleon potential at tree level, but they
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are relevant for three-nucleon forces just beyond the order we consider. Contributions from these sources
to the two-nucleon potential are found at ∆ = ∆π + 2,

L(∆π+2)
f=4,/T6 =

(

1 − 2~π2

F 2
πD

)

[

C̄1N̄N ∂µ(N̄SµN) + C̄2N̄~τN · Dµ(N̄Sµ~τN)
]

+

(

δ3k −
2π3
F 2
πD

πk

)

[

C̄3N̄τkN ∂µ
(

N̄SµN
)

+ C̄4N̄N Dµ

(

N̄τkS
µN
)]

+

{(

1 − 2~π 2

F 2
πD

)

[

C̄5N̄τlN ∂µ
(

N̄SµN
)

+ C̄6N̄N Dµ

(

N̄τlS
µN
)]

+C̄7

(

δ3k −
2π3
F 2
πD

πk

)

N̄τkN Dµ

(

N̄SµτlN
)

}[

δl3 +
2

F 2
πD

(

π3πl − ~π 2δ3l
)

]

, (42)

where the C̄i are new coefficients. The qCEDM only contributes to C̄1,2,3,4 in lowest order, with C̄1,2 =

O((δ̃0 + εδ̃3)m2
π/F

2
πM

2
/TMQCD) and C̄3,4 = O(δ̃3m

2
π/F

2
πM

2
/TMQCD). The qEDM contributes also to

C̄5,6,7, because of tensor products with the antisymmetric tensor generated by a hard photon, and we
have C̄1,2 = O(αem(δ0 + δ3)(1 + ε)m2

π/4πF
2
πM

2
/TMQCD), C̄3,4 = O(αem(δ0 + δ3)m2

π/4πF
2
πM

2
/TMQCD),

C̄5,6 = O(αemδ0m
2
π/4πF

2
πM

2
/TMQCD), and C̄7 = O(αemδ3m

2
π/4πF

2
πM

2
/TMQCD)). Comparing Eq. (42)

to Eq. (27), we once again see that, differently from the θ̄ term, the qCEDM and qEDM generate TV
and isospin-breaking operators of the same importance as isoscalar TV operators. The four-nucleon
operators in Eq. (42) have, this time just like the θ̄ term, chiral index that is two units bigger than that
of the leading pion-nucleon Lagrangian. As a consequence, short-range contributions to the two-nucleon
potential from these sources arise only at next-to-next-to-leading order. Such high orders will not be
considered explicitly below.

3 Pionless Theory

Before we discuss the TV potential in ChPT, it is instructive to consider a much simpler EFT. At
momenta much smaller than the pion mass, pion degrees of freedom can be integrated out and one is left
with a pionless EFT, in which the interactions are represented by operators involving only nucleon fields.
If we denote by Mnuc ∼ 100 MeV the scales associated with pion physics, this EFT applies to processes
where all momenta Q ≪ Mnuc. Power counting in this EFT is different from ChPT and is reviewed in
Ref. [48].

The lowest-order TC two-nucleon interactions can be taken as [66]

L(0)
/π,T = −C11

2
N̄NN̄N − Cττ

2
N̄~τN · N̄~τN, (43)

where C11,ττ = O(4π/mNℵ), with ℵ < Mnuc a low-energy scale. The corresponding potential in momen-
tum space is simply

V
(0)
/π,T =

1

2

[

C11 + Cττ~τ
(1) · ~τ (2)

]

, (44)

where ~τ (i)/2 is the isospin of nucleon i. These interactions affect only the two S waves. Since the effect
of free two-nucleon propagation is ∼ mNQ/4π, for momenta Q>∼ ℵ these interactions have to be iterated
to all orders [78, 79]. Using dimensional regularization with power divergence subtraction [79] at a scale
µ,

C0s = C11 − 3Cττ =
4π

mN

(

1

as
− µ

)−1

, C0t = C11 + Cττ =
4π

mN

(

1

at
− µ

)−1

, (45)

in terms of the isospin-singlet (3S1) and -triplet (1S0) scattering lengths, as and at. Because the coeffi-
cients C11,ττ subsume physics at the scale of the pion mass, their scaling is different from the one in the
pionful EFT.
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In leading order, the θ̄ term and the dimension-6 sources induce TV four-nucleon operators similar to
those in Eqs. (27), (41) and (42):

L/π,/T = C̄11N̄N ∂µ(N̄SµN) + C̄ττ N̄~τN · ∂µ(N̄Sµ~τN)

+C̄31N̄τ3N ∂µ(N̄SµN) + C̄13N̄N · ∂µ(N̄Sµτ3N) + C̄33N̄τ3N∂µ(N̄Sµτ3N), (46)

where C̄11,ττ,13,31,33 are new short-range parameters. In momentum space the interaction Hamiltonian
is given by

V/π,/T (~q) = − i

2

[

C̄11 + C̄ττ~τ
(1) · ~τ (2) + C̄33 τ

(1)
3 τ

(2)
3

] (

~σ (1) − ~σ (2)
)

· ~q

− i

4

(

C̄13 + C̄31

)

(

τ
(1)
3 + τ

(2)
3

)(

~σ (1) − ~σ (2)
)

· ~q

− i

4

(

C̄13 − C̄31

)

(

τ
(1)
3 − τ

(2)
3

)(

~σ (1) + ~σ (2)
)

· ~q, (47)

where ~σ (i)/2 is the spin of nucleon i and ~q = ~p1 − ~p ′
1 = ~p ′

2 − ~p2 is the momentum transfer.
In nucleon-nucleon scattering, operators that break P and T induce mixing between waves of different

parity. At low energy, the most relevant effect is the mixing between S and P waves, and indeed the
single momentum in Eq. (47) can only connect an S to a P wave. At leading order, the P wave is free.
Since the short-range TV potential involves one S wave, we expect [48] that in the pionless EFT the
coefficients C̄ij scale as 1/ℵ. Indeed, the amplitude for a nucleon-nucleon transition can be computed
from Eq. (47) as done in the PV case in Refs. [56, 60]. In leading order, it involves one insertion of the
TV operators C̄ij , dressed by the all-order iteration of the appropriate S-wave operator, C0s or C0t. The
renormalization-group invariance of the amplitude implies that the C̄ij follow a renormalization-group
equation of the form d(C̄ij/C0)/d lnµ = 0, which is satisfied if the five independent parameters are taken
to be

C̄1s = C̄11 − 3C̄ττ =
4πc̄s
mN

(

1

as
− µ

)−1

, C̄1t = C̄11 + C̄ττ =
4πc̄t
mN

(

1

at
− µ

)−1

,

C̄3s = C̄13 − C̄31 =
4πc̄3s
mN

(

1

as
− µ

)−1

, C̄3t = C̄13 + C̄31 =
4πc̄3t
mN

(

1

at
− µ

)−1

,

C̄33 =
4πc̄33t
mN

(

1

at
− µ

)−1

, (48)

in terms of five µ-independent coefficients c̄s,t,3s,3t,33t. As in the TC sector, the scaling of the short-range
parameters is different in the pionless EFT than in ChPT. We can write

C̄11,ττ = O
(

4π

mNℵ c̄s,t
)

, C̄13,31 = O
(

4π

mNℵ c̄3s,3t
)

, C̄33 = O
(

4π

mNℵ c̄33t
)

. (49)

In order to estimate the coefficients c̄s,t,3s,3t,33t, we use naive dimensional analysis [17, 65, 9] with
the pionful EFT as the underlying theory. We then find that at leading order the isoscalar c̄s,t receive
contributions from all the sources,

c̄s,t = O
(

θ̄

MQCD
, (δ̃0 + εδ̃3)

MQCD

M2
/T

,
αem

4π
(δ0 + δ3)

MQCD

M2
/T

, w
MQCD

M2
/T

)

, (50)

while the isospin-breaking c̄3s,3t only from the dimension-6 sources,

c̄3s,3t = O
(

δ̃3
MQCD

M2
/T

,
αem

4π
(δ0 + δ3)

MQCD

M2
/T

, εw
MQCD

M2
/T

)

, (51)
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and c̄33t only from the qEDM,

c̄33t = O
(

αem

4π
δ3
MQCD

M2
/T

)

. (52)

In general, one would expect five possible amplitudes connecting S to P waves [34, 46]: three —one
for each possible value of I3 = 1, 0,−1— to describe the mixing of the isotriplet 1S0 and 3P0 waves,
one for the mixing of the isosinglet 3S1 and 1P1 states, and one for the mixing of nucleons in the 3S1

configuration with the isotriplet 3P1 wave. The θ̄ term yields a short-range potential in the form of the
isospin-conserving terms of Ref. [34]. Because the TV operator in Eq. (21) is isoscalar and isospin
violation is a subleading effect in ChPT, for which the pionless EFT is the low-energy limit, the θ̄ term
does not contribute at leading order to quantities that violate both T and isospin. The two terms
contribute to 3S1–1P1 mixing and to 1S0–3P0 mixing, in equal way for the three I3 configurations. The
3S1–3P1 mixing vanishes at leading order, a fact that has important consequences for the estimate of the
deuteron EDM [28]. If δ̃3 and ε are different from zero, the qCEDM and the chiral-invariant TV sources
also contribute to isospin-breaking TV observables at leading order. The operator C̄3t is proportional to
the third component of the total isospin of the two-nucleon pair, and thus it does contribute to 1S0–3P0

mixing, but only for I3 = ±1. C̄3s is instead proportional to the total spin of the two nucleons, and it
is relevant to 3S1–3P1 mixing, and, consequently, to the deuteron EDM. Only the qEDM produces full
isospin breaking in leading order.

A potential with just these five short-range terms was considered recently [47]. Five low-energy quan-
tities —such as the spin rotation of a polarized beam and the longitudinal polarization of an unpolarized
incident beam in neutron scattering on a proton target [46] at different energies— are needed to determine
the parameters c̄s,t, c̄3s,3t, and c̄33t.

There is, however, an important extra ingredient that needs to be added at low energies: one-photon
exchange where one of the vertices originates in the nucleon EDM, as in Eq. (40), see Fig. 1. This long-
range potential is particularly important for qEDM, since for this source the short-range interactions
have suppression by αem/4π from the hard photon, as can be seen in Eqs. (50), (51), and (52). We find

Vγ,/T (~q) = − ie
2

[

d̄0 + d̄1τ
(1)
3 τ

(2)
3

] (

~σ (1) − ~σ (2)
)

· ~q
~q 2

− ie
4

[

(d̄0 + d̄1)
(

τ
(1)
3 + τ

(2)
3

)(

~σ (1) − ~σ (2)
)

+ (d̄1 − d̄0)
(

τ
(1)
3 − τ

(2)
3

)(

~σ(1) + ~σ(2)
)}

· ~q
~q 2
,

(53)

where

d̄0,1 = O
(

eδ0,3
m2

π

M2
/TMQCD

)

(54)

are the isoscalar and isovector components of the nucleon EDM. In principle, the coefficients d̄0,1 in the
pionless theory are different from the short-range contributions to the nucleon EDM in the pionful theory
introduced in Eq. (40). However, since in the case of TV from the qEDM pion-loop contributions to the
nucleon EDM are suppressed [24], at leading order they exactly match.

The photon-exchange potential has the same spin/isospin components of the short-range potential
(47), but it acts on all partial waves. While for the other sources this type of potential is important only
for very low momenta, for qEDM it is enhanced with respect to the short-range potential (47) by a factor
of Mnuc/ℵ for Q ∼ ℵ, and it dominates throughout the regime of the pionless EFT.

In subleading orders more derivatives appear in two-nucleon contact interactions and photon exchange.
An important issue is the order where few-nucleon forces first appear. On the basis of naive dimensional
analysis, we expect them to be also of subleading order. In the PV TC case, this is confirmed for the
three-nucleon force by a more detailed analysis based on renormalization-group invariance [58]. Since the
powers of momenta involved here are the same, the same conclusion should hold. The potentials (47)
and (53) should then be sufficient for most TV applications of the pionless EFT.

14



Figure 1: One-photon-exchange diagram contributing to the long-range TV two-nucleon potential. The
solid and wavy lines represent nucleon and photon, respectively; a square stands for the TV photon-

nucleon couplings in L(1)
f=2,/T6 (40), while the filled circle represents an interaction from L(0)

f≤2,T (15). Only

one possible ordering is shown.

4 The TV Potential in Momentum Space

In processes involving momenta Q ∼Mnuc, which presumably comprise the bound states of most nuclei,
pion effects are important and pion degrees of freedom should be included explicitly in the theory. In
this section we use the interactions given in Sect. 2 to compute the TV nuclear potential in momentum
space for the TV sources of dimension up to 6.

In the lowest orders, the TV nuclear potential involves only two nucleons. We write the two incoming
momenta as ~p1 = ~P/2 + ~p and ~p2 = ~P/2 − ~p, and the two outgoing momenta as ~p ′

1 = ~P/2 + ~p ′ and

~p ′
2 = ~P/2 − ~p ′. The TV potential in momentum space can be expressed as function not only of the

momentum transfer ~q = ~p − ~p ′, but also of the center-of-mass (CM) momentum ~P and of the variable
~K = (~p+~p ′)/2: V/T = V/T (~q, ~K, ~P ). Expressions for the potential in the CM frame are obtained by setting
~P = 0. Notice that although some of the terms below vanish in the CM frame, they can be relevant to
the calculation of the TV electromagnetic form factors of deuteron, or for calculations of T violation in
nuclei with A > 2, where the interaction with the photon or other nucleons changes the CM momentum
of the nucleon pair.

4.1 θ̄ Term

In leading order, the θ̄-term nuclear potential comes from the OPE diagrams of Fig. 2, with TC and TV

pion-nucleon interactions taken from L(0)
f≤2,T and L(1)

f=2,/T4 in Eqs. (15) and (22), respectively. The strong-

interaction vertex introduces a factor of gAQ/Fπ, while the TV vertex brings in a factor ḡ0 ∝ m2
π/MQCD.

As a result this contribution goes as M−1
QCD and it is of order ν = 1. In momentum space, the expression

for the potential is simply

V
(1)

θ̄
= i

gAḡ0
F 2
π

~τ (1) · ~τ (2)
(

~σ(1) − ~σ(2)
)

· ~q

~q 2 +m2
π

, (55)

which agrees with Ref. [29]. Just like the θ̄ term contribution to the potential (47) in the pionless theory,
this OPE potential contributes to 1S0–3P0 and 3S1–1P1 mixing, but not to the isospin-violating 3S1–3P1

mixing. At this order, there is a single unknown TV parameter, ḡ0. Contrary to the PC, TC case [48]
and more like the PV, TC potential [56], pion physics is enhanced relative to short-range physics due to
the absence of a derivative in the simplest pion-nucleon TV interaction and the presence of one in the
simplest TV two-nucleon contact interaction.

Since in nuclei the OPE from the I = 0 pion-nucleon coupling ḡ0 is suppressed by the factor (N−Z)/A,
it is interesting to pursue higher orders, up until the I = 1 pion-nucleon coupling ḡ1, whose OPE is
not affected by such suppression, appears. This means up to ν = 3, that is, including corrections of
O(Q2/M2

QCD) with respect to the leading TV potential. According to Eq. (13), corrections at orders

ν = 2, 3 come from one-loop diagrams involving L(0)
f≤2,T and L(1)

f=2,/T4 only, and from tree diagrams with
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Figure 2: OPE diagram contributing to the leading TV two-nucleon potential. The solid and dashed
lines represent nucleon and pion, respectively; a square stands for the TV pion-nucleon couplings ḡ0 in

L(1)
f=2,/T4 (22) or ḡ0,1,2 and ı̄1 in L(∆π)

f=2,/T6 (39), while the filled circle represents an interaction from L(0)
f≤2,T

(15). Only one possible ordering is shown.

Figure 3: Box, crossed, and triangle TPE diagrams contributing to the subleading TV two-nucleon
potential. Notation as in Fig. 2. Only one possible ordering per topology is shown.

insertions of higher-order terms. The tree contributions come from the four-nucleon TV operators in

L(3)
f=4,/T4, Eq. (27), and from OPE diagrams in which either the TC or the TV vertices originate in the

power-suppressed f ≤ 2 Lagrangians.
The most important loop diagrams are from TPE, depicted in Fig. 3. The T -odd pion-nucleon coupling

ḡ0 and one of the strong-interaction vertices bring in a factor of ḡ0gA/F
2
π . The other two vertices of the box

and crossed diagrams of Fig. 3 are strong-interaction pion-nucleon vertices from Eq. (15), and combined
with the (4π)2 from the loop integration, they yield the suppression factor g2A/(4πFπ)2 ∼ 1/M2

QCD. For
the triangle diagrams, the seagull vertex is the Weinberg-Tomozawa term also from Eq. (15), which
brings in a factor of 1/F 2

π that, combined with the (4π)2 from the loop, also leads to a suppression of
1/(4πFπ)2 ∼ 1/M2

QCD. All these diagrams are thus of order M−3
QCD. Care of course has to be taken with

the subtraction from the box diagrams in Fig. 3 of the iterated static OPE, which is infrared enhanced
and already included in the computation of wave functions at lower order. Following the procedure
described for instance in Ref. [56], the subtraction is accomplished by exploiting the identity

i

−v · k + iε
= − i

v · k + iε
+ 2πδ(v · k). (56)

When Eq. (56) is used in place of one of the nucleon propagators in the box diagrams, the first term
on the right-hand side leads to a contour integral over the 0th component of the loop momentum, which
can be performed without picking up the nucleon poles and is free of the infrared enhancement discussed
in Sect. 2, while the delta function corresponds to the two-nucleon pole and must be discarded in the
calculation of the potential. For the crossed-box and triangle diagrams, instead, it is always possible to
avoid the nucleon poles, and these diagrams only contribute to the potential.

The TPE diagrams in Fig. 3 are ultraviolet divergent. We regulate them in dimensional regularization
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in d spacetime dimensions, where divergences get encoded in the factor

L =
2

4 − d
− γE + ln 4π, (57)

where γE is the Euler constant. We denote by µ the renormalization scale. Proper renormalization
requires that sufficiently many counterterms appear at the same order to compensate for the L and µ
dependence of the loops. Indeed, here this dependence can be absorbed by the renormalization of the

contact interaction C̄2 from L(3)
f=4,/T4, Eq. (27), which we do by redefining it through

C̄2 → C̄2 +
2gAḡ0
F 2
π

1

(2πFπ)2

[

(

3g2A − 1
)

(

L+ ln
µ2

m2
π

)

+ 2
(

g2A − 1
)

]

. (58)

Note that we chose to absorb in C̄2 some finite constant pieces. TPE does not renormalize the coupling
C̄1 at this order. With this redefinition, the contact interactions yield the short-range potential

V
(3)

θ̄,SR
(~q) = − i

2

[

C̄1 + C̄2 ~τ
(1) · ~τ (2)

] (

~σ (1) − ~σ (2)
)

· ~q, (59)

which is formally identical to the leading θ̄ potential in the pionless EFT, Eq. (47). The couplings,
however, are different. We can see from Eq. (58) that the natural size of the coefficients C̄i is, as
advertised, θ̄m2

π/F
2
πM

3
QCD, implying a suppression of Q2/M2

QCD with respect to TV OPE.
Once the divergent, short-range part of TPE has been lumped with the contact terms, we are left with

the non-analytic contributions of medium range,

V
(3)

θ̄,MR
= −i2ḡ0gA

F 2
π

1

(2πFπ)2

[

2g2A B

(

~q 2

4m2
π

)

− T

(

~q 2

4m2
π

)]

~τ (1) · ~τ (2)
(

~σ(1) − ~σ(2)
)

· ~q, (60)

in terms of the functions

T (x) =

√

1 + x

x
ln
(√
x+

√
1 + x

)

=
1 + x

1 + 3
2x
B(x). (61)

As the leading OPE potential, Eq. (55), the TPE potential is a function only of the momentum transfer
~q. The scale of momentum variation is, as one would expect, 2mπ. TPE and leading OPE share the same
spin-isospin structure, which means they can only be separated if we probe their different momentum
dependences.

A much richer structure arises from the remaining ν ≤ 3 contributions to the two-nucleon TV potential,
which come from the OPE diagrams depicted in Fig. 4. Doubly-circled vertices in the first two diagrams
denote O(Q2/M2

QCD) corrections to the TC and TV pion-nucleon couplings, given by the operators in the

Lagrangians L(1,2)
f≤2,T I , L(1,2)

f≤2,T/I , and L(3)
f=2,/T4 found in Eqs. (16), (17), (20), and (24). The last diagram is

proportional to corrections to the pion mass in L(2)
f≤2,T I and L(1,2)

f≤2,T/I , and to the nucleon mass difference

in L(1,2)
f≤2,T/I . Note that, as we argue shortly, there are no further loop diagrams to consider explicitly.

Corrections that originate in the pion mass are closely connected to the leading OPE, Eq. (55). At the
order we are considering, the pion mass receives corrections from one-loop diagrams, which we absorb [18]
in the renormalization of the coupling ∆m2

π in Eq. (17). With the definitions of Eqs. (15), (17), (18), and
(19), the physical masses of the neutral and charged pions are, respectively, m2

π0 = m2
π + ∆m2

π + δm2
π =

(135 MeV)2 and m2
π± = m2

π + ∆m2
π + δ̆m2

π = (139.6 MeV)2 [72]. The isospin-symmetric correction to
the pion mass can be accounted at ν = 3 by substituting m2

π → m2
π + ∆m2

π in the leading-order TV
potential. Isospin-breaking corrections come from the different masses of the neutral and charged pions.
With the assumption αem/4π ∼ εm3

π/M
3
QCD, which is numerically reasonable, the pion mass splitting is

dominated by the electromagnetic contribution δ̆m2
π, which gives rise to a potential of order ν = 2. The
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Figure 4: OPE corrections to the θ̄-term two-nucleon potential up to order O(Q3/M3
QCD). The double

circles denote vertices in the ∆ = 1, 2 TC chiral Lagrangians, L(1)
f≤2,T I (16), L(2)

f≤2,T I (17), and L(1,2)
f≤2,T/I

(20). The doubly-circled square denotes vertices from the ∆ = 3 TV Lagrangian, L(3)
f=2,/T4 (24). Other

notation as in Fig. 2. Only one possible ordering is shown.

quark-mass-difference contribution δm2
π appears at ν = 3, when one should also consider diagrams with

two insertions of δ̆m2
π. The sum of these components generates two structures, an isoscalar

V
(2+3)

θ̄,a
(~q) = −i ḡ0gA

3F 2
π

(

2δ̆m2
π + δm2

π − 2
(δ̆m2

π)2

q2 +m2
π

)

~τ (1) · ~τ (2)
(

~σ(1) − ~σ(2)
)

· ~q

(~q 2 +m2
π)2

, (62)

and an isotensor

V
(2+3)

θ̄,b
(~q) = i

ḡ0gA
3F 2

π

(

δ̆m2
π − δm2

π − (δ̆m2
π)2

q2 +m2
π

)

(

3τ
(1)
3 τ

(2)
3 − ~τ (1) · ~τ (2)

)(

~σ(1) − ~σ(2)
)

· ~q

(~q 2 +m2
π)2

. (63)

These isoscalar and isotensor components can be rewritten using the physical pion masses. The isoscalar
component, Eq. (62), can be obtained by using the physical values of the neutral and charged pion mass
in the leading potential, Eq. (55). We can write

V
(1)

θ̄
(~q) + V

(2+3)

θ̄,a
(~q) = i

ḡ0gA
3F 2

π

(

2

~q 2 +m2
π±

+
1

~q 2 +m2
π0

)

~τ (1) · ~τ (2)
(

~σ(1) − ~σ(2)
)

· ~q, (64)

which, expanding in δ̆m2
π and δm2

π , reproduces Eq. (62). The combination of neutral and charged pion
propagators in Eq. (64) represents an “average” pion static propagator, which naturally appears in the
isoscalar contribution. Similarly, we can rewrite the tensor component as

V
(2+3)

θ̄,b
(~q) = −i ḡ0gA

3F 2
π

(

1

~q 2 +m2
π±

− 1

~q 2 +m2
π0

)

(

3τ
(1)
3 τ

(2)
3 − ~τ (1) · ~τ (2)

)(

~σ(1) − ~σ(2)
)

· ~q. (65)

In applications to nucleon-nucleon scattering, this tensor component would contribute at low energies to
1S0–3P0 mixing, affecting proton-proton and neutron-neutron (I3 = ±1) and neutron-proton (I3 = 0)
scattering differently. It is worth stressing that, in contrast to phenomenological approaches, the isotensor
component coming from the θ̄ term is not a leading contribution.

Corrections from the nucleon mass come in several guises. The use of a heavy-nucleon field ensures
that the large scale mN appears always in denominators. In the isospin-symmetric limit the first effects
of mN enter in the ∆ = 1, 2 TC Lagrangians, Eqs. (16) and (17), the ∆ = 3 TV Lagrangian, Eq. (24),
and, via the on-shell condition for the nucleons, the energy of the potential-pion propagator. They yield
relativistic corrections to the leading OPE with the same spin-isospin structure,

V
(3)

θ̄,c
(~q, ~K, ~P ) = −i gAḡ0

F 2
πm

2
N

(

~K2 +
~P 2

4
− 1

4

(~P · ~q )2

~q 2 +m2
π

)

~τ (1) · ~τ (2)
(

~σ(1) − ~σ(2)
)

· ~q

~q 2 +m2
π

, (66)

18



and with new structures,

V
(3)

θ̄,d
(~q, ~K, ~P ) = −i gAḡ0

4F 2
πm

2
N

~τ (1) · ~τ (2) 1

~q 2 +m2
π

{

~P · ~q
[

(

~σ(1) − ~σ(2)
)

·
~P

2
+
(

~σ(1) + ~σ(2)
)

· ~K
]

+i~σ(1) ·
[

~q ×
(

~P

2
+ ~K

)]

~σ(2) · ~q + i~σ(1) · ~q ~σ(2) ·
[

~q ×
(

~P

2
− ~K

)]}

. (67)

Note that in writing Eqs. (66) and (67) we have omitted pieces that vanish due to energy-momentum

conservation for on-shell nucleons, which implies ~K · ~q = ~p2 − ~p ′2 = 0. This potential includes the
contribution of the 1/mN correction to gA in Eq. (16). Naively, one would expect this correction to
contribute at order ν = 2; however the interaction brings in a factor of v · q, which, for on-shell nucleons,
becomes v · q = ~q · ~P/2mN , suppressing the potential by a further factor of 1/mN . There is a subtlety in
this argument. When one performs the integral involving both OPE with a pion energy in the numerator
and another interaction in the potential, and picks the pion pole, one gets a one-loop contribution to the
potential. However, by power counting, such diagrams are suppressed by a further Q/MQCD. (This of
course does not preclude enhancements by factors of π that in principle might affect any ChPT loop, but
are hard to incorporate in power counting.)

Corrections to the nucleon mass can be removed from nucleon propagators by redefinitions of the
nucleon field. The chiral-symmetry-breaking correction to the nucleon mass, ∆mN in Eq. (16), can be
absorbed in mN , mN → mN −∆mN , by a redefinition of the nucleon field of the same type of that which
eliminates the mass from Eq. (15) in the first place. The isospin-violating nucleon mass splittings δmN

and δ̆mN can be dealt with the field redefinition of Ref. [54], which leads to Eq. (20). The corresponding
potential linear in δmN has a 1/mN factor,

V
(3)

θ̄,e
(~q, ~K, ~P ) =

ḡ0gA
F 2
π

δmN

mN

1

~q 2 +m2
π

(

~τ (1) × ~τ (2)
)

3
[

(

~σ(1) + ~σ(2)
)

· ~K +
(

~σ(1) − ~σ(2)
)

·
(

~P

2
+

~q

~q 2 +m2
π

~P · ~q
)]

. (68)

This potential has the right quantum numbers to produce 3S1– 3P1 mixing, and therefore must be included
in a calculation of the deuteron EDM. In addition, there are terms quadratic in δmN , which generate an
additional contribution to the isoscalar and tensor potentials in Eqs. (62) and (63),

V
(3)

θ̄,f
(~q) = i

ḡ0gA
3F 2

π

δm2
N

[

2~τ (1) · ~τ (2) −
(

3τ
(1)
3 τ

(2)
3 − ~τ (1) · ~τ (2)

)](

~σ(1) − ~σ(2)
)

· ~q

(~q 2 +m2
π)2

. (69)

Note that the electromagnetic correction to the nucleon mass, δ̆mN , does not appear in the equations
above. The reason is that in Eq. (20) it appears with a v · ∂~π factor, which again brings a v · q and

consequently an extra suppression ∼ Q/mN . The contribution from δ̆mN is thus next order. Up to such

higher-order terms, we can make δmN → δmN + δ̆mN = mn −mp in the expressions above.
Finally we arrive at contributions from ν = 3 effects in the pion-nucleon vertices. At this order, several

contributions can be absorbed into redefinitions of the couplings gA, ḡ0, and C̄2. One-loop corrections
to gA do not introduce any non-analytic contribution and, for an on-shell nucleon, they renormalize the
coupling dA in Eq. (17) [80]. The operator with coefficient dA gives rise to a potential like Eq. (55), with
gA replaced by −gAdA. For simplicity we absorb dA in gA, gA → gA(1+dA). Similarly, the calculation of
the pion-nucleon TV form factor in Ref. [25] shows that the one-loop corrections to ḡ0 do not introduce
any non-trivial momentum dependence, so they simply renormalize the coupling ∆ḡ0 in Eq. (24). These
m2

π corrections to ḡ0 can be absorbed in it, ḡ0 → ḡ0 − ∆ḡ0 + ḡ0δm
2
π/m

2
π. As for the operators with

coefficients cA in Eq. (17) and η̄ in Eq. (24), they give potentials of the form

~τ (1) ·~τ (2)
(

~σ(1) − ~σ(2)
)

·~q ~q 2

~q 2 +m2
π

= −~τ (1) ·~τ (2)
(

~σ(1) − ~σ(2)
)

·~q m2
π

~q 2 +m2
π

+~τ (1) ·~τ (2)
(

~σ(1) − ~σ(1)
)

·~q, (70)
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which cannot be distinguished from those of gAḡ0 and C̄2, and can therefore be absorbed into further
redefinitions of gA, ḡ0, and C̄2. Now the Goldberger-Treiman relation for the strong pion-nucleon constant,
gπNN = 2mNgA/Fπ, applies without an explicit correction. If for the pion-nucleon coupling constant we
use gπNN = 13.07 [81], then in the leading-order TV potential we should use gA = 1.29.

The remaining contributions come from vertex corrections, both in the TV sector via the TV pion-
nucleon coupling π3N̄N in Eq. (24), and in the TC sector via the isospin-breaking pion-nucleon axial-
vector coupling ∂µπ3N̄S

µN in Eq. (20). We find

V
(3)

θ̄,g
(~q) =

i

2F 2
π

1

~q 2 +m2
π

{(

gAḡ1 −
ḡ0β1

2

)

(

τ
(1)
3 + τ

(2)
3

) (

~σ(1) − ~σ(2)
)

· ~q

+

(

gAḡ1 +
ḡ0β1

2

)

(

τ
(1)
3 − τ

(2)
3

) (

~σ(1) + ~σ(2)
)

· ~q
}

, (71)

where we redefined ḡ1 to absorb the tadpole contribution ḡ1 → ḡ1 + 2ḡ0∆mNδm
2
π/δmNm

2
π. The first

structure contributes to 1S0–3P0 mixing. Being proportional to I3, the contribution vanishes in the case of
neutron-proton scattering, and is only relevant for proton-proton or neutron-neutron scattering. Because
of its isospin structure, it does not affect the 3S1–1P1 and 3S1–3P1 channels, and, in particular, it is not
relevant for the calculation of the deuteron EDM. The second structure, in contrast, contributes to 3S1–
3P1 mixing, and, consequently, to the deuteron EDM. Its contribution vanishes in the other low-energy
channels.

Note that loop diagrams involving the leading S-wave TC four-nucleon operators and a TV pion
exchange all vanish. The analysis of Refs. [67, 68] showed that some higher-wave TC four-nucleon
operators are less suppressed than expected on the grounds of naive dimensional analysis, and they must
be included in the leading-order f = 4 TC Lagrangian. Loop diagrams with P -wave operators and a TV
pion exchange do not vanish. However, these diagrams do not depend on the momentum transfer ~q and
they simply renormalize the couplings C̄1 and C̄2.

One can proceed in the same manner to construct higher-order potentials. At next order there are
further OPE and TPE, and also one-photon-exchange, contributions to the two-nucleon potential. There
is also the appearance of the lowest-order three-nucleon TV potential, which arises from essentially three
mechanisms: (i) a TPE component ∝ gAḡ0/mNF

4
π involving a pion energy in a Weinberg-Tomozawa

seagull vertex; (ii) a TPE component ∝ g2Ah̄0/F
4
π involving the seagull vertex from L(2)

f=2,/T4, Eq. (23);

and (iii) a one-pion/short-range component ∝ gAγ̄i/F
2
π involving the short-range pion-two-nucleon inter-

actions from L(2)
f=4,/T4, Eq. (25). The fact that, in the absence of an explicit delta isobar, the three-nucleon

potential first shows up three orders beyond leading is completely analogous to the TC PC case [50]. An
important difference is that, because of the relative enhancement of pion exchange compared to short-
range physics, the leading TV PV three-nucleon force does not include a purely short-range component.
Thus, this TV PV three-nucleon force is in principle determined by one- and two-nucleon physics.

4.2 Dimension-6 Sources

Our attention has been focused so far on the TV potential from the θ̄ term, in which case the vanishing
of ḡ1 at leading order makes it important to consider subleading contributions. We now briefly turn our
attention to the TV potential from dimension-6 sources of T violation.

For all dimension-6 sources, the leading-order potential contains OPE of the form in Fig. 2. Since
these sources all generate I = 0 and I = 1 pion-nucleon couplings of the same size, we have no motivation
to go to subleading order in the potential. The leading-order potential, which is a function of the transfer
momentum ~q only, should be sufficient for most phenomenological applications. Of course, if needed,
subleading orders can be derived just as we have done for θ̄.

In the case of the qCEDM, the TV couplings ḡ0 and ḡ1 both appear in the ∆ = −1 Lagrangian, Eq.
(39). As a consequence, the leading potential from the qCEDM has chiral index ν = −1, and it has
both an isospin-conserving part, which is identical to Eq. (55), and an isospin-breaking one. The leading
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potential is

V
(−1)
qCEDM(~q) = i

gAḡ0
F 2
π

~τ (1) · ~τ (2)
(

~σ (1) − ~σ (2)
)

· ~q

~q 2 +m2
π

+i
gAḡ1
2F 2

π

[(

τ
(1)
3 + τ

(2)
3

)(

~σ (1) − ~σ (2)
)

+
(

τ
(1)
3 − τ

(2)
3

)(

~σ(1) + ~σ(2)
)]

· ~q

~q 2 +m2
π

. (72)

For the TV chiral-invariant (CI) sources, that is, gCEDM and TV FQ, the ∆ = −1 TV Lagrangian
contains both pion-nucleon couplings and four-nucleon operators, see Eqs. (39) and (41). The addi-
tional TV pion-nucleon coupling ı̄1 produces a potential of the type (70), and thus can be absorbed in
redefinitions ḡ0 → ḡ0 + m2

π ı̄1 and C̄2 → C̄2 + 2gAı̄1/F
2
π . As a consequence, the leading two-nucleon

potential consists of an isospin-conserving and an isospin-breaking one-pion-exchange contribution and a
short-distance piece,

V
(−1)
TVCI(~q) = i

gAḡ0
F 2
π

~τ (1) · ~τ (2)
(

~σ (1) − ~σ (2)
)

· ~q

~q 2 +m2
π

+i
gAḡ1
2F 2

π

[(

τ
(1)
3 + τ

(2)
3

)(

~σ (1) − ~σ (2)
)

+
(

τ
(1)
3 − τ

(2)
3

)(

~σ(1) + ~σ(2)
)]

· ~q

~q 2 +m2
π

− i

2

[

C̄1 + C̄2~τ
(1) · ~τ (2)

] (

~σ (1) − ~σ (2)
)

· ~q. (73)

The qEDM leading-order potential displays further new structures: in addition to the I = 2 pion-
nucleon coupling ḡ2 in Eq. (39), there is also the one-photon-exchange contribution shown in Fig. 1,
where one vertex is the short-distance contribution (40) to the nucleon EDM:

V
(2)
qEDM(~q) = i

gA
F 2
π

(

ḡ0~τ
(1) · ~τ (2) + ḡ2τ

(1)
3 τ

(2)
3

)(

~σ (1) − ~σ (2)
)

· ~q
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+i
gAḡ1
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3 + τ

(2)
3

)(

~σ (1) − ~σ (2)
)

+
(

τ
(1)
3 − τ

(2)
3

)(

~σ(1) + ~σ(2)
)]

· ~q

~q 2 + m2
π

−i e
2

(

d̄0 + d̄1τ
(1)
3 τ

(2)
3

)(

~σ (1) − ~σ (2)
)

· ~q
~q 2

−i e
4

[

(d̄0 + d̄1)
(

τ
(1)
3 + τ

(2)
3

)(

~σ (1) − ~σ (2)
)

+ (d̄1 − d̄0)
(

τ
(1)
3 − τ

(2)
3

)(

~σ(1) + ~σ(2)
)]

· ~q
~q 2
.

(74)

As for θ̄, at subleading orders the potential receives corrections from various mechanisms. For all
dimension-6 sources there are one-loop diagrams with the same topology as in Fig. 3, the square now
denoting ḡ0, ḡ1 or ḡ2. There are also tree-level OPE diagrams of the type in Fig. 4, with subleading
TC and TV pion-nucleon vertices. For qCEDM and qEDM, the one-derivative four-nucleon interactions
in the Lagrangian (42) have to be taken into account, while for TV CI sources one has to include all
the possible TV four-nucleon operators with three derivatives. For qEDM, one also needs to include
corrections involving photon exchange. This calculation proceeds along lines that are very similar to
Sect. 4.1.

In the case of the θ̄ term, TV three-nucleon forces only appear at NNNLO, one order higher than
the accuracy of our analysis. For qCEDM and qEDM the situation is similar, but one might wonder
whether for CI sources, which appear to be more sensitive to short-distance physics, TV three-nucleon
forces are more relevant. However, also in this case it turns out that the three-nucleon potential is
a NNNLO effect. The lowest-order three-nucleon potential receives various contributions: (i) a TPE
component ∝ gAḡ0,1/mNF

4
π involving a pion energy in the Weinberg-Tomozawa vertex; (ii) a TPE

component ∝ g2Aı̄0/mNF
4
π involving a pion energy in the leading TV seagull ı̄0; (iii) TPE components

from TV seagulls in the ∆ = 0 pion-nucleon Lagrangian, which we did not explicitly construct; (iv) a
one-pion/short-range component ∝ gAγ̄i/F

2
π , with four-nucleon operators that contain at least one pion
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field in the ∆ = 0 Lagrangian; and (v) short-range six-nucleon operators, which also appear in the ∆ = 0
Lagrangian. From the power counting formula (13), all these three-nucleon contributions are suppressed
by three powers of Q/MQCD with respect to the effects of the two-nucleon potential (73) in the three-body
system.

5 The TV Potential in Configuration Space

The evaluation of T -odd observables in nuclear and atomic systems is often more easily carried out in
configuration space. In this section we give the TV nuclear potential derived in Sect. 4 in coordinate
space. We compare this potential with the literature in the next section.

In the two-body case, it is convenient to introduce the relative position of the two nucleons ~r = ~x1−~x2,
their CM coordinate ~X = (~x1+~x2)/2, and the conjugate variables −i~∇r ≡ −i∂/∂~r and −i~∇X ≡ −i∂/∂ ~X.

Translation invariance constrains the potential to commute with ~∇X and, therefore, not to depend on
~X , so that in general the potential is a function of ~r and of the nucleons’ relative and CM momenta,
V/T = V/T (~r, ~∇r, ~∇X). The relations between the potential in momentum space and in coordinate space
are detailed in the Appendix. Some care must be taken, and a regularization scheme has to be defined,
when computing the Fourier transform of functions that blow up as |~q | goes to infinity, as is the case of
the subleading TV potential. As described in the Appendix, we follow Ref. [82] and define the Fourier
transform in d dimensions. We apply the d-dimensional Fourier integration of the momentum-space
potential before setting d = 4. This method eliminates naturally the divergent factor Γ(2 − d/2) arising
from loops and yields a finite result. As we will see, the divergent behavior at large momentum translates
in a singular ∼ 1/r4 potential at short distances. Expressions in configuration space obtained with this
method are equivalent to the procedure based on old-fashioned perturbation theory [82].

In order to write the results of the Fourier transform we introduce a few functions of the magnitude
r = |~r | of the radial coordinate:

U(r) =
1

12πr
[2 exp (−mπ±r) + exp (−mπ0r)] , (75)

which reduces to the usual Yukawa function U(r) = exp(−mπr)/4πr when we ignore the pion mass
difference;

W (r) =
1

4πr
[exp (−mπ±r) − exp (−mπ0r)] , (76)

which is entirely a consequence of isospin breaking; and the TPE functions

X(r) =
1

4π(2πFπ)2r3

∫ 1

0

dx
(

3 + 3βr + β2r2
)

exp(−βr), (77)

Y (r) =
1

2π(2πFπ)2r3

∫ 1

0

dx (1 + βr) exp(−βr), (78)

with β2 = m2
π/x(1 − x).

5.1 θ̄ Term

The Fourier transform of the leading OPE potential including the corrections from the pion mass (64)
and from the nucleon kinetic energy (66), is

V
(1)

θ̄
(~r) + V

(2+3)
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(3)
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F 2
π

~τ (1) · ~τ (2)
(

~σ (1) − ~σ (2)
)

·
[

(

~∇r U(r)
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2mN
,

{ ∇i
r

2mN
,
(

~∇rU(r)
)

}}

+
(~∇r · ~∇X)2

8mπm2
N

(

~∇r rU(r)
)

]

, (79)
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where {· · · , · · · } denotes the anticommutator. The remaining pion-mass correction, Eq. (65), is

V
(2+3)

θ̄,b
(~r) =

ḡ0gA
3F 2

π

(

3τ
(1)
3 τ

(2)
3 − ~τ (1) · ~τ (2)

) (

~σ(1) − ~σ(2)
)

·
(

~∇rW (r)
)

, (80)

while the Fourier transform of the other relativistic corrections to the leading OPE, Eq. (67), is
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The nucleon mass-splitting corrections in Eq. (68) become
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, (82)

while those in Eq. (69) read
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The last OPE terms, Eq. (71), are
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Finally, the Fourier transform of the TPE potential in Eq. (60) reads
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The potential in Eq. (85) is singular, and the cutoff dependence it introduces in the evaluation of matrix
elements and observables is absorbed by the renormalization of C̄2 in the short-distance potential (59),
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5.2 Dimension-6 Sources

At leading order, the potential from dimension-6 sources is local, and depends only on the relative position
~r.

In the case of the qCEDM, since the potential arises from one-pion exchange, its radial dependence is
encoded in the Yukawa function U(r),
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F 2
π

~τ (1) · ~τ (2)
(

~σ (1) − ~σ (2)
)

·
(

~∇r U(r)
)

− ḡ1gA
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For CI sources, there are additional short-range contributions,
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The potential from the qEDM is purely long-distance: in addition to pion exchange of range ∼ 1/mπ,
there is a longer-range component from photon exchange,
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The various sources thus involve different spin, isospin, and radial dependences. We discuss some
implications in the next section.

6 Discussion

Traditionally the study on T violation in nuclear physics has been carried out by considering the most
general pion-nucleon non-derivative couplings in a phenomenological TV Lagrangian [31], which we write
in our notation as

L/T,non = − ḡ0
Fπ

N̄~τ · ~πN − ḡ1
Fπ
π3N̄N − ḡ2

Fπ
π3N̄τ3N, (90)

and by inferring from it the TV two-nucleon potential [30],
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with U(r) defined in Eq. (75). When short-distance contributions are included in the model, the most
general TV two-nucleon local potential with the minimum number of derivatives assumes the form [35]
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· ~∇V1(r) (92)

in terms of five radial functions U0,1(r) and V0,1,2(r). These functions are assumed to originate in one-
boson exchange [32, 33, 34]: pion exchange is taken to give long-range contributions to V0, (V1 + U1)/2
and V2, while eta, rho and omega mesons give shorter-range contributions to the same quantities, and to
U0 and V1−U1. The five momentum-independent potentials in Eq. (92) are treated on the same footing,
and they provide enough information to describe the five S–P mixing amplitudes discussed in Sect. 3.
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For TV stemming from the QCD θ̄ term, the proper account of chiral symmetry radically changes the
picture. As noticed in Ref. [20], at leading order the θ̄ term generates only the isoscalar pion-nucleon T -
odd coupling ḡ0, and thus contributes at tree level only to the I = 0 potential [29]. A coupling of ḡ1 form
appears two orders down in the ChPT expansion, and the one of ḡ2 form is even more suppressed [25]. To
evaluate the effects of the θ̄ term on observables which, like the deuteron EDM, are mostly sensitive to
the I = 1 components, it is necessary to consider the TV two-nucleon potential to next-to-next-to-leading
order in ChPT. As described in Sect. 4, this implies the consideration not only of the non-derivative
pion-nucleon TV couplings, but also of subleading TV derivative couplings, of power-suppressed TC
interactions (with particular care for isospin-breaking operators, which contribute to the I = 1 and I = 2
potentials), and of one-loop and short-range contributions to the two-nucleon potential. When all these
elements are considered, the potential has a much richer structure than Eq. (92): (i) a hierarchy emerges
between the five spin-isospin structures already present in Eq. (92), and (ii) momentum-dependent
potentials appear, with the same importance as most of the momentum-independent ones.

We first analyze the implications of our θ̄ results to V/T,min(~r). Using the chiral index ν, as defined in

Eq. (13), to keep track of the size of different pieces, the θ̄ contributions to Eq. (92) are

V(1)
0 (r) = −gAḡ0

F 2
π

U(r), (93)

V(3)
0 (r) = −gAḡ0

F 2
π

[

2g2AX(r) − Y (r) +
(mn −mp)2

3mπ
r U(r)

]

+ C̄2
δ(r)

8πr2
, (94)

U (3)
0 (r) = +C̄1

δ(r)

8πr2
, (95)

V(3)
1 (r) = −gAḡ0

F 2
π

(

ḡ1
ḡ0

+
β1

2gA

)

U(r), (96)

U (3)
1 (r) = −gAḡ0

F 2
π

(

ḡ1
ḡ0

− β1
2gA

)

U(r), (97)

V(2+3)
2 (r) = +

gAḡ0
3F 2

π

[

(mn −mp)2

2mπ
rU(r) +W (r)

]

, (98)

where U(r), W (r), X(r), and Y (r) are defined in Eqs. (75), (76), (77), and (78), respectively. In Eq. (93)

the use of the definition (75) to express V(1)
0 in terms of the physical pion masses introduces subleading

corrections in the ν = 1 term, which strictly speaking would use a function U(r) that only depends on a
common pion mass, say the neutral one, U0(r) = exp(−mπ0r)/4πr. In Eqs. (94)–(98) we can neglect the
pion mass difference in U(r), and use U0(r), the error thus introduced being at higher orders in the ChPT
power counting. Similarly, in Eq. (93) the use of gA and ḡ0 with their m2

π corrections included accounts
for some ν = 3 corrections, while whether or not such m2

π corrections are included in Eqs. (94)–(98)
is beyond the order we consider. In Eqs. (94) and (98) we replaced δmN , the quark-mass-difference
contribution to the nucleon mass splitting, with the physical value of the nucleon mass splitting itself,
mn −mp, the difference again being a higher-order contribution in ChPT.

As one can see, at order ν = 3 in ChPT all the possible spin-isospin structures considered in Refs.
[35, 32, 33, 34] appear. The dominant component is the isoscalar V0 [29]. In Figs. 5 and 6 we plot,
respectively, the momentum-space and configuration-space expressions for ∇V0. The dashed line repre-

sents the leading-order ∇V(1)
0 , Eqs. (64) and (79) with the use of the definition (75) for U(r) to express

V(1)
0 in terms of the physical pion masses. The dashed-double-dotted line illustrates the effect of the

difference between the leading OPE potential computed with the function U(r) and with U0(r). Other

isospin-breaking corrections, which come from the nucleon mass splitting in V(3)
0 , Eqs. (69) and (83), are

very small, as indicated by the long-dashed-dotted line barely distinguishable from the x-axis. At next-
to-next-to-leading order, V0 also exhibits a medium-range component originating in TPE diagrams and
a short-range component. The dashed-dotted line depicts the non-analytic piece of the TPE diagrams,
Eqs. (60) and (85). We estimate the short-range potential by assuming the coefficient C̄2 in Eq. (58)
to be dominated by the lnµ2/m2

π term with µ = mN . The rationale is that there is no obvious reason
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Figure 5: Components of the θ̄-term two-nucleon potential |~q |V0, in units of gAḡ0/F
2
πmπ, as a function

of the transferred momentum |~q |, in units of mπ. The (blue) dashed line denotes the leading-order OPE
contribution with physical pion masses; the (orange) dashed-double-dotted line shows the effect of the
pion mass difference on the leading OPE contribution; the (dark green) long-dashed-dotted line accounts
for the even smaller effect of the nucleon mass splitting; the (purple) dashed-dotted line is the non-analytic
TPE contribution; and the (green) dotted line presents an estimate of the short-range component of the
potential. The (red) solid line is the sum of all contributions up to next-to-next-to-leading order, except
for the short-range component.

to expect that such a contribution, non-analytic in mπ, should get exactly canceled by mπ-independent
short-distance contributions. However, the sign cannot be guessed reliably and our choice is purely ar-
bitrary, for illustration only. Equation (59) gives rise to the straight dotted line in Fig. 5 but Eq. (86)
does not appear in Fig. 6 since it is concentrated at r = 0. The solid line in both figures is the sum of
the long and medium range contributions to ∇V0.

From Fig. 5, we can appreciate that, as expected from the ChPT power counting, the medium
and short-range corrections to the TV potential have comparable size in the momentum range we are
considering, and for momenta q >∼mπ they noticeably affect the leading order. At momenta of order 300–
400 MeV the medium and short-range contributions have roughly the same size as the leading potential.
In this region, degrees of freedom which we have not explicitly included in the EFT, like the ∆ isobar,
become relevant, and the convergence of the perturbative expansion can be improved by extending the
EFT to incorporate them. Isospin-breaking, long-range corrections, although of formally the same order
as TPE and contact terms, are much smaller, at least in part because of factors of ε, except at very small
momenta where their longer range compensates. In Fig. 6 we focus our attention on the long-distance
region, r ≥ 1/mπ. At distances of up to r . 2/mπ TPE is still the dominant correction to the potential,
but it is overcome at longer distances, r >∼ 2/mπ, by the long-range effects of pion mass splitting in OPE.

It is instructive to compare our results for V0 to the corresponding TV potential obtained in a one-
boson-exchange model. In such a model, T violation in the coupling of a rho meson to the nucleon
generates corrections to V0 of the form [33, 34]

V(ρ)
0 (r) = −gAḡ0

F 2
π

gρNN

gπNN

ḡ0ρFπ

ḡ0

e−mρr

4πr
, (99)
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Figure 6: Components of the θ̄-term two-nucleon potential ∇V0 in units of gAḡ0m
2
π/4πF

2
π , as functions

of the distance between the two nucleons r = |~r|, in units of 1/mπ. Curves as in Fig. 5, except that the
short-range component of the potential is not shown.

where gρNN is the TC rho-nucleon vector coupling and ḡ0ρ is an isoscalar, TV, one-derivative rho-nucleon

coupling, defined, for example, in Ref. [34]. In the limit where the rho mass is large, mρ → ∞, V(ρ)
0 (r)

approximates a delta function and the effect of TV rho-exchange amounts to a contribution to C̄2 of the
form

C̄
(ρ)
2 = −2

gAḡ0
F 2
π

gρNN

gπNN

ḡ0ρFπ

ḡ0

1

m2
ρ

. (100)

Since mρ ∼ MQCD and there is no reason for ḡ0ρFπ/ḡ0 to be particularly big or small, the size of rho-
meson contribution is comparable to the power-counting expectation, C̄2 = O(θ̄m2

π/F
2
πM

3
QCD), with

some suppression coming from the numerical smallness of the TC rho-nucleon vector coupling compared
to the pion-nucleon coupling. Assuming the TV pion-nucleon and rho-nucleon couplings to have the same
strength, ḡ0ρFπ/ḡ0 = 1, and using for the rho-nucleon vector coupling the value determined in modern
high-precision two-nucleon potentials, gρNN = 3.2 [83], in Fig. 7 we compare the rho-meson contribution
to ∇V0 to the pion-mass-splitting and TPE medium-range corrections discussed above. For r >∼ 1/mπ,
the contribution of the rho meson is numerically small compared to both pion-mass-splitting and TPE
corrections. At shorter ranges, r . 1/mπ, rho exchange overcomes the effect of pion mass splitting, but it
always remains smaller than TPE. Of course we can make one-rho exchange more important by jacking
up ḡ0ρFπ/ḡ0, but we cannot compensate for the different ranges of the two contributions, mρ versus 2mπ.
We see little justification for neglecting TPE in the θ̄ potential.

We now turn to the other spin-isospin structures in Eq. (92), which in EFT are all suppressed by

one power of Q2/M2
QCD with respect to the leading OPE TV potential. The function U (3)

0 only receives
contributions from short-range physics. Again, in a one-boson-exchange scenario, contributions of exactly
the size of C̄1 come from eta and omega exchanges [32, 33, 34],

C̄
(η,ω)
1 = 2

gAḡ0
F 2
π

(

gηNN

gπNN

ḡ0ηFπ

ḡ0

1

m2
η

− gωNN

gπNN

ḡ0ωFπ

ḡ0

1

m2
ω

)

, (101)

where mη (mω) is the eta (omega) mass, gηNN (gωNN ) is the TC eta-nucleon axial (omega-nucleon vector)
coupling, and ḡ0η (ḡ0ω) is an isoscalar, TV no-derivative eta-nucleon (one-derivative omega-nucleon)

27



0.5 1.5 2.0 2.5 3.0 3.5 4.0
mΠ r

0.01

0.02

0.03

0.04

0.05

 !V0HrL¤
4 Π

mΠ
2

FΠ
2

gA g0

Figure 7: Comparison between one-rho-exchange and EFT contributions to the magnitude of the θ̄
potential |∇V0| in units of gAḡ0m

2
π/4πF

2
π , as functions of the distance r, in units of 1/mπ. The rho-

exchange contribution is depicted as a (blue) long-dashed-dotted line, while TPE and pion mass splitting
in OPE are as in Fig. 5.

coupling. The eta- and omega-meson contributions are comparable to the power-counting expectation
C̄1 = O(θ̄m2

π/F
2
πM

3
QCD). For the eta meson, the enhancement due to the relatively light mass is offset

by the smallness of eta-nucleon TC coupling, gηNN = 2.24 [84]. The ratio gωNN/gπNN is instead close to
one [83], and, therefore, we have no reason to expect the omega-meson contribution to C̄1 to differ much
from the power-counting estimate.

In contrast, V(3)
1 , U (3)

1 , and V(2+3)
2 sprout entirely from OPE. The TV, isospin-breaking coupling ḡ1

contributes equally to V1 and U1, as expected [30] from the identification at the Lagrangian level, cf.
Eqs. (24) and (90). However, we expect a comparable long-range piece in U1 − V1, which stems from
the combination of the isospin-violating vertex β1 and the TV vertex ḡ0. As discussed in Ref. [25],
strong-dynamics contributions to the coefficients of these I = 1 potentials are in principle determined
by measurement of TC, isospin-breaking observables. For example ḡ1/ḡ0 could be extracted from a
detailed analysis of isospin-breaking effects in pion-nucleon scattering. At present, however, even the
very sophisticated, state-of-the art analysis of Ref. [85] stops one order shy of the accuracy required
for such extraction. Similarly, the ratio β1/gA affects isospin violation in nucleon-nucleon scattering,
but at present phase-shift analyses of two-nucleon data can only provide a bound on β1, which is in
accordance with the power-counting expectation [51, 52]. In the absence of better constraints on the

parameters in Eqs. (96) and (97), the ratios V(3)
1 /V(1)

0 and U (3)
1 /V(1)

0 can only be estimated by power

counting, as O(εm2
π/M

2
QCD) ∼ 1%. As for the last component of the phenomenological potential, V(2+3)

2

originates entirely from the isospin-violating corrections to the pion and nucleon masses, and it is also
relatively small. Note that to this order this component has nothing to do with the coupling ḡ2 of a
phenomenological Lagrangian: because of the isoscalar character of the θ̄ term, Eq. (21), ḡ2 arises in
EFT only at higher order.

In one-boson-exchange models the I = 1, 2 potentials are assumed to arise from pion, eta, rho, and
omega isovector and tensor TV couplings to the nucleon [32, 33, 34]. In the ChPT power counting,
short-range contributions to these potentials are suppressed with respect to the long-range pieces, again
because of the isoscalar character of the θ̄ term. (Of course, because of the factors ε in the long-range
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contributions of this order, short-range terms might not be entirely negligible.) This is consistent with
the argument that the dominant meson-exchange contributions are from the pion and the eta [32].

There are, therefore, a few points of contact between the local part of our ν ≤ 3 potential and the
phenomenological potential V/T,min(~r) (92). However, as we have seen in Sects. 4 and 5, at this order EFT
yields also momentum-dependent interactions, which in coordinate space appear as non-local potentials
and corrections that account for CM motion of the nucleon pair. They can be found in the relativistic
and isospin-breaking corrections to OPE in Eqs. (79), (81), and (82).

At ν = 3, the θ̄ two-nucleon potential contains in the CM frame, ~P = 0, four spin-isospin structures
that are momentum-dependent,

V/T,more(~r, ~pr) =
gAḡ0

4m2
NF

2
π

~τ (1) · ~τ (2)
[(

~σ(1) − ~σ(2)
)

·
{

pir,
{

pir, ~∇rU(r)
}}

−2

3

(

~∇2
rU(r)

)(

~σ(1) × ~σ(2)
)

· ~pr +
(

~σ(1) × ~σ(2)
)m
(

∇m
r ∇l

rU(r) − 1

3
δlm~∇2

rU(r)

)

plr

]

+
gAḡ0 δmN

2mNF 2
π

(

~τ (1) × ~τ (2)
)

3

(

~σ(1) + ~σ(2)
)

· {~pr, U(r)} , (102)

where ~pr = −i~∇r denotes the quantum-mechanical relative momentum operator.
The structure of the momentum-dependent TV potentials was considered previously in Ref. [35], where

all possible Hermitian operators were constructed, which violate time-reversal and parity, and contain up
to one power of momentum ~pr. The momentum-dependent TV potential was parameterized with eleven
unknown functions di(r), i = 1, 2 . . . , 11. The first term in Eq. (102) is quadratic in the momentum
operator and was not considered in Ref. [35]. The second and third spin-isospin structures correspond,
respectively, to the isoscalar functions d2(r) and d6(r). For TV from the QCD θ̄ term, these two functions
are therefore dominated by pion-exchange, and their coefficients are fixed by Lorentz invariance and do
not contain any new TV parameter. Isospin-breaking effects in the strong interaction give rise to the last
term in Eq. (102), which is proportional to the nucleon mass difference, and it is the first contribution
of the θ̄ term to d10(r). Once again, d10 is dominated by OPE diagrams, and the only TV parameter
intervening is ḡ0. We find that, at order ν = 3 in ChPT, the other isospin-conserving (the isoscalar d1
and d5) and isospin-breaking (d3, d4, d7, d8, d9 and d11) functions do not receive contributions from θ̄.

In order to get a sense of the importance of the momentum-dependent contributions, we consider the
effect of the relativistic correction in Eq. (102) that is quadratic in ~pr. In Fig. 8 we compare it (long-
dashed-dotted line) to leading OPE (dashed line), medium-range TPE (dashed-dotted line), and pion
mass-splitting corrections (double-dotted-dashed line), all applied to a simple bound-state wave function
with the scale present in the 1S0 channel, as = −23.714 fm:

ψ(r) =
exp(−r/as)

r
. (103)

In this qualitative example the relativistic correction cannot be neglected with respect to the other ν = 3
corrections, and we take Fig. 8 as an indication that also in actual calculations of TV observables it
would not be advisable to drop the potential in Eq. (102), when the θ̄ potential is needed to next-to-
next-to-leading-order accuracy.

Finally, to the same order we find contributions proportional to the CM momentum of the nucleon
pair,

V/T,CM(~r, ~pr, ~P ) =
gAḡ0

8m2
NF

2
π

~τ (1) · ~τ (2)
{(

~σ (1) + ~σ (2)
)

·
{

~pr,
(

~∇rU(r)
)

· ~P
}

+εijk
(

σ(1) i σ(2) l + σ(1) l σ(2) i
)

(

∇l
r∇k

rU(r)
)

P j

+
(

~σ(1) − ~σ(2)
)

·
[

2
(

~∇rU(r)
)

~P 2 + ~P
(

~∇rU(r)
)

· ~P +
1

mπ
(~P · ~∇r)2

(

~∇rrU(r)
)

]}

+
gAḡ0 δmN

2mNF 2
π

(

~τ (1) × ~τ (2)
)

3

(

~σ(1) − ~σ(2)
)

·
[

U(r)~P − 1

mπ

(

~∇r ∇i
r rU(r)

)

P i

]

, (104)
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Figure 8: Comparison between a relativistic correction to OPE and local components of the θ̄ two-
nucleon potential ∇V0 applied to an illustrative bound-state wave function ψ, in units of gAḡ0m

3
π/4πF

2
π ,

as functions of the distance r, in units of 1/mπ. The (dark green) long-dashed-dotted line represents the
term in the potential that is quadratic in momentum. Other curves are as in Fig. 5.

where ~P = −i~∇X . Although the operators in Eq. (104) vanish in the two-nucleon CM frame and are
not important for the study of T violation in nucleon-nucleon scattering, they impact observables like
TV electromagnetic form factors of the deuteron, where the recoil against the photon changes the CM
momentum of the nucleon pair, and they have to be considered in nuclear systems with A > 2. An
example of the effects of recoil on TC deuteron processes can be found in Compton scattering [86].

At leading order, the dimension-6 sources of TV only contribute to V/T,min(~r), the two-nucleon potential
with minimal number of derivatives, in Eq. (92). Combining all these sources,

V(νmin)
0 (r) = −gA(3ḡ0 + ḡ2)

3F 2
π

U(r) + C̄2
δ(r)

8πr2
+

ed̄1
24πr

, (105)

U (νmin)
0 (r) = +C̄1

δ(r)

8πr2
+
ed̄0
8πr

, (106)

V(νmin)
1 (r) = −gAḡ1

F 2
π

U(r) +
e(d̄1 − d̄0)

8πr
, (107)

U (νmin)
1 (r) = −gAḡ1

F 2
π

U(r) +
e(d̄0 + d̄1)

8πr
, (108)

V(νmin)
2 (r) = −gAḡ2

3F 2
π

U(r) +
ed̄1

24πr
, (109)

where

• for qCEDM, νmin = −1 and only the ḡ0,1 terms apply;

• for TVCI sources, νmin = −1 and only the ḡ0,1 and C̄1,2 terms apply; and

• for qEDM, νmin = 2 and only the ḡ0,1,2 and d̄0,1 terms apply.

30



In the case of the qCEDM, the potential is thus dominated by OPE, with shorter- or longer-range
contributions expected to be small. For the gCEDM and the TV FQ operators, short-range effects are
also leading; as for θ̄, these can be parametrized by rho (see Eq. (100)), and eta and/or omega exchange
(see Eq. (101)). Only for qEDM all components of V/T,min(~r) appear in leading order thanks to both the
most general non-derivative pion-nucleon coupling structure, and to the long-distance potential stemming
from the nucleon EDM. The latter cannot be well approximated by heavy-meson exchange.

7 Conclusions

The power-counting scheme of EFTs allows us to organize the contributions to the potential in powers
of M−1

QCD. The TV PV potential has an ordering that has similarities with the TC PV potential [56]: for
all TV sources of dimension up to 6, the leading potential contains one-pion exchange. For T violation
from the θ̄ term and from the quark chromo-EDM, the relative importance of two-pion exchange and
shorter-range interactions follows the TC PV case closely. However, the situation is different for the quark
EDM, the gluon chromo-EDM and TV four-quark operators, where contact interactions or one-photon
exchange are relatively more important.

For T violation from the θ̄ term, at leading order, O(Q/MQCD), we find only the well-known OPE
from the I = 0 pion-nucleon TV coupling [29]. The OPE from the I = 1 pion-nucleon TV coupling is
suppressed by two orders in the expansion parameter and is of O(Q3/M3

QCD). Since the I = 0 OPE is
suppressed in nuclei, higher orders in the potential could be important. We have thus also examined the
corrections in the next two orders, which are up to O(Q2/M2

QCD) relative to leading. We have found
that the potential is purely two-body, and:

• At the longest, one-pion range, there are more general vertex corrections than usually assumed. We
employed the results of Ref. [25] where the TV pion-nucleon vertex was examined to this order.
In addition to the qualitatively different I = 1 pion-nucleon TV coupling, there are corrections to
the local potential stemming from isospin breaking in the pion and nucleon masses, and in the TC
pion-nucleon coupling. There are also recoil (∝ 1/mN) and relativistic (∝ 1/m2

N) corrections to
leading OPE, which make the potential non-local and dependent on the total momentum of the
nucleon pair.

• At this order, we find, additionally, two-pion exchange from the I = 0 TV coupling. The non-
analytic, medium-range part of the TPE potential is independent of the choice of fields and regula-
tors. Like the leading OPE potential, this part of the TPE potential has as only (so-far) unknown
quantity the I = 0 TV pion-nucleon coupling. Under reasonable assumptions about the strengths
of TV couplings, this potential is stronger, and has a different radial dependence, than phenomeno-
logical one-meson-exchange potentials. The main effect of TPE is to modify the potential in the
same channels as the leading OPE potential.

• The short-range part of the TPE potential, on the other hand, cannot be separated from contact
interactions, the most general form of which we also write at this order. They are two of the terms
given in the literature [34]. In the context of a theory without pions, this implies a contribution to
only two of five possible S–P transitions. When pions are included explicitly, the short-range terms
are expected to be of the same size as TPE, and thus their strengths depend on the renormalization
scale. They subsume short-range dynamics that includes the effects of heavier mesons, but whether
such effects are sufficient to saturate them is unknown.

The structure of the resulting potential is therefore significantly different than the phenomenological
potential used in the literature, due to the specific way in which the θ̄ term breaks chiral symmetry.
If consideration of short-range dynamics or I = 1 OPE is necessary, one should also include the TPE
potential and OPE corrections calculated here.
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For the dimension-6 sources, the I = 1 pion-nucleon coupling appears already in leading order,
O(MQCD/Q) for qCEDM and chiral-invariant sources (gCEDM and TV FQ) and O(Q2/M2

QCD) for

qEDM. The structure of the TV potential is thus different from that of θ̄, and depends on the source:

• For qCEDM, it contains only OPE with the well-known I = 0, 1 non-derivative pion-nucleon cou-
plings.

• For CI sources, there are, additionally, two contact interactions of the same type as found at next-
to-next-to-leading order for θ̄.

• For qEDM, OPE from the three (I = 0, 1, 2) non-derivative pion-nucleon couplings is accompanied
by one-photon exchange from the nucleon EDM.

Therefore, for all sources we have considered (θ̄, qEDM, qCEDM, gCEDM, and TV FQ), the TV
nuclear potential presents more structure (spin, isospin, and/or distance profile) than assumed in the usual
phenomenological approach. EFT offers a framework where the calculation of nuclear TV observables
can be carried out in a model independent way and characterize the low-energy manifestations of possible
TV sources.
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Appendix: Fourier Transformation to Configuration Space

In general a potential obtained in EFT depends not only on the transferred momentum ~q but also on ~K,
and the CM momentum ~P , V (~q, ~K, ~P ). The Fourier transform of such a potential is defined as

V (~r, ~r ′, ~X, ~X ′) =

∫

d3K

(2π)3

∫

d3P

(2π)3

∫

d3q

(2π)3
e−i~P ·( ~X− ~X ′)e−i ~K·(~r−~r ′)e−

i
2
~q·(~r+~r ′)V (~q, ~K, ~P ), (110)

where, if ~x1 and ~x2 are the positions of the incoming nucleons and ~x ′
1 and ~x ′

2 the positions of the outgoing
nucleons, the relative coordinates are ~r = ~x1−~x2 and ~r ′ = ~x ′

1−~x ′
2, while the CM position of the incoming

and outgoing pairs are 2 ~X = ~x1 + ~x2 and 2 ~X ′ = ~x ′
1 + ~x ′

2. The potential in Eq. (110) has to be used in a
two-nucleon Schrödinger equation of the form

i
∂

∂t
ψ(~r ′, ~X ′) = −

(

~∇ 2
X′

4mN
+
~∇2

r′

mN

)

ψ(~r ′, ~X ′) +

∫

d3~r

∫

d3 ~X V (~r, ~r ′, ~X, ~X ′)ψ(~r, ~X). (111)

For potentials that, like the ones in Sect. 4, are polynomials in ~K and ~P ,

V (~q, ~K, ~P ) ∝ ~Km ~Pnf(~q), (112)

V (~r, ~r ′, ~X, ~X ′) assumes the form

V (~r, ~r ′, ~X, ~X ′) ∝
(

~∇n
Xδ

(3)( ~X − ~X ′)
) (

~∇m
r δ

(3)(~r − ~r ′)
)

f

(

~r + ~r ′

2

)

, (113)

where

f(~r ) =

∫

d3q

(2π)
3 e

−i~q·~r f(~q ). (114)
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Plugging Eq. (113) in Eq. (111), and integrating by parts, the derivatives acting on the delta functions

can be turned into derivatives acting on f and on the wave function ψ(~r, ~X). The integrals in Eq. (111)
then become trivial, and the Schrödinger equation assumes the form

i
∂

∂t
ψ(~r ′, ~X ′) = −

(

~∇ 2
X′

4mN
+
~∇2

r′

mN

)

ψ(~r ′, ~X ′) + V (~r ′, ~∇r′ , ~∇X′)ψ(~r ′, ~X ′), (115)

where the two potentials in Eqs. (111) and (115) are related by integrations by parts. For a potential of
the form (112), schematically we would have

V (~r ′, ~∇r′ , ~∇X′) ∝ (−)n(−)m
{∇r′ i1

2
, ...

{∇r′ im

2
, f(~r ′)

}}

∇n
X′ , (116)

where the indices ii, . . . , im are appropriately contracted.
In order to obtain the potential in configuration space for functions that diverge as the momentum

transfer |~q| goes to infinity, one has to define a regularization scheme. Here, following Ref. [82], we find it
convenient to extend the definition of the Fourier transform (114) to a space-time of d = n+1 dimensions:

Vn(~r ) =

∫

dnq

(2π)
n e

−i~q·~r V (~q ). (117)

The amplitude V (~q) is the expression in momentum space of corresponding loop contributions right after
the d-dimensional integration over loop momenta is performed, but before setting d = 4 or performing
the integration over Feynman parameters. Writing

dnq = qn−1dq (1 − cos2 θ)
n−3

2 d cos θ dΩn−1, (118)

the angular integrations are evaluated with the aid of the formulas

∫

dΩn−1 =
2π

n−1

2

Γ
(

n−1
2

) , (119)

and
2π

n−1

2

Γ
(

n−1
2

)

∫ 1

−1

d cos θ (1 − cos2 θ)
n−3

2 e−iqr cos θ = (2π)
n
2 (qr)1−

n
2 Jn

2
−1(qr), (120)

where q = |~q |, r = |~r |, and Jn(x) denotes a Bessel function of the first kind. For momentum integrals, a
useful relation is [87]

∫ ∞

0

dq q
n
2

Jn
2
−1(qr)

(q2 + β2)
m−n

2

=
(r

2

)

m−n

2
−1 βn−m

2

Γ
(

m−n
2

)Km
2
−n (βr) , (121)

where β is a constant and Kn(x) is the modified Bessel function of the second kind.
For example, in the case of the triangle diagrams discussed in Sect. 4,

V△(~q ) = −i gAḡ0
F 2
π

(4πµ2)
3−n

2

(2πFπ)2
τ
(1) · τ (2) (~σ(1) − ~σ(2)) · ~q Γ

(

3 − n

2

)
∫ 1

0

dx
[

m2
π + q2x(1 − x)

]

n−3

2 . (122)

For m = 3 and β2 = m2
π/x(1 − x), the result in Eq. (121) allows one to cancel the divergent factor of

Γ((3 − n)/2) in Eq. (122) and get an expression that is finite for r 6= 0. Now we can set d = 4 and
with the aid of the properties of modified Bessel functions [87] we can write the potential in configuration
space as

V△(~r ) =
gAḡ0
F 2
π

1

(2πFπ)2
τ
(1) · τ (2) (~σ(1) − ~σ(2)) · ~∇

[

1

2πr3

∫ 1

0

dx(1 + βr) e−βr

]

. (123)
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The contributions from box and crossed diagrams can be obtained in a similar fashion, leading to the
result in Eq. (85).

Alternatively, we can isolate the short-range, divergent part of the interaction with integration by
parts. In Eq. (122), for instance, we then obtain

V△(~q ) = −i gAḡ0
F 2
π

(4πµ2)
3−n

2

(2πFπ)2
τ
(1) · τ (2) (~σ(1) − ~σ(2)) · ~q

[

Γ

(

3 − n

2

)

mn−3
π + Γ

(

5 − n

2

)
∫ 1

0

dx
q2x(1 − 2x)

[m2
π + q2x(1 − x)]

5−n
2

]

. (124)

The first, divergent piece in Eq. (124) is a contribution to a delta-function potential. Applying the
d-dimensional Fourier transform to Eq. (124) and taking the d→ 4 limit we find

V△(~r ) =
gAḡ0
F 2
π

1

(2πFπ)2
τ
(1) · τ (2) (~σ(1) − ~σ(2)) · ~∇

[

δ(3)(~r)

(

L+ ln
µ2

m2
π

)

− 1

4πr

∫ 1

0

dx
1 − 2x

1 − x
β2 e−βr

]

, (125)

where L is given in Eq. (57). Proceeding in this way also for box and crossed terms, we find that Fourier
transform of the TPE potential can be expressed as

V
(3)
TPE(~r ) =

gAḡ0
F 2
π

1

(2πFπ)2
τ
(1) · τ (2) (~σ(1) − ~σ(2)) · ~∇

{

−δ(3)(~r)
[

(3g2A − 1)

(

L+ ln
µ2

m2
π

)

+ 2g2A

]

+
1

4πr

∫ 1

0

dx

[

g2A

(

4 − 3

2x(1 − x)

)

− 1 − 2x

1 − x

]

β2e−βr

}

. (126)

The piece proportional to the delta function can then be absorbed in a redefinition of C̄2 very similar to
Eq. (58), the only difference residing in the finite pieces. Integrating by parts, it can be explicitly verified
that the non-analytic piece of the expression (126) gives the medium-range potential in the form of Eq.
(85).

As a further check of our results, we computed the Fourier transform of the triangle diagrams with
a Gaussian regulator exp(−q2/Λ2), for different values of the cutoff Λ. The calculation was performed
numerically with Mathematica [88] and we focused on the region r > 1/mπ. For Λ ≃ mρ, the result we
get is still quite different from the Fourier transform obtained in dimensional regularization, but as we
increase the cutoff to 1–2 GeV, it approximates Eq. (123) better and better.

As pointed out in Ref. [82], in the d-dimensional Fourier-transform procedure the infinities are “regu-
larized” away because the nucleon distance is kept finite. The ultraviolet divergences and the regulator
dependence are now hidden in the singular behavior (∼ 1/r4) of the potential for small r, which forces
the reintroduction of a regulator in the calculation of matrix elements of V (r). If the chosen regulator
were dimensional regularization, then the d → 4 limit of Eq. (121), which leads to the 1/r3 singularity
in Eq. (123), must be taken in the sense of generalized functions; the singularity is then encoded by a
delta function, proportional to the divergent factor 2/(d− 4), with a plus distribution remaining [89].
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C 59 (1999) 53; E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, and H. Wita la,
Phys. Rev. C 66 (2002) 064001.

[51] U. van Kolck, J.L. Friar, and T. Goldman, Phys. Lett. B 371 (1996) 169.

[52] U. van Kolck, M.C.M. Rentmeester, J.L. Friar, T. Goldman, and J.J. de Swart, Phys. Rev. Lett. 80
(1998) 4386; N. Kaiser, Phys. Rev. C 73 (2006) 044001.

[53] J.L. Friar and U. van Kolck, Phys. Rev. C 60 (1999) 034006; J.A. Niskanen, Phys. Rev. C 65 (2002)
037001; J.L. Friar, U. van Kolck, G.L. Payne, and S.A. Coon, Phys. Rev. C 68 (2003) 024003.

[54] J.L. Friar, U. van Kolck, M.C.M. Rentmeester, and R.G.E. Timmermans, Phys. Rev. C 70 (2004)
044001.

36

http://arxiv.org/abs/nucl-th/0504078
http://arxiv.org/abs/1104.3051


[55] E. Epelbaum, U.-G. Meißner, and J.E. Palomar, Phys. Rev. C 71 (2005) 024001; J.L. Friar, G.L.
Payne, and U. van Kolck, Phys. Rev. C 71 (2005) 024003.

[56] S-L. Zhu, C.M. Maekawa, B.R. Holstein, M.J. Ramsey-Musolf, and U. van Kolck, Nucl. Phys. A 748

(2005) 435.

[57] N. Kaiser, Phys. Rev. C 76 (2007) 047001; Y.-R. Liu and S.-L. Zhu, Chin. Phys. 32 (2008) 700; L.
Girlanda, Phys. Rev. C 77 (2008) 067001.

[58] H.W. Grießhammer and M.R. Schindler, Eur. Phys. J. A 46 (2010) 73.

[59] D.B. Kaplan and M.J. Savage, Nucl. Phys. A 556 (1993) 653; 570 (1994) 833 (E); 580 (1994) 679
(E); C.M. Maekawa and U. van Kolck, Phys. Lett. B 478 (2000) 73; C.M. Maekawa, J.S. da Veiga,
and U. van Kolck, Phys. Lett. B488 (2000) 167; P.F. Bedaque and M.J. Savage, Phys. Rev. C 62,
018501 (2000); S-L. Zhu, C.M. Maekawa, B.R. Holstein, and M.J. Ramsey-Musolf, Phys. Rev. Lett.
87 (2001) 201802; S-L. Zhu, C.M. Maekawa, G. Sacco, B.R. Holstein, and M.J. Ramsey-Musolf,
Phys. Rev. D 65 (2002) 033001.

[60] B.R. Holstein, Fizika B 14 (2005) 165; D.R. Phillips, M.R. Schindler, and R.P. Springer, Nucl.
Phys. A 822 (2009) 1; J.W. Shin, S. Ando, and C.H. Hyun, Phys. Rev. C 81 (2010) 055501; M.R.
Schindler and R.P. Springer, Nucl. Phys. A 846 (2010) 51.

[61] C.-P. Liu, Phys. Rev. C 75 (2007) 065501; C.H. Hyun, S. Ando, and B. Desplanques, Eur. Phys.
J. A 32 (2007) 513; Phys. Lett. B 651 (2007) 257; J.A. Niskanen, T.M. Partanen, and M.J. Iqbal,
Eur. Phys. J. A 36 (2008) 295; B. Desplanques, C.H. Hyun, S. Ando, and C.-P. Liu, Phys. Rev. C
77 (2008) 064002; R. Schiavilla, M. Viviani, L. Girlanda, A. Kievsky, and L.E. Marcucci, Phys. Rev.
C 78 (2008) 014002; M. Viviani, R. Schiavilla, L. Girlanda, A. Kievsky, and L.E. Marcucci, Phys.
Rev. C 82 (2010) 044001.

[62] S. Weinberg, The Quantum Theory of Fields , Vol. 2 (Cambridge University Press, Cambridge, 1996).

[63] E. Jenkins and A.V. Manohar, Phys. Lett. B 255 (1991) 558.

[64] U. van Kolck, Ph.D. dissertation, University of Texas (1993); Few-Body Syst. Suppl. 9 (1995) 444.

[65] A. Manohar and H. Georgi, Nucl. Phys. B 234 (1984) 189.

[66] S. Weinberg, Phys. Lett. B 251 (1990) 288; Nucl. Phys. B 363 (1991) 3.

[67] S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, and U. van Kolck, Phys. Rev. A
64 (2001) 042103.

[68] S.R. Beane, P.F. Bedaque, M.J. Savage, and U. van Kolck, Nucl. Phys. A 700 (2002) 377; A. Nogga,
R.G.E. Timmermans, and U. van Kolck, Phys. Rev. C 72 (2005) 054006; M.C. Birse, Phys. Rev. C
74 (2006) 014003; Phys. Rev. C 76 (2007) 034002; M. Pavón Valderrama and E. Ruiz Arriola, Phys.
Rev. C 74 (2006) 064004.

[69] B. Long and U. van Kolck, Ann. Phys. 323 (2008) 1304.

[70] M. Pavón Valderrama, Phys. Rev. C 83 (2011) 024003.

[71] V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meißner, Nucl. Phys. B 388 (1992) 315; N. Fettes,
U.-G. Meißner, and S. Steininger, Nucl. Phys. A 640 (1998) 199.

[72] K. Nakamura [Particle Data Group], J. Phys. G 37 (2010) 075021.

[73] S.R. Beane, K. Orginos, and M.J. Savage, Nucl. Phys. B 768 (2007) 38.

37



[74] U. van Kolck, J.A. Niskanen, and G.A. Miller, Phys. Lett. B 493 (2000) 65; D.R. Bolton and G.A.
Miller, Phys. Rev. C 81 (2010) 014001; A. Filin et al., Phys. Lett. B 681 (2009) 423.

[75] J. Gasser and H. Leutwyler, Phys. Rep. 87 (1982) 77.

[76] V. Baluni, Phys. Rev. D 19 (1979) 2227.

[77] S.A. Coon, B.H.J. McKellar, and V.C.J. Stoks, Phys. Lett. B 385 (1996) 25.

[78] U. van Kolck, hep-ph/9711222; Nucl. Phys. A 645 (1999) 273.

[79] D.B. Kaplan, M.J. Savage, and M.B. Wise, Nucl. Phys. B 534 (1998) 329.

[80] T.S. Park, D.P. Min, and M. Rho, Phys. Rept. 233 (1993) 341.

[81] V.G.J. Stoks, R. Timmermans, and J.J. de Swart, Phys. Rev. C 47 (1993) 512; M.C.M. Rentmeester,
R.G.E. Timmermans, J.L. Friar, and J.J. de Swart, Phys. Rev. Lett. 82 (1999) 4992.

[82] J.L. Friar, Mod. Phys. Lett. A 11 (1996) 3043.

[83] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart, Phys. Rev. C 49 (1994) 2950;
R. Machleidt, Phys. Rev. C 63 (2001) 024001.

[84] L. Tiator, C. Bennhold, and S.S. Kamalov, Nucl. Phys. A580 (1994) 455.

[85] M. Hoferichter, B. Kubis and U.-G. Meißner, Nucl. Phys. A 833 (2010) 18.

[86] S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, and U. van Kolck, Nucl. Phys. A 747 (2005)
311.

[87] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965); I.S.
Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Fifth Edition, Ed. A. Jeffrey
(Academic Press, Boston, 1994).

[88] Wolfram Research, Inc., Mathematica, Version 7.0 (Champaign, 2008).

[89] I.M. Gelfand and G.E. Shilov, Generalized Functions, Vol. 1 (Academic Press, New York, 1964).

38

http://arxiv.org/abs/hep-ph/9711222

	1 Introduction
	2 Chiral Perturbation Theory
	2.1 T-Conserving Chiral Lagrangian
	2.2 T-Violating Chiral Lagrangian From 
	2.3 T-Violating Chiral Lagrangian From Dimension-6 Sources

	3 Pionless Theory
	4 The TV Potential in Momentum Space
	4.1  Term
	4.2 Dimension-6 Sources

	5 The TV Potential in Configuration Space
	5.1  Term
	5.2 Dimension-6 Sources

	6 Discussion
	7 Conclusions

