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Using a genetic, observational study as a strategy to
estimate the potential cost-effectiveness of pharmacological
CCR5 blockade in dialysis patients
Friso L.H. Muntinghea, Stefan Vegtera,b, Marion Verduijnc,
Elisabeth W. Boeschotend, Friedo W. Dekkerc, Gerjan Navisa

and Maarten Postmab

Background and objective Randomized clinical trials are

expensive and time consuming. Therefore, strategies are

needed to prioritise tracks for drug development. Genetic

association studies may provide such a strategy by

considering the differences between genotypes as a proxy

for a natural, lifelong, randomized at conception, clinical

trial. Previously an association with better survival was

found in dialysis patients with systemic inflammation

carrying a deletion variant of the CC-chemokine receptor 5

(CCR5). We hypothesized that in an analogous manner,

pharmacological CCR5 blockade could protect against

inflammation-driven mortality and estimated if such a

treatment would be cost-effective.

Methods A genetic screen and treat strategy was

modelled using a decision-analytic Markov model, in which

patients were screened for the CCR5 deletion 32

polymorphism and those with the wild type and systemic

inflammation were treated with pharmacological CCR5

blockers. Kidney transplantation and mortality rates were

calculated using patient level data. Extensive sensitivity

analyses were performed.

Results The cost-effectiveness of the genetic screen and

treat strategy was h18 557 per life year gained and h21 896

per quality-adjusted life years gained. Concordance

between the genetic association and pharmacological

effectiveness was a main driver of cost-effectiveness.

Sensitivity analyses showed that even a modest

effectiveness of pharmacological CCR5 blockade would

result in a treatment strategy that is good value for money.

Conclusion Pharmacological blockade of the CCR5

receptor in inflamed dialysis patients can be incorporated in a

potentially cost-effective screen and treat programme. These

findings provide formal rationale for clinical studies. This

study illustrates the potential of genetic association studies

for drug development, as a source of Mendelian randomized

evidence from an observational setting. Pharmacogenetics

and Genomics 21:417–425 �c 2011 Wolters Kluwer Health |

Lippincott Williams & Wilkins.
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Introduction
Pharmacological interventions that are of benefit in

nondialysis populations have thus far been disappointing

in dialysis patients, underscoring the need for novel

intervention strategies, specifically targeted at the

dialysis population [1,2]. However, development of novel

pharmacological approaches followed by randomized

clinical trials is expensive and time consuming, providing

an immense obstacle to the development and introduc-

tion of innovative approaches in patient care. Research

and development costs for a single approved cardiovas-

cular drug can reach hundreds of millions of dollars,

with most costs accrued in phase II and III trials [3].

Therefore, alternative strategies are urgently needed to

facilitate the multifaceted process from drug development

to introduction in clinical practice. Observational studies

using genetic variants might provide such a strategy [4].

Given the random assignment of alleles in gamete for-

mation, genetic variants can be considered to mimic the

randomization process of randomized clinical trials. Data

obtained through genetic association studies could there-

fore be considered a type of natural, lifelong, clinical trial,

with genetically different groups being randomized at

conception, hereby limiting confounding. This approach is

known as Mendelian randomization [5,6].

One of the main driving forces in the accelerated

atherosclerosis in patients with end-stage renal disease

(ESRD) is chronic inflammation [7]. This population

might therefore benefit from alternative therapies
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directed against the chronic inflammatory response. In

this inflammatory process chemokines and chemokine

receptors play an important role [8–10]. One of the

chemokine receptors involved is the CC-chemokine 5

receptor (CCR5). Animal data show that pharmacologic

intervention in the CCR5 chemokine pathway reduces

atherosclerosis [11–13]. The relevance of these findings

for humans is supported by genetic association studies on

the CCR5 deletion 32 (CCR5D32) polymorphism,

leading to functional CCR5 deficiency [14]. These

studies show that CCR5D32 is associated with better

outcome in different populations [15–18]. Previously, we

found that CCR5D32 was associated with protection

against mortality in a Dutch cohort of dialysis patients

characterized by inflammation and replicated these

findings in a Swedish cohort [19]. Taken together, these

data suggest that intervention-targeting inflammation, in

particular targeting the CCR5, may have the potential to

improve prognosis in ESRD [20].

Interestingly, pharmacological blockade of CCR5 is

feasible in human as it is applied in clinical practice for

treatment of human immunovirus (HIV) infection, which

increases the feasibility of development of CCR5

blockade as a treatment strategy for protection against

inflammation-driven atherosclerosis in ESRD [21].

In line with the above, genetic association data on long-

term outcome in patients with versus without CCR5D32

can be considered as a virtual long-term randomized

intervention study on pharmacological blockade of the

CCR5 receptor providing a fast and cheap simula-

tion setup for a real-life clinical trial. Systematic reviews

have shown that pharmacogenetic screen and treat

programmes show great potential for developing cost-

effective treatment modalities [22,23]. In this analysis,

we use these concepts to estimate the potential cost-

effectiveness of CCR5D32 screening and pharmacological

CCR5 blockade in dialysis patients, from the perspective

of the Dutch healthcare system.

Methods
Patients

For this study we used data from our previously published

study on the effect of the CCR5D32 polymorphism on

inflammation-associated mortality in dialysis patients.

This study was part of the NEtherlands COoperative

Study on the Adequacy of Dialysis (NECOSAD), a

multicenter prospective follow-up study comprising

incident (new and consecutive) ESRD patients from 38

Dutch dialysis centres included between July 1998 and

December 2001. Detailed descriptions of the study

design and results have been published previously [19].

Eligibility criteria for inclusion in the NECOSAD cohort

were 18 years or older and no previous renal replacement

therapy. All patients gave informed consent and all local

medical ethics committees gave their approval. Patients

were evaluated at 3 and 6 months after start of dialysis

and every 6 months thereafter until death or date of

censoring. Censoring involved transfer to a nonparticipat-

ing dialysis centre, withdrawal from the study or end of

the follow-up period in June 2007. Patients receiving

a kidney transplant were not censored; data on their

survival were obtained from the Dutch renal registry

(RENINE).

Data collection and clinical definitions

High-sensitivity CRP (hsCRP) was measured by means

of particle-enhanced immunonephelometry using a

standard CardioPhase hsCRP for BNII (Dade Behring

Holding GmbH, Liederbach, Germany; detection limit

0.1 mg/l, precision 0.1 mg/l) [24]. Systemic inflammation

was defined as hsCRP concentrations above 10 mg/l. This

cutoff point has been used in ESRD patients and has

been validated with regard to the prediction of survival of

ESRD patients [25]. In addition it was demonstrated that

a single measurement of elevated CRP levels was

associated with a similar predictive power on mortality

as repeated CRP measurements [26].

CCR5 genotypes were determined with a PCR-based

allelic discrimination assay using primers (Life Techno-

logies Corporation, Carlsbad, California, USA) and

allele-specific probes (Life Technologies) as described

previously [27].

Patients were divided in four groups based on their

CCR5D32 genotype and hsCRP level: CCR5 insertion/

insertion with low hsCRP (< 10 mg/l), CCR5 ins/ins with

high hsCRP (> 10 mg/l), CCR5D32 with low hsCRP

(< 10 mg/l) and CCR5D32 with high hsCRP level

(> 10 mg/l). Patients homozygous or heterozygous for

the deletion allele were clustered since the presence of

one minor allele has been associated with reduced receptor

function [14]. Causes of death were classified according to

the codes of the European Renal Association – European

Dialysis and Transplantation Association [28]. The follow-

ing codes were used to classify cardiovascular mortality:

myocardial ischaemia and infarction; cardiac failure, fluid

overload and pulmonary oedema, cardiac arrest, cerebro-

vascular accident, haemorrhage from ruptured vascular

aneurysm, mesenteric infarction, hyperkalaemia, hypo-

kalaemia, cause of death uncertain or unknown.

Analytical approach

We modelled the potential cost-effectiveness of CCR5D32

screening and pharmacological CCR5 blockade using

a decision-analytic Markov model (Fig. 1). Markovian

modelling is a commonly used technique in decision

analyses to handle the complexity of multiple intercon-

nective possible consequences [29]. The health states in

our Markov model were haemodialysis (HD), peritoneal

dialysis (PD), renal transplantation (Tx) and death.

Cohorts of 1000 patients entered the model in the HD
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or PD health state and were followed for a time period

of 10 years. Clinical data were used to model transition

probabilities; patients could receive a kidney transplant,

experience renal graft failure and return to dialysis or die.

The number of patients in each health state was

determined by monthly cycles throughout the entire

follow-up period [30].

Effectiveness of pharmacological CCR5 blockade

Transition probabilities for kidney Tx and mortality were

calculated using the patient-level NECOSAD data [19].

Kidney Tx and mortality rates were calculated for the

four patient groups. As of small numbers the rate of renal

transplant failure was calculated for all four groups

combined. Pharmacological CCR5 blockade was assumed

to mimic the effects of the D32 polymorphism in patients

with high inflammation status, thus, improving patient

survival in the patient group with the CCR5 insertion/

insertion genotype and systemic inflammation up to the

level of the patient group with the CCR5D32 polymorph-

ism and systemic inflammation. In particular, the relative

risk (RR) for pharmacological CCR5 blockade in the

inflamed group was calculated using clinical data as 0.61

for all-cause mortality, 0.41 for cardiovascular mortality

and 0.80 for noncardiovascular mortality. While the

main focus of this analysis was on mortality, we also

calculated, based on clinical data, that pharmacological

CCR5 blockade improved the probability of renal Tx

(RR = 2.41). To reflect our main focus on mortality we

performed a separate analysis without modelling an effect

on the probability of renal Tx.

Utilities

Health-related quality of life (QoL) of patients on HD

and PD were obtained by interviewing patients partici-

pating in the NECOSAD study, detailed inclusion criteria

and methods are described elsewhere [31]. QoL of

patients in the Dutch NECOSAD study were assessed

with the EQ-5D instrument (EuroQol Group, Rotterdam,

The Netherlands), which were applied to data from a UK

population sample to obtain community based preference

data [32]. No QoL-assessment of transplanted patients

was performed in NECOSAD patients; these utilities

were obtained from a Swedish study [33]. With QoL

measurements, cost-effectiveness estimations can be

made in terms of costs per quality-adjusted life years

(QALY) gained. A commonly cited implicit threshold for

treatments that are deemed good value for money is

h50 000 per QALY in The Netherlands [34].

Costs

A third-party healthcare payer perspective was adopted

for cost estimates. Healthcare costs were classified into

one of two categories: related costs and unrelated future

costs [35].

Related costs comprise costs directly related to the

strategy under consideration. The cost of the genetic

screening test for the CCR5D32 polymorphism was based

on PCR and included staff costs [36]. The price of

hsCRP screening was based on Dutch laboratory prices.

Drug costs of pharmacological CCR5 blockade were based

on Dutch prices of the CCR5 antagonist Maraviroc

300 mg (Celsentri) once daily [37], including 6% value-

added tax and a 3-monthly pharmacists’ prescription fee

of h600. Costs of cardiovascular mortality were based on

national Dutch life tables and healthcare expenditures

adjusted for comorbidities [38]. Costs of noncardio-

vascular death and of Tx graft failure were derived

from a study with data from Dutch registries on renal

diseases [39].

Fig. 1
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Decision tree and Markov model (M). Transition probabilities of the Markov model are shown in Table 2. Tx, transplantation.
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Unrelated future costs comprised costs that are indepen-

dent of current spending, apart from the effects of that

spending on survival [40,41]. In particular, as dialysis and

renal Tx care are not a direct consequence of CCR5

blockade but of the preexisting condition of ESRD; these

costs were consistently classified as unrelated future

costs. The costs of dialysis and renal Tx were based on

data on volumes of recourse use, including consultations,

hospitalisations and laboratory services and use of

medication obtained from the NECOSAD study [31].

In line with current pharmacoeconomic guidelines,

unrelated future costs were not included [35,42]. How-

ever, to determine the influence of unrelated future

costs, these costs were included in a separate analysis. All

costs were updated to 2009 values.

Discounting rates

Costs were discounted at 4% per annum and health

effects at 1.5% per annum, following Dutch guidelines for

pharmacoeconomic research [43].

Sensitivity analyses

Univariate and probabilistic sensitivity analyses and a

threshold analysis were performed. In the univariate

sensitivity analysis, all model parameters were varied by

25% to determine the main cost and effect drivers in

our model. Discount rates were varied to 0 and 3% per

annum based on recommendations by Gold et al. [44] and

Drummond et al [35]. The probabilistic sensitivity

analysis was performed according to standard methods

[29], using 10 000 iterations and included all model

parameters, except therapy costs and effectiveness of

pharmacological CCR5 blockade which were explored in a

threshold analysis. Gamma distributions were assumed

for costs and b distributions for utilities [29]. In the

absence of data on standard deviations for costs, we

assumed 25% of the mean. Uncertainty in mortality and

Tx rates was captured by nonparametric bootstrapping of

the NECOSAD data, using 10 000 iterations [45]. As

equivalence between genetic effects and associated

pharmacologic effectiveness is not a given fact [46], a

threshold analysis was performed to determine the

combined influence of drug effectiveness and treatment

costs of pharmacological CCR5 blockade on the cost-

effectiveness of the screen-and-treat strategy. The

pharmacoeconomic model and sensitivity analyses were

constructed using the statistical package R, version 2.5.1

(R Foundation, Vienna, Austria). A graph of the threshold

analysis was constructed using Sigmaplot, version 10.0

(SYSTAT Software Inc., Chicago, Illinois, USA).

Results
Study population

The study population used for modelling consisted of 413

patients. The CCR5 insertion32/deletion32 polymorph-

ism was distributed as follows: insertion/insertion: 333

(80.6%); insertion/deletion: 73 (17.7%) and deletion/

deletion: seven (1.7%). The genotype distribution did

not deviate significantly from Hardy–Weinberg equili-

brium (P = 0.21). Baseline characteristics are shown in

Table 1. The patient characteristics for the different

genotype groups were similar at the start of dialysis,

except antihypertensive medication use. Patients homo-

zygous or heterozygous for the deletion allele used more

antihypertensive medications (P = 0.01). From the 413

patients included, 225 (55%) had the CCR5 insertion/

insertion genotype and low hsCRP levels, 108 (26%)

the CCR5 insertion/insertion genotype and high hsCRP

levels, 55 (13%) the CCR5D32 polymorphism and low

hsCRP levels and 25 (6%) the CCR5D32 polymorphism

and high hsCRP levels.

Mortality and transplantation rates

Annual transition probabilities without CCR5 antagonist

therapy are shown in Table 2. The probability of renal Tx

was lower in the patient group with CCR5 insertion/

insertion genotype and systemic inflammation compared

with the three other patient groups. Cardiovascular and

noncardiovascular mortality was higher in the patient

group with CCR5 insertion/insertion genotype and

systemic inflammation compared with the other patient

groups. In the Markov model, pharmacological CCR5

blockade in this patient group improved survival and the

probability of renal Tx up to the level of patients with the

CCR5D32 polymorphism and systemic inflammation

(Table 2).

Table 1 Baseline characteristics

N = 413

Sex: males 253 (61.3)
Age (years) 62 (50–71)
Caucasian 379 (91.8)
Haemodialysis 277 (67.1)
Peritoneal dialysis 136 (32.9)
Primary kidney disease

Diabetes mellitus 75 (18.2)
Glomerulonephritis 48 (11.6)
Renal vascular disease 76 (18.4)
Other 214 (51.8)

Cardiovascular disease 144 (34.9)
Diabetes mellitus 105 (25.4)
Smoking

Never 120 (29.2)
Former 194 (47.2)
Current 97 (23.6)

DBP (mmHg) 83 (12.8)
SBP (mmHg) 150 (25.4)
Antihypertensive medication 356 (86.2)
Lipid-lowering medication 121 (29.3)
hsCRP (mg/l) 5.1 (1.9–13.7)
hsCRP > 10 (mg/l) 133 (32.2)
Cholesterol (mmol/l) 5.0 (1.3)
Albumin (g/l) 32.5 (6.9)
Hemoglobin (g/dl) 11.0 (1.4)
GFR (ml/min) 4.2 (3.1)
Kt/V/week 2.3 (0.9)

CRP, C-reactive protein; DBP, diastolic blood pressure; GRF, glomerular filtration
rate; hsCRP, high-sensitivity CRP; SBP, systolic blood pressure.
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Cost-effectiveness

Parameters used for the analyses are shown in Table 3.

Screening for the CCR5D32 polymorphism and treating

patients with the CCR5 insertion/insertion genotype and

systemic inflammation with pharmacological CCR5

blockade resulted in an average of 0.36 life years and

0.31 QALYs gained at an expense of h8482 per patient,

compared with h1863 per patient in the nonscreen-

ing cohort (Table 4). Therefore, the incremental cost-

effectiveness ratio (ICER) of the screen and treat

strategy compared with not screening was h18 557 per

life year gained (LYG) and h21 896 per QALY gained.

Results were similar without the model assumption that

pharmacological CCR5 blockade improved patients’

probability of renal Tx, h18 494 per LYG and h24 642

per QALY gained.

As described, the unrelated future costs of dialysis and Tx

care due to improved survival were not included. The

aforementioned increased survival of 0.36 life years in the

genetically screened cohort, indeed required considerable

dialysis costs. These costs were only partly offset by a

shift towards less costly renal Tx care in these patients.

In total, additional unrelated future costs were h6720 per

patient in the screening cohort. When these costs are

included, the cost-effectiveness of the selective screen

and treat strategy rose considerably to h37 400 per LYG

and h44 127 per QALY gained, thus doubling the ICERs

for these scenarios.

Sensitivity and threshold analyses

Results of the probabilistic sensitivity analysis are shown

in Fig. 2, demonstrating the uncertainty around the cost-

effectiveness estimates of the screen and treat strategy.

The increase in cost-effectiveness as well as the

uncertainty around these estimates because of including

unrelated future costs is evident. In Fig. 2, the solid dot

Table 3 Parameters used in the analyses

Variable
Baseline

value ± SD Reference

Costs
Discounting rate for costs 4% [43,47]

Related costsa

Genetic screening test h50 ± 13 [36]
CRP screening test h21 ± 5
Drug costs Maraviroc (per year) h5057 ± 1,264 [37]
Transplantation graft failure h4581 ± 1,145 [39]

Cause of death
Myocardial ischaemia and infarction h2448 ± 612 [38]
Cardiac failure/fluid overload/

pulmonary oedema
h4529 ± 1132 [38]

Cardiac arrest h2448 ± 612 [38]
Cerebrovascular accident h5753 ± 1438 [38]
Mesenteric infarction h3550 ± 888 [38]
Hyperkalaemia h1224 ± 306 [38]
Cause unknown or cause uncertainb h3469 ± 867 [38]
Noncardiovascular mortality h2316 ± 579 [39]

Unrelated future costsa

ESRD care costs
Haemodialysis year 1 h84 825 ± 21 206 [31]
Haemodialysis later years h80 482 ± 20 121 [31]
Peritoneal dialysis year 1 h65 706 ± 16 427 [31]
Peritoneal dialysis later years h60 985 ± 15 246 [31]
Transplantation year 1 h52 199 ± 13 049 [31]
Transplantation later years h10 440 ± 2610 [31]

Health effects
Discounting rate for health effects 1.5% [43,47]

Quality of Life
Haemodialysis 0.71 ± 0.275 [31]
Peritoneal dialysis 0.75 ± 0.256 [31]
Transplantation 0.86 ± 0.133 [33]

Mortality and transplantation
probabilities

See Table 1 [19]

Therapy effectiveness (relative risk)
All-cause mortality 0.61 [19]
Cardiovascular mortality 0.41 [19]
Noncardiovascular mortality 0.80 [19]
Renal transplantation 2.41 [19]

ESRD, end-stage renal disease; SD, standard deviation.
aIn the absence of data on standard deviations for costs, we assumed 25% of the mean.
bWeighted average of all cardiovascular mortality causes.

Table 2 Annual transition probabilities (95% CI) in the four CCR5D32 polymorphism and inflammation status groups without treatment
with pharmacological CCR5 blockade [19]

CCR5 insertion/insertion,
no inflammation (%) (n = 225)

CCR5 insertion/insertion, high
inflammationa (%) (n = 108)

CCR5D32, no
inflammation (%) (n = 55)

CCR5D32, high
inflammation (%) (n = 25)

Transplantation 10.9 5.1 11.2 11.8
(8.9–13.4) (3.0–8.4) (7.4–16.8) (6.4–21.5)

Transplantation graft failure 2.2 2.2 2.2 2.2
(1.2–4.0) (1.2–4.0) (1.2–4.0) (1.2–4.0)

Cardiovascular mortality 4.3 9.5 4.1 4.0
(3.2–5.7) (6.8–13.1) (2.3–7.4) (1.5–10.3)

Noncardiovascular mortality 4.4 9.7 4.5 7.8
(3.3–5.8) (7.0–13.4) (2.6–7.8) (4.0–15.1)

CCR5, CC-chemokine receptor 5; CCR5D32, CC-chemokine receptor 5 deletion 32; CI, confidence interval.
aIn the genotyping strategy of the economic model, patients with the CCR5 insertion/insertion and high inflammation status received CCR5 antagonists; thereby
increasing transplantation rates and reducing mortality rates up to the level of patients with the CCR5D32 polymorphism and high inflammation status.

Table 4 Cost-effectiveness in the base–case analysis

Costs Life years QALY

Standard care h1863 5.71 4.36
Screen and treat strategy h8482 6.07 4.67
Screen and treat strategy

(no Tx effect)
h8460 6.07 4.63

Cost-effectiveness Cost per LYG Cost per QALY
gained

Screen and treat strategy h18 557 h21896
Screen and treat strategy

(no Tx effect)
h18 494 h24642

QALY, quality-adjusted life years; Tx, transplantation.

Using genetics to study CCR5 blockade Muntinghe et al. 421
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denotes the base–case outcome (using the most likely

parameter estimates), whereas the inner and outer

ellipses denote the 50 and 90% probability intervals,

respectively, around this base–case estimate. Univariate

sensitivity analyses showed that the main drivers of

the cost-effectiveness of the screen and treat strategy

were the costs of pharmacological CCR5 blockade and

the effectiveness of pharmacological CCR5 blockers to

reduce mortality. The cost-effectiveness was relatively

insensitive to plausible variations of the other parameters.

These two main parameters were further explored in a

threshold analysis, shown in Fig. 3. The red line in this

figure denotes the base–case assumptions for drug

effectiveness and treatment costs. With decreasing

therapy costs and increasing therapy effectiveness, cost-

effectiveness of the screen and treat strategy improved.

With the costs of pharmacological CCR5 blockade at the

base–case level of h5057 per year or h421 per month, a

RR for all-cause mortality of 0.82 or lower would cause

the cost-effectiveness of the screen and treat strategy

to be h50 or less per QALY gained. If the costs of CCR5

blockers drop, even a modest effectiveness in reducing

inflammation-driven mortality would result in a treat-

ment strategy that is good value for money.

Discussion
This study analyzed the potential cost-effectiveness of

screening for the CCR5D32 polymorphism and selec-

tively treating dialysis patients with the CCR5 insertion/

insertion genotype and systemic inflammation with

pharmacological CCR5 blockers. It was shown that such

a strategy could be incorporated in a potentially cost-

effective genetic screen and treat program.

Observational studies in which a genetic polymorphism is

associated with a well-characterized functional phenotype

can be considered as a type of clinical trial, with

randomization at conception, referred to as Mendelian

randomization [4–6]. Following this approach, we in-

vestigated the presumption that in an analogous manner,

pharmacological CCR5 blockade could lead to better

survival in ESRD patients and estimated the cost-

effectiveness of a genetic screen and treat strategy based

on this strategy. We used data from a genetic association

study in ESRD patients. In this study an association with

better survival was found in incident dialysis patients

with systemic inflammation carrying the CCR5D32

genotype, which was replicated in a Swedish ESRD

cohort, hereby showing the robustness of these findings.

Moreover, as the number of patients in the CCR5D32

groups was small, we did in the previous study an analysis

on the two cohorts combined, leading to the same results

[19]. The presence of the CCR5D32 polymorphism,

leading to a less functional receptor [14], was used as a

naturalistic form of pharmacologically blocking the CCR5.

This approach was used recently in cholesterol ester

transfer protein inhibition, identifying alleles that lead to

reduced CETP levels and activity [48]. Other cost-

effectiveness assessments of potential pharmacologic

interventions have previously been performed, for exam-

ple in cardiovascular disease and polypill therapy [49].

Considering the ACCE (analytic validity, clinical validity,

clinical utility and ethical, legal and social issues) model

framework for enhancing the evaluation of genetic tests,

this study adds to the second C by providing cost-

effectiveness data that supports clinical utility [50,51].

A long-standing controversy in health economics is

whether unrelated future costs should be included in

cost-effectiveness analyses [40,41,52,53]. Dialysis treat-

ment is expensive and associated with a high cost per

Fig. 2
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QALY gained [31,54]. As dialysis is required lifelong, the

cost-effectiveness of therapies in ESRD patients has

been said to be driven more by dialysis costs than by the

costs and benefits of the intervention under considera-

tion itself [55]. Our analysis confirms these earlier

findings and underscores the relevance of the debate by

calculating that inclusion of dialysis and renal transplant

care costs double the ICER of the screen and treat

strategy. Several studies in ESRD patients did not

include the future costs of ESRD care [56–58], whereas

others analysed therapies both with and without future

costs [59–61]. By excluding ESRD costs in the main

analysis but including them in a separate analysis our

results can be widely compared. The cost-effectiveness

with inclusion of future ESRD costs was comparable to

other studies focusing on systemic anticoagulation [61],

hyperphosphataemia [60], secondary hyperparathyroid-

ism [59] and anaemia [62].

In addition to adherence to guidelines for pharmacoeco-

nomic research as possible within the constraints of novel

pharmacogenetic screening programs [22], this study had

two major strengths: (i) the analyses considered hard

endpoints, mortality and renal Tx; (ii) most primary data

used in the pharmacoeconomic analysis, such as costs,

QoL estimates and efficacy data were derived from a

single prospectively followed dialysis cohort (NECO-

SAD). These strengths enhanced the clinical relevance

and analytical robustness of the study findings. Although

cost data used in this study were specific for the

Netherlands, chronic kidney disease care costs such as

dialysis costs have been reported to fall within a narrow

range despite considerable variation in country of study,

methodology and imputed costs [54]. Country-specific

variations in drug costs and discounting rates have been

accounted for in sensitivity analyses.

An important aspect of this study is the notion that

equivalence between genetic effects and associated

pharmacologic effectiveness is not a given fact. For

example, a discordance has been described between the

genetic effect of familial hypercholesterolaemia and the

effectiveness of statin treatment on cardiovascular

mortality [46]. The explanation for this discrepancy lies

in the fact that genetic factors, as opposed to pharma-

cologic interventions, cause lifelong differences in risk

factors [46]. Genetic factors are also not affected by

traditional sources of uncertainty in clinical effectiveness,

such as therapy compliance. Indeed, sensitivity analyses

showed that the cost-effectiveness was highly influenced

by the concordance between the genetic association and

pharmacological effectiveness. Nevertheless, although

the true effectiveness of pharmacological CCR5 blockade

in ESRD patients on mortality is not (yet) known, this

study, in particular the threshold analysis, provides

valuable information for future clinical trials in this field.

In this context, the threshold analysis showed that even

modest pharmacological effectiveness would result in a

treatment strategy that is good value for money. A similar

approach has recently been taken in analyzing the

potential cost-effectiveness of alternative treatments for

patients with chronic kidney disease resistant to angio-

tensin I-converting enzyme inhibitors due to angiotensin

I-converting enzyme (insertion/deletion) polymorphisms

[36]. Finally, the robustness of the cost-effectiveness

estimate depends on whether or not pharmacologically

Fig. 3

100 000

80 000

60 000

C
os

t-e
ffe

ct
iv

en
es

s 
(  

 /
Q

A
LY

 g
ai

ne
d)

40 000

20 000

0
0.9

0.8
0.7Drug effectiveness (RR)

0.6
0.5 0

50
100

Tr
ea

tm
en

t c
os

ts
 ( 

  )

150
200

250
300

350
400

450

<    20K/QALY
<    40K/QALY
<    60K/QALY
<    80K/QALY
<    100K/QALY

Threshold analysis on the influence of CCR5 blocking therapy costs and effectiveness on the cost-effectiveness of a screen and treat strategy. The
red lines denote the base–case parameters for drug effectiveness and treatment costs. QALY, quality-adjusted life years; RR, relative risk.

Using genetics to study CCR5 blockade Muntinghe et al. 423

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



blocking CCR5 is safe in patients with ESRD. However,

treating HIV-infected patients with ESRD with a CCR5

antagonist seemed safe and no dose adjustments were

necessary [63]. The next research step could be conducting

an observational cohort study in HIV-infected patients with

ESRD, to compare cardiovascular morbidity or mortality or

surrogate endpoints such as intima media thickness, among

users and nonusers of CCR5 blocker therapy.

In conclusion, we evaluated the potential cost-effective-

ness of pharmacologically blocking the CCR5 receptor in

inflamed dialysis patient with the CCR5 insertion/inser-

tion genotype, and found it to be similar to existing

treatment modalities for dialysis patients. Recently CCR5

blockade has indeed become feasible in humans. These

data suggest that, from an economic point of view, it would

be worthwhile to study whether pharmacological blockade

of CCR5 has therapeutic and economical benefits in

dialysis patients with persistent inflammation. Our study

is an illustration of the potential of genetic studies in drug

development programs, as a new source of Mendelian

randomized evidence from an observational setting.
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