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Abstract In this paper we give a logical analysis of both classical and quantum correla-
tions. We propose a new logical system to reason about the information carried by a com-
plex system composed of several parts. Our formalism is based on an extension of epistemic
logic with operators for “group knowledge” (the logic GEL), further extended with atomic
sentences describing the results of “joint observations” (the logic LCK). As models we in-
troduce correlation models, as a generalization of the standard representation of epistemic
models as vector models. We give sound and complete axiomatizations for our logics, and
we use this setting to investigate the relationship between the information carried by each
of the parts of a complex system and the information carried by the whole system. In par-
ticular we distinguish between the “distributed information”, obtainable by simply pooling
together all the information that can be separately observed in any of the parts, and “cor-
related information”, obtainable only by doing joint observations of the parts (and pooling
together the results). Our formalism throws a new light on the difference between classical
and quantum information and gives rise to an informational-logical characterization of the
notion of “quantum entanglement”.

Keywords Logics for quantum information · Quantum correlations · Entanglement ·
Correlation models · Epistemic logic · Correlated knowledge

A. Baltag
Computing Laboratory, Oxford University, Oxford, UK
e-mail: Alexandru.Baltag@comlab.ox.ac.uk

S. Smets (�)
Dept. of Artificial Intelligence and Dept. of Philosophy, University of Groningen, Groningen,
Netherlands
e-mail: S.J.L.Smets@rug.nl

S. Smets
IEG, Oxford University, Oxford, UK

mailto:Alexandru.Baltag@comlab.ox.ac.uk
mailto:S.J.L.Smets@rug.nl


3006 Int J Theor Phys (2010) 49: 3005–3021

1 Introduction

This paper forms part of the recent research trend aimed at connecting the Logical Founda-
tions of Quantum Physics to fundamental issues in Logic and Theoretical Computer Science,
and in particular to theories of distributed computation and quantum information (see e.g.
[2, 3, 5–8, 16, 18, 20]). Instead of starting with traditional “quantum logic”, we focus on one
of the logical formalisms (namely, Epistemic Logic) that was successfully used in Theoreti-
cal Computer Science. Because of their spatial features, epistemic logics have traditionally
been used to model the flow of classical information in distributed systems, including se-
cure communication protocols, distributed computation and multi-agent robotic systems in
Artificial Intelligence. Our aim is to extend this domain of applications to include quantum
information flow. We thus adapt and generalize epistemic logic to reason about multi-partite
quantum systems and quantum correlations.

Our main focus in this paper is the relationship between the information carried by a com-
plex system and the information carried by each of the parts of the system. As examples of
complex systems, we look at any physical system composed of more elementary subsystems
(particles), but also at any group of “agents” that can perform observations (of their local en-
vironment), logical inferences or introspective reflection. The “parts” of a complex system
do not have to be independent, on the contrary their behavior (e.g. the agents’ observations)
might happen to be correlated, either due to prior communication or to other causes (e.g.
quantum entanglement). As a result, the pieces of information carried by the parts might not
be independent either. Different types of complex systems will manifest different types of
correlations or dependencies between the information carried by their parts.

We are interested in modeling these various types of complex systems from an opera-
tional point of view. That is to say, we look for the operational criteria that characterize
various types of correlations between the local parts of a given system. What we show is
that there are several ways in which the information carried by the individual parts of a
system can be combined. Depending on how the information between the parts is pooled
together, the system will exhibit different types of correlations. Our study of informational
correlations will allow us to mark the difference between classical and quantum correlations.

To formalize these notions, we use a version of epistemic logic, in which the epistemic
“agents” are to be identified with the elementary parts (basic “subsystems”, or “locations”)
of a complex physical system. As is standard practice in Computer Science, we adopt the
“external” view on knowledge advocated by Halpern et al. [21], which allows for applica-
tions of epistemic logic to situations that reach beyond the traditional study of real agents’
“knowledge”: in this view, any of the localized parts of a complex system can be seen as
a “virtual agent”, while the system itself as well as any of its subsystems can be seen as a
virtual “group of agents”. The “implicit knowledge” that (is not necessarily actually “pos-
sessed” by, but) can be “externally” attributed to such a virtual agent is given simply by
the information that is potentially available at the corresponding location: something is
“known” if it is a consequence of features that can in principle be observed at that loca-
tion. Implicit knowledge thus gives us the information (about the overall system) that is
carried by a part (of that system). In this sense, we can think of epistemic logic as a “spatial
logic”, meant to express the relationships between (the information available at) different
locations in a complex system. Usually, when considering logics with spatial features, one
thinks about a topology or even a metric space, but in this paper we are only interested in
the “local” features indicating which information is carried by which part of the system. The
relation between systems and their subsystems is what is relevant for us, and not any sense
of “distance” or nearness between systems.
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A natural question raised in the epistemic logic literature is the following: is there a
sense in which one can externally assign knowledge to a group of (virtual) agents? In other
words: what is the implicit knowledge of a group? The relevance of this question to our
inquiry comes from the fact that, in our setting, implicit “group knowledge” would capture
the information carried by a complex physical system. The standard answer to this question
in the current literature is given by distributed knowledge: this is the information obtainable
by pooling together (and closing under logical inference) the “knowledge” of each of the
“parts” (agents). According to this view, the implicit knowledge of a group is the same as
its distributed knowledge; in other words, the information carried by a complex system is
nothing but the “sum” of the information carried by its parts.

Our main claim is that, while this standard answer is adequate for classical physics,
it fails for quantum systems. An entangled system carries more information than the sum
of its parts. Moreover, there are also examples of social situations in which this standard
answer fails for real-life agents: whenever a group of agents can cooperate to make joint
observations, the implicit knowledge of the group (defined, as for a single agent, in terms of
what follows from the features that can in principle be observed by the group) will typically
go beyond distributed knowledge (which only takes into account the results of separate,
uncorrelated observations by each of the members of the group). Hence, to correctly model
the information implicitly carried by a complex system or group of agents, we propose the
notion of “correlated knowledge”, that takes into account the correlations between the pieces
of information carried by the parts of the system, or the potential results of joint observations
that can be performed by the group.

For our investigation of group knowledge, we propose a logical system, called “General
Epistemic Logic” (GEL), based on an extension to groups of traditional epistemic logic and
on a generalization of the usual notion of epistemic model. In Sect. 3, we give a sound and
complete axiomatization for GEL. In subsequent sections, we show that correlated knowl-
edge is useful to capture the non-classicality of a physical system (or the existence of cor-
relations between the agents’ observational capabilities in a group). We use the logic GEL
to give an informational-logical characterization of the properties of “separability” and
“entanglement”.

In the final section of this paper we extend the logic GEL with operators that make ex-
plicit the agents’ observational capabilities, obtaining a “Logic of Correlated Knowledge”
LCK. We introduce a notion of “correlated models”, that generalizes the well-known repre-
sentation due to Halpern et al. [21] of epistemic models as vector models. We give a sound
and complete axiomatization for LCK with respect to correlated models.

2 Background Notions

Information. In this paper we are mainly concerned with the “qualitative” (“logical”, or
“semantic”) aspects of information. In contrast to the syntactic (or quantitative) approach to
information, which is primarily concerned with quantitative measures of information (be it
in terms of Shannon entropy or von Neumann entropy), the semantic approach is standard
in Logic and Computer Science and focuses on the meaning or “aboutness” of information.
Semantic information can be true or false and is always “about” something: propositions
have a meaning or an “information content”. The main issue in this semantic approach is to
find the formal laws governing information flow of a specific type, so that we can analyze it,
reason about it, verify its correctness etc. There are of course several different ways to model
and view “semantic information”. In [13, 14], two compatible views are being discussed: the
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first looks at “information as range” and the second at “information as correlation”. The first
is tied to a possible world model, where an increase in information is related to a decrease of
the range of worlds that are considered possible and vice versa (see [4, 13]). Indeed, “Infor-
mation as range” takes the point of view of an “external observer”, whose information-state
is represented only via the relations between the worlds that he or she considers possible.
The characteristic feature of the second notion, “information as correlation”, is the idea that
information can manifest itself as a correlation between different situations or their states of
affairs. Here, an increase in information is related to a decrease, restriction, or constraint, on
the number of possible correlations between different situations. The ideas behind “informa-
tion as correlation” trace back to Situation theory [11, 19] and originated as a tool to capture
the “aboutness” or the semantic content of information even in the absence of observers.
As a third way to study semantic information, we mention that it is possible to combine the
“information as range” and “information as correlation” views in one model. As an example
we mention here the epistemic constraint logic in [13] and the interpreted systems in [21].
Also our general epistemic logic in this paper will address issues that are of concern when
we look at “information as range” and at “information as correlation”.

Implicit Knowledge. We adopt the distinction in the CS literature between implicit and
explicit knowledge (see e.g [21]), and use the notion of “information carried by a system”
interchangeably with the notion of “implicit knowledge” (in line also with [8, 10]). Explicit
knowledge is the actual information possessed by a real agent, the information stored in its
“database” or its subjective internal state. Explicit knowledge is not necessarily introspective
and might not be closed under logical consequence. In contrast, implicit knowledge can
be visualized as what a virtual agent could in principle come to “know” by performing
observations on that system and deriving logical consequences. It is the potential knowledge
of the agent (what follows implicitly from his possible observations). This is an “external”
sense of knowledge: it is the “knowledge” that “we” externally assign to an agent (or a piece
of hardware, a particle or even just a spatial location), based on what that agent could observe
(or what is in principle observable at that location). Implicit knowledge thus embodies an
objective concept of “locally available (semantic) information”, and has nothing to do with
some subjective state internal to the subsystem: it sums up all information that is potentially
available at that location.

As far as implicit knowledge is concerned, there are no problems with positive and neg-
ative introspection nor with logical omniscience. Indeed, it seems reasonable to say that if
a system carries the information P then it implicitly carries the information that P is true,
and that all consequences of P are true, and that the system carries the information P . In
“agent” terms, this means assuming that the capabilities of our virtual agent include, not
only observations, but also logical inferences and acts of reflection (introspection). So im-
plicit knowledge can be assumed to be always truthful and closed under logical inference
and under (positive and negative) introspection. In other words, implicit knowledge satisfies
the axioms of the modal system known as S5.

3 General Epistemic Logic

Consider a complex system composed of n basic components (or “locations”). We denote
each basic component with a label from a given (finite) set N = {1, . . . , n}. Note that the
information carried by this complex system may be distributed throughout space, it can
be localized, concentrated at specific spatial “locations” or “components” of the system.
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Hence, some information is potentially available only at some locations, but not at others.
We also want to consider (the information) carried by subsystems composed of several (but
not necessarily all) components. To capture these spatial features we introduce a generalized
“epistemic logic” as a special type of spatial logic, allowing us to have epistemic operators
(“knowledge”) for both individuals (“agents”) and groups (of agents). We use the notion
of component and agent interchangeably: metaphorically, imagine associating to each sub-
system a virtual agent that can “observe” only the state of that subsystem. In the case of
a physical system, this sums up all the information that is obtainable by performing local
measurements on that subsystem (and closing under logical inference). We use sets I ⊆ N

of labels to denote complex subsystems (or groups of “agents”). The largest group is the
“whole world” N , while the smallest groups are singletons {i} consisting of an individual
agent. Our logic will have an “information” (or “implicit knowledge”) operator KI for each
subsystem I . As mentioned above, knowledge (“episteme”) is used here only in the im-
plicit, external sense, as “information that is in principle available” (via local observations)
at a given location. So one may think of the proposition KIP as saying that the subsystem,
or group, I (potentially) carries the information that P is the case. For groups {i} of one
individual agent, we use the simplified notation Ki instead of K{i}. The use of KI -operators
to capture qualitative spatial features of complex systems, extends our previous approach in
[8] which in its turn is based on [5, 7] and inspired by [2, 16].

Observational Equivalence. Let s and s ′ be two possible states of the world (or “possible
worlds”), if the implicit information carried by a system I is the same in these two states

we write s
I∼ s ′, and say that the states are “observationally equivalent”, or “indistinguish-

able”, for system I . Again, we simply write s
i∼ s ′ when I = {i}. Observational equivalence

for I means in agent’s terms that the virtual agent or group of agents (associated to) I can
make exactly the same observations (at location I ) in two states of the world. We will use
the relation of observational equivalence to give an interpretation to the KI -modalities in
our logic:

General Epistemic Frame. For a given set N of basic components, a set of states (or “possi-

ble worlds”) �, a family of binary relations { I∼}I⊆N ⊆ �×� for every subsystem I ⊆ N , we

define a general epistemic frame to be a Kripke frame (or multi-modal frame) (�, { I∼}I⊆N)

subject to the following four conditions:

1. all
I∼ are labeled equivalence relations (for every set I ⊆ N );

2. Information is Monotonic w.r.t. groups: if I ⊆ J then
J∼⊆ I∼;

3. Observability Principle: if s
N∼ s ′ then s = s ′.

4. Vacuous Information: s
∅∼ s ′ for all s, s ′ ∈ �.

We read s
I∼ s ′ as: subsystem I cannot distinguish state s from s ′ (via any local observations,

performable on I ). In other words,
I∼ gives us a notion of “observational equivalence”

relative to subsystem I . The above conditions seem natural for this interpretation. The first
condition says that the relation is reflexive, transitive and symmetric. The second condition
assumes that every observation that can be performed by an agent of a group is in principle
available to the whole group. In other words, the members of a group have the capacity to
share information among themselves. In terms of systems we then say that if a subsystem
carries the information that P then the whole system carries the information that P . In
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logical terms this captures the fact that information behaves monotonically with respect to
group inclusion. And relationally, it says that the states of the world that are observationally
equivalent for a system/group I are also observationally equivalent for any subgroup J ⊆ I .
The third condition says that if two possible states of the world are indistinguishable with
respect to the “whole world” N then they are the same. We call this the “observability”
principle, as it identifies states of the world that differ in ways that are not observable even
by the whole world. Finally, the last condition says that the empty group has no non-trivial
information whatsoever: being unable to make any observations, the empty group cannot
distinguish between any two states.

Local Information State. Given a general epistemic frame (�, { I∼}I⊆N), we construct the
notion of an I -local state, for each subsystem I ⊆ N :

sI := {s ′ ∈ � : s I∼ s ′}.
Here, si captures the “agent i’s local state of information”, while sI does the same for groups.

�-Propositions and Models. Given a general epistemic frame (�, { I∼}I⊆N), a �-proposit-
ion is any subset P ⊆ �. Intuitively, we say that a state s satisfies the proposition P if s ∈ P .

We define a general epistemic model to be a structure � = (�, { I∼}I⊆N, || . ||), consisting
of a general epistemic frame together with a valuation map || . ||: � → P (�), mapping
every element of a given set of atomic sentences into �-propositions. We use the standard
notation for satisfaction of atomic sentences in a given state of model � denoted by s |= p

or s ∈|| p ||. For every model �, we have the usual Boolean operators on �-propositions:
P ∧ Q := P ∩ Q, P ∨ Q := P ∪ Q, ¬P := �\P , P ⇒ Q := ¬P ∨ Q. We also have
the constants 
� := � and ⊥� := ∅. Finally, the “knowledge” operator is defined on �-

propositions by putting KIP := {s ∈ � : t ∈ P for every t
I∼ s}.

General Epistemic Logic (GEL). The language of the logic GEL has the following syntax,
starting from atomic sentences p ∈ �:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | KIϕ

The semantics is given by an interpretation map associating to each sentence ϕ of GEL
a proposition || ϕ ||. Equivalently, we extend the satisfaction relation s |= ϕ from atomic
sentences to arbitrary formulas ϕ. The definition is by induction in terms of the obvious
compositional clauses. In particular, for the KI modality we set:

s |= KIϕ iff t |= ϕ for all states t
I∼ s.

So KIϕ is true in a given state s, or a system carries the information that ϕ is the case in
state s, if and only if ϕ holds in all states of the world that are observationally equivalent for
I to s. We would like to stress the fact that this captures the idea that “information is based
on potential observations”.

Proof System. In addition to the rules and axioms of propositional logic, the proof system
of GEL includes:

1. KI -Necessitation. From � ϕ, infer � KIϕ
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2. Kripke’s Axiom. � KI(ϕ ⇒ ψ) ⇒ (KIϕ ⇒ KIψ)

3. Truthfulness. � KIϕ ⇒ ϕ

4. Positive Introspection. � KIϕ ⇒ KIKIϕ

5. Negative Introspection. � ¬KIϕ ⇒ KI¬KIϕ

6. Monotonicity of Group “Knowledge”. For I ⊆ J , we have � KIϕ ⇒ KJ ϕ

7. Observability. � ϕ ⇒ KNϕ

Using standard results in Modal Correspondence theory (see e.g. [15]), it is easy to show
the following:

Theorem 1 The above proof system is sound and complete with respect to general epistemic
frames.

Proof Soundness is trivial: rule 1 and axiom 2 hold in any Kripke model; axioms 3,4,5 hold

in any model in which
I∼ are equivalence relations; axiom 6 holds in any model satisfy-

ing the condition that “information is monotonic” (i.e.
J∼⊆ I∼); axiom 7 holds in any model

satisfying the Observability Principle. For completeness, let ϕ0 be a sentence that is con-
sistent (with respect to the above proof system). We need to show that ϕ0 is satisfiable in
some general epistemic model. For this, we use the standard “canonical model” construction
familiar from Modal Logic [15], in which states are “theories” (= sets of sentences in the
language of GEL) that are maximally consistent with respect to the above proof system. Let

� be the set of all such maximally consistent theories. We define equivalence relations
I∼

on �, by putting for every two theories T ,T ′ ∈ �: T
I∼ T ′ iff ∀ϕ(KIϕ ∈ T ⇐⇒ KIϕ ∈ T ′).

For the valuation, we put ‖p‖ := {T : p ∈ T }. Axioms 3,4 and 5 ensure that
I∼ are equiv-

alence relations; axiom 6 ensures that information is monotonic (
J∼⊆ I∼ for I ⊆ J ); ax-

iom 7 ensures that the Observability Principle holds. However, the “Vacuous Information”
condition does not hold in �. Still, we can ensure it by restricting our model � to the

set �0 := {T ∈ � : T
∅∼ T0}, where T0 is some fixed maximally consistent theory T0 ∈ �

such that ϕ0 ∈ T0. (The existence of T0 is ensured by the Lindenbaum Lemma, as usually.)

Since
I∼⊆ ∅∼ (by monotonicity of information), this restriction preserves all the properties of

I∼. In addition, it obviously ensures that the “Vacuous Information” condition holds (since

T
∅∼ T0

∅∼ T ′ for all T ,T ′ ∈ �0). So we obtain a general epistemic model �0. Finally, us-
ing all our axioms (including rule 1 and axiom 2), we can prove in the usual way a “Truth
Lemma”, stating that a sentence ϕ holds at a state T ∈ � iff it belongs to T (seen as a theory):
T |= ϕ iff ϕ ∈ T . As a consequence, ϕ0 holds at state T0 in the model �0 (since ϕ0 ∈ T0),
and hence ϕ0 is satisfiable. �

4 Distributed Knowledge

The notion of distributed knowledge was first introduced in the work of Halpern and Moses
[22]. In [21] the authors say that a group has distributed knowledge of ϕ if roughly speaking
the agents’ combined knowledge implies ϕ. Or “distributed knowledge can be viewed as
what a wise man—one who has complete knowledge of what every member of the group
knows—would know.” [21, p. 3]. The intuition is that, in addition to making individual
observations, the agents of the group can “combine” their knowledge, by sharing all they
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know: they can announce to the group the knowledge obtained by each member on the basis
of their separate observations.

Similar as for implicit knowledge, we introduce a modal operator for the distributed
knowledge of a group I , denoted by DKI . This operator DKI can be defined using a “dis-

tributed observational equivalence” relation, which is given by the intersection
⋂

i∈I

i∼ of
all the individual observational equivalence relations. The idea is that two states are indis-
tinguishable for the group if and only if they are indistinguishable for all the members of

the group. Distributed knowledge DKI is simply defined as the Kripke modality for
⋂

i

i∼,
i.e. given by:

s |= DKIϕ iff for every state t ∈ �, if ∀i ∈ Is
i∼ t then t |= ϕ.

In [21], the authors identify implicit knowledge of a group I with distributed knowledge
DKI . We doubt however that this identification holds in all situations. Recall that implicit
knowledge was explained as what the agent/group could come to know based on potential
observations. So the question is: what are, in general, the observational capabilities of a
group? Looking at the definition, we see that the use of the intersection of individual ob-
servational equivalencies makes sense only if we assume that a group’s observations are
nothing but observations done by either of the members of the group. But this is in general a
highly unreasonable assumption: joint observations by a group are not in general the same
as independent observations by each of the members of the group.

In a group whose implicit knowledge is the same as distributed knowledge, each agent
can only share with the group the end-result of all her separate, independent observations,
but agents are not allowed to correlate (the results of) their observations, in a simultaneous
or sequential manner. But according to us, the natural notion of (implicit) group knowledge
is something different, something that could be called “correlated knowledge”: this is what
the group could come to know by performing joint (correlated) observations and sharing the
results.

Separability. For system J ⊆ I , we say that the system I is J -separable in state s if we
have sJ ∩ sI\J = sI . A system I is called fully separable in state s if we have

⋂
i∈I si = sI .

Full separability means that group I ’s knowledge in state s is the same as its distributed
knowledge, i.e. s |= KIP iff s |= DKIP , for all sets P ⊆ �. Note that if system I is fully
separable then it is J -separable for all J ⊆ I , but the converse is false in general. We call a
state I -entangled if it is not I -separable.

Classical Epistemic Frame. A general epistemic frame (�, { I∼}I⊆N) is called classical if

all its states are fully separable, i.e. if it satisfies
I∼= ⋂

i∈I

i∼ for all systems I . So a frame is
classical if and only if any group’s “knowledge” in any state (coincides with its distributed
knowledge, and hence) can be obtained by pooling together the information of each of its
components: KI = DKI .

Classically, a group cannot distinguish two states if and only if no member of the group
can distinguish them. Note that not only classical or macroscopic systems will satisfy the
conditions of a classical epistemic frame. Indeed, one may also encounter classical epistemic
frames in the quantum world. This happens when the subsystems are separated.

The Vector Model Representation of Classical Epistemic Models. Classical epistemic
frames (models) can be given a “normal form” representation as vector frames (models):
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Fact ([12]) Let, for each i, �i := {si : s ∈ �} be the set of all i-local states. Every
classical epistemic frame � can be canonically embedded into the Cartesian product
�1 × �2 × · · · × �n, via some embedding e satisfying

s
I∼ s ′ iff e(s)i = e(s ′)i for all i ∈ I.

To show this, put e(s) := (si)i∈N , where si = {s ′ ∈ � : s
i∼ s ′} is the i-local state of s,

as defined in the previous section. This vector representation corresponds to another well-
known way to model epistemic logic: the “interpreted systems” representation, in the style
of Halpern et al. [21], in which the global states are simply taken to be tuples of local states,

with identity of the i-th components as the indistinguishability relation
i∼. But note that such

a representation is not possible in the case of general (non-classical) epistemic frames!
Surprisingly enough, the same validities hold in the class of classical epistemic models

as in the class of general epistemic models. This is shown by the following result:

Proposition 1 The proof system of GEL (given in the previous section) is sound and com-
plete with respect to classical epistemic models as well.

The proof is in Halpern et al. [21]: essentially, this is their proof of completeness for
epistemic logic extended with distributed knowledge operators.

In conclusion, the language of general epistemic logic GEL cannot distinguish between
general epistemic models and the classical ones. In order to be able to distinguish them, we
will have to extend the language of GEL to a richer “logic of correlated knowledge” LCK
(Sect. 6).

5 Quantum “Knowledge”

A single quantum system can be represented by a state space � consisting of rays1 in a
Hilbert space H . A quantum system composed of N subsystems �1, . . . ,�n is represented
by the state space �1 ⊗ · · · ⊗ �n corresponding to the tensor product H1 ⊗ · · · ⊗ Hn. Note
that this tensor product is much richer than the Cartesian product �1 × · · · × �n: when the
state of a system s is entangled, then it cannot be decomposed as a tuple of local states. So
we cannot think of a composed quantum system as a classical epistemic frame. Nevertheless,
we will show that they can still be thought of (non-classical) general epistemic frames, in a
natural way.

To see this, we consider the following question: what is the “state” of an entangled sub-
system I? For instance, what is the state of component 1 in the binary system | 00〉+ | 11〉?
As we saw, the answer for I -separable states s = sI ⊗ sN\I is simply given by the local state
sI . But we also saw that one cannot talk in any meaningful way about the I -local state of an
i-entangled system. To proceed, we first give the standard QM definition in terms of density
operators, then we justify its usefulness for our purposes by looking at the results of local
observations.

The State of a Subsystem. If a global system is in state s (thus having an associated density
operator ρs ), then Quantum Mechanics describes the state s(I) of any of its subsystems I

1I.e. vector identified up to a multiplication with a non-zero scalar.
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(possibly entangled with its environment N \ I in the state s) by the density operator

s(I) := trN\I (ρs).

In other words, the “state” of subsystem I is obtained by taking the partial trace trN\I (with
respect to the subsystem’s environment N \ I ) of (the density operator associated to) the
global state s.

Notice that, when the subsystem I is entangled with its environment N \ I , the above
description does not really give us a “state” in the sense of this paper (i.e. a pure state),
but a “mixed state”. Nevertheless, as an abstract description, it can still give us an indistin-

guishability relation
I∼ on global states: the specific definition of the “state” of a subsystem

is not relevant for us in itself, but only the resulting notion of “identity of states” of the given
subsystem. This leads us to the following definition:

Observational Equivalence in Quantum Systems. Two quantum states s, s ′ of a global
quantum system N are observationally equivalent (“indistinguishable”) for a subsystem
I ⊆ N if the mixed states of subsystem I are the same in s and s ′. Formally:

s
I∼ s ′ iff trN\I (ρs) = trN\I (ρ ′

s).

This indirect definition using density operators may look ad-hoc and unnatural, but it
can be justified in terms of what an observer can learn about an entangled subsystem I by
observing only that subsystem (so by performing local measurements on I ). Indeed, it is
known that a mixed state corresponds to a probability measure over pure states, but what
is not always well-appreciated is the meaning of the mixed state s(I) describing a (possibly
entangled) subsystem:

Quantum I -Equivalence via Local Observations. Provided that we have an unlimited sup-
ply of identical I -entangled systems in the same (entangled) global state s, imagine that the
virtual agent associated to I can perform all possible local measurements (in various bases)
on (various copies of) subsystem I . The agent can also repeat the same tests on different
copies and observe the frequency of each result. After many tests, he can approximate the
probability of every given result, for each possible local measurement. The list of all these
probabilities (for each result of each type of measurement) gives us the “information carried
by subsystem I”, or the “information obtainable by local observations at location I”. Two
global states s, s ′ are I -indistinguishable if all these probabilities are the same in s and s ′,
i.e. if the two states behave the same way under I -local measurements.

Quantum I -Equivalence via Remote Evolutions. A third way to define observational
equivalence is via invariance under changes that do not affect the information carried by
subsystem I (see also [8]):

An evolution (unitary map) U is said to be I -remote (or “remote from I”) if it corre-
sponds to applying only a local unitary map on the subsystem N \ I (the “non-I” part of the
system, also known as I ’s “environment”): i.e., if U is of the form IdI ⊗ UN\I , where IdI

is the identity map on subsystem I and UN\I is a unitary map on the subsystem N \ I . In
other words, U is I -remote if it is N \ I -local.

Intuitively, I -remote evolutions should not affect the “state” of subsystem I ; hence, we
could define the “state” of I as what is left invariant by all I -remote evolutions. As a con-
sequence, two states will be I -indistinguishable if they differ only by some I -remote evolu-
tion.
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The following result shows the equivalence of these three ways of defining observational
equivalence:

Proposition 2 For I ⊆ N , and s, s ′ ∈ �, the following are equivalent:

(1) trN\I (ρs) = trN\I (ρs′);
(2) for every I -local measurement, the probability of obtaining any given result is the same

in state s as in state s ′;
(3) s ′ = U(s) for some I -remote unitary map.

So we can define the quantum equivalence relation s
I∼ s ′, and hence our notion of im-

plicit knowledge KI , by any of the clauses given above. Using for example the third clause
we obtain that KIP holds at s iff, for all I -remote evolutions U , P holds at U(s) . If P is
implicitly known by I in state s, i.e. if s ∈ KIP , then we say that the subsystem I carries
the information that P .

A quantum epistemic frame is a (state space � associated to a) Hilbert space endowed with

the quantum I -equivalence relations
I∼ (as defined above) for every subsystem I .

Proposition 3 Quantum epistemic frames are (i.e. satisfy all the postulates of) general epis-
temic frames.

Properties In addition to the properties of the KI operator in GEL, we add:

• If s is I -separable, then s
I∼ s ′ iff sI = s ′

I

• If I is fully separable then we have: s
I∼ s ′ iff s

i∼ s ′ for all i ∈ I. As a consequence,
the quantum “group” knowledge KI of a fully separated system I is the same as the
“distributed knowledge” DKI of the “group” I .

• In general (for non-fully separated systems I ), the previous statement is false: the infor-
mation KI carried by a quantum (sub)system I is not the “sum” DKi∈I of the information
carried by its i-component systems. In other words: quantum epistemic frames are “non-
classical”.

Example For instance, in a Bell state when the information stored in two subsystems is
correlated according to the identity rule, the agents associated to these subsystems will never
recover fully the information possessed by the global system if they cannot correlate the
results of their individual observations. Indeed, the following observation shows that in the
Bell state |00〉 + |11〉 composed of two entangled qubits 1 and 2, the two subsystems 1 and
2 are in the same mixed state:

Proposition 4 The following are equivalent:

1. s
1∼ |00〉 + |11〉

2. s
2∼ |00〉 + |11〉

3. s = |z0〉 + |z′1〉, for some orthogonal vectors z, z′ ∈ H1.

(The equivalence of e.g. the second and the third clause can be shown by finding a 2-remote
evolution U1 ⊗ Id2 such that U1(|0〉) = z and U1(|1〉) = z′, and using the definition of I -
equivalence in terms of remote evolutions.)
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This proposition tells us that, in the state |00〉 + |11〉, the two subsystems carry exactly
the same information. So pooling together their “knowledge” will not lead to any increase
of information: the “distributed knowledge” of the group {1,2} is the same as the implicit
knowledge of each of the qubits 1 and 2. In contrast, the “group knowledge” of {1,2} is

much stronger: s
{1,2}∼ |00〉 + |11〉 is equivalent to s = |00〉 + |11〉. The group “knows” its

own state, so it knows (that the qubits are in) the Bell state |00〉 + |11〉.

Informational Characterizations of Separability and Entanglement. Recall that we al-
ready gave an “epistemic” characterization of entanglement and separability in general epis-
temic frames:

A state s is I -separable iff I ’s knowledge in state s is the same as its distributed knowl-
edge.
In the special case of quantum systems, this gives us the standard Quantum Mechanical
notion of separability.2 But this characterization cannot be expressed in the language of
epistemic logic since it involves a second-order quantifier over all subsets P of the state
space: it requires that, for every such subset, s satisfies KIP iff it satisfies DKIP .

However, in line with the ideas presented in [8] we can use epistemic logic to give
“informational characterizations” of separability and entanglement in a quantum system,
provided we are given only one (logical constant denoting a) fully separable state. In-
deed, let w = w0 ⊗ · · ·wn be some (fixed) fully separable state; for example, we may take
w = 0 = |0〉⊗N = |0〉 ⊗ |0〉 · · · |0〉. Then we have:

Two subsystems I and J are entangled in a (global) state s iff s satisfies KJ KI¬w

or (equivalently, KIKJ ¬w). The state s is I -entangled iff the subsystem I and N \ I

are entangled in s, i.e. if s satisfies KIKN\I s. The system is separable if it is not
entangled: ¬KIKN\I¬w.

To summarize: two physical systems are entangled if and only if they potentially carry (non-
trivial) information about each other (assuming no prior communication).

Example For n = 2, we consider the set �(1) of all 1-separable (= 2-separable = fully sep-
arable) global states, as our model. Then given that the system is in state |00〉, subsystem
1 is in state |0〉 and “implicitly knows” his own state. 1 implicitly knows also that it is not
possible that the whole system is in state | 10〉. Hence, |00〉 |= K1¬|10〉. Subsystem 1 does
not implicitly know the local state of the other component when they are fully separable.
So subsystem 1 does not implicitly know that the global state is not |01〉 or in other words:
|00〉 |= ¬K1¬|01〉. Subsystem 2 implicitly knows that the global state cannot be |11〉, how-
ever subsystem 1 doesn’t know that the local state of subsystem 2 is not | 1〉. Hence subsys-
tem 1 does not know that 2 excludes state |11〉, that is to say |00〉 |= ¬K1K2¬|11〉.

6 Correlated Knowledge

In addition to our presentation so far, our complex systems can be modeled more accurately
if we add structure to our general epistemic frames and enrich the language of the logic. In

2In QM, a separable quantum state refers to a non-entangled state. For instance the global state of a bi-partite
system is separable if it belongs to the Cartesian product H1 × H2 of the two corresponding Hilbert spaces;
in this case, each of the subsystems is in a well-defined (“pure”) local state.
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this section we will only provide a brief sketch of how this can be brought about, leaving the
further details to be explored in future work. The idea is to capture explicitly the “observa-
tional capabilities” of the individual agents and of the groups. This allows us to generalize
the concrete semantics given by “interpreted systems” (i.e. the vector model representation
of classical epistemic models) to a type of general epistemic frames that we call correlation
models.

We generalize vector models in three stages: the first type of models we consider are
relation-based models. In these models, the states are relations between the agents’ pos-
sible observations. Given sets O1, . . . ,On of possible observations for each agent, a joint
observation will be a tuple of observations o = �o = (oi)i∈N ∈ O1 × · · · × On. A state of
the world can be characterized by the joint observations that can be performed on it, so a
state is a set of such tuples namely a relation. A model will have as its state space any set
� ⊆ P(O1 × · · · × On). The state sI of a subsystem I of a global system in state s will be
naturally given by the projection: si = {(oi)i∈I : o ∈ s}. So the observational equivalence is

then given by: s
I∼ t iff {(oi)i∈I : o ∈ s} = {(oi)i∈I : o ∈ t}.

The second, wider stage of generalization is given by multi-set models. Instead of sets of
tuples of observations as in the relational models, we now consider multi-sets. Working with
multisets has the advantage that we can model the case when agents record the frequencies
of their observations. Now the states are multi-sets of joint observations, i.e. functions s

from tuples of observations from O1 × · · · × On into natural numbers. The state sI of a
subsystem I in a global state s will be naturally given by

sI ((ei)i∈I ) :=
∑

{s(o) : o ∈ O1 × · · · × On such that oi = ei for all i ∈ I }.

The third type of models we consider are correlation models. We generalize natural
numbers to an abstract set R of possible observational results, together with some ab-
stract operation

∑ : P(R) → R of composing results. This operation may be partial
(i.e. defined only for some subsets A ⊆ R), but it is required to satisfy the condition:∑{∑Ak : k ∈ K} = ∑

(
⋃

k∈K Ak) whenever {Ak : k ∈ K} are pairwise disjoint. In this case,
(R,

∑
) will be called a result structure.

Correlation Models. Given a result structure R and a tuple �O = (Oi)i∈N of sets of possible
observations, a correlation model over (R,

∑
, �O) is given by a set � ⊆ {s : s is a function :

O1 × · · ·On → R} of maps assigning results to (global) joint observations o = (oi)i∈N . So
global states will then be functions from O1 × · · · × On into R. We put OI := ×i∈IOi =
{(oi)i∈I : oi ∈ Oi for every i ∈ I }. As before, in a global state s, the state sI of a subsystem
I will be a map from sI : OI → R, given by:

sI ((ei)i∈I ) :=
∑

{s(o) : o ∈ O1 × · · · × On such that oi = ei for all i ∈ I }.

To put this more succinctly, for every tuple e = (ei)i∈I ∈ OI of I -observations, let

e := {o = (oi)i∈N ∈ O1 × · · · × On : oi = ei for all i ∈ I }.

Then we can define, for every e ∈ OI :

sI (e) =
∑

{s(o) : o ∈ e}.
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Correlated Knowledge. Correlation models are general epistemic models, in which we
take our observational equivalence to be identity of the corresponding local states:

s
I∼ t iff sI = tI .

The “group knowledge” KI in a correlation model will be called correlated knowledge.
It is easy to see that, in general, correlation models are not necessarily classical (as epis-

temic frames). Hence, correlated knowledge is in general different from distributed knowl-
edge.

Examples.

• The relation-based models mentioned first can be recovered as special cases of correlation
models, if we take R = {0,1} and logical disjunction as the composition operation.

• Epistemic vector models can be seen as special cases of relation-based models (in which
every state is a singleton consisting of only one joint observation), and hence they also
are correlation models.

• The multi-sets models are also correlation models, with R being the set of natural num-
bers, and addition as the composition operation.

• Quantum epistemic systems �1 ⊗ �2 ⊗ · · · ⊗ �n are correlation models, in which the
sets of observations Oi are given by the (state spaces associated to) Hilbert spaces �i .
Joint observations (oi)i∈I are interpreted as projectors onto the corresponding state in⊗

i∈I �i . The result structure is the interval R = [0,1] with renormalized addition. The
“result” of a joint observation (oi)i∈I made on a state s is interpreted as the probability
that the outcome of a local measurement (in any basis that includes o = ⊗i∈I oi ) of the
I -subsystem of a (global system in) state s will be o. It is well-know that any quantum
state s ∈ ⊗

i∈N �i is uniquely characterized (up to multiplication by a non-zero scalar)
by the function mapping any fully separable state o = o1 ⊗ · · ·on ∈ �1 × · · · × �n to the
probability |〈s, o〉|2 of s collapsing to o (after a measurement in a basis that includes o).3

The Logic of Correlated Knowledge. We extend the general epistemic logic GEL with
atomic sentences describing the results of possible joint observations by groups of agents,
obtaining the logic of correlated knowledge LCK:

ϕ ::= p | or | ¬ϕ | ϕ ∧ ψ | KIϕ

where r ∈ R and o = (oi)i∈I ∈ OI is a I -tuple of observations, for any subset I ⊆ N of
agents. (Recall that OI := ×i∈IOi .) The semantics of or is naturally given by: s |= or iff
sI (o) = r .

Notation For any group I ⊆ N , any set E ⊆ OI of I -observations and any E-tuple of
results r = (re)e∈E ∈ RE , one for each observation e ∈ E, put

Er :=
∧

e∈E

ere .

3A different type of relational models for a generalized version of QM is proposed in [17]. Note that our
models are “relational” in the sense that quantum “states” correspond in our settings to relations (in relation-
based models) or functions (in correlation models). In contrast, in the categorical approach of [17], relations
(between finite sets) play the role of morphisms, i.e. they are the analogue of linear maps (between Hilbert
spaces) in QM.
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Proof System. Fix a finite set N = {1, . . . , n} of agents, a finite result structure (R,
∑

)

and a tuple of finite observation sets �O = (O1, . . . ,On). The proof system of LCK over
(R,

∑
, �O) includes the rules and axioms 1–7 of the logic GEL, and in addition, for every

I ⊆ N , the following axioms:

8. Observations always yield results: for every I ⊆ N , we have

∧

o∈OI

∨

r∈R

or

9. Observations have unique results: i.e. for r �= p, o ∈ OI , we have

or ⇒ ¬op

10. Groups know the results of their (joint) observations: for o ∈ OI , r ∈ R, we have

or ⇒ KIo
r

11. Group knowledge is correlated knowledge (i.e. is based on joint observations): for every
tuple (ro)o∈OI

of results, one for each possible joint observation o = (oi)i∈I ∈ OI by
group I , we have

(
Or

I ∧ KIϕ
) ⇒ K∅

(
Or

I ⇒ ϕ
)

12. Result Composition Axiom: for every tuple e = (ei)i∈I ∈ OI of I -observations and every
tuple r = (ro)o∈e , one for each global observation o ∈ e, put

∑
r := ∑{ro : o ∈ e}; then

we have

er ⇒ e
∑

r

(In axioms 11 and 12 we used the notation Er from above: first with E = OI ; then with
E = e, I = N .)

Theorem 2 (Soundness and Completeness for LCK) For every finite set N = {1, . . . , n} of
agents, every finite result structure (R,

∑
) and every tuple of finite observation sets �O =

(O1, . . . ,On), the above proof system is sound and complete with respect to correlation
models over (R,

∑
, �O).

Proof Soundness is trivial: axioms 8 and 9 hold because each state s induces a function
sI : OI → R; axioms 10 and 11 hold because of the definition of indistinguishability in

correlation models in terms of the sI functions: s
I∼ t iff sI = tI ; axiom 12 holds due to the

specific definition of the map sI (in terms of the map s and of the composition operation
∑

)
in correlation models. For completeness, let ϕ0 be a consistent sentence. First, we introduce
the restricted canonical model �0, constructed as in the proof of Theorem 1 (with the same
definition of valuation extended to the atomic constants or , i.e. ‖or‖ := {T ∈ �0 : or ∈ T }).
As in Theorem 1, we show that this is a general epistemic model and that it satisfies a
“Truth Lemma” (T |= ϕ iff ϕ ∈ T ), and hence that ϕ0 holds at T0. Second, we can define a
map T �→ sT , associating to each theory T ∈ �0 some function sT : O1 × · · · × On → R,
given for each o ∈ O1 × · · · × On by: sT (o) = r iff or ∈ T . Axioms 8 and 9 (with I =
N = {1, . . . , n}) ensure that the map T �→ sT is well-defined, and axiom 11 (with I = N ,
hence with KIϕ meaning the same as ϕ) ensures that this map is injective. Hence, we can
“identify” theories T with the corresponding functions sT , or in other words we can “lift”
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the epistemic model structure from �0 to a subset {sT : T ∈ �0} ⊆ {s : s is a function :
O1 ×· · ·On → R}, by putting sT

I∼ sT ′ iff T
I∼ T ′ and ‖p‖ = {sT : p ∈ T } (and similarly for

the atomic constants or ). We can easily see that this is a correlation model: axioms 10 and

11 ensure that the indistinguishability condition for correlation models (s
I∼ t iff sI = tI ) is

satisfied, and axiom 12 ensures that our specific definition (in terms of the map s and of
the composition operation

∑
) of the map sI in correlation models is satisfied. As general

epistemic models, �0 and this correlation model are in fact isomorphic, hence ϕ0 is satisfied
in (state sT0 of) this correlation model. �

7 Concluding Remarks

In this paper we modeled complex systems (from classical to quantum) using the setting
of General Epistemic Frames and we introduced a particular type of such frames called
Correlation Models. Our aim has been to throw new light on the difference between classical
and quantum information and to gain a better understanding of quantum correlations. As
such this paper should be of particular interest to quantum logicians, looking for an abstract
formal logical setting that can naturally accommodate entanglement. Note that entanglement
posed a problem to the lattice-theoretic approach of traditional Quantum Logic (see e.g. [1,
23]), which opened the road to the quest for possible solutions and alternative settings.
Our paper might also be of interest to quantum information theorists who want to abstract
away from Hilbert space models, looking for higher levels of abstraction similar to those
successfully developed for classical computing. We note that a shorter version of this paper
was presented during the 6th QPL workshop on Quantum Physics and Logic held at Oxford
University in 2009 [9].
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