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We present a statistical mechanical approach for predicting the self-assembled morphologies of

amphiphilic diblock copolymers in the melt. We introduce two conformationally asymmetric linear

copolymer models with a local structural asymmetry, one of a ‘‘comb-tail’’ type and another that we call

‘‘continuous jackknife model.’’ The copolymers consist of amphiphilic and ‘‘monophilic’’ (non-

amphiphilic) blocks, which have different segmental volume and tend to segregate into subphases.

Using a self-consistent field theory (SCFT) framework, we explore the phase diagrams for these

copolymers and compare them with that known for conventional, conformationally symmetric diblock

copolymers. To determine the impact of structural effects on the self-assembly of copolymer melts,

copolymers with a variation in both molecular architecture and chemical composition, f, are studied for

different values of the Flory–Huggins parameter, c. The composition dependence of the phase

diagrams is shown to be basically determined by the conformational asymmetry. Remarkably, the

stable lamellar structures exist even in the very compositionally asymmetric case, f < ¼. An interesting

geometric distinction of the ‘‘direct’’ and ‘‘inverse’’ morphologies is introduced. The presence of an

internal structure is found to influence the high c behavior, where a stable two-scale (structure-in-

structure) hexagonal morphology is found to be formed for some compositions. Therefore, the local

chemical structure of monomer units can dictate the global morphology of copolymer melts.

1. Introduction

Microphase segregated copolymer melts and solids have long

garnered significant scientific interest due to their ability to

spontaneously form periodic morphologies at controllable length

scales.1–5 Self-assembly is also one of the most universal strategies

used in biology for the development of complex and functional

(nano)structures: fascinating examples are multimeric proteins

and nucleic acid multiplexes, viruses, and biomembranes. Such

systems have been extensively studied over the years, to allow for

a better understanding of their structure and functions.

The Af-b-B1-f diblock architecture provides the simplest model

for examining microphase separation in monodisperse copol-

ymer melts. The block copolymers are structures formed by at

least two chemically different polymer chains, A and B, linked

together by a covalent bond. The microphase separation is

governed by the chemical composition (the fraction f of

segments that belong to, e.g., the A block) and the product of

Flory–Huggins interaction parameter c of the copolymer

segments and the total number of segments per chain, N. The

physical reason for copolymer self-assembly, which is also called

microphase separation or order–disorder transition (ODT), is

obvious: with increasing the segregation strength cN, the energy

gain from local segregation grows as compared to the loss of the

translational entropy accompanying such segregation, while the

immiscible A and B blocks can not separate fully because of their

covalent connection. As a result, an ordered pattern of alter-

nating domains filled preferably with segments of the same sort

arises.

The theory of microphase separation in diblock copolymers

has been developed in detail and this subject has been reviewed

extensively.1–9 In particular, a phase diagram, which shows the

regions of stability of the morphologies of various symmetry, was

predicted6–10 for diblock copolymer melts. These morphologies,

with length scales of the order of 1 to 102 nm, may be controlled

by changing the lengths of blocks, the proportions of A and B

monomeric units, or the interaction between them.

More complicated structures are achieved for multiblock

copolymers or if more blocks or different architectures, such as

star-shape (mictoarm) or dendritic shapes copolymers, are

used.11,12 The recent studies of the so-called two-length-

scale multiblock copolymer systems [AmN(BN/2AN/2)n and

AfmN(BN/2AN/2)nB(1ÿf)mN, where n andm are integers]
13–16 showed

that their microphase segregation behavior is far from that of

a diblock copolymer melt. For these copolymers, non-conven-

tional sequences of the order–order transitions were predicted

within the week segregation theory (WST)14,17 and self-consistent

field theory (SCFT).16 For instance, Kriksin et al.16 have recently

demonstrated that the set of stable morphologies for linear

copolymers with the multiblock architecture AfmN(BN/2AN/2)n-
B
(1ÿf)mN

differs from that known for simple diblock melts, where

longer and shorter blocks form the matrix and micelles, respec-

tively. On the contrary, for the former the longer end blocks B

tend to segregate into the micelles whereas the shorter block A

and the middle multiblock part form together the matrix.

The phase diagram involving these inverse morphologies was
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calculated in that region of the system parameters, where segre-

gation inside the middle multiblock part (BN/2–b–AN/2)n does not

occur yet, and turned out to be similar to that of ternary linear

ABC block copolymers.17

Other examples of self-assembled polymeric structures are

comb-shaped supramolecules, where low-molecular-weight

compounds (e.g., small amphiphilic molecules) are attached to

polymer backbone by physical interactions instead of covalent

bonding.17–21 In these systems, structure formation and phase

behavior are mainly affected by the attraction strength of the

polymer–amphiphile interaction and repulsion between the polar

polymer backbone and non-polar tails.18–21

It should be stressed that in most of the theoretical studies it is

assumed that the polymer blocks are conformationally

symmetric; that is, they have equal Kuhn segment length, l, and

segmental volume, v.6–9 The conformational asymmetry can

cause considerable changes in the phase diagrams, e.g., by

introducing only a slight difference in either the statistical

segment lengths and/or segmental volumes between the constit-

uents of a diblock, such as in the often studied system of poly-

styrene and polyisoprene, the microphase boundaries become

asymmetric about f ¼ ½.22–24 Matsen and Bates found that for

copolymers with a stiff minority block, conformational asym-

metry stabilizes the gyroid (G) phase, widening the composition

window and moving the lamellar-G and G-cylinder boundaries

to higher stiff compositions.24On the other hand, the presence of

a stiff majority block destabilizes the G phase. The thermody-

namic implications of conformational asymmetry between the

two blocks of diblock copolymers are considered to explain a lot

of experimental results.25,26

It is a commonplace to say that the properties of a copolymer

depend not only on its global architecture and chemical

composition but also on the local chemical structure of its

monomeric units. Therefore, an important route in the precise

control and theoretical prediction of molecular parameters

required to achieve well-defined microphase-separated

morphologies is connected with understanding the role of local

polymer structure responsible for intra- and intermolecular

interaction.

The drawback of the existing field-theoretical approaches

based on the standard Gaussian chain model is the representa-

tion of each monomeric unit of a real polymer as a point-like

interaction site of pure repulsive or pure attractive type. At the

same time, in the large majority of real heteropolymers, each

monomeric unit has a dualistic character; that is, repeating

polymer unit, which is usually considered as a structureless bead,

actually incorporates both repulsive and attractive parts

concurrently. Indeed, a large number of macromolecules possess

a pronounced amphiphilicity in every repeat unit.27 Typical

examples are synthetic polymers like poly(styrene sulfonate),

poly(4-vinylpyridine), poly(1-vinylimidazole), poly(N-iso-

propylacrylamide), poly(2-ethyl acrylic acid), etc. In each repeat

unit of such polymers there are hydrophilic (polar) and hydro-

phobic (non-polar) atomic groups, which have different affinity

to the surrounding medium.27 Many of the amino acids also

contain both polar and non-polar groups simultaneously and,

strictly speaking, the interaction between such amino acid resi-

dues in proteins cannot be literally reduced to pure hydrophilic

or pure hydrophobic site–site interactions, as it is presupposed in

the standard polymer field-theoretic models by discarding all

details of side-group interactions. Other important biopoly-

mers—polysaccharides, phospholipids—are also typical amphi-

philes. Moreover, among the synthetic polymers,

polyamphiphiles are very close to biological macromolecules in

nature and behavior. In principle, they may provide useful

analogs of proteins and are important for modeling some

fundamental properties and sophisticated functions of biopoly-

mers such as protein folding, formation of secondary structures,

and enzymatic activity. Understanding the physics of self-

assembly of the copolymers with dualistic monomer–monomer

interaction is extremely challenging and also important because

the underlying ideas have found connections to other funda-

mental areas, e.g., phase transitions in membranes, crumpled

surfaces, and geometry of random surfaces.

In this paper we study the effect of local polymer structure by

introducing two coarse-grained conformationally asymmetric

linear copolymer models with a local structural asymmetry, one

of a comb-tail (CT) type (Fig. 1) and another we call ‘‘continuous

jackknife (JK) model’’ (Fig. 2) The copolymers consist of

amphiphilic and ‘‘monophilic’’ (non-amphiphilic) blocks, which

have different segmental volume and tend to segregate into

subphases due to the dualistic character of monomer–monomer

interaction. Using a SCFT framework, we will explore the

morphologies and phase diagrams for these model copolymers

Fig. 1 Architecture of the diblock copolymers: (a) amphiphilic AB

monomer unit, (b) conventional AB diblock copolymer, (c) amphiphilic

CT diblock copolymer.

Fig. 2 Jackknife (JK) model of an amphiphilic diblock copolymer: (a)

conventional linear AB diblock copolymer, (b) and (c) rotation of the

shorter section B around the crankshaft connecting the A and B sections,

(d) conformationally asymmetric AC diblock copolymer with A units of

the segmental volume v and C units of the segmental volume 2v.

This journal is ª The Royal Society of Chemistry 2009 Soft Matter, 2009, 5, 2896–2904 | 2897



and compare them with that known for conventional, con-

formationally symmetric diblock copolymers.

In the literature, there are several coarse-grained polymer

models in which spherical (bead-like) monomers are replaced by

composite asymmetric objects.28,29 Generally, this gets a host of

qualitatively new structures, e.g., liquid crystalline phases of

helical secondary structures.29 One of the possible simplest

variants is the hydrophobic-amphiphilic HA side chain model

introduced in ref. 30–33 (for a review, see ref. 28 and 34). In this

model, there are two main ingredients: chain units are connected

to each other in a linear fashion and each amphiphilic unit of the

chain possesses a spatial direction representing the local direction

associated with the chain. Familiar examples in protein science

include the exotic models that treat the protein backbone not as

a chain of spheres but as a chain of anisotropic objects (e.g., such

as coins) for which one of the three directions differs from the

other two. If such a chain is viewed as being made up of stacked

coins instead of tethered spheres, we naturally arrive at the

picture of an elastic tube (like a garden hose or spaghetti) whose

axis coincides with the chain backbone.29 At this coarse-grained

level of description, new physics arises from the interplay

between two length scales: the range of (anisotropic and many-

body) attractive interactions and the thickness of the tube.29

The rest of the paper is organized as follows. The models of

copolymers with an amphiphilic segment are described in the

next section. The results are presented and discussed in Section 3.

Concluding remarks are given in Section 4. All the technical

details related to the SCFT and some additional data from our

calculations are collected in the Appendix.

2. Models of diblock copolymers with amphiphilic

segment

The comb-tail (CT) model

An amphiphilic diblock copolymer consists of a ‘‘monophilic’’

homopolymer block A and an amphiphilic block. In terms of

graph theory, the amphiphilic part of the CT macromolecule can

be modeled as a ‘‘caterpillar graph’’ rather than a linear graph

corresponding to the standard ‘‘two-letter’’ Gaussian model.

Namely, we refer to an AB graph in which the set {A} represents

the nodes in the backbone and the set {B} the so-called legs

connected by bridges (Fig. 1c) as a caterpillar of a given length.

There are n legs, which are assumed to be distributed regularly

along the backbone chain consisting of m sites. Each backbone

node corresponds to a monophilic group (e.g., CH2–CH group)

whereas the leg is considered as a single-site side group attached

to the node. With this representation, each amphiphilic unit is

treated as a two-site AB ‘‘dumbbell’’ or ‘‘dipole’’ consisting of A

and B sites linked together (Fig. 1c). The monomeric units A and

B are assumed to be of equal volume v. The two sites in the

‘‘dumbbell’’ are repelling each other so that the amphiphilic unit

prefers to be at the A/B boundary rather than in A- or B-bulk,

i.e., this unit possesses a significant surface activity.

As shown earlier by some of us,30,31 this fact can lead to

a completely different self-organization of globules made of

amphiphilic copolymers. In this paper we show that the micro-

phase separation in melt of diblock copolymer chains schemati-

cally depicted in Fig. 1c (homopolymer A tail linked to a block of

AB dumbbells) differs significantly from that in the melt of usual

diblock copolymer chains shown in Fig. 1b. Because of the

specific architecture of the copolymer, we expect that the

microphase separation can in principle occur at two different

length scales,35–39 either ‘‘between’’ the linear homopolymer A tail

and the composite AB amphiphilic section or ‘‘inside’’ the AB

amphiphilic block. In the former case, the behavior should

generally resemble that of a conventional diblock copolymer,

where two blocks are incompatible homopolymers.

The main parameters governing the phase behavior of the CT

model are defined as follows. The length fraction of amphiphilic

AB segments, denoted below by letter C, is f, and the length

fraction of monomers belonging to the homopolymer tail A is

1 ÿ f. Therefore, the volume fractions of A and B interaction

sites, fA and fB, are

fA ¼ (1 + f)ÿ1, fB ¼ f(1 + f)ÿ1 (1)

The fractions f, fA, and fB can be expressed via the numbers of

the monophilic (m) and amphiphilic (n) monomer units as

follows:

f ¼ n(m + n)ÿ1, fA ¼ (m + n)(m + 2n)ÿ1, fB ¼ n(m + 2n)ÿ1 (2)

It is assumed that M identical copolymer chains, each con-

sisting of N ¼ NA + NB chemically bonded segments with equal

segment volumes vA ¼ vB¼ v are densely packed into the volume

V ¼ MNv. It is clear that the conformational asymmetry of the

CT model is due to the difference in volumes occupied by

monophilic (A) and amphiphilic (C) units as well as to the fact

that the architecture of the comb-like block is not invariant

under the interchange of A monomers with B monomers. The A

and B units are assumed to be incompatible, the degree of

incompatibility being characterized by the conventional Flory–

Huggins parameter c ¼ cAB.

It should be noted that our CT model is quite similar to that

used by Nap and ten Brinke35,36 and Khalatur and Khokhlov40

who studied the self-organization of comb-shaped copolymers in

the weak segregation regime.

The jackknife (JK) model

The continuous monophilic/amphiphilic copolymer model,

which looks like a jackknife (JK model), is schematically depic-

ted in Fig. 2. The JK copolymer can be obtained by the trans-

formation of a linear AB copolymer of the contour length L

consisting of two parts A and B, whose contour lengths are LA
and LB (L ¼ LA + LB, LA > LB), respectively (Fig. 2a). It is

assumed that the chain sections of A and B type are characterized

by the same Kuhn segment length l and the same segmental

volumes vA ¼ vB ¼ v. We rotate the shorter section B around the

crankshaft connecting the A and B sections (Fig. 2b), fold it with

the main chain (Fig. 2c) and then merge the two sections

(Fig. 2d). This transformation leads to a new copolymer con-

sisting of the homopolymer block A of length LA ¼ L ÿ LB and

the composite (‘‘grey’’) block of type C with length LC ¼ LB and

segmental volume 2v. Therefore, the conformational asymmetry

parameter22 3 ¼ vCl
2
A/vAl

2
C of the resulting copolymer is 3 ¼ 2. In

this model, each amphiphilic unit can be viewed as an analogue

2898 | Soft Matter, 2009, 5, 2896–2904 This journal is ª The Royal Society of Chemistry 2009



of a point dipole. The length fraction f of the amphiphilic block is

defined via fA ¼ LA/L as

f ¼ fÿ1A ÿ 1 (3)

In the SCFT calculations carried out in this work, the JK

copolymer is represented as a continuous curve and the proba-

bility distribution function for the chain length LAC¼ LA to have

its ends at points r and r0 is given by the Edwards path integral41

that depends on the position vector r[s] of the arc length variable

s, s running from 0 to LA. In what follows we set L¼ 1 so that LA
¼ fA, and s ˛ [0, fA].

On the contrary, for the CT model, the contour variable s

changes in the range 0 # s # s1 for monophilic tail, in the range

0# s# s2 for k
th side-chain, and in the range 0# s# s3 for bridge

between kth and (k + 1)th side-chains, where

s1 ¼
1ÿ f

1þ f
; s2 ¼

f

nð1þ f Þ
; s3 ¼

f

ðnÿ 1Þð1þ f Þ
(4)

and k ¼ 1, 2, ., n; n being the number of side-chains (Fig. 1c).

The sum of all sub-chain lengths in the CT model is s1 + ns2 +

(n ÿ 1)s3 ¼ 1. If the structural fragments of the CT model are

measured in s2 units, the monophilic chain’s length is m, the

comb-tail backbone’s length is n, and the total length of all sub-

chains is N ¼ m + 2n.

The peculiarity of the JK model is that it is isomorphous (see

Appendix) to the model of the diblock copolymer melt with

conformational asymmetry.22 On the other hand, the JK model

is the limiting case of the CT model if the number of side chains

n/N, while the length fraction f is fixed. Now, the advantage

of the CT model is that it allows for the internal structure of the

systems under study. Thus, comparing the properties calculated

for these two models we can estimate how much they are

determined by the very fact of the conformational asymmetry of

the amphipilic block copolymer melts (i.e. the fact that the

composite amphiphilic units have doubled segment volume as

compared to that of monophilic ones) and to which extent they

are influenced by the presence of the internal structure of the

amphiphilic units.

The phase behavior of the described amphiphilic copolymer

systems is controlled by the overall degree of polymerization, N,

the length fraction of the amphiphilic block, f, and the Flory–

Huggins interaction parameter, c, or, more precisely, the product

~c ¼ cN. Depending on the values of ~c and f, various states are

expected to become stable in such systems ranging between

a homogeneous (disordered) state at low values of ~c and various

ordered morphologies at higher ~c, the order–disorder and order–

order transitions being separated by these regimes. In the next

section we investigate the order–disorder and order–order tran-

sitions (ODT and OOT) and build the corresponding phase

diagrams for the model amphiphilic copolymers in the plane

(f,~c). We examine the two models described above and compare

them to simple conformationally symmetric linear diblocks,

focusing on differences and similarities between the amphiphilic

and monophilic copolymers. The polymer segment density

profiles 4a(r) (a ¼ A, B), whose symmetry allows to distinguish

between different morphologies, are calculated numerically via

the SCFT method modified for the CT and JK models as

described in Appendix.

3. Results and discussion

3.1. ‘‘Direct’’ and ‘‘inverse’’ morphologies

Since the amphiphilic C block consists of two incompatible

species A and B attached closely to each other, the microphase

separation in such melts is expected to involve the following two

processes: (i) the segregation of amphiphilic C blocks as a whole

from monophilic A blocks and (ii) the segregation of A units

from B units inside amphiphilic C blocks. Obviously, the second

process is not possible for the continuous JK model. In this

subsection we focus on the first process and start with the

discussion of the microphase separation observed for the

simplest JK model.

It is well known that the majority and minority components of

simple linear diblocks in the melt state form a matrix and

spherical or cylindrical micelles, respectively.1–9We refer to such

conventional morphologies as the ‘‘direct’’ ones. Since the

continuous JK polymer is, in fact, equivalent to a simple A1-f-b-

Cf diblock, its majority block A(C) is also expected to form the

matrix whereas its minority block C(A) should be located in

micelles. However, there are two important distinctions between

the conventional monophilic (Fig. 1a) and amphiphilic block

copolymers: (i) each amphiphilic C segment occupies double

volume as compared to that for a monophilic segment and (ii) the

C segment has a composite (A + B) structure. Besides, the B

component is always the minority component for the nonzero

length of the monophilic tail A. Due to these distinctions a new

type of ‘‘inverse’’ morphologies appears in amphiphilic block

copolymers. To describe such inverse morphologies we visualize

them in Fig. 3 where the 3D distribution of the local volume

fraction of the B segments, 4B(r), is built for the incompressible

melt of amphiphilic chains at various values of ~c and f. The

regions rich in A and B components are shown in blue and red,

respectively; intermediate regions are given in yellow and green

(see the color map).

Fig. 3 Direct [(a) and (c), f ¼ 0.20] and inverse [(b) and (d) f ¼ 0.55]

morphologies for the JK model. The 3D distribution of the volume

fraction 4B(r) of the minority B component is shown for direct BCC [(a),

cN ¼ 50.5] and HEX symmetry [(c), cN ¼ 55] as well as for the inverse

BCC [(b), cN ¼ 65] and HEX [(d), cN ¼ 80] symmetry.

This journal is ª The Royal Society of Chemistry 2009 Soft Matter, 2009, 5, 2896–2904 | 2899



As seen in Fig. 3, for the chosen values of ~c and f the SCFT

predicts the well-known 3D body-centered-cubic (BCC) and 2D

hexagonal (HEX) morphologies. If the B-fraction is sufficiently

low (f ¼ 0.2 or fB ¼ 1/6), the conventional direct morphologies

are formed. In these morphologies the minority B-units are

concentrated (together with the A-units the B-units are linked

to), depending on the value of ~c, within the spherical (for the

BCC) or cylindrical (for the HEX) micelles surrounded by the

majority A matrix. On the contrary, if the fraction of B units is

not too low (f ¼ 0.55 and fB ¼ 11/31), then the A-units are

concentrated within the micelles whereas the B-units (together

with the A-units the B-units are linked to) form the matrix. In

other words, the majority A phase turns out to be surrounded by

the minority B phase. Further we refer to such morphologies as

the ‘‘inverse’’ ones. The formation of the ‘‘direct’’ and ‘‘inverse’’

morphologies is also observed for the CT model (see Fig. 4 for

some typical examples).

At the first glance, the existence of the inverse morphologies is

a purely geometric phenomenon resulting from the very fact that

the amphiphilic C units are composite. Indeed, in the presented

examples of the inversed morphologies the length fraction of the

monophilic units A is 1 ÿ f. So, it seems to be no surprise that

the shorter monophilic block tends to concentrate within the

micelles.

However, the presence of the conformational asymmetry

makes the situation less trivial. Namely, an increase in the

conformational asymmetry leads to a decrease in the critical

value of the amphiphilic block average volume fraction that

demarcates the direct and inverse morphologies. In particular,

for the JK model the SCFT results in the following estimate of

the critical point: fcr ¼ 0.275 and cN ¼ 43.1. Substituting fcr in

eqn (1) and taking into account that the average volume fraction

of amphiphilic units is 2fB, we find that in this point both the

length and volume fractions of the monophilic tail (flengthmono¼ 0.725

and fvolmono ¼ 0.569, respectively) are larger than 1/2. Thus, the

conformational asymmetry noticeably favors the appearance of

inversed structures. It means that the amphiphilic monomer units

are much more predisposed to form micelles rather than mono-

philic ones.

3.2. Phase diagrams

To study the phase behavior of the amphiphilic block copoly-

mers under consideration we calculated and compared the free

energies of the lamellar (LAM), hexagonal (HEX), gyroid (G),

body centered cubic (BCC), and face centered cubic (FCC)

morphologies for various compositions f within the interval 40#

~c #90.42 The phase diagrams for both models studied are pre-

sented in Fig. 5 in the plane (f,~c). Taking into account that in the

CT model the number of side-chains is integer, we depict the

predicted phase diagrams as bar graphs with the corresponding

discrete values f.

Both phase diagrams look basically similar. To properly

interpret the differences between the phase diagrams we should

remember (see discussion in section 2) that both models similarly

describe those features of the amphiphilic block copolymer

melts, which are determined mostly by the very fact of the

conformational asymmetry, whereas the properties influenced by

the presence of the internal structure of the amphiphilic units are

taken into account by the CT model only.

First, both phase diagrams are rather asymmetric. Indeed, the

lamellar phase is stable preferably in the half-plane f < 1/3.

Moreover, the LAM morphology becomes equilibrium (for not

too high value of ~c $ 80) even in the rather asymmetric case f ¼

0.2, which is noticeably beyond the composition interval, where

the LAM phase stays stable (even for high values of ~c) for the

conventional symmetric block copolymers. On the contrary, the

Fig. 4 Direct [(a) and (c), f¼ 0.20,m¼ 16, n¼ 4] and inverse [(b) and (d)

f ¼ 0.55, m ¼ 9, n ¼ 11] morphologies for the CT model. The 3D

distribution of the volume fraction 4B(r) of the minority B component is

shown for direct BCC [(a), cN ¼ 58.8] and HEX symmetry [(c), cN ¼ 65]

as well as for the inverse BCC [(b), cN ¼ 75] and HEX [(d), cN ¼ 80]

symmetry.

Fig. 5 Phase diagrams for amphiphilic diblock copolymer melts: (a) the

JK model, (b) the CT model. The colored bars show the stable

morphology: LAM is given in yellow, BCC in blue, HEX in red, G in

green, and disorder in light-sea-green.

2900 | Soft Matter, 2009, 5, 2896–2904 This journal is ª The Royal Society of Chemistry 2009



regions, where the BCC, HEX and G phases are stable, are

located in the half-plane f > 1/3. Such an asymmetry is closely

related to the conformational asymmetry of the amphiphilic

block copolymers. As already mentioned in section 2, the

conformational asymmetry in the SCFT22 is described by the

parameter 3 ¼ vAl
2
B/vBl

2
A. Therefore, the same phase diagram

would correspond to two systems, which differ at the molecular

level: (a) lA ¼ lB, vA ¼ 3vB and (b) l
2
B ¼ 3l2A, vA ¼ vB. It enables

us to compare our phase diagram calculated for the amphiphilic

copolymer melt within the JK model (isomorphous to the con-

formationally asymmetric block copolymer melt with 3 ¼ 2) with

that of the asymmetric block copolymer melt with a numerically

close value of 3 ¼ 2.25 calculated by Matsen and Bates24 (see

Fig. 5a). It is seen that our phase diagram for the JK model does

look as a discrete version of that for a conformationally asym-

metric diblock copolymer melt with a close value of the asym-

metry parameter 3. In particular, the JK critical point

coordinates recalculated in the variables of ref. 24 are fA ¼ 0.569

and cN ¼ 10.8, which is pretty close to the corresponding values

taken from Fig. 2b of ref. 24.

Now, comparing the phase diagrams shown in Fig. 5a and 5b

we see that the existence of an internal structure taken into

account by the CT model only results in two main effects. First,

the phase transition lines for the CT amphiphilic copolymers are

shifted upwards in comparison to those for the JK melt. This fact

agrees with the general concept that the more complex the

polymer melts are, the more stable the disordered phase is. In

other words, the ODT shifts to lower temperatures as compared

to the ODT of diblock copolymer melts. The reason is quite

obvious: the more complex copolymers lose relatively more

entropy under structure formation. Second, the presence of an

internal structure leads to a minor smearing of the asymmetry

composition effect in favor of the LAM phase. Besides, the

region of the gyroid phase stability close to the critical point

becomes somewhat broader.

Summarizing, the phase behavior of the amphiphilic block

copolymers for not too incompatible blocks is most determined

by their conformational asymmetry whereas the temperature (or

~c) values of the OOT at high ~c are strongly influenced by the

internal structure of the amphiphilic units.

3.3. Domain spacings

There exist rather noticeable internal structure effects, which are

clearly revealed in formation of the so-called structure-in-struc-

ture (S-in-S) morphologies, which were earlier observed in the

two-length-scale multiblock copolymer systems.13–16 For amphi-

philic systems, the S-in-S morphologies arise due to the presence

of two characteristic length scales, one of which is just the Kuhn

length l separating the A and B units (somewhat incompatible),

whereas the second length is the periodicity D of the ordered

stable morphology.

To describe the two-scale structure formation in amphiphilic

block copolymer melts in more detail, we are to determine not

only its symmetry but also the dependence of the domain

spacing D on the ~c-parameter. It is this dependence which

distinguishes the peculiarities of microphase separation in CT

and JK models for high values of ~c (strong incompatibility).

Indeed, in Fig. 6 we plotted the domain spacing D measured in

the units of the gyration radius of the diblock copolymer chain

as a function of ~c.

For the JK model, which disregards the internal structure of

amphiphilic units C, the D(~c) function is a piecewise continuous

(with some jumps in the OOT points) monotonously increasing

function (see Fig. 6a), which is a typical behavior reflecting an

overall increase of the chain stretching with increase of the blocks

incompatibility.

For the CT model a new conformational change occurs within

the HEX symmetry (see Fig. 6b): after passing a maximum at ~c�

156 the function D(~c) drops down a bit and after passing

a minimum at ~c � 169 increases again. Such a non-monotonic

behavior, which was first found byNap et al.38 and then studied in

more detail by Kriksin et al.39 for the LAM phase, has been

shown38,39 to be an indicator of so-called lamellar-in-lamellar

formation in multiblock copolymers with two-length-scale archi-

tecture. The latter is caused by starting of segregation inside of the

shorter blocks with a characteristic scale LS and requirement of

commensurability between LS and the overall periodicity D.

The fact that the 2D S-in-S does occur in amphiphilic block

copolymers as well as the difference between the CT and JK

models, which do and do not allow for the internal structure of

the amphiphilic block copolymers, respectively, are clearly

demonstrated in Fig. 7, where we presented the 2D profiles of the

volume fraction 4B(r) for a ~c-value above the S-in-S onset for

both the models.

4. Conclusion

In this paper we applied a properly modified SCFT procedure to

study self-assembling (microphase separation) in amphiphilic

Fig. 6 Morphology periods D measured in units of the diblock copol-

ymer gyration radius at f¼ 0.55. The vertical lines demarcate the stability

regions for different phases. The bold solid lines correspond to the stable

BCC (red line) and HEX (blue line) morphologies, the dashed lines do to

the metastable ones. (a) The JK model and (b) the CT model (m ¼ 9 and

n ¼ 11).
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diblock copolymer melt. Therewith, to distinguish the effect of

an internal structure of the amphiphilic units, we studied both the

JK model, which treats the amphiphilic diblock copolymer as

a sort of a conformationally asymmetric diblock copolymer

without any internal structure and CT model, which directly

takes into account this internal structure.

The modified SCFT equations were solved by the pseudo-

spectral method and the phase diagrams for both models were

calculated. The phase diagrams are considerably asymmetric,

which is basically determined by the conformational asymmetry

of the system under consideration, the composition behavior of

the phase diagrams being in perfect agreement with the previous

SCFT studies of the conformationally asymmetric diblock

copolymer melts.23–25 However, the presence of the internal

structure of amphiphilic units results in a rather noticeable

increase of stability of the low ~c phases. Another important

internal structure effect, which has been first studied in the

present paper, is formation of the structure-in-structure pattern

for the HEX symmetry, which is closely related to a non-

monotonous behavior of the HEX structure periodicity D on the

~c-parameter.

Summarizing, we show that the effects related to the presence

of an internal structure of the amphiphilic units are quite

considerable for amphiphilic block copolymer melts with high

incompatibility (see also ref. 32 and 33). The explicit accounting

of the internal structure is crucial for the correct description of

this important class of copolymers. Such dependence of the

features of the microphase separation transition on the pecu-

liarities of the local chemical structure of monomer units

provides a new insight in the theory of microdomain structures in

block copolymers.

SCFT procedure for amphiphilic copolymers

The free energy of an incompressible melt of flexible-chain AB

copolymers reads9

F[jA,jB]/VT ¼ Vÿ1
Ð

d3r[ÿfAjA(r) ÿ (1 ÿ fA)jB(r)

+ (jA(r) ÿ jB(r))
2/(4cN)] ÿ lnQ[jA,jB] (A1)

Here, V is the system volume, fa is the average volume fraction

of monomer units of type a (a ¼ A, B; fA + fB ¼ 1), c is the

Flory–Huggins parameter; N is the total polymerization degree,

ja(r) is the external field acting on the monomer unit of the a-th

type located at the point r, the temperature T is measured in the

energetic units in which the Boltzman constant kB ¼ 1, and

Q[jA,jB] is the single-chain partition function to be defined

below.

First, we describe the CT amphiphilic model in detail. To

calculate the single-chain partition function Q[jA,jB] appearing

in eqn (A1) for this architecture, we divide our branching polymer

chain (see Fig. 2c) into 2n elementary linear sub-chains:

A-homopolymer tail, (n ÿ 1) A-bridges between the sidechains,

and n B-sidechains. Each sub-chain is described by two end-to-

end segment distribution functions (direct and reverse functions,

respectively): qf(r,s) and qb(r,s) for A-homopolymer tail (0# s#

s1); q3kÿ2(r,s) and q0(r,s) for k-th sidechain (0# s# s2); q3kÿ1(r,s)

and q3k(r,s) for the bridge between k-th and (k + 1)-th sidechains,

0# s#s3. The sub-chain lengths sk (k¼ 1,2,3) were defined in eqn

(4). All these functions satisfy the modified diffusion equation

vq(r,s)/vs ¼ V
2q(r,s) ÿ ja(r)q(r,s) (A2)

with a ¼ A for qf(r,s), qb(r,s), q3kÿ1(r,s), and q3k(r,s); a ¼ B for

q3kÿ2(r,s) and q0(r,s). The initial conditions are as follows:

qf(r,0) ¼ q0(r,0) ¼ 1, q2(r,0) ¼ qf(r,s1)q0(r,s2), q3kÿ1(r,0) ¼

q3kÿ4(r,s3)q0(r,s2) (k¼ 2,.,nÿ 1), q3nÿ3(r,0)¼ q0(r,s2), q3nÿ2(r,0)

¼ q3nÿ4(r,s3), q3kÿ3(r,0) ¼ q3k(r,s3)q0(r,s2) (k ¼ 2,.,n ÿ 1),

q3kÿ2(r,0) ¼ q3kÿ4(r,s3)q3k(r,s3) (k ¼ 2,.,n ÿ 1), qb(r,0) ¼

q3(r,s3)q0(r,s2), q1(r,0) ¼ qf(r,s1)q3(r,s3)

Now the single-chain partition function Q[jA,jB] is defined by

equation

Q[jA,jB] ¼ Vÿ1
Ð

d3rqb(r,s1). (A3)

The local volume fractions 4A(r) and 4B(r) are defined as

4AðrÞ ¼
1

Q½jA;jB�

2

4

ð

s1

0

dsqf ðr; sÞqbðr; s1 ÿ sÞ

þ
X

nÿ1

k¼1

ð

s3

0

dsq3kÿ1ðr; sÞq3kðr; s3 ÿ sÞ

3

5

(A4)

4BðrÞ ¼
1

Q½jA;jB�

X

n

k¼1

ð

s2

0

dsq0ðr; sÞq3kÿ2ðr; s2 ÿ sÞ (A5)

where the functions ja(r) and 4a(r) (a ¼ A, B) obey the SCFT

equations

jA(r) ¼ cN[4B(r) ÿ fB] + x(r),

jB(r) ¼ cN[4A(r) ÿ fA] + x(r) (A6)

4A(r) + 4B(r) ¼ 1, x(r) ¼ (jA(r) + jB(r))/2 (A7)

Next, we describe the JK amphiphilic model (Fig. 3c). It can be

considered as the limiting case and simplification of the CT

model. Indeed, when the number of side chains n/N, while the

length fraction f is fixed, the distribution of B segments along the

backbone becomes continuous. The segments of A type are

subjected to the field jA(r), while the composite segments of AB

(or C) type are subjected to the combined field jA(r) + jB(r).

Therefore, for a given s, we have

jðr; sÞ ¼

�

jAðrÞ;

jAðrÞ þ jBðrÞ;

0# s\2 fA ÿ 1

2fA ÿ 1# s# fA
(A8)

Fig. 7 Hexagonal morphology at f ¼ 0.55 and cN ¼ 180. The volume

fraction 4B(r) of B monomer units: (a) the JK model and (b) the CT

model (m ¼ 9 and n ¼ 11).
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where fA has been defined by eqn (1).

The JK model single-chain partition function is given by

Q[jA,jB] ¼ Vÿ1
Ð

d3rq(r,fA;[jA,jB]) (A9)

where the end-to-end distribution function q(r,s) ¼ q(r,s;[jA,jB])

is defined by the modified diffusion equation

v

vs
qðr; sÞ ¼ V

2qðr; sÞ ÿ jðr; sÞqðr; sÞ; qðr; sÞ ¼ 1 (A10)

To calculate the local volume fractions we need the reverse

end-to-end distribution function q+(r,s) satisfying the analogous

equation

v

vs
qþðr; sÞ ¼ V

2qþðr; sÞ ÿ jðr; sÞqþðr; fA ÿ sÞ; qþðr; sÞ ¼ 1 (A11)

The local volume fractions 4A(r) and 4B(r) are given by the

integrals

4AðrÞ ¼
1

QðjA;jBÞ

ð

fA

0

dsqþðr; fA ÿ sÞqðr; sÞ (A12)

4BðrÞ ¼
1

QðjA;jBÞ

ð

fA

2fAÿ1

dsqþðr; fA ÿ sÞqðr; sÞ (A13)

For the JK model, the fields ja(r) and volume fractions 4a(r)

(a ¼ A, B) also obey the SCFT eqn (A6), (A7).

Eqn (A2), (A10), and (A11) are solved with periodic boundary

conditions which depends on the geometry of computational cell.

The solution procedure is based on the pseudo-spectral

method.9,16 The free energy (A1) is to be minimized with respect

to the dimensions of the simulation box.16

We show now that the JK model is isomorphous to the model

of simple asymmetric AC diblock melt (Fig. 2d), where the

segment A occupies the volume v and the homogeneous segment

C occupies the double volume 2v. To this end, we introduce the

variables

mA(r) ¼ 4A(r) ÿ 4B(r), mC(r) ¼ 24B(r) (A14)

wA(r) ¼ jA(r), wC(r) ¼ [jA(r) + jB(r)]/2 (A15)

where mA(r) and mC(r) are the local volume fractions of the

monophilic backbone A and the C chain segments at point r

subjected to the fields wA(r) and 2wC(r), respectively. The factor 2

arises due to the double volume of the segment C. From (A14)

and (A15), we have

4A(r) ¼ mA(r) + mC(r)/2, 4B(r) ¼ mC(r)/2 (A16)

jA(r) ¼ wA(r), jB(r) ¼ 2wC(r) ÿ wA(r) (A17)

Next, after the substitution of eqn (A16) and (A17) in eqn (A6)

and (A7) we obtain the SCFT equations with respect to new

variables defined by (A14) and (A15)

mA(r) ¼ cACN(mC(r) ÿ 2fB) + x1(r), mC(r) ¼ cACN(mA(r)

ÿ 1 + 2fB) + x1(r) (A18)

mA(r) + mC(r) ¼ 1, x1(r) ¼ (wA(r) + wC(r))/2 (A19)

where cAC ¼ c/4 characterizes the effective interaction between

the block A and the composite block C.
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