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ABSTRACT
One of the problems facing experiments designed to detect redshifted 21-cm emission from
the epoch of reionization (EoR) is the presence of foregrounds which exceed the cosmo-
logical signal in intensity by orders of magnitude. While fitting them so that they can be
removed, we must be careful to minimize ‘overfitting’, in which we fit away some of the
cosmological signal, and ‘underfitting’, in which real features of the foregrounds cannot be
captured by the fit, polluting the signal reconstruction. We argue that in principle it would
be better to fit the foregrounds non-parametrically – allowing the data to determine their
shape – rather than selecting some functional form in advance and then fitting its parame-
ters. Non-parametric fits often suffer from other problems, however. We discuss these be-
fore suggesting a non-parametric method, Wp smoothing, which seems to avoid some of
them.

After outlining the principles of Wp smoothing, we describe an algorithm used to implement
it. Some useful results for implementing an alternative algorithm are given in an appendix.
We apply Wp smoothing to a synthetic data cube for the Low Frequency Array (LOFAR)
EoR experiment. This cube includes realistic models for the signal, foregrounds, instrumental
response and noise. The performance of Wp smoothing, measured by the extent to which it
is able to recover the variance of the cosmological signal and to which it avoids the fitting
residuals being polluted by leakage of power from the foregrounds, is compared to that of
a parametric fit, and to another non-parametric method (smoothing splines). We find that
Wp smoothing is superior to smoothing splines for our application, and is competitive with
parametric methods even though in the latter case we may choose the functional form of
the fit with advance knowledge of the simulated foregrounds. Finally, we discuss how the
quality of the fit is affected by the frequency resolution and range, by the characteristics of the
cosmological signal and by edge effects.

Key words: methods: statistical – cosmology: theory – diffuse radiation – radio lines:
general.

�E-mail: harker@astro.rug.nl
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Non-parametric foreground subtraction 1139

1 IN T RO D U C T I O N

Several current and upcoming facilities (e.g. GMRT,1 MWA,2

LOFAR,3 21CMA,4 PAPER,5 SKA6) aim to detect redshifted 21-cm
line emission from the epoch of reionization (EoR). One problem
all such experiments face is to disentangle the desired cosmolog-
ical signal (CS) from foregrounds which are orders of magnitude
larger (Shaver et al. 1999). It is hoped and expected that these fore-
grounds will be smooth as a function of frequency, while the signal
we wish to detect will fluctuate on small scales (Shaver et al. 1999;
Di Matteo et al. 2002; Oh & Mack 2003; Zaldarriaga, Furlanetto
& Hernquist 2004). If we subtract the smooth component, then
the residual will contain contributions from fitting errors (hope-
fully small), the signal (hopefully largely intact) and noise. Because
21-cm emission is line emission, redshift information translates
into spatial information along the line of sight (modulo red-
shift space distortions), thus in principle allowing us to carry out
21-cm tomography. In practice, however, for the current generation
of instruments such as LOFAR or MWA, the noise per resolution
element is expected to exceed the signal by a factor of several, and
a spatial resolution element is expected to be of the order of the size
of interesting features of the signal. Current experiments therefore
aim to measure statistics such as the global signature of reioniza-
tion or the power spectrum of 21-cm emission. We wish to find
foreground subtraction algorithms which do not introduce a large
bias into these statistics or make the properties of the noise more
awkward.

In this paper, we propose a non-parametric technique, ‘Wp
smoothing’ (Mächler 1993, 1995), as a way to fit the foregrounds.
This method involves calculating a least-squares fit to the bright-
ness temperature as a function of frequency along each line of sight,
subject to a penalty on changes in curvature.

Our approach differs from the one usually taken in the recent
literature on foreground subtraction, in which, at some point, a
specific functional form for the foregrounds is assumed. For exam-
ple, Santos, Cooray & Knox (2005) assumed that the foregrounds
consisted of four components with spectra which were power laws
with spatially constant spectral index, and fit the parameters of these
power laws, along with parameters describing how the foregrounds
correlate between different frequencies, simultaneously with esti-
mating the power spectrum of the CS. Progressing to a model in
which the spectral index changes with position, Wang et al. (2006)
fit the log intensity along each line of sight with a second-order
polynomial in log ν. Polynomial fitting in frequency or log fre-
quency is rather popular (McQuinn et al. 2006; Morales, Bowman
& Hewitt 2006; Gleser, Nusser & Benson 2008; Bowman, Morales
& Hewitt 2009), and we have used it in previous work in which
we tested our ability to extract properties of the EoR signal from
a simulated data cube with realistic foregrounds (Jelić et al. 2008).
We also use it in Section 4.2 in order to compare with our non-
parametric approach. This permits reasonable recovery of the CS,
but leaves us with some concerns. First, the function has to be
carefully chosen, both to be able to capture the shape of the fore-

1 Giant Metrewave Telescope, http://www.gmrt.ncra.tifr.res.in/
2 Murchison Widefield Array, http://www.haystack.mit.edu/ast/arrays/mwa/
3 Low Frequency Array, http://www.lofar.org/
4 21 Centimetre Array, http://web.phys.cmu.edu/∼past/
5 Precision Array to Probe the EoR, http://astro.berkeley.edu/∼dbacker/eor/
6 Square Kilometre Array, http://www.skatelescope.org/

grounds and to have the right amount of freedom: for example, in
our simulations a second-order polynomial has insufficient free-
dom and produces biased fits [the difference from the results of
Wang et al. (2006) may be due to the larger frequency range studied
here], while a fourth-order polynomial has too much freedom and
‘fits out’ some of the signal. Secondly, we knew the original fore-
grounds by construction and could use this fact to test our recovery,
whereas in the real observations the data themselves will provide
the best estimate of the foregrounds. This latter point suggests using
a non-parametric fit in which the shape of the fit is ‘chosen’ by the
data.

We must also be careful in our selection of a non-parametric
method, however. One could consider using, for example, ‘smooth-
ing splines’: piecewise polynomial functions which minimize the
sum of the squared residuals and a term which measures the in-
tegrated squared curvature. A smoothing parameter, p, adjusts the
relative weight of the least-squares term and the curvature term. If
the least-squares term is given a large weight then the smoothing
spline becomes an interpolating function, passing through all the
data points, which is clearly undesirable. As the curvature term is
given larger weight, the smoothing spline becomes closer to being
a straight line, which leads to a systematic bias in the estimate of
the foregrounds if they have any curvature. In practice, this would
not be a problem if there were some intermediate value of the
smoothing parameter which led to acceptable fits, or if there were
a well-defined procedure for choosing a smoothing parameter for
a given problem. We have found, though, that there is no value for
which we do not see overfitting, large bias or both. The limiting be-
haviour of Wp smoothing as its smoothing parameter λ takes very
small or very large values is much more suited to our foreground
fitting problem, and we will show that it produces good fits for a
wide range of values of λ.

The spectral fitting which is the primary focus of this paper con-
stitutes only one step in the foreground subtraction, which in general
is a procedure with several stages which may interact (Morales &
Hewitt 2004; Morales et al. 2006). We assume that the first stage,
the subtraction of bright point sources, has already been carried
out on our data cubes. In the stage following the spectral fitting,
the different symmetries possessed by the fitting errors and the
CS may be exploited when performing parameter estimation. We
do not dwell on that here, though we touch briefly on the use
of the non-Gaussianity of the CS (e.g. Furlanetto, Zaldarriaga &
Hernquist 2004) to enhance the recovery of a signal when we look
at the skewness of the residual maps in Section 4.1.

A comparison of results on the quality of foreground subtrac-
tion using several methods, including Wp smoothing, polynomial
fitting and smoothing splines, may be found in Section 4. Here we
show that Wp smoothing overcomes the problems posed by para-
metric fits and by other non-parametric methods. As we have just
noted, for Wp smoothing we must specify the value of a smooth-
ing parameter, λ. We suggest a way of choosing λ and examine its
effects on our results, then show that some statistical properties of
the signal can be extracted well after removal of the foregrounds
using Wp smoothing. Before that, in Section 2, we start by briefly
describing the simulations on which our results are based. Then, in
Section 3, we lay some groundwork by sketching the mathematical
basis of our method, and showing how we solve the differential
equation which the Wp smoother fulfils. An appendix gives some
intermediate results that may be useful for others who may wish
to solve the equation by a different route. Some conclusions are
offered in Section 5.
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1140 G. J. A. Harker et al.

2 SI M U L AT I O N S O F E O R DATA

We test our fitting techniques on the same synthetic data cubes as
we have used in previous work (Harker et al. 2009). They have three
components: the CS, the foregrounds and the noise. The data cube
consists of spatial slices of 2562 pixels, representing an observing
window with an angular size on the sky of 5◦ × 5◦. This corre-
sponds to a square of side 624 h−1 Mpc (comoving) at z = 10 in the
cosmology assumed in the simulation. There are 170 such slices,
spaced at intervals of 0.5 MHz in observing frequency between 115
and 200 MHz. These frequencies correspond to redshifts of the 21-
cm line of between 11.35 and 6.12. At 150 MHz, �ν = 0.5 MHz
corresponds to �z ≈ 0.03, or a comoving radial distance of around
7 h−1 Mpc.

We estimate the CS primarily using the simulation f250C of Iliev
et al. (2008). The distribution of dark matter in a 100 h−1 Mpc
box was followed using 16243 particles on a 32483 mesh, and
the ionization fraction was then calculated in post-processing on
a 2033 mesh. The parameters of the assumed cosmology were
(�m, ��, �b, h, σ 8, n) = (0.24, 0.76, 0.042, 0.73, 0.74, 0.95). A data
cube of 203 × 203 × 3248 points was generated from the periodic
simulation boxes according to the method described by Mellema
et al. (2006), where the long dimension is the frequency dimension.
We then tiled copies of this cube in the plane of the sky in order
to fill our observing window, before interpolating on to our 256 ×
256 × 170 grid. The tiling means that there are periodic repetitions
in the CS in the plane of the sky, which may introduce problems if
we were to study spatial statistics, for example the power spectrum.
We do not study such statistics here, however. We are interested
mainly in how well the signal is recovered given the foregrounds
and noise, the maps of which are generated for the full observing
window and therefore have no periodic repetition. Two pixels which
receive their CS contribution from the same pixel of the original CS
map may none the less have very different contributions from the
foregrounds and noise.

For comparison with our results using f250C, in Section 4.4 we
study two simulations described by Thomas et al. (2009). These
use a one-dimensional radiative transfer code (Thomas & Zaroubi
2008) in conjunction with a dark matter simulation of 5123 particles
in a 100 h−1 Mpc box. They differ only in the source properties:
in one simulation it is assumed that the Universe is reionized by
quasi-stellar objects (QSOs), and in the other by stars. We label
these simulations ‘T-QSO’ and ‘T-star’, respectively. Data cubes
are derived from the periodic simulation boxes in a similar fashion
as was done for the f250C simulation.

We use the foreground simulations of Jelić et al. (2008). The
dominant component in these simulations is the contribution from
Galactic diffuse synchrotron emission. This is calculated by first
generating a four-dimensional realization (three spatial dimensions
and one frequency dimension; see e.g. Sun et al. 2008 for recent con-
straints on such realizations) and then integrating along the spatial
direction parallel to the line of sight to produce a three-dimensional
data cube (two spatial dimensions and one frequency dimension).
Galactic free–free emission is generated in a similar manner. Free–
free emission is expected to be much weaker than synchrotron at
these frequencies, contributing around 1 per cent of the total fore-
ground emission. None the less, on its own it would still dominate
the 21-cm signal. The final Galactic contribution to the foreground
maps comes from supernova remnants: two such remnants, mod-
elled as discs of uniform surface brightness with a flux density,
angular size and spectral index drawn from an observational cata-
logue, are placed at random positions on the map. The extragalactic

foregrounds comprise two types of source: radio galaxies and radio
clusters. The radio galaxies consist of star-forming galaxies as well
as Fanaroff–Riley (FR) I and FR II sources, with realistic flux den-
sity distributions and angular clustering. Though they are modelled
as uniform discs, they are in any case almost point-like at the res-
olution of the LOFAR EoR experiment. The radio clusters are also
modelled as uniform discs, with steep power-law spectra, and with
sizes and positions taken from an N-body simulation.

The main limitation of the foreground simulations used here is
perhaps the fact that we do not include Jelić et al.’s modelling of the
polarization. Observational constraints on the levels of polarization
at the scales and frequencies of relevance to EoR experiments have
only recently been obtained (Pen et al. 2008; Bernardi et al. 2009).
Even in the absence of a polarized signal from the sky, though, the
intrinsically polarized response of the antennas used in an experi-
ment such as LOFAR will compel us to consider polarization in a
final analysis. Poor polarization calibration may, for example, al-
low fluctuations in polarization to leak into the unpolarized power,
contaminating the EoR signal. Such issues are not the focus of this
paper, however, and so our simplified model of the instrumental
response also neglects polarization.

We include the effects of the instrumental response of LOFAR on
the signal and foregrounds by performing a two-dimensional Fourier
transform on each image, multiplying by a sampling function which
describes how densely the interferometer baselines sample Fourier
space, and then performing an inverse transform. The density of
visibilities is calculated using the planned locations of the LOFAR
core stations which will be used for EoR studies, and assuming
that our observational window is located at declination δ = 90◦

and observed for four hours each night. In reality, the LOFAR
project will observe several windows at different declinations, and
may integrate for longer each night: the observing plan is not yet
finalized. It should be borne in mind that the results of this paper
are confined to a single observing window, but that having several
in the final data set will allow important cross-checks as well as
improving the statistics. At present, we use the same sampling
function at all frequencies; in reality, the ‘uv coverage’ (the region of
the Fourier plane where the sampling function is not zero) changes
with frequency, so this amounts to ignoring information from parts
of the Fourier plane which are not sampled at all frequencies. If
we adopt a strict criterion whereby we discard uv points which
have data missing at any frequency, then with the uv plane gridding
and frequency coverage adopted in this paper less than 20 per cent
of the data would have to be discarded. If the frequency range is
shortened to 115–180 MHz, and if we relax our criterion so that uv
points at which there are measurements in at least 95 per cent of the
frequency channels are included, then the proportion of data which
must be discarded goes down to less than 10 per cent. Clearly, it
would be desirable to reduce this still further: for example, Liu et al.
(2009a) describe a method which is claimed to alleviate some of the
problems associated with changing uv coverage, though it is not yet
clear how their method generalizes to non-linear fitting techniques
such as those studied in this paper.

Noise images are produced by generating uncorrelated Gaus-
sian noise at grid points in the Fourier plane where the sampling
function is not zero, transforming to the image plane, and then
normalizing this noise image so that it has the correct rms. The
noise rms is calculated as in Jelić et al. (2008) assuming 400 h
of integration, and includes a frequency-dependent part from the
sky (scaling roughly as ν−2.55) and a frequency-independent part
from the receivers, such that at 150 MHz it has a value of 52 mK.
The frequency dependence of the noise results from the frequency
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Non-parametric foreground subtraction 1141

dependence of the system temperature, which is modelled as
T sys = 140 + 60(ν/300 MHz)−2.55 K.

The instrumental corruptions introduced by the observing process
will clearly be rather more complex than we have assumed here;
Labropoulos et al. (2009) discuss this in more detail, with a view
towards developing a complete end-to-end model of the effects on
the signal of foregrounds, the atmosphere and the instrument. The
weighting of points in the uv plane used to generate our image cubes
may also affect the foreground subtraction (Bowman et al. 2009),
but we have not investigated the effect of such changes here.

3 TH E Wp M E T H O D

In this section, we provide some justification for trying Wp smooth-
ing as a foreground fitting technique and briefly review the relevant
mathematical results given by Mächler (1993), Mächler (1995). We
then describe our algorithm for implementing Wp smoothing.

3.1 Background

If pressed to explain what one meant by trying to find a ‘smooth’
curve that fit some data set, one might be tempted to say, for example,
that the curve had no ‘wiggles’. A function with constant curvature
might well be considered extremely smooth in this sense. In the case
of the smoothing splines mentioned in the introduction, however,
the roughness of a curve is given by its integrated squared curvature.
By this measure, a function with constant moderate curvature could
well be computed as being less smooth than an almost straight
line with small wiggles superimposed. This is the motivation for
considering, instead, the integrated change of curvature.

To be more precise, suppose we have a set of observations
{(x1, y1), (x2, y2), . . . , (xn, yn)} which we wish to fit with a
smooth function f (x). Each y i may have an associated error, σ i. In
our context, the x i are a series of observing frequencies and the y i

the corresponding differential brightness temperature, all at a given
point on the sky. σ i is the rms noise in the map at frequency x i.
Given a function f (x), its curvature, defined as the reciprocal of the
radius of curvature, is given by κ(x) = f ′ ′(x)(1 + f ′(x)2)−3/2, and
its standardized change of curvature (or change of log curvature) is
given by

κ ′

κ
= f ′′′

f ′′ − 3
f ′f ′′

1 + f ′2 ≈ f ′′′

f ′′ . (1)

The approximation shown holds exactly at local extrema (f ′ = 0)
and at inflection points (f ′ ′ = 0) and is adopted for convenience.

The first thing to note is that the standardized change of curvature
becomes singular at inflection points. Thus, the number of inflection
points that a function possesses is the most important determinant
of its roughness, and we need some sort of procedure to specify the
number and position of the inflection points of our smoothing func-
tion. Once this is done, we need a way to measure the roughness
‘apart from inflection points’ to finally specify the function. The im-
portance of inflection points is reflected in the name of the method,
‘Wp’ being short for the German word ‘Wendepunkt’, meaning
‘inflection point’.

Suppose, then, that the inflection points wj, j = 1, 2, . . . , nw, are
given. Then, we may write

f ′′(x) = pw(x)ehf (x), (2)

where

pw(x) ≡ sf (x − w1)(x − w2) . . . (x − wnw
) (3)

s f = ±1 and hf is a function as many times differentiable as f ′ ′.
Now,

f ′′′

f ′′ = d

dx
log f ′′ = (log pw)′ + h′

f (4)

or, rearranging,

h′
f = f ′′′

f ′′ −
nw∑
j=1

1

x − wj

. (5)

This separates our measure of roughness into a part which depends
on the number and position of the inflection points and a part which
depends on the other properties of f .

We may then express the smoothing problem, given the position
of the inflection points, as follows. We wish to find the function f
which minimizes

n∑
i=1

ρi(yi − f (xi)) + λ

∫ xn

x1

h′
f (t)2dt, (6)

where λ is a Lagrange multiplier, the integral term measures the
change in curvature ‘apart from inflection points’ and the function
ρ i determines the size of the penalty incurred when f (x i) devi-
ates from y i. For simple least-squares minimization, for example,
ρ i(δ) = 1/2δ2 for all i, where δ is the difference between the data
and the fitting function.

The solution of this minimization problem must then satisfy an
ordinary differential equation (ODE) and boundary conditions de-
rived by Mächler (1993, 1995), who also considered more general
cases, for example using higher derivatives of hf in the integral
term. The ODE found by Mächler for the Wp smoothing case is as
follows:

h′′
f = pwehf Lf , (7)

where, using the notation a+ = max(0, a),

Lf (x) = − 1

2λ

n∑
i=1

(x − xi)+ψi[yi − f (xi)] (8)

and ψ i(δ) = (d/dδ)ρ i(δ). The solution must satisfy some simple
boundary conditions,

h′
f (x1) = h′

f (xn) = 0 (9)

as well as some rather more problematic boundary conditions,∑
i

ψi[yi − f (xi)] =
∑

i

xiψi[yi − f (xi)] = 0. (10)

We may write ψ i explicitly as ψ i(δ) = δ for least squares, or, taking
the errors into account, as ψ i(δ) = δ/σ i. Equivalently, each data
point is associated with a weight ci = 1/σ i; this is our default
weighting scheme, but we consider other choices in Section 4.3.
Alternatively, a more robust method may use

ψi(δ) =

⎧⎪⎨
⎪⎩

C if δ/σi > C,

δ/σi if |δ/σi | ≤ C,

−C if δ/σi < −C

(11)

for some C > 0. When working with our simulations, this compli-
cation is unnecessary, since the synthetic data cubes have no outliers
by construction. We mention it here only for completeness, since a
robust method may become necessary for dealing with more realis-
tic simulations and with the real data, and to illustrate the point that
the method can deal with a general choice of penalty function.

Not only are the boundary conditions problematic, but the ODE
itself, equation (7), includes on the right-hand side a contribution
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1142 G. J. A. Harker et al.

from f (x i) for each x i, meaning that the equation is not in the
‘standard form’ assumed by off-the-shelf solvers for boundary value
problems (BVPs).

Recall that the minimization is performed with s f and {wi} fixed.
To apply the procedure to an arbitrary data set, then, requires a fur-
ther minimization over the number and position of the inflection
points. We therefore require some method to give a starting ap-
proximation for f , f ′, hf , h′

f , nw , {wi} and s f . For our particular
application, we need not consider arbitrary data sets: the properties
of the foregrounds seem to allow us to achieve acceptable fits with
nw = 0. This might be expected if the foregrounds were to con-
sist of a superposition of power laws with varying spectral index,
for example arising from different sources along the line of sight.
We therefore impose this condition throughout this paper (with one
small exception discussed in the following subsection) and do not
examine how to perform a minimization over nw and {wi}.

In principle, we should also like some method to choose the
Lagrange multiplier, λ. Wp smoothing remains well defined for
λ → 0 and λ → ∞. Indeed, an attractive feature of the method
is that for λ → 0, f does not become an interpolating function as
happened for smoothing splines: rather, it becomes the best-fitting
function having the given inflection points. Meanwhile, for λ →
∞, f becomes the best-fitting polynomial of degree nw + 2 with
the given inflection points, rather than becoming a straight line
which automatically underestimates the curvature.

Mächler (1993) suggests using the autocorrelation function of
the residuals to estimate λ, reducing λ from a large value in stages
until the residuals become uncorrelated. This could be problematic
for our application, since there may be real correlations in the noise
between frequency bands due to the CS we aim to find.

We might note instead that because λ controls the degree of reg-
ularization we apply during the fitting, with smaller λ affording
a greater degree of freedom in the functional form, a choice of λ

expresses our prior knowledge of how smooth we expect the fore-
grounds to be. If that knowledge is uncertain, a fully consistent
approach would be to estimate what level of freedom is justified
by the data themselves. Such a framework could also encompass
the choice of nw , which may be viewed as a more important regu-
larization parameter. This sort of problem, and the topic of mixed
signal separation in general, is of course the subject of an extensive
literature in information theory and Bayesian inference. Unfortu-
nately, Wp smoothing seems to present a rather awkward case for
such methods. Since it is already quite computationally expensive
to calculate the Wp smoothing solution for even a single value of λ,
we have not chosen to go via this route.

We have instead taken a more heuristic approach, smoothing us-
ing different values for λ and using our knowledge of the simulated
foregrounds to test the quality of the fit according to various criteria.
We detail these criteria, and use our results on simulated data cubes
to choose the value of λ used for the subsequent parts of the paper,
in Section 4.1.

In the following subsection, we give some details of the algorithm
we use to solve equation (7). A reader uninterested in these details
should skip directly to Section 4, in which we describe our results.

3.2 Algorithm

An algorithm to solve equation (7) subject to the boundary condi-
tions given by equations (9) and (10) is reportedly given by Mächler
(1989). Since there is no publicly available implementation of this
algorithm, and since we will not deal with the most general case,
we have experimented with different approaches. The first is to

rewrite the differential equation as in Appendix A, such that it can
be solved by a standard BVP solver. The second, which we have
found to be faster and more stable (though giving identical results)
is to discretize the differential equation into a finite difference equa-
tion defined on a grid, and then solve the resulting algebraic system
using standard methods.

We choose a mesh such that the abscissae of the data points are
also mesh points. That is, we have a mesh X1, X2, . . . , XN , where
N ≥ n, and where Xmi

= xi for i = 1, . . . n, with m1 = 1 and
mn = N . A mesh with two additional points between each pair of
data points (that is, with N = 3n − 2) seems to be adequate, in
that adding more mesh points does not change the solution at the
position of the data points to high accuracy.

Let f (Xi) = f i and h(Xi) = hi (which implies that f (xi) = fmi
).

Further, let �j = (Xj+1 − Xj)(Xj − Xj−1). Then, we may discretize
equation (2) as

fj+1 − 2fj + fj−1 − �jpw(Xj )ehj = 0. (12)

Similarly, we may rewrite equation (7) as

0 = hj+1 − 2hj + hj−1

−�jpw(Xj )ehj

[
− 1

2λ

n∑
i=1

(Xj − xi)+ψi(yi − fmi
)

]
, (13)

where in each case the index j runs from 2 to N − 1. The boundary
conditions of equation (9) become

h2 − h1 = hN − hN−1 = 0, (14)

while those of equation (10) become∑
i

ψi(yi − fmi
) =

∑
i

xiψi(yi − fmi
) = 0. (15)

We solve the system of equations (12)–(15) using the MATLAB routine
‘fsolve’. Our method is therefore essentially a relaxation scheme,
but one in which the unusual form of equations (13) and (15)
does not allow us to take the shortcuts used by standard relax-
ation schemes, which exploit the special form of algebraic systems
arising from finite difference schemes.

The initial guess for the solution is also important, and a poor
guess can greatly increase the execution time. A method for finding
an initial guess for a generic data set would need to provide an
estimate of the number and position of the inflection points. We have
found, however, that we can fit the foregrounds using estimates with
no inflection points – or, to put it another way, no wiggles – i.e. nw

= 0. Imposing this condition simplifies the problem. It is convenient
to provide an initial guess for f which also has no inflection points
within the range being fitted, and we have found that using a power
law works reasonably well.

In Fig. 1, we have shown a fit for one line of sight using
nw = 1. To produce this fit we performed a further minimization
of the penalty function

∑n

i=1 ρi(yi − f (xi)) over the position of the
inflection point, w1. Lacking a method to give an initial estimate
for w1, we used a simple golden section search algorithm with w1

constrained only to lie somewhere in the frequency range spanned
by the data. For all values of w1 we used the same initial guess for
f as for the nw = 0 case, i.e. a power law. We have not attempted to
provide an initial guess with an inflection point in the right place,
but fortunately the execution time is not too severely affected. The
extra minimization step requires us to solve our algebraic system
for more than 50 values of w1 in this instance.

Using this scheme, fitting the foregrounds using nw = 0 for one
line of sight for our fiducial value of λ (see Section 4.1) usually
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Figure 1. We show, in the top panel, the differential brightness temperature
as a function of frequency for a particular line of sight. We also show
the individual contributions to this total from the foregrounds, noise and
CS. We have multiplied the size of the CS by a factor of 10, and offset
the corresponding line by −1 K for clarity. The bottom panel shows the
difference between the Wp smoothing estimate of the foregrounds and their
true value, expressed as a percentage, for three values of the smoothing
parameter λ with nw = 0, and for λ = 1 with nw = 1. The inflection point
in the latter case is at w1 = 188.4 MHz.

takes less than 1 s on a typical workstation, though some awkward
lines-of-sight may take tens of seconds. Going to smaller λ does
increase the execution time, however. Our simulated data cube has
2562 lines-of-sight, and since the fitting for each one is independent
the calculation can be trivially split between several processors,
meaning processing the cube typically takes of the order of a few
hours on our set-up. Fitting using nw = 1 and minimizing over the
position of the inflection point increases the required time by ap-
proximately two orders of magnitude, so we have not systematically
studied the nw > 0 case. We comment on this case when we show
an example of an nw = 1 fit in Fig. 1, however.

4 R ESULTS

To illustrate the problem we are attacking, in the top panel of Fig. 1
we show the contribution to the differential brightness temperature
δT b along an example line of sight from the foregrounds, noise and
CS. For this particular line of sight, the total intensity is positive
at all frequencies. Because at each frequency the mean over all
lines-of-sight in one of our images must be zero, however (since an
interferometer cannot measure the mean, which for the foregrounds
could be as much as tens or hundreds of kelvin at these frequencies),
if we had chosen a different line of sight then we could have seen
δT b < 0 for all ν, or have seen some positive and some negative
values due to noise. The latter situation is atypical, however, since
the fluctuations in the foregrounds are of the order of a few kelvin

(making the line of sight shown in Fig. 1 fairly typical), whereas the
noise fluctuations are of the order of tens of millikelvin. The size
of the CS has been increased by a factor of 10 for the plot, so that
the fluctuations are visible; we have also offset the line by −1 K
for clarity. The CS is very nearly zero for ν � 170 MHz, owing to
reionization.

The bottom panel of Fig. 1 shows how well we estimate the
foregrounds by applying Wp smoothing to the total signal along
this line of sight, for three different values of λ with nw = 0, and
for λ = 1 with nw = 1. In the nw = 1 case, the position of the
inflection point is w1 = 188.4 MHz. Though no conclusions can
be derived from a single line of sight, we can see that accuracies
of around 1 per cent or better are reached, and this turns out to
be quite typical. The nw = 1 fit is very close to the corresponding
nw = 0 fit far from the inflection point, but the fit becomes noticeably
worse near the inflection point. This reflects the fact that we force
the fit to contain an inflection point when the simulated foregrounds
do not have one. For the rest of the paper we therefore consider
only nw = 0. It seems unlikely that realistic modifications to the
foreground model alone would force us to relax this assumption.
We do not know at present if, for example, calibration errors may
induce a smooth change in the change of the spectrum which would
introduce inflection points, but we know of no specific effect which
would do so.

In the remainder of this section, we compare foreground sub-
traction using Wp smoothing with that using parametric fitting and
smoothing splines, and study how its performance is affected by
changes in the frequency resolution and range, in the weights ci and
in the model for the CS. We start, though, by choosing a value for
the smoothing parameter, λ, and describing the criteria we use to
determine the quality of the fitting.

4.1 Choice of smoothing parameter

Perhaps the most natural way to estimate the quality of the fit is
to look at the rms difference between the simulated foregrounds,
which are known exactly, and the estimates for the foregrounds ex-
tracted from the complete data cube. We show this rms difference as
a function of observing frequency, for five different values of λ, in
Fig. 2. We also show the frequency dependence of the noise, which
we have scaled down by a factor of 5 for ease of comparison, and
the rms of the CS. The fact that we must scale the noise for this com-
parison shows immediately that the fitting errors are much smaller
in magnitude than the noise. Indeed, this is a relatively easy target to
achieve with parametric or non-parametric fits, and is achieved for
all the values of λ shown. Good ‘by eye’ fits are also easy to obtain
for individual lines-of-sight. Other than for λ = 100, over most of
the frequency range the magnitude of the fitting errors appears to
scale roughly with the noise, as one might expect. At the edges,
however, the errors become much larger, growing to approximately
twice the size of the errors in nearby interior bins. This does not
seem unreasonable: for interior points the fit is constrained from
both sides, while for edge points it is constrained only from one
side. We study edge effects in more detail in Section 4.3.

We have chosen to show the result for λ = 1, but we find that
for values of λ near 1 we obtain very similar results. For exam-
ple, lines for λ = 0.5 or 2 would be almost indistinguishable. The
λ = 1 line therefore represents very nearly the minimum rms error
we can achieve using this method. For λ = 0.1 (light smoothing)
the fit becomes noticeably worse: on any one line of sight, random
features of the noise pull the fitting function around too easily. This
just increases the rms error by leaking noise into the fitting errors.
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Figure 2. The rms difference between the known, simulated foregrounds,
and the foregrounds estimated from Wp smoothing for our 2562 lines-of-
sight, as a function of frequency. The solid, dashed and dot–dashed lines
show estimates using different values of the smoothing parameter, λ, as
given in the legend. With dotted lines, we show the rms of the noise, scaled
down by a factor of 5 to facilitate comparison, and the rms of the CS.

For λ = 10 (heavy smoothing) there is also a small increase in the
average rms error compared to λ = 1. Oscillations in the error are
also clearly visible, however: the excessive smoothing prevents the
fitting function from accurately taking the shape of the underlying
foregrounds, introducing an additional, systematic error in parts of
the frequency range. We will examine this in more detail below
when we study the cross-correlation of foreground maps at a given
frequency with the fitting residuals. For now, we note merely that
this sort of error is potentially more pernicious than a mere increase
in the noise, since it allows spatial fluctuations in the foregrounds
to leak into the signal.

The results for λ = 100 and 0.01, plotted using thin lines, are
intended to indicate how the fitting behaves in the limit λ → ∞ and
λ → 0, respectively. For λ = 100 the oscillations which are also
visible in the λ = 10 fit become very large, resulting in a poor fit.
This is not unexpected, since the λ → ∞ limit for Wp smoothing
for nw = 0 is the best-fitting quadratic function, which we know
from previous work to be a poor model for our data compared to,
for example, a cubic function. The λ → 0 limit is more interesting,
since it corresponds to the best-fitting function with no inflection
points in the interval. For λ = 0.01 and 0.1 the fits are very similar,
and do not give an rms error much worse than the best value for
λ. As we mentioned in Section 3.1, this well-behaved limit is one
of the attractive features of Wp smoothing. The poorer fit for very
small λ when compared to λ = 1 suggests that such small values
allow the function too much freedom: some of the 21-cm signal
and noise are fitted away (‘overfitting’). The condition that nw = 0
imposes quite a strong constraint on the shape of the fits, however,
and ensures that even as λ → 0 the rms error does not become
terribly large.

The contents of Fig. 2 are computed by taking an rms over all
2562 lines-of-sight in our data cube. The results for λ ≤ 10 do not
change appreciably if we use only, say, 322 lines-of-sight, and do
not depend on the position of the selected sub-region. Only the λ =
100 result changes: if we choose a sub-region where the foregrounds

are relatively intense, the size of the oscillations is reduced consid-
erably, in some cases producing an rms very similar to the λ = 10
result. The oscillations come from regions where the foregrounds
are less intense, and where a quadratic function is clearly unable
to match the shape of the foregrounds as a function of frequency.
This may occur because dim regions are where the Galactic diffuse
synchrotron, which is usually the dominant foreground component,
is weakest. At the highest frequencies, emission from sources with a
flatter spectrum, for example radio galaxies, becomes more impor-
tant and can even become dominant, leading to a flat total spectrum.
This flat area can only be fitted with a quadratic function if it is near
the peak or trough of the quadratic curve, and moreover this curve’s
extremum must be broad. At the lower frequencies, where Galactic
synchrotron takes over again, the spectrum becomes steeper and
cannot be fitted by a quadratic near its (broad) extremum. This
leads to systematic errors in the shape of the fit, which manifest
themselves as wiggles in the plot of the rms error as a function of
frequency.

The first objective of the LOFAR EoR key project is simply to
make a detection of emission from the EoR, and to find the red-
shift evolution of the global emission which would be a signature
of reionization. If we look at the variance of the residuals after the
foregrounds have been subtracted from the data, then subtract the
(known) variance of the noise, any remaining variance is expected
to arise from fluctuations in the CS. This change in the variance of
the fluctuations as a function of redshift constitutes a detection of
the global signature of reionization. Fig. 3 shows how well this vari-
ance is recovered for different values of the smoothing parameter,
λ. The black, dotted line shows the variance of the input CS, while
the other three lines show the estimates recovered from the full data
cube. We do not plot a line for λ = 0.1 because it overplots the
λ = 0.5 line almost exactly. For the majority of the redshift range,
z ≈ 6–10, the Wp smoothing with λ = 10 does reasonably well
in recovering the variance of the CS (much larger λ, as expected
from Fig. 2, does poorly, the fitting errors adding to the rms of the
residuals and resulting in a large overestimate of the variance). It
does better than λ = 0.5 or 2 in this range, a property which is not
clearly reflected in Fig. 2. In this sense, Fig. 3 does a better job of
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Figure 3. The recovered global signal from the EoR as a function of redshift,
for three different values of λ. The variance of the fluctuations of the input
CS is shown as the black, dotted line. The other three lines show estimates
of this quantity extracted from the simulated data cube. Negative estimates
for this variance arise because of overfitting: the variance of the residuals
after foreground subtraction is smaller in this case than the noise variance.
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Figure 4. The Pearson correlation coefficient between maps of the input
foregrounds and the corresponding maps of the fitting errors at the same
observing frequency. We define the error to be the value of the fit minus
the value of the input foregrounds, so a positive correlation implies that
where the foregrounds are positive (negative) the fit tends to overestimate
(underestimate) the foregrounds, while a negative correlation implies that
where the foregrounds are positive (negative) the fit tends to underestimate
(overestimate) the foregrounds. r = ±1 correspond to perfect correlation
and perfect anticorrelation, respectively. The line styles are shown in the
same order in the legend as they appear at the far left-hand side of the plot.

showing the effect of overfitting, which reduces the variance of the
fitting residuals and causes us to underestimate the CS.

By contrast, Fig. 4 shows the effect of underfitting. Here we
show the Pearson correlation coefficient, r, between images of the
foregrounds at a given observing frequency, and images of the fitting
errors (difference between the fit and the known foregrounds) at the
same frequency. If the pixels of the foreground image and of the
image of fitting errors have the values ai and bi, respectively, where
i = 1, . . . , 2562, then r is given by

r =
∑

i(ai − ā)(bi − b̄)[∑
i(ai − ā)2

∑
i(bi − b̄)2

]1/2 , (16)

where ā and b̄ are the mean of ai and bi, respectively. r = 1 corre-
sponds to perfect correlation and r = −1 to perfect anticorrelation.
We see immediately in Fig. 4 that for heavy smoothing, λ= 10, there
are quite strong correlations (r = ±0.6) between the foregrounds
and the fitting errors in some parts of the frequency range. The level
of correlation reduces as λ is reduced, though there appears to be
little to choose between λ = 0.5 and 0.1.

This shows that, as one might expect, heavier smoothing is more
likely to allow spatial power to leak from the foregrounds into
the residual maps used for later analysis. What constitutes an ac-
ceptable level of leakage will depend on the properties of the real
foregrounds: if they do not contain more power (especially small-
scale power) than our simulated foregrounds, and if rms errors of the
order of those shown in Fig. 2 can be achieved, even correlations as
large as those shown for λ = 10 in Fig. 4 may not seriously harm the
recovery of power spectra or other statistics. None the less, heavy
smoothing, which retains more of the desired signal (see Fig. 3) at
the expense of systematic correlations with the foregrounds, can be
regarded as a more aggressive foreground cleaning strategy. Light
smoothing runs more of a risk of cleaning away the signal, but may
be less susceptible to systematics, and so may therefore be regarded
as a more conservative detection strategy.
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Figure 5. As in Fig. 3, we show the recovered global signal from the EoR as
a function of redshift, for three different values of λ. In this case, however,
before calculating the variance of the residual maps or the maps of the
original signal, we smooth the maps with a 4 × 4 boxcar filter. The line
styles are as in Fig. 3.

The way the recovered variance falls away at high redshift (where
the noise is larger) in Fig. 3 seems to suggest that more regulariza-
tion is required there, i.e. that we may want to consider varying λ

as a function of frequency. In practice, doing so does not appear to
deliver any significant overall improvement in performance. We do
note, though, that equation (6) implies that a change in λ is degen-
erate with an overall scaling of the weights, and that we directly
address changes in the weighting scheme in Section 4.3.

The recovery at high redshift can be improved, however, if we
look at the variance of spatially smoothed maps. This is because
the noise and fitting errors are most dominant on small scales,
and smoothing removes small-scale power. We illustrate this in
Fig. 5. This is very similar to Fig. 3, apart from the fact that before
calculating the variance of the residual maps or the maps of the
original signal, we smooth them with a square boxcar filter of 4 ×
4 pixels. The foreground fitting and subtraction are still carried out
on the full resolution data cube. For λ = 0.5 and 2, this allows us to
recover a reasonable estimate of the variance of the CS at this scale
over a much larger portion of the redshift range than in Fig. 3. It also
illustrates more clearly that the increase in the recovered variance
for λ = 10 is spurious and comes about because of leakage of power
from the foregrounds into the residual maps. The recovered variance
exceeds the true variance of the CS at precisely those redshifts
where, as we may see from Fig. 4, the (anti-)correlations of the
fitting errors with the foregrounds are largest. Fig. 5 suggests that
smoothing on an appropriate scale may help to detect the signature
of reionization in early data from EoR experiments, and points
towards the need for a full power spectrum analysis to properly
study the scale dependence of the various components of the data
cubes. Since this paper is concerned with the quality of the fitting,
and since the variance of unsmoothed maps seems to provide a
stringent test of this, we do not further explore scale dependence
here. The recovery and analysis of the power spectrum will instead
be studied in a forthcoming paper.

In Fig. 6, we show how changing λ affects our recovery of the
changes in the skewness of the one-point distribution of the signal.
As in Harker et al. (2009), we apply a Wiener deconvolution to
foreground-subtracted images, and plot the skewness of the distri-
bution of pixel intensity in these images as a function of redshift.
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Figure 6. The skewness of the one-point distribution of pixel intensity as a
function of redshift, after subtracting the foregrounds using Wp smoothing
with different values of λ, and then applying a Wiener deconvolution to each
image as in Harker et al. (2009). We also plot the skewness we recover if we
apply the deconvolution to maps consisting only of the signal plus the noise,
which are equivalent to maps where the foregrounds have been subtracted
perfectly. The lines in the figure are smoothed with a boxcar filter 20 points
wide to improve the clarity of the plot.

The lines in the plot are boxcar smoothed using a window with a
span of 20 points, so that the different histories can be compared
by eye more easily. Note that the plot does not extend to the lowest
redshift in our data cube: at the lowest redshifts, the signal is very
small (cf. the lower panel of Fig. 1) and the deconvolution becomes
unstable. The recovered changes in skewness are very robust to al-
tering λ, with nearly identical histories being produced. We also plot
the result for the case of perfect foreground subtraction (labelled
‘no FG’ in the legend), which is calculated by applying the decon-
volution to a data cube consisting only of the signal and noise. The
foreground-subtracted cubes reproduce this expected result quite
well.

Reionization causes a fall in the skewness (to negative values in
our simulations: recall that if the neutral hydrogen density merely
traced the cosmological density field then we would expect positive
skewness), followed by a rise at low redshift (Wyithe & Morales
2007; Harker et al. 2009). We note that the foreground simulation
used here does not possess large skewness. Thus, correlations be-
tween the foregrounds and the fitting errors do not cause serious
contamination in the recovered skewness of the 21-cm signal. If
the real foregrounds turn out to be more skewed, Fig. 6 suggests
we would be wise to choose a value of λ which minimizes the
correlations, perhaps at the expense of reducing the variance of the
recovered signal. Since with our current foreground models the ex-
tracted skewness does not appear to be sensitive to the value of λ,
for the remainder of the paper we do not use the recovered skewness
to test our fitting.

There is quite a wide range of reasonable values for λ which
achieve a compromise between over- and underfitting. For the pur-
poses of comparison to other techniques in the remainder of this
section we adopt λ = 0.5, since Fig. 4 shows there seems to be little
or no benefit from moving to smaller values (for which the fit is
slower to compute).

To help illustrate some properties of the fitting, in Fig. 7 we show
the correlation coefficient, r, between the fitting errors obtained
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Figure 7. We show the Pearson correlation coefficient, r, between the fitting
errors (FE) and the CS (solid line) and between the FE and the noise (dashed
line).

using this value of λ and the input CS and noise. This complements
Fig. 4 in shedding some light on the origin of the fitting errors.
Naturally, maps of the noise are positively correlated with maps of
the fitting errors: this just shows that where the noise is positive we
tend to overestimate the foregrounds, and vice versa. Over most of
the frequency range, the correlation coefficient between the fitting
errors and the CS is close to zero. The CS is so small compared
to the noise that its effect on the fitting errors is almost negligible.
There is a feature at z ≈ 7.5, however, which is the redshift at
which reionization is (rather abruptly) completed in our simulation
of the CS, as can be seen in e.g. Fig. 3. Despite the fact that we
cannot measure the mean 21-cm signal at a given frequency using
an interferometer, the drop in the mean caused by reionization may
lead to a feature spanning several spectral bins of a particular line
of sight. Though the feature will tend to be much smaller than the
noise in any particular bin, the fact that it is correlated between bins
may mean it can affect the fitting. We caution that reionization is
completed very rapidly in this particular simulation, and that the
box size is not especially large compared to the size of individual
ionized bubbles towards the end of reionization, so that it does not
constitute a properly representative region of the Universe. Even the
small correlation we see between the signal and the fitting errors
in Fig. 7 may therefore be an overestimate. A similar plot made
using the other two simulations described in Section 2, which both
produce more gradual reionization, shows no such sharp feature.

Our final comment on Fig. 7 is that the fitting errors appear to
have only weak correlations with all three components of our data
cube (CS, noise and foregrounds) for Wp smoothing with λ = 0.5.
At first sight, this seems to make the source of the errors somewhat
obscure. However, this happens because the fitting error at some
point in some frequency bin is not caused only by the noise at that
frequency, but also by noise in nearby frequency bins, due to the
smoothing. The correlation coefficients plotted here are calculated
only between maps at the same frequency, so they do not show this
influence directly.

4.2 Comparison to other fitting methods

We compare the performance of Wp smoothing with λ = 0.5 with
two other techniques in Figs 8 and 9. The top panel of Fig. 8 shows
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Figure 8. We compare the performance of Wp smoothing with λ = 0.5
(solid blue lines) with a third-order polynomial fit (dashed red lines) and
smoothing splines with p = 3 × 10−5 (dot–dashed green lines; see equa-
tion 17 for a definition of p). The top panel is similar to Fig. 3 and shows
how well each method recovers the variance of the fluctuations in the CS
(black dotted line) as a function of redshift. The bottom panel is similar
to Fig. 4 and shows the Pearson correlation coefficient between the fitting
errors and the foregrounds.

how well the three methods recover the variance of the fluctuations
in the CS as a function of redshift, as in Fig. 3, while the bottom
panel shows the Pearson correlation coefficient between the fitting
errors and the foregrounds, as in Fig. 4. The four panels of Fig. 9
show the fitting errors for four different lines-of-sight. The line
styles are the same for both figures: the solid blue lines show the
Wp results, the red dashed lines show the results when we estimate
the foregrounds by fitting a third-order polynomial in log ν to each
line of sight, and the green dot–dashed lines show the results using
smoothing splines to fit the foregrounds. Smoothing splines are a
non-parametric method which we considered as an alternative to
Wp smoothing. The smoothing spline fit is a piecewise polynomial
function f minimizing

p

n∑
i

ci[yi − f (xi)]
2 + (1 − p)

∫ xn

x1

[f ′′(x)]2 dx, (17)

where p is a smoothing parameter. p = 0 gives a straight-line fit,
while for p = 1 f becomes an interpolating cubic spline. For Figs 8
and 9, we used p = 3 × 10−5.

Fig. 8 suggests that the smoothing spline fit does poorly com-
pared to the Wp smoothing: not only does it suppress the variance
of the residuals more than Wp smoothing for our chosen values of
λ and p over most of the frequency range (a symptom of overfit-
ting), but it simultaneously produces fitting errors which correlate
more strongly with the foregrounds (a symptom of underfitting).
For a small frequency interval near z = 10, the smoothing spline fit
appears to suppress the variance less than the other methods. This,
however, is precisely the interval where the correlations of the errors
with the foregrounds are strongest, which illustrates our point about
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Figure 9. We show the fitting errors along four example lines-of-sight for
Wp smoothing with λ = 0.5, a third-order polynomial fit and smoothing
splines with p = 3 × 10−5. Line styles are as for Fig. 8. From top to bottom,
the level of the foregrounds at 150 MHz for each of the lines-of-sight is 1.89,
1.65, 4.93 and −1.14 K. The top panel shows the same sight line as Fig. 1.

the dangers of foreground leakage. Similarly to the Wp case, we
can improve the performance of the smoothing spline fits according
to either the overfitting or underfitting criterion by tuning p, but this
comes at the expense of worse performance according to the other
criterion. The fit is rather sensitive to changes in p. For p = 3 ×
10−6, a factor of 10 smaller than the value used for Fig. 8 (recall
that for the smoothing spline fit, smaller p corresponds to heavier
smoothing), the fitting errors become almost perfectly correlated
with the foregrounds for a large part of the interval around z =
9.5. This causes the recovered variance to shoot off the scale of the
top panel of Fig. 8, because of power leaked from the foregrounds.
If we instead use p = 3 × 10−4, ten times larger than the value
used in Fig. 8, the overfitting becomes so severe that the recovered
variance is positive for only 12 of the 170 frequency channels. Such
sensitivity to the value of the smoothing parameter may reflect the
fact that neither p → 0 nor p → 1 results in a functional form
that matches the expected foregrounds at all well. Even in the best
case, shown in Fig. 8, the smoothing spline fit performs worse than
our best Wp smoothing fit according to both of our chosen criteria.
Wp smoothing therefore appears to be a superior method for this
problem.

Comparison to the parametric (third-order polynomial) fit gives
a more mixed result. For λ = 0.5 the Wp smoothing loses more
of the signal, but induces smaller correlations between the fitting
errors and the foregrounds. Wp smoothing does, though, give us the
freedom to change λ continuously to trade off performance in these
two tests. A similar trade-off is possible by changing the order of
the polynomial used for the parametric fit, but changing the order in
this way corresponds to a rather drastic jump in the properties of the
fit, and seems not to be very useful in practice. We must also empha-
size that by using Wp smoothing we are only making rather general
assumptions about the smoothness of the foregrounds (and, for our
current choice of implementation, the number of inflection points
of the foregrounds). Clearly, if we were to know the functional
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1148 G. J. A. Harker et al.

form of the foregrounds in advance then we would be justified in
parametrically fitting the foregrounds with the correct function, and
we could doubtless find a parametrized form which would fit our
particular simulated foregrounds better. If, though, we can achieve
comparable results for realistic simulated foregrounds using para-
metric or non-parametric methods, it would be preferable to use
the non-parametric technique on the observational data in case the
real foregrounds do not match our expectations. The fact that Wp
smoothing can achieve a fit of parametric quality without assum-
ing a functional form for the foregrounds justifies its use for EoR
experiments, and suggests further investigation of non-parametric
techniques to address this problem.

The four example lines-of-sight shown in Fig. 9 are intended to
illustrate some of the differences between the methods. The fore-
grounds differ in amplitude between these lines-of-sight: from top
to bottom, their value at 150 MHz is 1.89, 1.65, 4.93 and −1.14 K.
Comparing panels (a) and (b), one may note that the shape of the er-
ror curve for the polynomial fitting is very similar in these two cases,
while the Wp smoothing curve differs between the two panels at the
high frequency end. This is a manifestation of the systematic errors
made by the parametric fit which seem to be alleviated somewhat by
non-parametric methods. The line of sight in panel (c) comes from
a point on the sky where the foregrounds are relatively intense. The
noise does not scale with the foregrounds, and so the fitting is able
to determine the foregrounds more accurately in a relative sense.
This suggests that the large amplitude of the foregrounds relative to
the CS may be less of a concern than the scale dependence of their
fluctuations on the sky, since small-scale fluctuations which leak
into the residual maps because of biased fitting may be confused
with the CS. Finally, panel (d) of Fig. 9 shows how the fits produced
by the smoothing spline method are more prone to oscillations than
those produced by Wp smoothing or by polynomial fits. The statis-
tical signature of these oscillations is the overfitting shown by the
top panel of Fig. 8. One must be careful not to overinterpret results
for individual lines-of-sight, however, and so in the remainder of
the paper we restrict ourselves to statistical comparisons.

We should note that there are, of course, many other non-
parametric methods for fitting data, or for removing noise to reveal
the smooth, underlying trends. We have only briefly investigated
some of these – such as local regression and wavelet denoising –
since early results suggested that the overfitting problem is very se-
vere when compared with Wp smoothing or with smoothing splines,
to the extent that it can be hard to compare the results on the same
figures. This is one of the problems which has made non-parametric
techniques appear unpromising for EoR foreground subtraction
until now.

4.3 Changes in frequency resolution and weighting

It is very noticeable in Fig. 2 that the errors on the fit become
larger at the ends of the frequency range. Similarly, in Fig. 4, while
there is a very small cross-correlation between the foregrounds and
fitting errors for z ≈ 7–10 for our λ = 0.5 fit, the performance
degrades slightly at the lowest redshifts (highest frequencies). It
would be desirable to have a fit of more uniform quality, since
otherwise we truncate the useful frequency range, and since we
might worry that an apparent signal is merely a side effect of more
serious foreground contamination at some redshifts than others. It
seems plausible that adjusting the weights ci used in the fitting may
improve the fit at the ends of the interval at the expense of the interior.
Modest changes in the weights (for example, using uniform weights
rather than inverse noise weights) have little effect. Large enough
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Figure 10. We show an example of the effects of a different weighting
scheme and a lower frequency resolution on the recovery of the variance of
the CS (top panel), and on the correlation between the fitting errors and the
foregrounds (bottom panel). The solid blue line shows the results for λ =
0.5 and our fiducial weighting scheme and frequency resolution. The dashed
red line shows the result if we adjust our weighting scheme to give points
near the ends more weight, while the dot–dashed green line shows the effect
of halving the frequency resolution. Note that the axes cover a smaller range
than in Fig. 8.

changes do have an impact, though, as we show in Fig. 10. Here
we compare our fiducial weighting scheme (solid blue line) with
an alternative weighting scheme (dashed red line) in which extra
weight is given to points near the ends of the interval. To be precise,
we multiply the ith ‘natural’ weight 1/σ i by 1/(1 − d2

i ), where d i =
1.7(i − 1)/(n − 1) − 0.9. We then normalize the new weights to
have the same mean as the fiducial weights, in order that the value
of λ can remain unchanged. The top panel of the figure shows the
recovered variance, while the bottom panel shows the correlation
coefficient between fitting errors and foregrounds, as in Fig. 8.

It seems that this adjustment of the weighting scheme is at least
a limited success. The correlation between fitting errors and fore-
grounds becomes slightly smaller at low redshift, at the expense
of increased correlations in the interior of the redshift range. The
recovered variance of the signal is, moreover, closer to the original
in the most interesting part of the redshift range. Unfortunately, the
origin of this improved agreement is not a better fit, but a worse one.
This is demonstrated in Fig. 11, in which we show the rms error of
the foreground fitting. The line styles are the same as for Fig. 10.
The modified weighting scheme significantly increases the fitting
errors. The improved recovery of the signal variance in Fig. 10
therefore seems to be a fluke caused by leaking more noise into the
fitting residuals, and it would be hard to recommend this as a strat-
egy for signal recovery. In fact, after experimenting with various
weighting schemes, modifying them seems to be an unpromising
avenue: modest changes have a marginal effect, while large changes
tend to significantly increase the overall error.
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Figure 11. We show the rms error of the foreground fitting for our fiducial
fit, a fit with modified weights, and a fit for a data cube with half the frequency
resolution of our standard data cube. The line styles are as for Fig. 10. The
solid and dot–dashed lines almost coincide for most of the frequency range.

Also shown in Fig. 10 is the effect of reducing the frequency
resolution to 1 MHz rather than 0.5 MHz. Though this halves the
number of bins, it also reduces the noise per bin by a factor of

√
2.

In the top panel, we see that the recovered variance is smaller, but
this is not due to a poorer fit being achieved (as one can see from
Fig. 11): rather, the variance of the original signal itself is reduced
when binned up, since adjacent 0.5 MHz frequency slices are decor-
related to some extent. The amount of variance lost by the fitting
process is similar in either case. The reduction in the number of data
points does, however, degrade the quality of the fit in the sense that
the correlation between fitting errors and foregrounds increases, as
one can see in the lower panel of Fig. 10. Increasing the number of
frequency channels stored and analysed may be expensive, unfortu-
nately. Since we can achieve low foreground contamination in our
0.5 MHz case, a further increase in frequency resolution may only
significantly reduce the fitting contamination if a smaller frequency
range is being observed and so a larger number of bins is required
to avoid edge effects. Otherwise, a more stringent criterion for se-
lecting the frequency resolution would be to choose it such that the
decorrelation within a resolution element is not too large.

4.4 Alternative signal models and frequency ranges

So far we have shown results using only the f250C simulation of
Iliev et al. (2008). We now show the effect on the signal extraction
of taking our CS from the two simulations, T-QSO and T-star (see
Section 2) described by Thomas et al. (2009). The top panel of
Fig. 12 shows the variance of the CS derived from each of these
three simulations as a function of redshift. This variance goes to
zero at low redshift as reionization destroys the neutral hydrogen
responsible for 21-cm emission. The speed of this decline varies
between simulations. The solid blue line (f250C) is most rapid,
followed by the dashed red line (T-QSO) then the dot–dashed green
line (T-star). This set of simulations is therefore useful to check
that the quality of our fits is not unduly influenced by details of the
signal. We also use all three simulations to test our procedure over a
shorter frequency interval, from 115 to 185 MHz (z = 11.35–6.70)
rather than our fiducial 115–200 MHz (z = 11.35–6.12). We aim to
check whether the different low redshift (high observing frequency)
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Figure 12. We study the effect on our extraction of using a different model
for the CS and of truncating the frequency range used for the fit. Thin
lines show results using our normal frequency range, ν = 115–200 MHz,
while thick lines show results using ν = 115–185 MHz. In both cases, the
frequency resolution is 0.5 MHz. The top panel shows the variance in three
different simulations of the CS as a function of redshift. The solid blue line
uses the f250C simulation of Iliev et al. (2008) which we have been using
throughout the paper, and is the same as the dotted line of Fig. 3. The red
dashed line and the green dot–dashed line are for the simulations of Thomas
et al. (2009) which assume that reionization is carried out by QSOs and stars,
respectively. The middle panel uses the same colour coding, and shows the
difference between the recovered variance and the true variance of the CS.
The bottom panel shows the Pearson correlation coefficient between the
fitting errors and the foregrounds.

behaviour leads to this truncation having a different effect. This is
an important test because it may not be possible to observe over
the entire frequency range at once with LOFAR. Rather, we may
have to split the frequency range into 32 MHz chunks which are
observed consecutively. It may then be necessary to choose between
increasing observing time at, say, 115–180 MHz and increasing the
frequency range to 115–210 MHz.

The middle and bottom panels of Fig. 12 test the quality of the fit.
The colour coding is the same as for the top panel. The thick lines
show the results for an analysis using only 115–185 MHz while the
thin solid lines show our fiducial 115–200 MHz case. In the middle
panel, we show the difference between the recovered variance of
the CS and the original variance from the data cube without noise or
foregrounds. For the thin solid line (f250C, 115–200 MHz), this is
equal to the difference between the dotted line and the solid blue line
in the top panel of Fig. 10; that is, it shows the amount of variance
lost through overfitting. We see that the three different simulations
show similar behaviour, though our procedure performs slightly
better for f250C than for the other two simulations. For the majority
of the frequency range, the thick and thin lines are indistinguishable,
meaning that the effects of truncating the frequency range seem to
be limited to the edge regions in this case. In the bottom panel, we
plot the Pearson correlation coefficient between the fitting errors
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and the foregrounds. The results using the three simulations are
again very similar. The effect of the truncation is visible for a larger
part of the range than was the case in the middle panel, but the
correlations do not become larger: rather, the whole pattern just
appears to be squashed.

We find that for larger values of λ (heavier smoothing) the effect
of truncation on the correlation extends over a larger part of the
frequency range. Recall that larger values of λ give a more aggres-
sive signal recovery strategy, and one which allows us to detect an
excess from the CS to higher redshift (that is, the lines of Fig. 3 do
not fall away as rapidly at high redshift if λ is large). If we wish
to pursue such an aggressive strategy, or indeed if it turns out to
be necessary to do so to detect the signal, then extending to higher
frequencies may turn out to be required: heavier smoothing makes
more use of the longer lever arm provided by extending the range
of the fit.

For our fiducial value of λ, though, we infer from Fig. 12 that
if Wp smoothing is used to fit the foregrounds, shortening the fre-
quency interval should not affect the quality of signal recovery in
the interior too badly, either for extended or rapid reionization. The
most important consideration when choosing what range of fre-
quencies to observe is that we should be prepared to discard (or
view with considerable caution) some bins at either end of the fre-
quency range after fitting, since they are likely to be corrupted by
edge effects. We should like to avoid discarding bins which are
likely to have an interesting contribution from the CS: moving from
an upper frequency limit of 180 to one of 210 MHz could well be
advantageous in this respect, though to some extent this will depend
on the properties of the signal we aim to find.

5 C O N C L U S I O N S

We have argued that without a good reason to assume that the
foregrounds for EoR experiments have a specific functional form,
it is preferable to fit them with non-parametric methods that use
their assumed smoothness directly, rather than to fit parameters of
some chosen model. Unfortunately, most non-parametric methods
tend to give poor quality fits compared to parametric ones that use
the ‘correct’ model. We suggest that Wp smoothing may be an
exception to this rule in the case examined in this paper.

Wp smoothing penalizes changes in curvature. In the general
case, it does so primarily by penalizing the existence of inflection
points, but in the case that the inflection points are known or fixed, it
penalizes the integrated change of curvature ‘apart from inflection
points’. We have drawn attention to the results of Mächler (1993,
1995), who derives a BVP the solution of which is the desired
smoothing function. We have sketched two algorithms which suffice
to solve this problem in the case of EoR foregrounds, which we
assume have no inflection points (as would be the case for a sum
of several power-law spectra with negative index). Our preferred
algorithm is detailed in Section 3.2, while the other is outlined in
Appendix A.

We have tested Wp smoothing on synthetic data cubes which
include contributions from a detailed simulation of the CS from
the EoR, a realistic model of the diffuse foregrounds, and the lev-
els of noise and instrumental corruption expected for the LOFAR
EoR experiment. Though Wp smoothing is considered to be non-
parametric, it does require the specification of a smoothing parame-
ter which governs the relative importance of the sum of the squared
residuals and the curvature penalty function in the fitting. For the
purposes of most of our tests, we have adopted a value for λ which,
for our data set, provides a good compromise between overfitting,

which causes an underestimate of the variance of the CS, and under-
fitting, which causes positive or negative correlations between the
fitting errors and the foregrounds. Using this value of 0.5 for λ, we
found that Wp smoothing easily outperforms other non-parametric
methods we have tried, including the smoothing splines shown in
Section 4.2, and is competitive with parametric fitting even when
we are able to choose a parametrized functional form with advance
knowledge of the foregrounds.

No scheme seems able to prevent the quality of the fit from de-
grading at the ends of the frequency interval used for observation.
This problem can be mitigated somewhat by analysing data cubes
with a high frequency resolution, though we note that high resolu-
tion is already desirable to avoid averaging away our signal, and this
may be a more important criterion when deciding what resolution
to use. We can make the quality of the fit marginally more uniform
by increasing the weight given to data points near the ends of the
frequency range. We argue, though, that the cost of doing so (in
terms of increasing the noise on the fit) is too heavy for it to be
worthwhile.

It may therefore be helpful to extend the range of frequencies ob-
served. It is difficult to extend to lower frequencies (higher redshifts)
because of the presence of the FM band. The increasing foreground
and noise amplitude may also limit the usefulness of low frequency
observations, though it is plausible that observations with the LO-
FAR low-band antennas (which can observe at 30–80 MHz) could
help constrain the shape of the foregrounds. Extending to higher
frequencies is more promising. First, the foregrounds and noise are
smaller in amplitude. Secondly, because higher frequencies corre-
spond to z < 6 we expect a negligible contribution from redshifted
21-cm emission there. This helps to establish a baseline against
which we can detect a higher redshift excess coming from the CS,
and ensures that this excess occurs well away from the problematic
edges of the frequency range. We have tested the quality of our fit-
ting using two alternative simulations of the CS which exhibit more
extended reionization, and have analysed all three simulations using
a data cube which extends only to 185 MHz rather than 200 MHz.
We find that away from the edges, neither change badly affects the
quality of the foreground fitting.

We also note that we have concentrated primarily on the recovery
of the excess variance coming from the CS as a measure of the qual-
ity of our fits. Other statistics such as the skewness may be more
robust (Harker et al. 2009). It is also the case that the power from
fitting errors, noise and the CS peaks at different scales, so a power
spectrum analysis may improve prospects for detection of a signal,
as well as giving more sensitive constraints on models than the inte-
grated variance once a detection is made (e.g. Morales et al. 2006;
Bowman, Morales & Hewitt 2007). Given this scale dependence,
it is interesting to consider whether or not it may be advantageous
to fit out the foregrounds in the uv plane. This has been considered
recently by Liu et al. (2009a) in the context of linear least-squares
fitting and was found to afford substantial benefits, particularly at
small angular scales where foreground fluctuations arising from
unsubtracted point sources interact with the frequency-dependent
‘frizz’ on the outskirts of the point spread function (Liu, Tegmark &
Zaldarriaga 2009b). It is not yet clear how this method generalizes
to non-linear fitting: the complications include, for example, that
we must fit a complex function of frequency at each point in the
uv plane, as opposed to a real function at each point in the image
plane. It is possible, though, that by adapting the fitting according to
the relative strength of the foregrounds, noise and signal at different
scales we can improve sensitivity. We defer detailed study of power
spectrum estimation and uv plane effects to future work.
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Our results suggest that by paying close attention to the method
used in fitting the foregrounds for EoR experiments, the sensitivity
of these experiments can be increased, and we may have greater
confidence that a detection of the signal is not affected too severely
by foreground contamination. Foreground subtraction is very un-
likely to be a bottleneck in the data processing and analysis pipeline,
and so it is reasonable to consider relatively sophisticated and com-
putationally expensive fitting methods if they provide a benefit. We
have argued that Wp smoothing does seem to provide such a benefit,
and will continue to test its performance as more elaborate models
of the foregrounds and the instrument become available.
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Mächler M., 1989, PhD thesis, ETH Zürich
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APPENDI X A : A LTERNATI VE SOLUTI ON
M E T H O D S

It is possible to rewrite equations (2), (7), (9) and (10) in a con-
venient form to solve them using a standard BVP solver. We have
implemented Wp smoothing in this manner to test our finite differ-
ence scheme, and present the equations in appropriate form here for
completeness.

At first sight, the boundary conditions of equation (10) look
awkward, since they use the value of the function at points which
are not at the ends of the interval. Solvers for such ‘multiboundary’
problems are available, however. Moreover, by re-expressing the
sums as integrals, we can take care of the boundary conditions by
adding two more differential equations to the system, in line with
the elegant trick suggested in section 5 of Ascher & Russell (1981).

This is promising, but does not help with the dependence on
f (x i) for all i on the right-hand side of equation (7), so we use a
different trick. We start by rewriting equations (2) and (7) as coupled
first-order equations, as is commonly done:

h′(x) = g(x), (A1)

g′(x) = pw(x)eh(x)

{
− 1

2λ

n∑
i=1

(x − xi)+ψi[yi − f (xi)]

}
, (A2)

f ′(x) = k(x), (A3)

k′(x) = pw(x)eh(x) . (A4)

Equations (A1) and (A3) define our new functions g and k, re-
spectively, and the boundary condition of (9) becomes g(x1) =
g(xn) = 0.

Now, again following Ascher & Russell (1981), we split the
domain of solution into n − 1 intervals, [x1, x2], [x2, x3], . . . ,
[xn−1, xn]. In each interval, we change variables, letting

t = x − xm

xm+1 − xm

for xm ≤ x ≤ xm+1 (A5)

which maps each interval on to the unit interval, [0, 1]. Then, on
this interval, we define functions f m(t), gm(t), hm(t), km(t), pw,m(t)
for m = 1, 2, . . . , n − 1 such that, for xm ≤ x ≤ xm+1, f m(t) =
f (x), gm(t) = g(x), hm(t) =h(x), km(t) = k(x) and pw,m(t) =pw(x).
We further define the functions qm(t) for m = 1, . . . , n where
qm(t) =f m(0) for m= 1, . . . , n− 1 and qn(t) =f n−1(1). Our system
of four equations (A1)–(A4) then becomes the following system of
5n − 4 equations (where dashes now indicate differentiation with
respect to t):

f ′
m(t) = (xm+1 − xm)km(t), (A6)

k′
m(t) = (xm+1 − xm)pw,m(t)ehm(t), (A7)

h′
m(t) = (xm+1 − xm)gm(t), (A8)

g′
m(t) = (xm+1 − xm)pw,m(t) ehm(t)

×
{

−1

2λ

m∑
i=1

[xm + (xm+1 − xm)t]ψi(yi − qi(t))

}
, (A9)

q ′
j (t) = 0, (A10)

where the index m runs from 1 to n − 1 and j runs from 1 to n.
The functions q j carry the value of f at the data points, f (x i), to
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the interior of the intervals, a property which is imposed with the
boundary conditions

qm(0) = fm(0) for m = 1, . . . , n − 1; (A11)

qn(0) = fn−1(1) . (A12)

Our original boundary conditions become

g1(0) = gn−1(1) = 0 ; (A13)

n∑
i=1

ψi(yi − qi(0)) =
n∑

i=1

xiψi[yi − qi(0)] = 0. (A14)

The remaining 4(n − 2) boundary conditions come from imposing
continuity on the functions f (x), g(x), h(x) and k(x):

fm(1) = fm+1(0), (A15)

gm(1) = gm+1(0), (A16)

hm(1) = hm+1(0), (A17)

km(1) = km+1(0), (A18)

where the index m runs from 1 to n − 2.
Note that the boundary conditions only involve the value of func-

tions at t = 0 and 1, and that to calculate the derivatives given by
equations (A6)–(A10) at a given value of t only requires the eval-
uation of functions at the same value of t. The system is therefore
suitable for solution using the MATLAB routine ‘bvp4c’ (Kierzenka
& Shampine 2001), a BVP solver that uses a collocation method.
We call it with an initial mesh of five evenly spaced points, and with
initial conditions calculated in a similar fashion to those used for the
finite difference scheme in the main text. The system of equations
is greatly expanded from the four with which we started since the
special form of the problem is not exploited, and typically takes
several seconds to solve on our test machines.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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