
 

 

 University of Groningen

Estimating a density by adapting an initial guess
Albers, C J; Schaafsma, W

Published in:
Computational Statistics & Data Analysis

DOI:
10.1016/S0167-9473(02)00124-X

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Albers, C. J., & Schaafsma, W. (2003). Estimating a density by adapting an initial guess. Computational
Statistics & Data Analysis, 42(1-2), 27-36. [PII S0167-9473(02)00124-X]. https://doi.org/10.1016/S0167-
9473(02)00124-X

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-05-2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Groningen

https://core.ac.uk/display/232394168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/S0167-9473(02)00124-X
https://www.rug.nl/research/portal/en/publications/estimating-a-density-by-adapting-an-initial-guess(b00d56c9-8e44-4dec-8be5-7a2304999cbe).html
https://doi.org/10.1016/S0167-9473(02)00124-X
https://doi.org/10.1016/S0167-9473(02)00124-X


Computational Statistics & Data Analysis 42 (2003) 27–36
www.elsevier.com/locate/csda

Estimating a density by adapting an initial guess
C.J. Albers∗, W. Schaafsma

Department of Mathematics and Computing Science, University of Groningen, P.O. Box 800,
9700 AV Groningen, Netherlands

Received 1 January 2001; received in revised form 1 March 2002

Abstract

De Bruin et al. (Comput. Statist. Data Anal. 30 (1999) 19) provide a unique method to
estimate the probability density f from a sample, given an initial guess  of f. An advantage
of their estimate fn is that an approximate standard error can be provided. A disadvantage is that
fn is less accurate, on the average, than more usual kernel estimates. The reason is that fn is not
su4ciently smooth. As improvement, a smoothed analogue f(m)

n is considered. The smoothing
parameter m (the degree of a polynomial approximation) depends on the supposed quality of the
initial guess  of f. Under certain conditions, the resulting density estimate f(m)

n has smaller L1-
error, on the average, than kernel estimates with bandwidths based on likelihood cross-validation.
The theory requires that the initial guess is made up a priori. In practice, some data peeping
may be necessary. The f(m)

n provided look ‘surprisingly accurate’. The main advantage of f(m)
n

over many other density estimators is its uniqueness (when the procedures developed in this
article are followed), another one is that an estimate is provided for the standard error of f(m)

n .
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Density estimation; Nonparametric methods

1. Introduction

A fundamental problem in practical statistics is as follows. Given are the outcomes
x[1] ¡x[2] ¡ · · ·¡x[n] of an independent random sample X1; : : : ; Xn from a probability
distribution on R with a density f which is ‘smooth’ (at least continuous) and strictly
positive on a given support (a; b), e.g. (0;∞), but further unknown. Required is an
estimate fn(x) of f(x) in a given point x or, more generally, an estimate fn of f on
(a; b).
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The performance of such density estimate is measured by specifying the ‘diGerence’
between the true density and the estimate. Many dissimilarity coe4cients can be con-
sidered. In this article, we restrict the attention to the total variation distance

‖fn − f‖1 =
∫ b

a
|fn(x) − f(x)| dx

because it is invariant under all piecewise continuous (diGerentiable) bijections and
because this dissimilarity coe4cient provides the metric which was preferred by a
variety of authors (see, e.g., Wand and Devroye (1993), Devroye and GyőrK (1985),
and, in particular, De Bruin et al. (1999)).

The empirical distribution and Ferguson’s Bayesian modiKcations of it (see Ferguson
(1973)) fail to be continuous estimates of the distribution function F . The total variation
distance between these estimates and the true distribution is equal to 2 and consistency
is precluded. A plethora of methods exists for specifying estimates of f(·) such that the
total variation distance converges to 0 in probability if n → ∞ and f is su4ciently
smooth (e.g. Ghosal et al. (1999)). In Ferguson’s theory, a Dirichlet prior must be
speciKed by providing a distribution function. The method of De Bruin et al. (1999)
is also based on the speciKcation of a distribution function �, now as an initial guess
of the true distribution function F . The derivative  of � is an initial guess of f. The
theory behind this method requires that  is chosen a priori. It is assumed that the
‘support’ {x;  (x)¿ 0} is speciKed as the true interval {x; f(x)¿ 0} (usually (0;∞)
or (−∞;∞)). The method provides a special estimate fn of f.

The underlying rationale is that there are many ways to characterize a probability
distribution. One can use the distribution function F , the density function f = F ′, the
quantile function H =F−1, the characteristic function, the moment-generating function,
etc. Each of these characterizations entails its own estimation approach (Silverman,
1986). The estimates fn and f(m)

n discussed in this article are based on the charac-
terization by means of H . This involves a peculiar advantage in the sense that the
estimates of H derived have positive derivatives.

2. The exact de�nition of fn

The quantiles H (p) = F−1(p) (p∈ [0; 1]) are estimated by a smoothed version of
their sample analogues. The precise deKnition is as follows. After the replacement of
x[1]; : : : ; x[n] by

y[0] = 0; y[i] = �(x[i]) (i = 1; : : : ; n); y[n+1] = 1;

the quantile function B = (F ◦�−1)−1 = � ◦F−1 of the distribution of Y1 = �(X1) on
the unit interval is estimated by means of the Bernstein polynomial approximation

Bn(p) =
n+1∑
i=0

y[i]

(
n + 1

i

)
pi(1 − p)n+1−i
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of degree n + 1 to the empirical quantile function (the inverse of the empirical dis-
tribution function). (The notation Bn(p) is preferred over the usual notation Bn+1(p)
because the underlying sample size is n.) This approximation is very convenient be-
cause the corresponding derivative

bn(p) =
n∑

i=0

(y[i+1] − y[i])

(
n

i

)
(n + 1)pi(1 − p)n−i

is strictly positive and continuous. The idea to use polynomial quantile density estima-
tors, such as Bn(p), to estimate H (p) is not new, see, e.g., Muñoz Perez and FernPandez
PalacPin (1987). In Groningen, the study of such estimators started with Dehling et al.
(1991), who showed that the Islamic Mean (very similar to Bn( 1

2 )) is an interesting
alternative to the sample median for estimating the population median.

The estimation of f(·) is performed via back-transformation. The estimate Bn is used
to deKne the estimate Hn = �−1 ◦ Bn. Next Fn = H−1

n = B−1
n ◦ � is used to estimate

F=H−1 and, Knally, the estimate fn=F ′
n of f is obtained by numerical diGerentiation.

If one compares fn with other nonparametric density estimates such as kernel esti-
mates kn (see, e.g., Silverman (1986)), then there are some theoretical advantages of
fn but these are outweighed by practical advantages of kn, even if the initial guess  
of f is reliable. Some arguments are as follows:

(1) The asymptotic distribution of fn can be studied via that of bn (see De Bruin
et al. (1999)). This results in the approximation

Ln1=4(fn(x) − f(x)) ≈ N(0; �2(x));

where

�(x) =
f(x)

4
√

4�F(x)(1 − F(x))
:

The ≈-sign can be replaced by a →-sign when � =F . Unfortunately, we were unable
to establish this limiting result for � �=F . Since we shall replace fn by a more com-
plicated estimate f(m)

n , details will not be presented here (but in Albers and Schaafsma
(2001), and Albers’ forthcoming thesis).

(2) The estimate fn is not su4ciently smooth: the error f′
n−f′ in the derivative does

not vanish because it is of order O(n1=4) (again, see Albers and Schaafsma (2001)).
(3) The rate of convergence of kernel estimates with optimal bandwidths (requiring

knowledge of f) is such that n2=5(kn(x)−f(x)) has a limiting distribution, while k ′n−f′

vanishes in probability as n → ∞, at least under regularity conditions (Silverman,
1978).

(4) An extensive numerical comparison of fn with the kernel estimates kn with
bi-weight as kernel and bandwidths based on likelihood cross-validation provided (for
a special density f) that the L1-error of kn is signiKcantly smaller than that of fn, on
the average. If the L1-error of fn can be decreased by 15% by using a modiKcation
of fn, then kn would be about equally good as this modiKcation, on the average (De
Bruin et al. (1999), Fig. 4).

(5) If one accepts the approximation presented under (1) then the following deriva-
tion for the expected L1-error of fn will be accepted as well (we use the notation
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U ∼ N(0; 1))

E
∫

|fn(x) − f(x)| dx =
∫

E |fn(x) − f(x)| dx

≈ n−1=4E|U |
∫

�(x) dx

= n−1=4

√
2
�

1
4
√

4�

∫
dF(x)

4
√

F(x)(1 − F(x))

= n−1=42(�(3=4))2�−5=4

= 0:72n−1=4:

Note that this asymptotic behaviour does neither depend on f nor on the initial guess  .

3. Replacing fn by its improvement f (m)
n

Under (4), at the end of Section 2, it was suggested that fn can compete with kn if
its standard deviation can be reduced by something like 15%. How to improve fn, that
is the question. Note the theoretical arguments behind Bn, bn and, hence, fn spelled out
in De Bruin et al. (1999). A practical argument in favor of these estimates is the strict
positivity of bn mentioned in Section 2. This should certainly not be given up. A natural
way of smoothing can be achieved by partitioning the sample into k=m−1n sub-samples
of size m each (for the sake of simplicity, assume n= km), and taking the arithmetical
average of the resulting estimates: for each subsample y(h)

1 ; : : : ; y(h)
m ; (h = 1; : : : ; k) the

density estimate fm;h is derived from

Bm;h(p |y(h)
1 ; : : : ; y(h)

m ); h = 1; : : : ; k

in the same way as fn was derived from Bn. DeKne Sf n;m as the average of the h
estimates fm;h. The approximate result

Lm1=4(fm;h(x) − f(x)) ≈ N(0; �2(x))

of Section 2 implies that

Lm1=4( Sf n;m(x) − f(x)) ≈ N(0; k−1�2(x)) = N(0; n−1m�2(x))

or, equivalently, that the standard error of Sf n;m(x) is m−1=4k−1=2�(x), which equals
m1=4n−1=2�(x), i.e. k−1=4 times that of fn(x). This suggests that the standard error is
reduced by 15% or more if (m=n)1=4 ¡ 0:85 or, equivalently, if m is less than ¡ 0:53n
(see Remark (4) in Section 2).

To remove the permutation dependence (and the assumption n = km) a U -statistic
symmetrization will be applied. It will have the eGect that the degree n of the polyno-
mial expression bn(p) is lowered to the degree m of the estimate b(m)

n (p) to be derived.
The positivity of the quantile density estimate will not be aGected.
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Fig. 1. Visualization of the improvement discussed in Section 3. A sample of size n = 100 is taken from
the distribution on (0; 1) with density f(x) = 1

2 + x (the dotted line). Using the uniform density as initial

guess, the densities f(m)
n (m = 0; : : : ; 100) were computed and those corresponding to m = 6 (dashed line)

and m = 100 (solid line) are displayed.

Let Bm(p |y1; : : : ; ym) denote the approximation introduced in the previous section,
applied to the m observations y1; : : : ; ym (with yi = �(xi)). Note that the degree of
the polynomial is thus lowered from n + 1 to m + 1. The smoothed analogue is the
U -statistic

B(m)
n (p) =

(
n

m

)−1 ∑
16�1¡···¡�m6n

Bm(p |y�1 ; : : : ; y�m);

which can be rewritten as the L-statistic

pm+1 +
m∑

j=1

(
m + 1

j

)
pj(1 − p)m+1−j

n−m+j∑
i=j

(
i − 1

j − 1

)(
n− i

m− j

)
(

n

m

) y[i]:

So, B(m)
n is the average of the quantile function estimates based on all size-m subsets

of the sample. From this, we get F (m)
n = B(m)−1

n ◦ �, f(m)
n = F (m)′

n , etc. For m → ∞,
the Bm(p | : : :) are consistent estimators of (�−1 ◦ H)(p). For m Kxed, B(m)

n (p) is an
unbiased estimate of E(Bm(p |X1; : : : ; Xm)) which, of course, depends on the underlying
distribution function of X1. In principle, the (exact) theory of HoeGding (1948) about
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U -statistics is applicable but the complexity of the formulas and the dependence on
f, F , H , etc. precludes application in practice. However, the rate of convergence is
better than n−3=8, which arises for Sf n;m when k = n1=2 is taken. The next section will
contain a numerical elaboration.

The example in Fig. 1 gives an illustration of errors involved in using fn and
f(m)

n and suggests that improvement indeed is gained by lowering the degree of the
estimating polynomial.

4. Choosing m

In the current context of density estimation, it is obvious that m should depend on
the sample size and on the reliability of the initial guess. To investigate the structure
of this dependence, extensive Monte Carlo simulations have been performed. Results
will be presented and discussed in this section.

Given some density f, consider (estimates of) the expected value of the L1-distance
‖f(m)

n −f‖1 as a function of m. The optimal m, i.e. the value for which this expected
L1-distance is minimum, depends on the sample size and reliability of  . This optimal
m is studied using the special densities

fa(x) = (1 − a) + 2ax; |a|6 1; 06 x6 1;

and the standard-uniform density  (x)=1 as initial guess. Fig. 1 provides a visualization
for a = 1

2 .
Computations were performed for a variety of values of n, as well of a. Variations

in a lead to variations in the reliability of the initial guess through the relation ‖fa −
 ‖1 = 1

2 |a|. For each pair (n; a) in Table 1, a random sample (of size n) is drawn
from fa. For all possible values of m (m=0; 1; : : : ; n), ‖fa−f(m)

n ‖1 is calculated. This
process is replicated 249 times and Table 1 displays those m for which the average
total variation distance between true and estimated density was smallest, for the R=250
simulations. These simulations suggest that the optimal m is approximately proportional
to n1=2 and ‖fa −  ‖1.

The densities fa studied were very regular with only one sign change of fa −  .
That is why a second simulation study was carried out involving f 1

2
= fI and four

Table 1
Optimal m for the cases fa with various a (horizontal axis) and n (vertical)

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

25 0 0 1 2 2 3 4 5 5 6 7
50 0 1 2 3 4 5 6 7 8 9 10
75 0 1 2 3 4 6 7 9 10 11 11

100 0 1 2 4 5 7 8 10 11 13 14
150 0 2 3 5 7 8 10 12 14 16 17
200 0 2 4 6 8 10 12 14 16 18 20
250 0 2 4 6 9 11 13 15 17 19 21
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Fig. 2. From left to right: densities fI up to fV, discussed in Section 4.

alternative densities, all with the unit interval as support,  (x)=1, and ‖f− ‖1 =0:25.
The examined densities are

fI(x) = 0:5 + x;

fII(x) = 1:5 − |2x − 1|;

fIII(x) = 1:616 − 2:464x(1 − x2);

fIV(x) = 1:091 − 0:427 sin(4:712x);

fV(x) = 0:741 + 1:301e−5x:

See Fig. 2. We believe that these densities are ‘representative’ for distributions occur-
ring in practice. Analyzing these Kve densities will give insight in the dependence of
the optimal m on the shape or regularity of the density.

For cases I and V, deviations  (x) − f(x) are more regular (involving only one
crossing of 0) than for the cases II to IV where two crossings occur. It is reasonable
to expect that the optimal m is smallest in cases I and V.

To quantify the optimal m in these 5 cases, a sample of size n= 100 is drawn from
each density, and the corresponding f(m)

100 and ‖f(m)
100−f‖1 are computed for all possible

values of m (m = 0; 1; : : : ; 100).
This process is performed R = 500 times. The average L1-errors for a deliberate

choice of values of m is reported in Table 2. The last row of this table contains the
values 0:72m1=4n−1=2, derived under (5) in Section 1. These values provide a Krst,
conservative, approximation to the expected L1-errors, especially those for the optimal
m (the boldfaced ones), since they correspond to the average L1-error of the less
accurate estimates Sf n;m studied at the beginning of Section 3. The approximation in
case m= 0 is deleted because it involves a degeneracy (if m= 0 is actually used, then
the value 0.250 appears as the constant true value).

The Krst column of Table 2 provides the values ‖f −  ‖1 = 0:25 because if m = 0
then the estimates correspond to the initial guess  . It follows from the Krst row that,in
case f=fI, the expected L1 error is minimum if m is 6 or 7 (the fourth row of Table
1 provides the value 7 if a = 1

2 ). The second, third and fourth row provide that m
should be about twice as large if the behaviour of f is less regular. Row Kve shows,
as expected, that m must be chosen substantially smaller if these f’s are replaced by
the more regular one fV. Both simulation studies taken together indicate that m should
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Table 2
Performance of fI, fII and fIII and a theoretical approximation. Displayed values are 1=R ‖f· − f(m)

·;n ‖1,
the bold-faced values are the minima for each f·

m 0 4 5 6 7 8 10 15 20 30

fI 0.250 0.096 0.091 0.089 0.089 0.090 0.093 0.097 0.106 0.122
fII 0.250 0.182 0.167 0.155 0.145 0.138 0.129 0.122 0.124 0.134
fIII 0.250 0.184 0.168 0.156 0.146 0.138 0.128 0.123 0.125 0.134
fIV 0.250 0.147 0.138 0.132 0.127 0.124 0.119 0.116 0.119 0.130
fV 0.250 0.104 0.096 0.092 0.090 0.089 0.090 0.098 0.107 0.124
Theor. 0.250 0.102 0.108 0.113 0.117 0.121 0.128 0.141 0.152 0.169

depend on the sample size n, the value v of ‖f− ‖1 where optimality is required, and
the (expected) regularity of f. The latter will be quantiKed by the symbol w, where w
is equal to 1 if the number of sign changes of  −f is equal to 1, like in the cases of
fa, fI and fV, and it is equal to 2 if two or more sign changes are occurring (cases
fII to fIV).

5. Conclusion

The simulation studies performed can be summarized by stating that the optimal m
is approximately equal to

m∗ = 2:6n1=2 vw:

Note that m∗ = 6:5 in the case n = 100, v = 0:25, w = 1 studied in the fourth row of
Table 1 and the Krst row of Table 2. The choice m∗ = 13 is indicated for fII, fIII and
fIV. In practice, f is unknown and the research worker will have to choose the value
v of ‖f −  ‖1 and the value w∈{0; 1} where ‘optimality is required’.

6. Discussion

The nonparametric density estimates fn and f(m)
n require that an initial guess  of

the true density f is made. In principle, the initial guess should be made a priori
because the theory is based on this assumption. We believe that in practice some data
peeping may be allowed. The subjectivity involved in the speciKcation of the initial
guess remains visible if m is small. If one chooses m=n such that f(n)

n =fn corresponds
to the estimator studied in De Bruin et al. (1999), then one lets the data speak almost
exclusively and the information provided by  is almost completely ignored. That is
why fn cannot compete with estimates that take more information into account. The
situation becomes more interesting, but also more complicated, if one accepts the idea
that  is ‘reliable’ in the sense that the diGerence ‖ −f‖1 between  and the true but
unknown f may be expected to be less than some constant c which is substantially
smaller than the upper bound 2. If, e.g., one is willing to believe that ‖ − f‖1 is
¡ 0:50 then one will try to choose m such that m is ‘optimal’ if ‖ − f‖1 is 0:25.
Constructing m in such a way, enables one to incorporate the supposed reliability,
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Table 3
A random sample of size n = 100 is drawn from f(x) = 1

2 + x on (0; 1), with  (x) = 1. On basis of this

sample, estimates f(m)
100, with m = 4; 6; 7; 8; 12; 20 are constructed. This process is repeated 249 times, the

averages of the R = 250 L1-distances ‖f(m1)
100 − f(m2)

100 ‖1 are reported

4 6 7 8 12 20

4 0.000 0.025 0.033 0.041 0.063 0.090
6 0.000 0.009 0.017 0.039 0.068
7 0.000 0.008 0.031 0.060
8 0.000 0.023 0.054
12 0.000 0.031

of the initial guess in the construction of the density estimate. The rule of thumb
m∗ = 2:6n1=2 vw mentioned at the end of Section 4 will then provide m∗ = 6:5w if
n = 100 and, hence, m∗ = 6:5 if exactly one sign change of  − f is expected. This
implies that the ‘uniqueness’ of fn is preserved, at least to some extent. The ‘unique’
nonparametric density estimate f(m)

n thus deKned has an expected L1 error which is
considerably smaller than that of fn if the true density f is not too much diGerent
from the initial guess  . It is natural that, under these conditions, f(m)

n will be superior
to conventional kernel estimates with bandwidths based on likelihood cross-validation.
This is supported by the simulations. However, the advantage of f(m)

n to general kernel
estimates, is partly because of the additional knowledge incorporated in f(m)

n . The
situation may change if the kernel and bandwidth are also chosen on the basis of the
initial guess  . In practice, we recommend the choice m=2:6n1=2vw and it will depend
on the true density f whether f(m)

n has the smallest expected L1 error or some kernel
estimate with a bandwidth determined such that it is optimal for f =  .

Table 3 indicates that ‖f(m1)
n − f(m2)

n ‖1 is satisfactorily small if m1 and m2 are ‘not
much diGerent’. This is, of course, of considerable importance, because it would have
been unfortunate if minor variations in the smoothing parameter m would induce major
variations in the resulting density estimate.

We claim that f(m)
n with m = 0:65n1=2w (the case v = 0:25), possibly with w = 1, is

quite reasonable in practice, as is indicated by simulations, and that the formula

m1=4n−1=2�̂(x) =
(0:65w)1=4

n3=8

f(m)
n (x)

4

√
4�F (m)

n (x)(1 − F (m)
n (x))

for the corresponding standard error is not unreasonable, though perhaps a bit too con-
servative (see the beginning of Section 3). The Krst part of this claim is supported by
extensive applications to problems from practice (e.g. the determination of the distri-
bution of concentrations of chemical substances in surface water), providing estimates
f(m)

n that are very appealing. These applications required some data peeping for con-
structing reliable initial guesses. It is obvious that situations exist where data peeping
is not necessary because, e.g., experiences of a previous investigation providing  have
to be adapted to the current state of nature. The new estimator can be used in statistical
inference, e.g. in the testing of the goodness of Kt hypothesis H0 :f =  . In that case,
the choice of m has to be reconsidered: it should be much smaller (work in progress).



36 C.J. Albers, W. Schaafsma /Computational Statistics & Data Analysis 42 (2003) 27–36

Acknowledgements

The authors thank the referees and associate editor for their helpful comments.

References

Albers, C.J., Schaafsma, W., 2001. Details on the standard error of a special density estimate. Technical
Report IWI-2001-5-04, University of Groningen. Note: part of Albers’ forthcoming. Ph.D. Thesis.
Available from http://www.math.rug.nl/∼casper.

De Bruin, R., SalomPe, D., Schaafsma, W., 1999. A semi-Bayesian method for nonparametric density
estimation. Comput. Statist. Data Anal. 30, 19–30.

Dehling, H.G., Kalma, J.N., Moes, C., Schaafsma, W., 1991. The Islamic Mean: a peculiar L-statistic Studia
Sci. Math. Hungar. 26, 297–308.
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