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This paper discusses local relaxation (LR) methods which can be regarded as 
generalizations of the successive overrelaxation (SOR) method. The difference is that within 
an LR method the relaxation factor is allowed to vary from equation to equation. A number 
of existing methods are found to be in fact special LR methods. Moreover, based on SOR 
theory, a new LR method is developed. The performance of LR methods is illustrated by 
applying them to central difference approximations of convectiondiffusion equations. It is 
found that equations with small diffusion coefftcients can be handled without difftculty. For 
equations with strongly varying coefftcients, and for nonlinear equations, a properly selected 
LR method can be significantly more efficient than the optimum SOR method. As a special 
example, a 16 x 16 driven cavity problem for a Reynolds number of 1Oh can be solved in just 
a few seconds on a modern computer. 

1. INTRODUCTION 

As is well known, iterative schemes for solving second-order central difference 
approximations of convection-diffusion equations exhibit convergence difficulties 
when the diffusion coefficient, i.e., the inverse of the Reynolds number (Re) or the 
P&let number, becomes small. The extent of the difficulties is related to the cell 
Reynolds number Re h (h being the mesh size). A typical example of these difficulties 
can be found in a study by Burggraf [ 1 ] of the driven cavity problem. In spite of 
using underrelaxation, Burggraf was not able to obtain a converged solution for 
Reynolds numbers larger than about 1000. From studies by Tuann and Olson 12 ] 
and Khosla and Rubin [ 3) it is recognized that Burggraf s problems are partly due to 
the use of the convective formulation for the vorticity transport equation (which 
enhances the occurrence of nonlinear instabilities); however, using the divergence 
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128 BOTTA AND VELDMAN 

formulation, the solution of the flow equations still requires considerable effort when 
the Reynolds number is large (4). 

A way to avoid these difficulties is the use of upwind differencing of the convective 
terms. Early references to the application of this idea in meteorological problems can 
be found in Forsythe and Wasow [5]. In fluid flow problems Greenspan [ 6 ] and 
Gosman, et al. [7] have been early advocators. Upwind differencing leads to a 
diagonally dominant matrix, hence the discrete equations can be solved by standard 
techniques such as Gauss-Seidel and SOR. A disadvantage of upwind differencing, in 
general, is a loss of accuracy of the discrete solution as compared with the solution of 
the central difference approximation. Therefore, when available, the latter solution 
generally is preferred 12, 4, g-131. An exception has to be made for situations in 
which boundary layers or shock layers are present whose thickness is comparable to 
or smaller than the mesh size; in these cases the solution of the central difference 
approximation often exhibits oscillations, whereas the upwind difference solution is 
smoother [ 3, 141. Even in this case, however, Gresho and Lee [ 151 strongly warn 
against a false sense of security, as regards to accuracy, which can emanate from the 
smooth upwind results. 

In order to increase the accuracy without losing the convergence of the 
Gauss-Seidel method, discretization schemes have been developed which approach 
the central scheme when Re h + 0 and which tend to the upwind scheme when 
Re h -+ co. An example of such a scheme, rediscovered many times, has been used by 
Allen and Southwell [ 161 ( see also Steele and Barrett [ 171 and references herein for 
applications). Other schemes of this type have been designed by Spalding [ 181 and 
Raithby and Torrance [9]. Accuracy comparisons performed by Runchal [S] and 
Raithby and Torrance [9] reveal that for small Re h these schemes are comparable to 
the central scheme, whereas for large Re h they are as inaccurate as the upwind 
scheme. 

Dennis and Chang [ 191 have chosen another approach, in which the accuracy of 
the central difference scheme is retained, but where the convergence of the iterative 
process is no longer guaranteed theoretically. To the upwind difference term they add 
a correction term such that, after convergence of the iterative process, the discrete 
solution satisfies the central difference equations. The correction term is calculated 
with values from previous iterations. Dennis and Chang keep this term fixed for 
about 30 iteration sweeps. In more recent applications the correction term has been 
determined using values from the preceding sweep [ 12, 20-221, or using the latest 
available values [ 13, 23-251. A slightly different correction term has been used in 
[lo] and [26]; here it is chosen such that the converged solution satisfies the 
equations discretized with a three-point backward scheme for the convective terms 
(which is also of second-order accuracy). 

The way in which the correction term is treated can have a large influence on the 
convergence of the iterative process. This is illustrated for the Gauss-Seidel method 
in the following one-dimensional example: Consider the equation 

(d2u/dx2) - Ref(x)(du/dx) = 0, ’ 0 ,< x < 1, (1) 



LOCAL RELAXATION METHODS 129 

with u(0) and u(1) prescribed, on a grid xi = i/z, i = 0, l,..., N, where h = l/N. After 
upwind differencing with a correction term as used in [ 12, 20-221, the discrete 
equation at the point xi for the (n + 1)th sweep can be written as 

(1-~i+Iri/)U~+,-2(1+IriI)U~+‘+(1+ri+~riI)U~fl’ 

= 1 Yi/ (Ul+ 1 - 224,” + Ur- I), (2) 

where ri = 4 Re hf(xi). When the correction term is calculated with the most recent 
values, as in [ 13, 23-251, the index n of the term uy- i in the right-hand side of (2) 
changes into n + 1, whereas the other terms remain unchanged. Hence this scheme 
becomes 

(1 -ri+Iril)U~+I -2(1 +lril)U~+‘+(l +ri+/rJ)U:‘i, 

= lril (uy, , - 2ul + uli;). (3) 

The influence of the small difference between schemes (2) and (3) can be seen in 
Table I. Here the analytically determined spectral radius of the Gauss-Seidel matrix 
has been tabulated for a case where f(x) = 1, N = 20, and for various values of Re. 

It is remarked that (for the case of constant f) changing the sign of Re is 
equivalent to reversing the sweep direction of the Gauss-Seidel process. Hence we see 
that the convergence of scheme (2) can depend on the sweep direction. On the other 
hand, for scheme (3), which only differs from scheme (2) in the treatment of the 
correction term, the convergence is independent of the sweep direction. Due to this 
difference in behaviour, scheme (2) will not be discussed in this paper. 

A closer inspection of scheme (3), which can be rewritten as 

(1-ri)U~+I-2(1+~ri~)U~+‘+(1+ri)24~f,l+2~ri~u~=0, (3’) 

reveals that it can be regarded as an SOR method for the central difference approx- 
imation to (l), in which the relaxation factor oi = (1 + ] rii)- ’ can be different in 
each grid point. The favourable experience with this scheme reported by Veldman 
1231 and Dijkstra [24] led us to investigate generalizations of the SOR method. In 

TABLE I 

Spectral Radii Related to Schemes (2) and (3) forfz 1 and h = & 

Re 

10’ 102 10 -10 -102 -IO3 

Scheme (2) 0.96 0.71 0.93 0.93 1.10 1.36 
Scheme (3) 0.96 0.71 0.94 0.94 0.71 0.96 
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each grid point the relaxation factor will be determined from the coefficients of the 
corresponding discrete equation and therefore this factor no longer needs to be 
constant throughout the mesh. The methods thus obtained will be called local relax- 
ation (LR) methods. 

The underlying idea is not new; it was already in use by Russell [27] in the early 
sixties, but apart from a few applications, e.g., Apelt [28], it has not attained 
widespread recognition. Only recently does there seem to be a revival of the idea of 
spatially varying relaxation factors, as may be inferred from papers by Benjamin and 
Denny [4], Takemitsu [29], and Strikwerda [30]. 

For equations with constant coefficients the LR strategy leads to relaxation factors 
which are the same in each grid point; hence in this case an LR method is equivalent 
to an SOR method. By this correspondence, SOR theory can be used to study the 
behaviour of LR methods. Furthermore, this relation suggests a special choice for the 
local relaxation factor w,.: it seems reasonable to select wi as the optimum relaxation 
factor m,rt of the SOR method applied to a system in which all equations have the 
same coefficients as the ith equation. It will appear, in Section 2, that uopt is a 
complicated function of the coefficients which can be rather expensive to evaluate. 
Therefore, in Section 3, we introduce approximations of uopt, chosen such that the 
rate of convergence is not much affected, but which can be computed more 
economically. 

Section 4 is devoted to the study of the performance of LR methods. It turns out 
that for equations with spatially varying coefficients and for nonlinear equations, a 
properly selected LR method is more effective than the optimum SOR method; the 
difference can be several orders of magnitude. In particular, LR methods are very 
effective when solving central difference approximations of convection-diffusion 
equations, even at very large cell Reynolds numbers, as is demonstrated by a driven 
cavity problem in Section 5. 

2. ANALYSIS 

In this section we will first give some theory on the determination of the optimum 
relaxation factor Oopt of the SOR method for solving a system of real linear 
equations Ax = 6, in which the matrix A can be written as A = D(Z - L - U), where 
L is a strictly lower triangular matrix, U is a strictly upper triangular matrix, and D 
is a nonsingular diagonal matrix. The Jacobi matrix B and the SOR matrix L,. 
corresponding with relaxation factor w, can then be written as 

B=L+U, L, = (I - wL)-’ [(l - 0)1+ WUI. 

When the matrix A is consistently ordered, the following fundamental relation exists 
between the eigenvalues ,U of B and the eigenvalues A of L, (A # 0, w # 0) [3 1 ] 

(A+u- 1+w*/&. (4) 
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When ,L is an eigenvalue of B, so are -,D and f,L. Thus we will consider the 
frequently occurring case where the eigenvalues of B are known and lying in a 
rectangle of which the vertices are the eigenvalues fpu, f ip, with pUR > 0 and ,L, > 0. 
Once o is given, (4) can be used to determine the eigenvalues J. of L,. Then also the 
spectral radius p(o) of L, follows as the maximum of the moduli of the eigenvalues 
of L,. When p(w) < 1 the SOR method is called convergent. The value of w  for 
which p(w) attains its minimum is called the optimum relaxation factor wopt. For 
given ,D and o, (4) yields two eigenvalues of L,, the product of whose moduli equals 
(o - 1)“. Hence p(w) > /w - 11, and since we are only interested in p(w) < 1, we 
restrict ourselves to 0 < w  < 2. 

By rewriting (4) (the central symmetry allows us to consider only one sign of the 
square root) as 

jd = o-‘[P + (w - 1)A-“‘I, /z # 0, (5) 

we obtain a conformal mapping from the complex 1 “‘-plane to the complex p-plane. 
The circle ]Ai”I = r is mapped onto the ellipse E,,, 

Pefil’ [ImPI* 
[(r + (co - l)/r)/w]* + [(r - (w - l)/r)/w]* = l. (6) 

Furthermore, when r2 > 1 w  - 1 / the exterior of the circle is mapped onto the exterior 
of the ellipse. Hence when the exterior of ellipse (6) does not contain an eigenvalue of 
B, then p(w) < r*. The equality sign holds if and only if at least one of the eigen- 
values of B lies on the ellipse [32]. It follows that L, is convergent if and only if all 
eigenvalues p lie in the interior of the ellipse E,,, 

[Rep]* + [Imp]*/[(2 - w)/w]’ = 1. (7) 

A necessary condition for convergence is therefore ,LL~ < 1, whereas in our case w  
has to be chosen such that ,U =,u, + ip, lies inside ellipse (7). Hence the SOR method 
is convergent if and only if 0 < w  < wmax, where 

W max = 2/[1 +,u,(l -/L;>-“‘I. (8) 

Further, when r is chosen such that ,D =,u, + ip, lies on the ellipse E,,,, the spectral 
radius of L, can be found from p(w) = r2. 

By minimizing p(w) the optimum relaxation factor can be obtained. This requires 
some tedious algebra [33], unless pUR or ,D, equals zero. We will only present the 
results here. Abbreviating 

a =& +&, b=iUZR -4, c = a2 -b*, d=a* -b, e = (c + d2)‘!2, 

we can write 

p(w) = :(a + [a’ - 16(1 - w)~]“*), (9) 



wept = -f [p - q3’ + 4py], if d > 0, 

= 1, if d = 0, (10) 
= -4 [p + (p’ + 4/3)“’ 1, if d c 0, 
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a = w*u + [w4u2 + 8w2(1 - w)b $ 16(1 - w)~]~‘*. 

The optimum relaxation factor is given by 

where 

/3 = [(3d + e)(e - d)l13 c113 - (3d - e)(e + d)‘13 cli3 t c - 4bd]/(a2d). 

The case d > 0 corresponds to w,rt < 1, whereas d < 0 corresponds to wept > 1. The 
case d = 0, where w,rt = 1, occurs when the determining eigenvalue ,u lies on a 
Bernoulli lemniscate [ 341. 

The formulas of Eq. (10) are rather uneconomical to use due to the appearance of 
the fractional powers. Therefore we will look for simple approximations. This 
requires knowledge of the behaviour of p(w) in the vicinity of w,rt. An impression 
can be obtained from Fig. 1, where p(w) has been plotted for some values of pR and 
,D,, Using this figure the following observations can be made: 

Case 1. pu, = 0. The optimum relaxation factor becomes 

W Opt = 2/[1 + (1 t/w'] < 1, (11) 

OO 0.5 1 1 1.5 
RELAXATION FACTOR w 

2 

FIG. 1. Relation between spectral radius, relaxation factor, and Jacobi spectrum. 
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hence underrelaxation has to be applied. When pi s 1 it can be seen in Fig. 1 that 
W max is only slightly larger than w,rt (compare also (8) and (1 I)), so a very small 
overestimate of w,rt can lead to divergence. Hence it is essential that any approx- 
imation of wept be an underestimate. Note that (9) reduces to p(w) = 1 - w  when 
w  < wept. 

Case 2. p, = 0. This is the classical case of overrelaxation [ 3 1 ] with 

w  opt = 2/[1 + (1 -pW2] > 1. (12) 

Now it is better to overestimate wept than to underestimate, but the choice is much 
less critical than in Case 1. Here p(w) = w  - 1 when w  > wept. 

Case 3. pa # 0, p, # 0. When ,uu, is not too small the choice of an approximation 
for wept is not very critical. For ,u, small and ~1, + 1, however we must underestimate 
as in Case 1. Now, for fixed ,q, w,rt decreases with increasing pR. 

From (10) it is difficult to extract analytical information; therefore we shall first 
present a simple but very good approximation G,,, of w,~,. It can be derived that 
W Opt - 2.4771 -/$3)l’2 when ,q % 1. By combining this with (11) and (12) we are 
led to consider 

(3 Opt = 2/(1 + [l -,U; +&l -Pu3)-‘]“2}. (13) 

TABLE II 

Exact and Approximate Values of the Optimum Relaxation 
Factor and Corresponding Spectral Radius 

PI 

0 0 1 1 
0.25 0 1.016133 1.016133 
0.50 0 1.071797 1.071797 
0.75 0 1.203777 1.203777 
0 0.5 0.944272 0.944272 
0.25 0.5 0.928228 0.924748 
0.50 0.5 0.923371 0.911583 
0.75 0.5 0.85406 1 0.844778 
0 2 0.618034 0.618034 
0.25 2 0.533561 0.533156 
0.50 2 0.455602 0.45455 1 
0.75 2 0.343309 0.342878 
0 8 0.220696 0.220696 
0.25 8 0.176279 0.176268 
0.50 8 0.141073 0.141047 
0.75 8 0.099208 0.099199 

Wept 

L 0 0 
2 0.016133 0.016133 
2 0.071797 0.071797 
2 0.203777 0.203777 
1.333333 0.055728 0.055728 
1.318915 0.237603 0.237759 
1.267949 0.463002 0.463703 
1.138998 0.757638 0.757788 
0.666667 0.381966 0.381966 
0.652403 0.633531 0.633533 
0.604339 0.800693 0.800697 
0.497053 0.92991s 0.92991s 
0.222222 0.779304 0.779304 
0.215928 0.889668 0.889668 
0.195358 0.945322 0.945322 
0.152732 0.981942 0.98 1942 

P(%pJ P(4l,,) 
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We note that Gopt equals w,,~~ when ,uuR = 0 or ,u, = 0. Furthermore, for other values 
of pR and ~1~ v 4,,, and p(+,,,) are very good approximations of m,rt and P(w&. 
This can be inferred from Table II where, for some values of pa and pI, we have 
given the values of mopt, Gopt, w,,,, P(o&, and ~(z,,,,). 

3. LOCAL RELAXATION 

With the basic formulas from the preceeding section the optimum relaxation factor 
for the SOR method can be calculated for any matrix satisfying pa < 1 ( a necessary 
and sufficient condition for convergence of the optimum SOR method). When the 
eigenvalues of the Jacobi matrix are irregularly distributed, however, it is unknown 
on which eigenvalue the optimum relaxation factor should be based. Recently, Rigal 
1331 has proposed an algorithm to determine the optimum for an arbitrary Jacobi 
spectrum. This requires full knowledge of the spectrum which, in general, is hard to 
obtain. 

The above drawback of the SOR strategy can be circumvented by switching to the 
LR strategy. Unlike SOR, in which the (uniform) relaxation parameter depends on 
the total discrete system, an LR method bases the (nonuniform) relaxation factor for 
a given equation on this equation only. The present method, for instance, bases the 
relaxation factor wi for the ith equation on a Jacobi matrix in which all coefficients 
are the same as in the ith equation. The eigenvalues of such a constant-coefficient 
matrix can be calculated analytically, which allows us to express wi explicitly in the 
coefficients of the ith equation. 

By its construction, for equations with constant coefficients the LR method just 
proposed is equivalent to the optimum SOR method. In the case of a linear equation 
its relaxation factors, determined by (10) (alternatively (13) may be used), have to be 
evaluated once in each grid point, but for nonlinear equations this has to be repeated 
each iteration sweep. Consequently we shall look for less complicated approximations 

Of %pt * How these can be obtained is demonstrated next in the important example of 
a second-order convection-diffusion equation. The extension to more general 
equations is discussed in Section 6. 

Consider on a domain G = {(x, y) ] 0 < x < I,, 0 < y < I,} the differential equation 

Au -f(x, Y) g - g(x, Y) $ = 0, (14) 

where u is prescribed on the boundary X2. The domain Q is covered with a grid 
(xi, yj) = (ih,jk); i = 0, l,..., N(h = I, /N); j = 0, l,..., M(k = Z2/M). The equation is 
discretized using second-order central differences, which yields for the grid point 
(xi, yj) the following discrete equation 

(Isa> 
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where 

c,-= fa( 1 + a), c, = fa( 1 - a), c, = g?( 1 t b), C,=$?(l -b) (15b) 

with 

a = k2/(h2 + k2), p= h2/(h2 + k2), a = qhf(x,,y,), b = $kg(xi,yj). (1%) 

The eigenvalues of the Jacobi matrix formed from (15a) using the LR strategy can be 
found readily 

,u = 2(C, cw)l’z cos( p/N) t 2(C, C,)‘12 cos(q7l/M), 

(p=l,2 )...) N-l;q=l,2 )...) M-l). 

Hence, using (15b), 

p, + ip, = a( 1 - a2)“2 cos(?r/N) t /I( 1 - b2)“2 cos(lr/M). (16b) 

Note that the condition ,uuR < 1, necessary and sufficient for convergence of the 
optimum SOR method, is satisfied for equations of type (15) with constant coef- 
ficients. 

Now we shall derive approximations 0: for the optimum relaxation factor ~~~~~ as 
given by Eq. (10). The same three cases as in Section 2 are considered. 

Case 1. ,uR = 0. This case applies when C,C, < 0 and C,C, ,< 0, or 
equivalently, a2 > 1 and b2 > 1. The optimum relaxation factor is given by Eq. (1 I). 
Using (16) we estimate 

1 +,a; < 1 + a’(~’ - 1) +/3’(b2 - 1) + 2cQ(a2 - l)“* (b2 - 1)“’ 

= 2a/3 + a2a2 +/3’b* + 2a/?(a2 - l)“* (b2 - 1)‘j2 

< 2a/l+ a*a* + p2b2 t 2a/l(labl- 1) 

= (alai +Plbl>‘, 

hence wept is underestimated by 

2/V + a la +P lbl>, (17) 

which, moreover, is a very good approximation of mopt when a Ial or /3 I bl is large. 

Case 2. P, = 0. This case applies when C,C, > 0 and C,C, > 0, or equivalently, 
a2 < 1 and b* < 1. The optimum relaxation factor is now given by Eq. (12). Similarly 
to Case 1, it can be argued that (17) (slightly) overestimates mopt. For a = b = 0, 
however, (17) takes the value 2, and the iterative process is no longer convergent. 
Therefore we shall bound this approximation from above by the optimum relaxation 
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factor w0 corresponding to a = b = 0 (w, can be found by substitution of (16b) into 
(12)). Thus we choose 

w$=min(w,,2/(1 +alal+Plbl>}. (18) 

It is remarked that in Case 1 the value of w$ given by (18) coincides with the value 
from (17); hence (18) can be used in both cases, i.e., when C, C, C, C, > 0. 

Case 3. ,uR # 0, ,ur # 0. The remaining case can be split into a case with 
C, C, > 0 and C,C, < 0, and a case with C,C, < 0 and C, C, > 0. Only the first 
case will be treated in detail. Therefore let 

,lfR = a( 1 - a2)“* cos(?r/N), p, = /?(b’ - 1)“2 cos@/M). (19) 

A good approximation of w, 

P 

t is given by (3,,, in (13). This equation can be used to 
show that, for fixed p, > $ 3, &,pt is a decreasing function of ,u,. The choice of w,F$ 
is most critical when ,u, is large. In fact, it is better to underestimate wept by 50% or 
more, than to overestimate it by only a few percent. The approximation for wept will 
therefore be based on the maximum value of ,uu,, i.e., ,u, = a, in which case wept can 
be approximated very well by 

wi$ = 2/(1 + YIP lbl>, with y, = (1 - a2’3)p”2. 

This approximation can also be used for smaller values of ] b ( since the situation is 
not critical then. 

When applied to a system of equations with constant coefficients, for which the 
SOR theory is valid, the above choices for w$ lead to a convergent LR method. In 
Cases 1 and 2 the convergence follows straightforwardly. In Case 3 convergence can 
be inferred from the following estimate: 

w$ =2/(1 + (1 -cz2’3)-“2~Ib() < 2/(1 + (1 -a2)-“2plbl) 

< 2/(1 + [ 1 - a’(1 - u2)]-“’ P(b* - 1)1’2) < wmaX. 

In the last step (8) and (19) have been used. 
Summarizing, to solve equations of type (15) we propose the following choice of 

the local relaxation factor (for which, when applied to equations with constant coef- 
ficients, convergence has been proved): when 

c,c,c,cs > 0: w* =min I 2 
wO, 

1+IG-cvI+IcN-csl i 
, (20a) 

when 

c,c,c,c, < 0: w*= 
2 

1 +YAG.J-GI’ 
if C,C,>O, Pb) 

2 

= 1 +Y*lq-&I 
if C,C,<O, WC) 
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where y, = [ 1 - (C, + C,)“‘] -I’*, y2 = [ 1 - (C, + C,)2’3] -I’*. It is noted that for 
equations of type (14), y, and y2 depend only on the mesh sizes h and k, and not on 
the coefficients of the first-order derivatives; in the special case of equal mesh sizes 
we have y, = yZ = 1.644. 

Remark. A one-dimensional local relaxation choice can be obtained from (20) by 
putting C, = C, = 0 (hence only (20a) applies). 

4. PERFORMANCE OF LOCAL RELAXATION METHODS 

In this section we shall discuss the performance of the LR method defined in (20), 
and of some other methods-reported in the literature-which belong to the class of 
LR methods. Also a comparison with the optimum SOR method is made. The perfor- 
mance of the relaxation methods is tested by solving discrete equations of type (15), 
repeated here 

in which the coefftcients are characterized by 

c, + c, + c, + c, = 1, (214 

c, + c, > 0, c, + c, > 0. @lb) 

Note that all estimates in Section 3 remain valid for this type of equation. 
The following LR methods are considered: 

(1) A method, apparently first described by Veldman [23] and Dijkstra [24], 
but later rediscovered in [ 131 and 1251. The relaxation factor is chosen as 

w VD= l/[l+Ic,-c,I+~c,-c,Il. (22) 

(2) A related method used by Takemitsu [29]: 

w,=2/[2+IC,-C,/+IC,-C,I]. (23) 

(3) The method suggested about two decades ago by Russell [27], who, 
however, restricted himself to situations with C, + C, = C, + C, = f, i.e., h = k in 
(15): 

o,=2/[1+(2~c,-c,~*+2(cN-cs)*+K)1’*]. (24) 

K = $r*(N-’ + Me2) plays the same role as o0 in (20a): it guarantees optimum 
convergence when first-order terms are absent. 
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(4) A method, similar 
presented by Strikwerda [ 301: 

w,=2 l$ 
ir 
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to the previous one but covering the case h # k, 

i 

cc, - GJ* 

CE + cw 

+ (C, - C,)’ I’* 

c, + c, i 1 . (25) 
(5) The method defined in Eq. (20) of this paper. 

4.1 Equations with Constant CoefJicients 

A theoretical discussion of the performance of the above LR methods can be given 
when the coefficients in (15a) are independent of the grid point (this occurs, e.g., 
when f and g in (14) are constant). Once again the three cases are considered. 

Case 1. ,~a = 0 (C, C, < 0, C, C, < 0). It is not difficult to show that in this case 
WVD < WT Go*, UR Go*, and cL)s <o*. Since from its construction 

co* < %pt < ~nlax it follows that all methods are convergent, and that the present 
method has the smallest spectral radius, i.e., the fastest convergence. 

The method of Strikwerda can sometimes be very inefficient. Such a situation 
occurs when C, + C, $ 1 (or C, + C, < l), which is tantamount to h 9 k (k 9 h) in 
(15~). Let us consider an example in which C, + C, = E < i, chosen such that the 
Jacobi eigenvalues lie within the unit circle (hence Gauss-Seidel converges); for 
instance 

c, = )(& - )), c, = f(F + ;), c,=o, c, = 1 - F. (26) 

Setting the cosines in (16) equal to unity, we have p, = 0, ,uu, = 4 + O(E*). Table II 
gives the optimum relaxation factor for this case as o,,~~ = 0.944 + O(E*), 
corresponding to the optimum spectral radius p(woPt) = 0.056 + O(E’). The 
Strikwerda method for this case, however, converges arbitrarily slowly, when E --f 0 
since ws - 4&i/*, corresponding to p(ws) - 1 - 4&l’*. For comparison, the other 
methods which are applicable give CC)“~ - $, wT - 4 and w* - 5, leading to 
p(wvD> - 5, p(q) - + and P(w*) - $ 

Case 2. pi = 0 (C, C, > 0, C, C, > 0). As we have seen in Section 2, any choice 
with 0 < o < urnax = 2 leads to convergence. All methods satisfy this relation, and 
hence are convergent, except the method of Strikwerda in case C, = C,, C, = C, 
(which occurs when in (14) the first-order terms are absent). When C, x C, and 
c, zz C,, the optimum relaxation factor is close to 2. Therefore, since oyn and wT 
cannot exceed 1, the methods of Veldman-Dijkstra and Takemitsu are less efficient 
when the coefficients of the first-order terms are small. 

Case 3. ~1~ f 0, ,B, f 0 (C,C,C, C, < 0). For this case the present method has 
been proved convergent; also the method of Strikwerda can readily be shown to be 
convergent. Further, when C, + C, = C, + C, = 4 convergence can be proved for 
the methods of Veldman-Dijkstra and Russell. The latter methods can be divergent 
when C, + C, < 1 (or C, + C, < 1). This is apparent from the following example 
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which is closely related to (26); the difference is that pUR is chosen close to 1 instead 
of equal to zero: 

c, = f(& - f), c, = 4(E + f), c, = c, = $( 1 - E). 

Replacing the cosines in (16) by unity we have ,uR = 1 - F, p, = f + O(E*), therefore 
from (8) it follows that mrnax N 4(2&)“*. When E approaches zero, however, 
~~vn - 213 and wr, - 1.17. Here it should be remarked that Russell has not intended 
to apply his method to this type of problems. 

The method of Takemitsu also diverges on this example (since wT > ~vn), but 
additionally his method can be divergent even when C, + C, = C, + C, = 4. Take, 
for instance, a problem with C, = C, and 1 C, - C,vI sufficiently large. The relaxation 
factor chosen by Takemitsu behaves like wT - 2 / C, - C, I-‘, whereas from (8) we 
can derive mrnax N G/C, - C,I-‘. 

4.2 Equations with Variable Coeflcients 

For equations with variable coefftcients a theoretical comparison is not yet 
possible since insufficient theory is available. Therefore we shall compare the various 
methods by applying them to a number of carefully selected examples which are 
believed to be representative of the type of equations that can be encountered. We 
begin with a few one-dimensional cases. 

One-dimensional versions of the methods of Veldman-Dijkstra (22), Takemitsu 
(23), and the present method (20) can be obtained simply by substituting 
C, = C, = 0 into their expressions for the relaxation parameter. For the methods of 
Russell (24) and Strikwerda (25) this is not so straightforward. Following their 
philosophy, however, we have derived one-dimensional analogues of their formulas, 
which read 

WK = 2/[ 1 + (1 c, - CJ2 + K)‘12 1, (247 

where K = n2N-*, and 

q=2/11 +Ic,-cwll~ (257 

respectively. 
The one-dimensional situation will be treated by solving the following equation for 

some choices of f(x): 

d2uldx2 -f(x) du/dx = 0, o,<x< 1, u(O)=O, u(l)=O. 

The equation is discretized, using central differences, on a grid with h = & (unless 
stated otherwise). Starting with U”(X) =x(1 -x), the discrete equations are iterated 
according to 

q+’ zz (1 - Wj) u; + q(C&-t,’ + cruy+ ,) 
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until maxi luil < 10P6. In the tables to be presented below, the number of iterations 
required is indicated. 

In the first example f(x) = Rex* (Re = 1, 10, 102, lo”, and 10”) has been 
chosen-a function which has a zero at one of the end points of the interval. 
Therefore the ratio between the maximum and minimum value of If(x)/ is infinite. 
Table III shows that now, for large Re, the optimum SOR method is clearly outper- 
formed by any of the LR methods. When the zero is removed, e.g., choosing f(x) = 
4 Re(1 + x2), the situation changes significantly towards the situation with constant 
coefficients for which optimum SOR is known to be equivalent to the optimum LR 
method. It is remarked that the optimum SOR results tabulated are the minima we 
obtained by scanning the o axis with small steps Aw. 

Both examples show for small Re, when Case 2 applies, the inefficiency of the 
methods of Veldman-Dijkstra and of Takemitsu caused by prohibiting overrelaxation 
(see Section 4.1). Also visible is a great resemblance between the present results and 
those of Russell and Strikwerda (especially for large Reynolds numbers). This is 
easily explained by comparing (20a), (24’), and (25’). For small Reynolds numbers 
the method of Strikwerda is less efficient because ws is chosen too close to 2 
(Section 4.1). 

TABLE III 

One-Dimensional Comparison of Point Iterative Methods 

u XI -fu, = 0 Method Re= 1 Re=lO Re=102 Re=lO’ Re=104 

s(x) = Re x2 Optimum SOR 48 53 258 716 
Veldman-Dijkstra 536 740 277 116 
Takemitsu 532 695 232 79 

Russell 57 93 38 58 

Strikwerda 825 80 14 58 

Present method 56 71 26 58 

f(x)=iRe(l $x2) Optimum SOR 46 3s 15 128 

Veldman-Dijkstra 527 382 39 206 

Takemitsu 519 335 21 104 

Russell 54 43 11 91 

Strikwerda 369 38 II 97 
Present method 52 37 11 91 

f(x) = Re u 2 Optimum SOR 46 46 43 405 

Veldman-Dijkstra 504 504 506 493 

Takemitsu 504 504 504 483 

Russell 52 52 50 48 

Strikwerda a a a a 

Present method 51 51 48 41 

1030 

561 

455 

331 

331 

331 

1222 

1950 

953 

921 

921 

921 

5050 

div 
455 

41 
” 

44 

’ Strikwerda’s method requires more than a million iterations. 
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TABLE IV 

Comparison of Point Iterative Methods for Decreasing Mesh Size 

u xx -“fk = 0 

f(x) = 1 o”xZ 

Method h=& 

Optimum SOR 1525 
Veldman-Dijkstra 846 
Takemitsu 540 

Russell 433 

Strikwerda 433 

Present method 433 

h = f h zz & 
_____- 

3409 15595 
395 744 
352 609 

227 109 

227 109 

221 109 

The effect of decreasing the mesh size is shown in Table IV for a case with a large 
Reynolds number. It is observed that the number of iterations required for SOR 
increases; a phenomenon not unfamiliar. But the table also shows that the LR 
methods perform better in this problem. This can be explained from the decrease of pr 
(when h decreases), which leads to a smaller spectral radius, i.e., faster convergence. 
For reference, notice in Table II the behaviour of p(uopt) for large p, and pR = 0. The 
increase in the number of iterations required by the methods of Veldman-Dijkstra 
and of Takemitsu, when h changes from &J to &, can be attributed to the fact that 
in the latter methods overrelaxation is prohibited. It is remarked that eventually for 
all methods the number of iterations required will increase with decreasing mesh size. 

A further advantage of an LR strategy over the SOR method is apparent when 
nonlinear equations are solved. The amount of relaxation applied in an LR method 
can be changed each iteration sweep, and thus adapt itself to the present magnitude of 
the matrix coefficients. In contrast, in the usual SOR method the relaxation factor has 
to be tailored to the “worst” situation which is encountered during the iteration 
process. The difference in efficiency is visible in an example with f(x) = Re U* (Table 
III). We note that f(x) approaches zero towards the end of the iteration process, 
allowing the LR methods to use overrelaxation, whereas at the start of the iterations 
underrelaxation is required (when Re is large). 

In the latter example the method of Strikwerda performs very poorly. This is also 
due to the fact that f(x) approaches zero, since in such a situation Strikwerda 
chooses his relaxation factor too close to 2 (see Section 4.1). By comparison with the 
method of Russell and the present method, the effect of K in (24’) and w,, in (20a) is 
clearly demonstrated. 

In the two-dimensional examples the following equation is solved on the domain 
a= [O, 1] x [O, 11: 

Au -J-(x, Y) g - g(x, y) $ = 0, u=O on Xi. 

Central differences are used in the discretization on a grid with mesh sizes 
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h = k = &. The initial guess is chosen as u”(x, y) = xy( 1 - x)( 1 - y), after which the 
iterations 

2fy.f = (1 -Oi,j) Uy,j + Wi,j(CWU~i~,j+ CEU;+l,j+ CSuY,f’I + CNUY,j+l) 

are performed until maxi,j / ui,jl < 10P6. 
We begin with an example in which /C, - C, 1 = 1 C, - C, 1 and where Cases 1 and 

2 apply: f(x, y) =g(x,y) = Re x2 (Re = lo”, n = 0, l,..., 4). From the number of 
iterations required, given in Table V, it is seen that the behaviour of all methods is 
very much like the one-dimensional situation. 

As a second example we choose f(x, y) = i Re( 1 + x2) and g(x, y) = 100. An 
interesting situation occurs when Re is large: Case 1 applies with I C, - C,I + 
/C, - C, 1 > 1. An analytical indication of the performance of the various methods 

TABLE V 

Two-Dimensional Comparison of Point Iterative Methods 

Au - fu, - gu, = 0 

f(x,y)= Rex* 
g(x, y) = Re x2 

h = k = l/20 

f(x. y) = f Re( I + x’) 
g(x, y) = 100 

h = k = l/20 

f(x.y)=tRe(l +x2) 
g(x, I’) = 100 

h = l/10, k = l/40 

f(x,y)=Rex* 
g(x, J-1 = 0 

h = k = l/20 

Method Re=l 

Optimum SOR 46 
Veldman-Dijkstra 465 
Takemitsu 462 
Russell 51 
Strikwerda 761 
Present method 50 

Optimum SOR 27 
Veldman-Dijkstra 46 
Takemitsu 28 
Russell 24 
Strikwerda 24 
Present method 25 

Optimum SOR 8 
Veldman-Dijkstra 68 
Takemitsu 36 
Strikwerda 9 
Present method 9 

Optimum SOR 46 
Veldman-Dijkstra 463 
Takemitsu 461 
Russell 51 
Strikwerda 1036 
Present method SO 

Re=lO Re=lO’ Re=lO’ 

43 310 1056 
516 264 117 
486 221 78 

59 30 60 
90 34 60 
47 26 60 

26 17 94 
47 53 164 
27 2s 79 
22 14 91 
22 14 91 
24 13 67 

~_~-~ 

7 10 52 
69 74 157 
36 38 84 

7 15 174 
8 11 56 

__~ 

41 202 658 
542 311 113 
524 280 180 

66 45 64 
108 38 64 

58 36 75 

Re=lO’ 
~~ 

2053 
530 
478 
300 
300 
300 

878 
1402 
633 
947 
947 
606 

602 
981 
494 

1870 
464 

1328 
535 
div 
355 
355 
366 
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can be found from the asymptotic behaviour of the relaxation factors given in 
Eqs. (20~(25), viz., 

w”~“lc,-c,I-‘, 

WR and wsmfiIC,-C,(-‘, wT and w*-2/C,-CJ’. 

In the case of constant coefficients, where for these relaxation factors p = 1 - w, we 
expect that the present method and the one of Takemitsu are faster by a factor v’? 
than Strikwerda’s method, and about twice as fast as the Veldman-Dijkstra method 
when Re is large. Table V confirms this behaviour for this example with variable 
coelficients. 

In the latter example equal mesh sizes are used, i.e., C, + C, = i. When 
C, + C, < i, however, Strikwerda’s method loses efficiency as discussed in 
Section 4.1. For instance, when h = 4k, i.e., C, + C, = &, the asymptotic behaviour 
of Strikwerda’s relaxation factor os N 2(C, + Cw)“’ IC, - C,l-’ predicts this 
method to be the slowest of the LR methods considered (when I C, - Cwl 9 1). The 
figures in Table V, where the latter example has been treated with h = h and k = &, 
are in agreement with this prediction. Russell’s method has not been included in this 
example with unequal mesh sizes because it was not designed to cover this type of 
problem. 

When Case 3 applies with large ~1, the situation again is changed, as illustrated by 
an example with f(x, y) = Re x2 and g(x, y) = 0 (Table V). Takemitsu’s method is 
seen to diverge for Re = 104; the reason has already been discussed in Section 4.1. 
Applying unequal mesh sizes is not as interesting as in the previous example. The 
only feature which is worth mentioning is that, as predicted in Section 4.1, the 
method of Veldman-Dijkstra can become divergent for large values of Re. 

More difficult are situations in which one of the coefficients switches sign whereas 
the other equals zero. An example of this is given by f(x,~) = Re(2x - I)“, 
g(x, y) = 0 (Table VI). For large Re not only does Takemitsu’s method diverge. but 
so do Russell’s method, Strikwerda’s method, and the present one. The latter methods 
can be made convergent, however, by restricting the relaxation factor to be less than 
unity. For the present method this is realized by replacing o0 by 1 in (20a). The 
numbers marked with an asterisk have been obtained this way. As a possible 
explanation of this behaviour it is observed that when x = 4 (20a) recommends 
overrelaxation with o = w0 close to 2, whereas, for large values of Re, in the grid 
points adjacent to x = 1 underrelaxation is prescribed. It is believed that this large 
difference between neighbouring w  values is responsible for the divergence, since 
reducing the difference, by restricting w  to values less than or equal to 1, leads to 
convergence. 

Also interesting are situations in which both coefficients switch sign in the 
interior-especially those in which f and g have common zeros, i.e., internal turning 
points. De Groen [35] has given a classification of two-dimensional turning points, 
together with a discussion of their intrinsic properties. Two cases will be treated here. 
The first case is chosen such that only interior boundary layers can exist. An example 
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TABLE VI 

Point Iterative Methods Applied to Turning-Point Problems (h = k = &) 

Au -jiu, - = 0 gu, 

f(x, y) = Re(2x - 1)’ 
g(x3 Y) = 0 

f(x, y) = Re( 1 - 2x) 
g(x, y) = Re( 1 - 2~) 

Method Re= 1 

Optimum SOR 46 
Veldman-Dijkstra 458 
Takemitsu 458 
Russell 51 
Strikwerda 4165 
Present method SO 

Optimum SOR 43 
Veldman-Dijkstra 414 
Takemitsu 411 
Russell 42 
Strikwerda 634 
Present method 43 

j-(x, y) = Re(2x - 1) 

g(x, .I’) = ReG9 - 1) 

Optimum SOR 44 
Veldman-Dijkstra 503 
Takemitsu 500 
Russell 59 
Strikwerda 638 
Present method 58 

Re=lO Re=102 Re=lO’ Re=lO” 

53 223 
556 1015 
550 964 

69 169 
370 99 

67 141 

37 43 
230 52 
21s 40 

31 24 
63 26 
41 26 

71 - 
1674 
1572 
249 

76 - 

215 - 

4406 39356 
941 881 
876 div 
I64 408* 
94 408* 

112 608* 

106 1019 
133 1241 

74 674 
69* 679* 
69* 619* 
70* 666* 

div __ div 
div div 
div div 
div div 
div div 
div div 

Note. For numbers marked with an asterisk see text. 

is provided by f(x, y) = Re(1 - 2x) and g(x, y) = Re(1 - 2~). From Table VI it is 
seen that this problem can be solved; for large values of Re overrelaxation again has 
to be prohibited. The second case is chosen such that a boundary layer is formed all 
around the perimeter of the domain: f(x,~) = Re(2x - l), g(x, y) = Re(2y - 1). De 
Groen [35] has proved that the continuous problem, in the limit Re --t co, possesses 
an eigenvalue zero, and hence cannot be solved uniquely. The discrete approx- 
imations show similar behaviour (Table VI). For Re = 100 the discrete matrix 
appears to be singular (zero eigenvalue), and for larger values of Re the iterations 
slowly diverge for all methods tried. 

4.3 Summary of Comparative Test Results 

The above comparative tests show the following properties of the LR methods, 
when compared with the optimum SOR method: 

An explicit choice for the relaxation parameter is available. 

For equations with constant coefficients several LR methods are as 
efficient as the optimum SOR method. 
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For equations with varying coefficients, and for nonlinear equations, most 
LR methods considered are more efficient than optimum SOR; the 
difference can be several orders of magnitude. 

Like any point iterative method, an LR method is very simple to 
programme. 

Comparing the LR methods considered with each other we can conclude: 

The methods of Veldman-Dijkstra and of Takemitsu are inefficient when 
the coefficients of the first-order derivatives are small. Moreover, when 
one of the coefficients is small and the other is large the methods can 
diverge in some cases. 

Russell’s method is a very good one when applied to grids with h = k (for 
which the method was designed originally): it should have gotten much 
more attention. Strikwerda’s related method which covers the case h # k 
can be extremely inefficient. A (small) disadvantage of both methods is 
that a square root has to be calculated. 

The present method is found to converge whenever one of the other 
methods converges; moreover, it is found to be competitive with the other 
methods. 

After completion of the present investigation, a paper by Ehrlich [37] has appeared 
which is based on the same philosophy as used in the present paper, i.e., the starting 
point is the formula for the optimum SOR factor given in (10). To define the local 
relaxation factor Ehrlich [37] evaluates (10) using (16b) for Dirichlet boundary 
conditions, or similar formulas valid for Neumann or periodic boundary conditions. 
In the present paper a simpler approximation of the resulting expression is proposed; 
for nonlinear problems, where the relaxation factors have to be recalculated each 
iteration sweep, this can lead to an appreciable decrease in computational effort. Due 
to the close resemblance, the convergence of Ehrlich’s method and of the present 
method will be about the same. 

5. A DRIVEN CAVITY EXAMPLE 

We thought it unavoidable to test the performance of the present LR method by 
means of the driven cavity problem. A review of driven cavity calculations up to 
1978 has been given by Tuann and Olson [2]. The maximum Reynolds number for 
which they reported central difference solutions is 5000. More recently larger 
Reynolds numbers have been treated: up to Re = 50,000 by Kurtz, et al. [36]. They 
used the method of lines on a 16 x 16 grid. To enable a fair comparison, we solved 
the same system of discrete equations as they did. Additionally, we increased the 
Reynolds number to Re = 106. 
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In short, the driven cavity problem asks to solve, on 
y < 1 }, the incompressible Navier-Stokes equations, which 

the square {(x, y) ) 0 < X, 
read in divergence form 

; @2)-g ($2)=&AR, --R=Ay/, 

with boundary conditions 

x=0 and x= 1: y = 0, ay/ax = 0; 

y=o: v/=0, aypy=o; 

y= 1: y=o, alJl/ay=-1. 

These equations have been discretized on a grid (Xi,Yj) = (ih,jh), i, j = 0, l,..., N 
(h = l/N) using central differences. The discrete equations have been solved in the 
following way, scanning the grid along horizontal lines from left to right and starting 
at y= 1: 

q$’ E (1 -CU&2yJl+ 2w,h-*(h - Yy+l), i = l,..., N - 1; 

~n;l,~’ = (1 -Lob)R~,j- 2w,h-*y:.j, j = l,..., N - 1; 

l2y.f’ = (1 - W*) i2y.j + W*(C,f2:,5:, + Cw.R~I~,j + C,J2:+ 1.j + C,Qy,j-l), 

WY,; ’ = (1 - 00) wy,j + aW,(h2f2y,T ’ + w~,J: 1 + WlT:,j + WY+ I,j + Yy.j- I), 

i, j = l,..., N; 

.n;l’j’ = (1 - ob) Q;,j - 2w,h-2t,u;:‘,j, j = l,..., N - 1; 

.n;,; ’ z.z (1 -~~)n~.,-zw,h-‘~~.:‘, i = l,..., N - 1. 

The relaxation factor w* has been chosen according to the present LR method as 
indicated in (20), where for simplicity yi = y2 = 1.644 has been used. The coefftcients 
in the vorticity equation are given by 

and similar expressions for the others, with the understanding that for vi+ , ,,iP, and 
I,u,.-~,~- i only the values from the nth sweep are available. The streamfunction 
equation and the boundary conditions have been combined with a relaxation factor 
too; these were chosen constant throughout the field. The iteration process with 
starting values zero was terminated when 

ly 1 IyyJ’ - y;,jl < 5 x 10-6. 

The two relaxation parameters o, and ob have been varied; the most efficient ones 
encountered are listed. 
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For Re = 5 x IO4 and h = &-, the minimum number of iterations we have obtained 
is 494 (oti = 0.7, wh = 0.02). The calculation time required on a CDC Cyber 170- 
760 amounts 2 CPU seconds. For comparison, the method of Kurtz, et al. [ 36 1 
requires 8261 CPU seconds on a CDC 6600; their stopping criterion is roughly 
comparable to ours. Taking into account the difference in computer speed (a factor 
3-4) the present LR method is faster by a factor of about 10’. 

For Re = IO6 and h = &, the minimum number of iterations obtained is 1836 
(w, = 0.1, wh = 0.005) which requires 7 CPU seconds on the Cyber 170-760. 

Of course, the discrete solutions for both Reynolds numbers on such a coarse grid 
have little to do with the continuous solutions; therefore we do not present any results 
(for Re = 5 x lo4 see 1361). These examples merely serve to show that using the 
present LR method it is not difficult to obtain the discrete solution of centrally 
discretized Navier-Stokes equations. 

6. DISCUSSION 

A local relaxation method can be considered as a generalization of the successive 
overrelaxation method. For equations with constant coefficients they are equivalent, 
in which case they can be used only if the eigenvalues iu of the Jacobi matrix satisfy 
-1 < Re ,u < 1. *For equations with nonconstant coefficients the LR methods 
prescribe nonconstant relaxation factors: no theory is available for these situations at 
the moment. The LR methods differ among themselves in the way the relaxation 
factors are chosen. 

In this paper, the LR methods have been applied to (one-dimensional and) two- 
dimensional convection-diffusion equations, discretized with central differences on a 
five-point molecule leading to discrete equations of type (15a). The restrictions of 
Eqs. (21), which often are fulfilled, are sufficient to guarantee that the eigenvalues of 
the local Jacobi matrix satisfy -1 < ,ua < 1. Under these restrictions the present LR 
method (20) has been designed. Nevertheless the parameter choice given in (20) can 
also be useful in neighbouring situations where restrictions (21) are slightly violated. 
An example of this is given by the driven cavity problem in Section 5 where (2 lb) 
need not be satisfied. 

For larger deviations from (21), and for generalizations to three or more 
dimensions, the analysis leading to (20) has to be revisited. The starting point 
remains the relation between the optimum SOR factor given in (10) and the eigen- 
values of the Jacobi matrix. The requirement -1 < pa < 1, necessary for convergence 
in the constant coefficient case, ensures that relaxation factor (10) and its approx- 
imation (13) take real values; whether it is satisfied has to be checked in each 
situation. Further, the relation between the coefficients of the discrete equation and 
the eigenvalues of the local Jacobi matrix can still be given by an expression of type 
(16a). This relation combined with (10) (or (13)) g ives a choice of the local relax- 
ation factor w which is (near) optimal in the constant coefficient case. If the 
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expression thus obtained is regarded as too expensive to evaluate, a simple approx- 
imation may be sought leading to an analogue of (20). We think we can leave these 
steps to the interested reader. 

7. CONCLUSION 

A large variety of equations has been used to test the power of the LR strategy. 
Our experience thus far is that, apart from some notorious turning-point problems, it 
is always possible to choose the local relaxation factors such that the LR method 
converges. The present choice given in (20) can be used when restrictions (21) are 
(approximately) satisfied; for equations with constant coefficients it is as efficient as 
the optimum SOR method. Further, it is our experience that for equations with 
strongly varying coefficients, and for nonlinear equations, a properly chosen LR 
method will be more efficient than the optimum SOR method; the difference can be 
several orders of magnitude. 

In conclusion, it has been shown that an LR strategy (of which a very tine example 
was already available in the early days of the upwind era) can easily solve central 
difference approximations of convection-diffusion equations in cases of a small 
diffusion coefficient, thereby eliminating the need for the usually made trade-off 
between the accuracy of the central difference solution in favour of the convergence 
of the upwind-type methods. 
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