7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Interpretations of Recursion under Unbounded Nondeterminacy
Hesselink, Wim H.

Published in:
Theoretical Computer Science

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1988

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Hesselink, W. H. (1988). Interpretations of Recursion under Unbounded Nondeterminacy. Theoretical
Computer Science, 59(3), 211-234.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://www.rug.nl/research/portal/en/publications/interpretations-of-recursion-under-unbounded-nondeterminacy(ebf5c2a6-571f-4471-b98f-7bbad85832c8).html

Theoretical Computer Science 59 (1988) 211-234 M
North-Holland

INTERPRETATIONS OF RECURSION UNDER UNBOUNDED
NONDETERMINACY

Wim H. HESSELINK

Department of Mathematics and Computer Science, Groningen University, 9700 AV Groningen, The
Netherlands

Communicated by J. de Bakker
Received June 1986
Revised July 1987

Abstract. A language is constructed that supports arbitrary atomic statements, composition,
alternatives, and mutual recursion in the presence of unbounded nondeterminacy. The concept
of interpretation is defined axiomatically. By operational means a standard interpretation is
constructed, which ic proved to be the smallest interpretation with respect to the Egli-Milner
ordering. The corresponding weakest precondition and weakest liberal precondition are character-
ized as smallest and largest preparator functions.

We characterize the interpretations which upon divergence cannot deliver unjustified meaningful
values. These interpretations form a spectrum that ranges from standard semantics, over various
forms of fair semantics, to the so-called friendly semantics where error is signalled only if
divergence can become inevitable after finitely many steps. We determine the corresponding
preparator functions.

0. Introduction

0.0. Unbounded nondeterminacy

In programming, data structures and control structures are brought together. Data
structures consist of sets and operations on the elements of the sets. Control structures
are language constructs that prescribe which sequences of operations are to be
performed.

The avoidance of unnecessary or premature choices in the specification of a data
structure leads to nondeterminate specifications. If the data structure is unbounded,
the nondeterminacy can also be unbounded. Therefore, the theory of control struc-
tures must be able to deal with unbounded nondeterminacy.

This kind of nondeterminacy is called loose, cf. [19, p. 514]. It is a property of
a specification, which does not exclude deterministic implementations. Thus we see
no reason to restrict to countable nondeterminacy. This has the advantage that some
technical problems of [2] disappear.

0.1. The operational abstraction of a data structure
From the point of view of the control structure, the number of data values and
their types are irrelevant. So we put all data values together in one value, which is

0304-3975/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

212 W.H. Hesselink
called the state. The set of the conceivable states is called the state space X. It may
be thought of as the cartesian product of the relevant data domains.

An operation f is a way to establish a certain postcondition, which usually depends
on the initial state. If the initial state is called x, we use f(x) to denote the set of
the states which satisfy the postcondition. It may be that the operation f is permitted
to result in divergence. Therefore, we introduce an error symbol § that is not element
of X, and we prescribe that f(x) is a nonempty subset of X L {{}.

Remark. 1t is not satisfactory to model divergence by means of an empty result
set f(x). For, in that case, a nondeterminate choice between divergence and a
meaningful result cannot be specified. The same argument can be used against
Hehner’s proposal (cf. [10]) to model divergence by means of a result se: f(x) = X.
The condition that f(x) be nonempty, is Dijkstra’s law of the excluded miracle, cf.
[6]. We see no need to drop this law as is done in [17].

0.2. Unification of alternative command and routine call

The control structure needs tests on the state in order to choose between alternative
actions. Some authors treat tests as operations that in case of a negative answer
deliver an empty set of results, cf. [4, Theorem 7.8(b)]). This may lead to the
occurrence of blind alleys so that the semantics require a kind of backtracking
mechanism, cf. {13, p. 470].

Instead of this unification of tests and statements, we have chosen a unification
of Dijkstra’s alternative command (cf. [6]) and the routine call. The declaration of
a routine specifies a set of alternative refinements each guarded by its own test. If
a routine is called, it is replaced nondeterminately by one of the refinements with
a test that succeeds. The formalism enforces the existence cf at least one such test.
In this way no backtracking is required.

0.3. Interpretations

The semantics of a language is determined by the interpretation. The concept of
interpretation is defined axiomatically in Section 1. Recursion and loops lead to
freedom of interpretation. Typical cases are the following loops, where initially the
integer variable x is positive.

(A) dox#0->x:=x-1 [x#0-skipod,
(B) dox#0->x=x-1] x#0>x=x+10d,
(C) dox#0->x=x-1] x#0>x=x-20d.

In case (A), the standard semantics gives the possibility of divergence, but a fair
treatment of the alternatives in the loop would guarantee convergence. In case (B),
fairness is not sufficient for convergence, but the loop converges under friendly
semantics. In case (C), even friendly semantics admits a possible divergence since
divergence can become inevitable after finitely many steps.

Interpretations of recursion under unbounded nondeterminacy 213

0.4. Standard semantics

In Section 2, the standard interpretation is constructed by means of an operational
model, cf. [2]. We prove in Section 3 that this standard interpretation is the smallest
interpretation with respect to the Egli-Milner ordering, cf. [2, 20]. In Section 4, we
introduce preparator functions as a generalization of the weakest precondition wp
and the weakest liberal precondition wlp, cf. [6]. It is proved that wp and wlp 21
the two extreme preparator functions, cf. [7].

In these three sections the results may not be new, but proofs of this generality
seem to have not yet appeared in the literature. Our principal goal has been to
provide complete proofs in a most general and elementary setting.

0.5. Operationally justified interpretations

The axiomatic definition in Section 1 admits interpretations which upon divergence
may deliver meaningful but erroneous results. For example, it is not exciuded that
after an initialization x := 3, the loop

dox#0->x=10d

is interpreted to deliver a state with x =0, or x =1, or x =2. Such an interpretation
is considered to be not operationally justified. The concept of cperational jusiification
is defined in Section 5. The operationally justified interpretations are constructed
explicitly in terms of sets of potential divergence. They form a spectrum that ranges
from standard semantics, over various forms of fair semantics, up to friendly
semantics (compare Section 0.3). It turns out that the operationally justified interpre-
tations are in a one-to-one correspondence with a nice class of preparator functions.

0.6. Semantics of fair termination

In Section 6 we show that the semantics of termination for all fair execution
sequences is an operationally justified interpretation. More specifically, we introduce
T-fairness, where T is a finite family of iransition types that are to be treated fairly.
The T-fair interpretation signals divergence in the case of an infinite, T-fair calcula-
tion or of a finite calculation that ends in a diverging statement.

0.7. Elementary tools

Our main tool is the elementary calculus of set-valued functions. Several
ingredients of other presentations are missing. We do not use adjoint functors, cpo’s,
or complete metric spaces, cf. [0, 2, 14]. We do not need transfinite induction or
Konig’s Lemma. The recursion is modeled by means of refinements, so we do not
need substitutions or a block structure.

0.8. Additional remarks _

We got interested in this field by reading [7]. Our interest was revived when
investigating observable equivalence in nondeterministic data types, cf. [11, Theorem
3.5]. The results on standard semantics were first obtained by means of the metric

214 W.H. Hesselink

space of infinite sequences, cf. [14]. Later we realized that « ’nfigurations are more
convenient, cf. [2]. Friendly semantics was invented as a ciassroom example. The
description of the operationally justified interpretations by means of sets of potential
divergence emerged when the first version was almost completed. It turned out,
however, that that section contained a grave error. This was pointed out by one of
the referees. In the meantime we had learned to appreciate Dijkstra’s rigor of simple
and explicit proofs. Therefore, the revision became an exercise in balancing between
almost conflicting styles. Especially, Section 5 was completely rewritten.

1. A language and its interpretations

1.0. Operations on the state space X
Let X be an arbitrary set, not necessarily finite. The set X is called the state space.
The elements of X are called states. We form the disjoint union

Xi=Xvu{}

where s is a formal symbol, not in X. An operation f on X is defined to be a function
which assigns to every state x in X a nonempty subset f(x) of X,. We let Op(X)
denote the set of all operations f on X. As examples of operations we provide skip,
abort, and havoc, given by

skip(x) = {x}, abort(x) ={{s}, havoc(x)=X.

Remarks. We use the symbol § instead of the conventional bottom in order to
indicate that X, is not regarded as a flat cpo, cf. [2, p. 481]. We will use #(U) to
denote the powerset of a set U. So an operation f on X is a function f: X » ?(X,)
with nonempty values f(x). The condition that the sets f(x) be nonempty, is Dijkstra’s
law of the excluded miracle, cf. [6]. As argued in [3, 20], the functional approach
to nondeterminacy is equivalent to the relational approaches, cf. [7, 10, 17, 19]. We
use the functional approach for personal convenience and for consistency with [11].

1.1. Composition of operations

If feOp(X), then we define f(y)={¢}. If V is a subset of X,, we define
fx(V)=Uxev f(x). The composition fo g of operations f and g is defined by
[g(x)=f(g(x)).

It is easy to see that composition of operations is associative, and that skip is the
neutral element for the composition, cf. [2, Proposition 2.3].

1.2. Statemenis

We assume that S is a given alphabet, not necessarily finite. The clements of S
are called statement symbols. The semantics is defined by a fixed function

k:S-0p(X).

Interpretations of recursion under unbounded nondeterminacy 215

If s S, then the operation k(s) is to be regarded as the meaning of the statement
symbol s.

1.3. Routine symbols, strings, and refinements

Let H be a second alphabet. The elements of H are called routine symbols. Let
A denote the disjoint union of the alphabets S and H. Let A* denote the set of the
strings of elements of A. The empty string is denoted as €. Concatenation of strings
is denoted by means of a semicolon. A refinement function is defined to be a set-valued
function

R:Hx X > P(A*)

such that the set R(h, x) is nonempty for any h € H and x € X. The strings r€ R(h, x)
are called the refinements of the routine symbol h that are acceptable to the state x.

1.4. Interpretations

Let a refinement function R be fixed. We define an interpretation to be a function
p:A*->Op(X) that satisfies ithe following conditions:

(a) p(e) =skip;

(b) if ¢, ue A*, then p(t; u)=p(u)° p(t);

(c) if s€ S, then p(s) =k(s);

(d) if he H and x€ X, then p(h)(x) =J,cr(nx P(r)(x).

If p is an interpretation and y € p(¢)(x), we say that p signals the possibility of
result y for an execution of string ¢ that starts in state x. In view of the conditions
(a), (b), (c), an interpretation p is completely determined by the operations p(h)
with he H. Condition (d) is a recursive one. In generzl, the conditions are not
strong enough to determine the operations p(h) uniquely. In the next section we
give an example with four different interpretations.

Remarks. Condition (b) is not imposed by Hehner, cf. [10, Definition 1.2].
Hehner’s interpretations can violate condition (b) only in case of a finite state space,
but that is because of his restriction to bounded nondeterminism.

The condition in Definition 1.3 that the sets R(h, x) are nonempty, is motivated
by the elegance of the above condition (d). In Dijkstra’s alternative command (cf.
[6]) the absence of a test that succeeds leads to abortion. In our setting this effect
can be accomplished by putting R(h, x) ={s0} where s0 is a statement symbol with
k(s0) = abort.

1.5. Example of a refinement function with four interpretations
In an imperative language with nondeterminacy we consider a boolean variable
x and the loop

do x - choose x od.

In order to translate the loop into our language we introduce X =boolean with the
elements ff and tt. We put S ={s} with k(s) =havoc. The loop is represented by

216 W.H. Hesselink

the routine symbol h with
R(n,fi)={e} and R(htt)={(s;h)}

Put H ={h). All interpretations p are easily determined. It suffices to determine the
operation p(h). It is clear that

p(h)(ff) = p(e)(f) = {ff}.

The other case leads to the recursive equation

p(h)(tt) = p(h)(fF) U p(h)(tt).

Therefore, the set p(h)(tt) can be any subset of X. that contains the element ff. So
it may contain tt, or ¥, or neither one, or both together. This shows that there are
four different interpretations in this case.

Remark. One may argue that an interpretation p with tte p(h)(tt) is not justified.
This suggests a definition, cf. Definition 5.1 below.

2. Operational semantics: the configuration graph

2.0. The operational construction

The operational semantics is constructed by means of a directed graph of configur-
ations, cf. [2, p. 486]. A configuration consists of a state and a string of statement
and routine symbols. The transitions in the graph correspond to the execution of a
statement symbol or the choice of a refinement of a routine symbol. The main result
of this section is that the semantic function thus constructed is an interpretation in
the sense of Definition 1.4.

We have two reasons for considering operational semantics. Although the
specification of semantics had better be axiomatic or denotational (cf. Definition
1.4, Theorem 3.3, Definition 4.3 and Theorem 4.3), implementations are likely to
be operational. An abstract operational model scems to be necessary to verify the
correctness of operational implementations. A second reason is that the operational
semantics yields an existence proof, which is more simple than the standard methods
associated with denotational semantics.

2.1. The configuration graph

A configuration is defined to be a pair {x,) with x € X, and t € A*. So the set of
configurations is the cartesian product Z =X, X A*. A configuration is called ter-
minal if it is of the form (x, €) with x€ X. A terminal configuration (x, €) will be
identified with the state x. In this way, the set X is identified with a subset of Z.
Configurations of the form (Y,) with 1€ A* are called aborted. We let Z0 denote
the set of the aborted configurations.

Interpretations of recursion under unbounded nondeterminacy 217

The set Z is made into a directed graph by specifying, for each configuration
y=(x, t), a set of transitions y - z. If y is aborted or terminal (i.e., if x=y or t=¢),
then y has no transitions. Otherwise, it holds that xe X and t=(a;u) with ac A
and u € A*. Then we distinguish two cases:

Case (a) If aeS and x#, the configuration (x, a;u) has the transitions
{x, a;u)->{(x0, u) with x0¢€ k(a)(x).

Case (b) If ac H and x#{, the configuration (x, a;u) has the transi‘ions
(x, a;u)->(x, r;u) with re R(a, x).

The set Z together with the binary relation “-” is called the configuration graph Z.

2.2. The postulate of operational semantics

Lzt %> denote the reflexive and transitive closure of the transitioa relation - on
the configuration graph Z. Let us write y=>c0 to indicate that y<*»(y, ¢) for some
aborted configuration (J, 7) or that y is the starting point of some infinite path in
the graph Z. We define the semantic function m: Z -» #(X,) by

m(y) ={xe X |y=>x}u{§|y-=2>c0}.

If a path in Z cannot be extended, it ends in a configuration which is either terminal
or aborted. Therefore, the set m(y) is always nonempty. If y = (s, #) then m(y) = {{;}.
It follows that m can be identified with a function m:A¥*->Op(X) such that
m(t)(x) = m(({x, t)) holds for every configuration (x, t). Below in Theorem 2.4 we
will prove that the function m is an interpretation. After that it will be called the
standard interpretation.

2.3. Example
The relevant part of the configuration graph of Example 1.5 consists of four
configurations with four possible transitions:

(tt, h) s (tt, s; h) — (ff, h) — (ff, €).
It follows that m(h)(tt) = {ff, ¥}.

24.
The configuration graph Z has the following regularity property.

Lemma 2.1. (2) If (x,)= (xO0, u) is a transition and v e A*, then (x, t ; v) > (x0, 1 ; v)
is a transition,

(b) If {x, t;v)->(x0, w) is a transition, then x € X, and either t=¢ or w has a
decomposition w = (u ; v) such thai (x, t)->(x0, u) is a transition.

218 W.H. Hesselink

Procf. For configurations (x, #) and (x0, w), Definition 2.1 implies that
(*) (x 6)>(x0, w)
= (3acA,pecA*:t=a;p
A((ae SAax0e€k(a)(x)aw=p)
v(iae Hax0=xA(3reR(a, x): w=r;p))))
= (QacA,precA*t=a;paw=r;pax a)>(x0,r)).
For t#¢, it follows that
(x, t;v)->{x0, w)
= (JacApre At to=a;paw=r;pa(x,a)->(x0,r)) [by(+)]
= (3acA qgreA*t=a;9Aaw=r;q;vA(x a)>(x0,r))
[usep=gq;v]
= (Sue A*: w=u;vA(x, N->(x0, u)) [use (*) aud u=r;q].
Since, in general, (x, t) only has transitions if x € X and ¢ # ¢, the assertions (a) and
(b) follow. O

2.5. Ingredients of the composition
If y={x, t) is a configuration and ve A* is a string, we define the postfixed
configuration

yiv={xt;0).
Note that the identification of x in X with (x, €) in Z leads to the equality x; ¢ =(x, t)

for any x € X and t € A*. The next result describes the paths that start in a postfixed
configuration y;v. It is a kind of generalization of Lemma 2.1.

Proposition 2.2. For configurations y. z€ Z and a string v € A* we have
(@) (ivoz) = (Fy0eZ:y>y0ny0;,v=2z)v(Ixe X: yxa(x, v)*2),
®) (y;v50) = (y2>0)v(@xeX: y=>xA(x, v)2>00).

Proof. In both cases the implication “<” is an easy consequence of Lemma 2.1(a)
-ogether with the transitivity of the relation “*>” on Z.

As for the implication “=", assume that y;v->z, or that y; v-*>00 respectively.
Then there is a finite or ‘afinite path (z;|i< I) starting in zo=(y;v) with z,_,> z
for all indices ie I'\{0}. In case (a) the path ends in the configuration z = z,,, say,
so that I ={i|0<i<m}. In case (b) the path ends in an aborted state z,, = ({,),
or the path is infinite so that I =N. Write y =(x, ;) and z; =(x;, w;) with x, x;€ X,
and t,, w; € A*. Since zo=(y;v), we have x = x, and wy=(to; 0). If w,_;=(t;_,;0),
then Lemma 2.1(b) implies x;_;€ X, and ¢,_,=¢ or w;=(I,;v) with (x;_,, ti_,)~>
(x;,). As long as the second alternative applies, induction yields a sequence of
configurations y; =(x;, t;) with y,=y, and y;_, - y;, and z; = (y;; v). If this construc-
tion covers the entire range I, we have obtained the first disjunct of tiie right-hand

Interpretations of recursion under unbounded nondeterminacy 219

side of (2) or (b). Otherwise, the construction stops at some index rel with
x=Xx,,€X and t,_,=¢, and hence y-=*>x. In that case, we have (x, v)=2,_,, and
therefore, (x, v)%>z or (x, v)->00 respectively so that the second disjunct of the
right-hand side of (a) or (b) holds. O

Corollary 2.3. For y<Z, and x0¢ X, and v € A*, it holds that
(y;02x0) = (AxeX: y2xa(x, v)2x0).
Proof. This follows from Proposition 2.2(a) with z=x0, in which case the first
disjuizct of Proposition 2.2(a) implies the second one:
(3y0e Z: y2>y0r y0;v=x0)
= p=gAyDH 0 [because x0e X]
= (Axe X: yHxax, v)2>x0) [choose x =x0]. O

Theorem 2.4. The semantic function m: A* -» Op(X) is an interpretation.

Proof. We verify the conditions of Definition 1.4. Let x € X be given.

(a) The configuration (x, €) belongs to X. It has no transitions, and it does not
satisfy (x, €)->00. Therefore, we have m(e)(x)=m((x, €)) ={x}. This proves that
m(e) =skip.

(b) For t, ve A*, we observe

m(t; v} x)
= {x0e X |{x, t;v)2>x0} U{Y|(x, t;v)2>0} [by Def.2.2]
= {x0e X |3x1e X:(x, £)=2>x1A{x1, v)2>x0} [by Cor.2.3]

u{P|3x1e X: (x, 1)2>x1 A (x1, v)-2>0} U {P|(x, 1)-=2>00}
[by Prop. 2.2(b)]

= (m(t)(x)n{p}Phu N Um()M(v)(Z) [by Def. 2.2]
= m(v)° m(t)(x) [by Def. 1.1].
(c) For any statement symb_ol s, we have
m(s)(x)

= {x0e X|(x, s)=>x0} L {y|(x, 5)-2>00} [by Def. 2.2]
= {x0e X|x0e k(s)(x)}u{¥|be k(s)(x)} [by Def. 2.1]
= k(s)(x).
(d) For any routine symbol h, we have
m(h)(x)
= {x0e X|(x, h)=2>x0}u {|({x, h)=> o0} [by Def. 2.2]
= U ({x0eX|(x, r)=x0}u {¥|(x, r)=>0}) [by Def. 2.1]

re R(h,x)

= U m(r)(x) [by Def. 2.2]. -
reR(h,x)

220 W.H. Hesselink

Remark. Henceforward the semantic function m will be called the standard

intornrotn tmn

SIS QT waeL NI IO

3. Denotational semantics without cpo’s or limits

3.0.
In thic section we show ihat the standard interpretation constructed by opcrational
means in Section 2 is also a natural one from the point of view of denotational

semantics. In fact, we prove that it is the smallest interpretation with respect to the

Egli-Milner ordering, cf. {2, 20].

3.1
Let p: A*->Op(X; be an interpretation. It can be id<ntified with a function
p:Z > P(X,) given by p((x,)) =p(#)(>).

Lemma 3.1. (a) If ye Z0, then p(y) = {¥}.
(b) Ifye X, then p(y) ={y}.
(c) If ye X u 20, then p(y) =U..y- p(2)-

Proof. We write y=(x, 1), so that p(y)=p(t)(x). If x=¥, then p(y)={{} by
Definition 1.1. If ¢ =¢, then p(y) ={y} by Definition 1.4(a). By Definition 2.1, this
proves the cases (a) and (b).

In case (c) we have x€ X and t#e. Write t=(a;u) with ac A and uc A*. By
Definitions 1.4(b) and 1.1, it holds that p(y) = p(u),(p(a)(x)). We calculate the
union. If a€ S, then

U p(2)

z:y~>z

= U p(x0,u)) [byDef.2.1(a)]

x0ek{a){x)

U p(e)x0) [byDef. 1.4(c)]

x0epla)(x)

p(u)(p(a)(x)) [by Def. 1.1].

If ae H, then
U »(2)

Ziy=>z

= U px,r;u) {by Def. 2.1(b)]

1eR{a,x)

= U p(u)*(p(r)(x)) [by Def. 1.4(b)]

= P(u)*(U P(r)(x)\\ [set calcnlus]

re R(a,x)

plu)y{pla)(x)) [by Def. 1.4(d)]. O

Interpretativ s of recursion under unbounded nondeterminacy 221

32
Theorem 3.2. Let y be a configuration.
{(a) Every interpretation p satisfies {x € X |y x} < p(y).
(b) Let p and q be interprc:ations with p(y) # q(y). Then there is un infinite path
(z:)ieN) starting in zo=y such that p(z;) # q(z;) for all indices i eN.

Proof. (a): If y-2z then p(z)=p(y), by Lemma 3.1(c). Therefore, y<>z im-
plies p(z)< p(y). By Lemma 3.1(b), it folinws that xe p(y) for any xe X with
yEx

(b): If p(y) # q(y), then Lemma 3.1 implies that y 2 X u Z0, and that p(z) # q(z)
for some transition y - z. This fact is used in an irductive construciion. [

3.3. The Egli- Milner relation
The powerset P(X.,) of X, is equipped with the Egli- Milner relatiiun < given by

UsV = (UcsVu{iha(U=VvieU).

It is a well known (but peculiar) fact tha: this relation is an ordering of P(X.) (by
ordering we always mean partial ordering). This ordering induces an ordering on
the set of the interpretations by

p<q = (VyeZ:p(y)<q(y))-

34
Theorem 3.3. The standard interpretation is the smallest interpr=tation with respect to
the ordering <.

Proof. Let p be an arbditrary interpretation. Let y € Z. By Theorem 3.2(a) we have
m(y)< p(v)u{¥}. By Theorems 2.4 and 3.2(b), we have m(y)=p(y)vie m(y).
This proves that m(y)<p(y), and hence that m<p. O

2.5. Independent construction

Some readers may prefer an ab:tract construction of the smallest interpretation.
This can be done, cf. [2,3]. In fact, the powerset P(X,) with the Egli-Milner
ordering is a cpo. The set Y of the functions p: H X X » #(X) gets an induced cpo
structure. The interpretations are brought in bijective correspondence witk: the fixed
points of a certain order-preserving function F: Y - Y. Using transfinite induction
one shows that F has a smallest fixed point in Y. The identificaticn of this smallest
fixed point with the semantic function m of Definition 2.2 stiil requires th.e arguments
of Theorems 2.4 and 3.3. If X is not countable, we have to accept the fact that
countable directed subsets of these cpo’s need not te eventually constant, cf. [3,
Fact 2.4).

4. The preparator functions wp and wip

4.0. Weakest preconditions
In denotational semantics the results of an execution of a string of commands
are expressed in terms of the string and the initial state. For programming

222 W.H. Hesselink

methodology, however, it is more important to know the weakest precondition such
that execution of the string is guaranteed to establish a required postcondition. One
distinguishes between partial correctness and total correctness. In the first case one
'speaks of the weakest liberal precondition. This condition does not guarantee
termination of the string, but if termination occurs then the postcondition is estab-
lished, cf. [6].

According to a suggestion of Wadsworth (cf. [20, p. 477]) the weakest precondition
of a recursive procedure can be expressed as a minimal solution of a certain equation.
The present section contains a formalization of this fact, and of its liberal analogue.
It turns out that partial correctness and total correctness represent the two extreme
solutions. In the case of the repetition, this resuit is due to Dijkstra and Scholten,
cf. [7]. For other references we refer to the last part of [16].

4.1. Predicate transformers: set transformers

A predicate as may be used in programming practice, corresponds to the subset
of the state space where the predicate helds. Therefore, a predicate transformer
corresponds to a function that maps subsets of X to subsets of X, cf. [20]. Let
F(X) denote the set of such functions f: P(X)-> P(X). We order the set F(X) in
terms of set inclusion by

fef = (VVe@(X): f(V)<f(V)).

4.2. The weakest precondition functions
The weakest precondition function wp and the weakest liberal precondition function
wlp are defined as the functions wp, wip: A* > F(X) given by

wp(1)(V)={xe X |m(1)(x) <= V},

wip(8)(V) ={xe X |m(t)(x)= VU {$}}.

4.3. Preparator functions

In order to analyse the functions wp and wlp, we define preparator functions as
a kind of objects dual to the interpretations. A function w: A* > F(X) is called a
preparator function if it satisfies the following conditions:

(a) w(e) is the identity functon of #(X);

(b) if ¢, ue A*, then w(t; u) =w(t) > w(u);

(c) if se S, then wp(s) < w(s) = wip(s);

(d) if he H and Ve P(X), then w(h)(V)={xe X |Vre R(h, x): xe w(r)(V)}.
The ordering of the set %(X) induces an ordering of the set of preparator functions
by

wew' = (Vie A*: w(r)c w'(t)).

Interpretations of recursion under unbounded nondeterminacy 223

4.4. An interpretation induces two preparator functions

Let p: A*>Op(X) be an arbitrary interpretation. We define two associated
functions

p°, p': A* > F(X).

A little trick is used to avoid case analysis. If Ve #(X), we write V' = VU {§}, and
V°=V. Let i be 0 or 1. The funciions p° and p' are defined by

p'()(V)={xe X|p(t)(x)<= V}.

Remark. We have wp = m®, and wlp=m', where m is the standard interpretation.

Proposition 4.1. The functions p°® and p' are preparator functions.

Proof. We verify the conditions of Definition 4.3. Let Ve #(X).
@ pPE(V)=XnV'=V [by 1.4(a)].
(b) Pt u)(V)
= {xeX|p(u)(p(t)(x))= V'} [by 1.4(b) and 1.1]
= {xeX|p()(x)= (p'(u)(V))'} [set calculus]
= p'(t)°p'(u)(V).

(c) The operations m(s) and p(s) are both equal to k(s). It follows that p(s)=
wp(s) and that p'(s) = wip(s). This implies that wp(s) < p*(s) = wip(s).

(d p'(h)V)
= {xe X|p(h)(x)<= V'} [definition p'(h)]
= {xe X|Vre R(h,x): p(r)(x)< V'} [by cond. 1.4(d)]
= {xe X|Vre R(h,x): xep'(r)(V)} [definition p’(r)]. O

4.5.
Proposition 4.2. Let w be a preparator function. Let t € A* with t #¢. Let xe X and
Ve P(X).
(a) xe w(t)(V)&<=(Vx0e X, , ue A*: ({x, t)-> (x0, u)=>x0e w(u)(V))).
(b) If w(s) =wp(s) for every statement symbol s € S, the implication “<" of part
(a) is an equivalence.
(c) xe w()(V)=>(Vx0e X, uc A*: (/x, £)-> (x0, u)=>(x0={¢ v x0 € w(u)(V)))).

224 W.H. Hesselink

Proof. Write t=a;v with a€ A and ve A*. We distinguish the cases ac H and
ac$. If ae H, then

(Vx0€ X, , ue A*: ({x, #)>(x0, u)=>x0€ w(u)(V)))
= (Vre R(a,x): xe w(r;v)(V)) [because of Def. 2.1(b)]

= xew(a;v)(V) [by Def. 4.3(b, d)].
This proves (a), (b), (c) for the case that a€ H.
If a€ S, then

(Vx0€ X, , ue A¥*: ((x, 1) (x0, u)=>x0¢€ w(u)(V)))
= (Vx0ek(a)(x): x0e w(v)(V)) [by Def. 2.1(a)]
= xewp(a)e w(v)(V) [by Defs. 4.2 and 4.3(b)]
= xew(a;v)(V) [by Def. 4.3(b, c)].

This proves part (a). If wp(a) = w(a), the last implication is an equivalence. This
proves (b). Case (c) follows from

(Vx0e X, , uc A%: ({x, t)> (x0, u)=>(x0=yY v x0€ w(u)(V))))
= (Vx0ek(a)(x): x0=yvx0e w(v)(V)) [by Def. 2.1(a)]
= xewlp(a)e° w(v)(V) [by Defs. 4.2 and 4.3(b)]
& xew(a;v)(V) [by Def. 4.3(b, ¢)]. O

Remark. The isolation of Proposition 4.2(a) out of the proof of Theorem 4.3
below is due to one of the referees.

4.6.
Theorem 4.3. The function wp is the smallest preparator function.

Proof. By Proposition 4.1, the function wp is a preparator function. Let w be an
arbitrary preparator function. Let te A* and V e #(X) be given. We have to show
that wp(¢)(V)< w(t)(V). Assume the existence of a state

xewp(t)(V\w(i)(V).

We use the configuration (x,) as a starting point for an infinite path in the
configuration graph Z. Since wp(t) # w(t), we have t # €. Therefore, by Proposition
4.2(a), there is a transition (x, £)->(x0, u) with x0& w(u)(V). By Proposition 4.2(b)
we have x0¢< wp(u)(V). This proves

x0e wp(u)(V)\w(u)(V).

By induction, this gives us an infinite path starting in (x,). It follows that §s € m(#)(x),
so that x £ wp(#)(V), a contradiction. This proves that wp(:)(V)< w(t)}(V). O

Interpretations of recursion under unbounded nondeterminacy 225

4.7.
Theorem 4.4. The function wlp is the largest preparator function.

Proof. Itis a preparator function, cf. Definition 4.4. Let w be an arbitrary preparator
function. Let t€ A*, and V € #(X), and x € w(t)(V). Consider a result x0e m(¢)(x)
that differs from . Then there is a path (x, t)-=>(x0, €) in the graph Z. This path
does not contain configurations of the form (), u). By inductive application of
Proposition 4.2(c) we get x0€ w(e)(V)= V. This proves that xe wlp(¢)(V), and
hence w(t)(V)<cwlp(£)(V). O

4.8. Remarks
Using Proposition 4.1 one can show that Theorem 3.3 is a formal consequence
of Theorems 2.4, 43 and 4.4 together. Conversely, however, the result in Theorem
3.3 seems to be not strong enough to give direct proofs of Theoiems 4.3 and 4.4.
For our purposes it is irrelevant whether or not the preparator functions w satisfy
the condition

w0 V) =0 wixv
iel iel

for every nonempty family of subsets V; of the state space X. This condition
corresponds to unbounded conjunctivity of predicate transformers, cf. [8]. The
condition holds if w is p® or p' for some interpretation p. There exist however,
preparator functions w such that w(z) does not even preserve the inclusion.

5. Operationally justified interpretations

5.0.

The methods developed for the analysis of standard semantics turn out to be
sufficiently powerful to determine all interpretations of an interesting class. We will
define an interpretation to be operationally justified if every result that is signalled
by the interpretation, is also signalled by the standard interpretation. Since the
freedom of interpretation is completely due to infinite calculations (cf. Theorem
3.2) the only remaining freedom for an operationally justified interpretation is to
choose the infinite calculations that are interpreted as divergence. This choice is
formalized in the concept of sets of potential divergence. As an answer to a question
of a referee, we characterize a class of preparator functions, which are in perfect
duality with the operationally justified interpretations.

5.1. Operational justification
Let an interpretation p: A*-> Op(X) be called operationally justified if any result
allowed by p is also allowed by the standard interpretation m, that is

Vie A* xe X: p(t)(x)c m(t)(x).

226 W.H. Hesselink

Example. In the case of Example 1.5, the interpretation p is operationally justified
if and only if tt& p(h)(tt).

Remark. Specification oriented approaches (cf. [10, 18]) suggest a preference
for the largest interpretation with respect to the inclusion order. The existence of a
unique largest interpretation is an easy consequence of the Knaster-Tarski theorem.
Usually, this interpretation is not operationally justified.

S.2.

Proposition 5.1. For an interpretation p the following conditions are equivalent:
(a) p is operationally justified.
(b) Vte A*, xe X: p(1)(x)n X =m(t)(x)n X.
(c) The preparator function p' is equal to wip.

Proof. We have the following equivalences:
(@) (Vte A% xe X: p(t)(x)= m(r)(x))

= (Vte A%, xc X: p(t)(x) n X < m(t)(x))
[by Theorem 3.2(b) and Def. 2.2]

(b) = (VteA*, xe X: p(t)(x)n X =m(t)(x)n X)
[by Theorem 3.2(a) and Def. 2.2]

= (VteA* xe X, Ve P(X): p(t)(x)= Vu{b}=m(t)(x)= Vu{}
= (Vte A%, Ve 2(X): p' () (V) =wlp()(V)) [by Prop. 4.1]
(© = p'=wlp. 0O

5.3. Sets of potential divergence, and their semantic functions
Recall that Z0 is the set of the aborted configurations (Y, t) with t€ A* (cf.
Definition 2.1). We define the set of inevitable divergence

Zi={yeZ|Vze Z: y2z=>z¢ X}.

In other words, we have y e Z1 if and only if no path from y leads to a terminal
configuration. Clearly, Z0 is contained in Z1. We define a subset D of Z to be a
set of potential divergence if it satisfies the following conditions:

(a) Z1< D;

(b) VyeZ:(ye D\Z0)=(3ze D: y->2z);

(c) VyeZ, ve A*: (y;ve D)=(ye D)v(Ixe X: yxa{x, v)e D).
If D is a set of potential divergence, we definz the corresponding semantic function
mp:Z-> P(X,) by

mp(y)={xe X|y=>x}u{y|yeD}.

Interpretations of recursion under unbounded nondeterminacy 227

By condition (a), the sets mp(y) are nonempty. If € A*, then mp((y, 1)) ={{}. As
in Definition 2.2 it follows that the function mp can be regarded as a function
mp: A* - Op(X), with mp(t)(x) = mp((x, 1)).

5. .. Two extreme cases

(a) Standard semantics: By condition 5.3(b), every set of potential divergence D
is contained in the set E of all configurations z¢ Z with z*»c0. By Proposition
2.2(b), this set E is a set of potential divergence, and hence the largest set of potential
divergence. The function mg is equal to the standard interpretation m.

(b) Friendly semantics: Let F be the set of configurations where divergence may
become inevitable after finitely many steps. So F consists of the configurations ye Z
such that y*>z for some ze Z1. By conditions 5.3(a, b), every set of potential
divergence D contains F. Using Proposition 2.2(a) and the fact that for any ye Z1
a relation y-*»> z implies z € Z1 one can prove that F is a set of potential divergence.
Therefore, it is the smallest set of potential divergence. The corresponding semantic
function mg is called the friendly semantic function. It only signals divergence if
divergence can become inevitable after finitely many steps. For examples we refer
to Example 0.3.

5.5.

Theorem 5.2. Let D be a set of potential divergence. Then the function mp, : A* > Op(X)
is an operationally justified interpretation.

Proof. We verify the conditions of Definition 1.4. Let x € X be given. By condition
5.3(b), we have (x, €)£ D so that my(e)(x) ={x}. This proves that mp(e) =skip, as
required in Definition 1.4(a). For ¢, ve A*, we have

mp(t;v)(x)
= {¥|(x, t;v)e D}u {x0e X |(x, 1;v)=> x0} [by Def. mp)
= {b|(x, e D}u {¥|3x1€ X: (x,)*>x1 A (x1, v)e D} [by cond. 5.3(c)]
u{x0e X |Ix1e X: (x,)= x1 A (x1, v)=>x0} [by Cor. 2.3]
= ({$}nmp()(x))v mx,pm oo mp(v)(x1) [by Def. mp]
= mp(v)° mp(t)(x), [by Def. 1.1],

thus proving condition 1.4(b). In order to verify conditions 1.4(c, d), we first note
that for any symbol a € A we have (x, a) £ X u Z0. By condition 5.3(b), it follows that
mp(a)(x)= U mp(2).

z:{x,a)=>z
If a € S, we use Definition 2.1(a) to get mp(a)(x) = k(a)(x), thus proving condition
1.4(c). If a € H, it follows from Definition 2.1(b) that

mp(a)(x)= U mp(r)(x).

r=R(a,x)

228 w.H. Hesselink

This proves condition 1.4(d), so that mp is an interpretation. By Example 5.4(a),
the set D is contained in E so that mp(#)(x) = m(¢)(x) for all ¢ and x. This proves
that mp is operationally justified. O

Remark. Theorem 2.4 is a special case. We have repeated the argument to show
the role of the conditions of Definition 5.3. One may notice that condition 5.3(a)
is used in 5.3 to ensure that the sets mp(y) are nonempty.

5.6. Special preparator functions
Let a preparator function w be called special if it satisfies the following conditions:
(a) for any string t€ A* the set w(z)(@) is empty;
(b) for any statement symbol s€ S we have w(s)=wp(s);
(c) for any string t€ A* and any subset V of X we have w(¢)(V)=w(t)(X)n
wip(£)(V).
Condition (a) is the law of the excluded miracle (cf. [6]). Condition (c) says that
total correctness is the conjunction of termination and partial correctness.

Proposition 5.3. If p is an operationally justified interpretation, the preparator function
p° is special.

Pioof. For te A* we have

P(1)(®)
= {xeX|p()(x)=@} [by Prop.4.1]
=9 [p(#)(x) is nonempty].

For xe X, and s€ S, and V< X we observe
xep(s)(V)
= p(s)(x)< V [definition p°]
= k(s)(x)= V [by cond. 1.4(c)]
xewp(s)(V) [by Theorem 2.4 and Def. 4.2].

If te A%, then
xep’(1)(V)
= p(t)(x)c V
= p(t)(x)= X Am(t)(x)n X < V [by Prop. 5.1(b)]
= xep°(t)(X) nwip(t)(V) [by Prop. 4.1 and Def. 4.2].

This proves that p° is special. [J

Remark. The fact that p is operationally justified is only used in the proc f of
part (c).

Interpretations of recursion under unbounded nondeterminacy 229

5.7.
Theorem 5.4. Let w be a special preparator function. There is precisely one set of
potential divergence D with w=mY%,.

Proof. For any set of potential divergence D, we observe
w=m)
= (Vte A*: w(t)(X)=m%(1)(X)) [by Prop. 5.3(c)]
= (VieA*, xe X: xe w(t)(X)=¢¢& mp(t)(x)) [by Prop. 4.1]
(Vte A%, xe X,: xe w(t)(X)=(x, t)e D) [by Def. 5.3]
(*) = D={(x, e Z|xe w(t)(X)}.

This proves uniqueness of D. It remains to prove that the set I specified in line
() is indeed a set of potential divergence. We verify the conditions of Definition
5.3. Condition 5.3(a) is proved in

(x,t)e Z1
= m(t)(x)={¢y} [by Defs. 5.3 and 2.2]
= xewlp(t)(®) [by Def. 4.2]
= x£w(t)(X) [by conds. 5.6(a) and (c)]
= (x,1)eD [Def. of D].

Condition 5.3(b) is proved in

(x, t)e D\Z0
= xe X\w(t)(X) [Defs. D anc 20]
= (Ix0e X,,ue A*: (x, 1)~ (x0, u) A x02 w(u)(X))

[by cond. 5.6(b) and Prop. 4.2(b)]

= (3zeD:{x,t)~>2z) [Def. of D].
Condition 5.3(c) is proved in
(x,t;v)e D
= xegw(t;v)(X) [Def. of D}
= xg w(t)(w(v)(X)) [by Def. 4.3(b)]
= x& w(t)(X) nwlp(t)(w(v)(X)) [by cond. 5.6(c)]

x2w(t)(X) v (3x0e X\w(2)(X): (x, 1)*>x0) [by Defs. 4.2 and 2.2]
(x,1)e Dv (3x0€e X: {x, t)*>x0A(x0,v)e D) [Def. of D]. O

5.8.

Theorem 5.5. Let p be an operationally justified interpretation. Let w be a speczal
preparator function. Let D be the umque set of potential divergence with w = m% (cf.
Theorem 5.4). Then we have w = p° if and only if p= inp.

230 W.H. Hesselink

Proof. The first steps are similar to those of the uniqueness proof in 5.7. We have

w=p°
= (Vie A*: w(2) X)=p%1)(X)) [by cond. 5.6(c)]
= (VieA*, xe X: xew(t)(X)=¥£ p(1)(x)) [by Prop. 4.1]
= (Vte A*, xe X:(x, t)e D=y e p(*)x)) [by proof 5.7(*)]

= (Vte A%, xe X: mp(t)(x) n{¥} = p(1)(x) " {$}) [by Def. 53]

= (Vte A% xe X: mp(t)(x) =p(t)(x)) .
[by Prop. 5.1(b) and Theorem 5.2]

= mp=p. O

Remark. Theorems 5.4 and 5.5 establish one-to-one correspondences between:
(i) the set of operationally justified interpretatioiis,
(ii) the set of sets of potential divergence, and
(iii) the set of special preparator functions.
The correspondences are given by p—> p°, and D> my,, and formula 5.7(*).

6. The semantics of fair termination

6.0.

In this section we show that the semantics of termination under fair execution,
as considered for example in {1, 9, 15], can be expressed in terms of a s¢: of potential
divergence (cf. Definition 5.3). In the mentioned papers an execution sequence is
said to be fair (or strongly fair) if every transition that is enabled infnitely many
times is also taken infinitely many times. A program is said to be fairlv terminating
if every fair execution sequence is finite.

In each of the papers there is one guarded repetition of a nondeterminate choice
between a finite number of statements. In our more general context of arbitrary
recursion, there is no fixed finite set of transitions. Therefore, we define fairness
relative to a finite family of transition types. The generalization enables us to specify
noi only a fair treatment of the alternative refinements of a routine symbol, but also
of the alternative results of the execution of a statement symbol. It gives a natural
way to express the fact that only certain aspects of the execution are fair.

6.1. Transition types

A transition type U is defined to be a set of transitions in the contignration graph
Z such that

(*) VyzeZveA*. ((y»z)eU=(y;v->z;v)eU).

Interpretations of recursion under unbounded nondeterminacy 231

If U is a transition type, then the enabling type E(U) is defined by
E(U)={y~>z|3(y~>z)e U}.

One verifies that E(U) is a transition type, and that it contains U.

Remark. Let a transition y -z be called simple if y =(x, a) with ae A. Every
transition typ- U is determined by the simple transitions that it contains. The
enabling type £/{ /) is determined by its source configurations of the form y =(x, a)
with ae A.

6.2. Fair divergence

A path (z;jie I) in the configuration graph Z is said to be maximal if it cannot
be extended, i.e., if it is infinite or if its last configuration is terminal or aborted,
cf. Definition 2.1. A path is said to be divergent if it is infinite or if its last configuration
is aborted. It follows that y-=» 0 holds if and only if some divergent path starts in y.

Let U be a transition type. A path (z;|i € I) in the graph Z is said to be U-infinite
if there are infinitely many indices i such that the transition z;_, - z; belongs to the
transition type U. The path is said to be U-fair if it is U-infinite or if it is not
E(U)-infinite. Note that every finite path is U-fair.

Let T=(Uj,|je J) be a finite family of transition types U;. A path in the configur-
ation graph is said to be T-fair if it is U;-fair for every index je J. A configuration
y is said to be T-fairly divergent if there is a divergent and T-fair path that starts
in y. We let D(T) denote the set of the T-fairly divergent configurations.

6.3.
Proposition 6.1. For any configuration y there is a maximal and T-fair path that starts
in y.

Remark. The proof of this result consists of an implementatior of a fair strategy
without deadlock. Such implementations are known already for a long time, cf. [5].

Proof (sketch). The configuration graph Z is enriched with an extra component: a
patience vector g =(g;|j€J). The coordinates g; of g are nonnegative integers. The
idea is that the value g; decreases whenever a transition of the type U; is enabled
but not taken, and that it can only increase if a transition of type U is taken. More
specifically, let an integral vector g as above be called a patience vector if

VneN: card{jeJ|q;<n}<n.

Let Q be the set of all patience vectors. The cartesian product Q X Z is made into
a directed graph by admitting a transiticn (g, z)-> (q’, z’) if and only if there is a
transition z - 2’ in Z, and, for every index j such that z- z’ does not belong to the
type U;, we have

7;<qirn((z>2)e E(U)) = qj<g;-1).

232 W.H. Hesselink

Let y be a given configuration. Choose an arbitrary patience vector g€ Q. In the

granh Q x Z one constructs a maximal path that starts in the element (g, y). Using
the structure of the graph Qx Z, one proves that the proiection of this path into

LAV UBAMWLAW Wi wARWw RSeS| i W SSSSES WSSV p v oo w e we eSS S - ===
the graph Z is a T-fair path, which is glso maximal. For a detailed proof we refer
_to [12], where the same scheduler is used to schedule possibly infinitely many

processes. The scheduler of [1] is slightly different. [

6.4.
Theorem 5.2. The set D(T) of the T-fairly divergent configurations is a set of potential

divergence.

Proof. We verify the conditions of Definition 5.3.

(a) Let ye Z1. By Proposition 6.1 there is a maximal and T-fair path that starts
in y. Since y € Z1, the path is divergent. This proves that y € D(T).

(b) A configuration y belongs to D(T)\Z0 if and only if some divergent and
T-fair path of length = 1 starts in y. The latter condition is equivalent to the existence
of a transition y- z with ze D(T). This proves condition 5.3(b).

(c) The proof of c-ndition 5.3(c) is an immediate adaptation of the proof of
Proposition 2.2(b), based on the property 6.1(+) of the transition types. [

6.5. T-fair semantics

By Theorem 6.2, we can define the T-fair interpretation as the interpretation
mp: A¥ > Op(X). This interpretation signals the possibility of divergence if and
only if there exists an infinite T-fair execution path, cf.[1, 9, 15]. The corresponding
T-fair prepar=tor function is mr): A*-> F(X). It gives the weakest precendition
such that ali T-fair calculations terminate in a state that satisfies the rc.ired
postcondition.

Remark. We leave it to the reader to construct a T-just interpretation (cf. [15])
or equivalently a weakly T-fair interpretation (cf. [1]). The concept of impartiality
of [15] can be modeied only approximately. One must be prepared to admit the
result ¥ in cases of inevitable divergence such as the program in {15, p. 271].

1. Concluding remarks

We have shown that the elementary configuration model is sufficiently powerful
to deduce elegant denotational characterizations of the semantics of recursion under
unbounded nondeterminacy. We have characterized the operationally justified inter-
pretations, which include standard semantics as well as various forms of fairness.

If one wants to abolish Dijkstra’s law of the excluded sriracle (cf. [17]), our
formalism can easily be adapted. In Definitions 1.0 and 1.3, one changes the

Interpretations of recursion under unbounded nondeterminacy 233

definitions of operations and refinement functions, in the sense that the sets f(x)
and R(h, x) are allowed to be empty. In Definitions 2.2 and 5.3 the proofs of
nonemptiness are dropped. In Section 5, the set Z1 is replaced by Z0, and Sections
5.6 and 5.7 are changed accordingly.

Acknowledgment

I had the opportunity to present parts of this material to groups of colleagues
and groups of students in Amsterdam, Groningen, and Austin (Texas). This was
very stimulating. The suggestions and criticisms of the referees contributed even
more.

References

[0] S. Abramsky, On semantic foundatiens for applicative muitiprogramming, in: Proc. Internai. Conf.
on Automata, Languages and Programming, Lecture Notes in Computer Science 154 (Springer,
Berlin, 1983) 1-14.

[1] K.R. Apt and E.-R. Olderog, Proof rules and transformations dealing with fairness, Sci. Comput.
Programming 3 (1983) 65-100.

[2] K.R. Apt and G.D. Plotkin, A Cook’s tour of countable nondeterminism, in: Proc. Internat. Conf.
on Automata, Languages and Programming, Lecture Notes in Computer Science 118 (Springer,
Berlin, 1982) 479-494.

[3] K.R. Apt and G.D. Plotkin, Countable nondeterminism and random assignment, JACM 33 (1986)
724-767.

[4] J.W. de Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, Englewood Cliffs, NJ,
1980).

[5] E.W. Dijkstra, A class of allocation strategies inducing bounded delays only, Tech. Rept. EWD
319, 1971.

{6] E.W Dijkstra, A Discipline of Progromming (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[7] E.W. Dijkstra and C.S. Scholten, The operational interpretation of extreme solvtions, Tech. Rept.
EWD 883, 1984.

[8] E.W. Dijkstra, Predicate transformers (draft of Chapter 3), Tech. Rept. EWD 908, 1985.

[9] O. Griimberg, N. Francez, J.A. Makowsky and W.P. de Roever, A proof rule for fair termination
of guarded commands, in: J.W. de Bakker, ed., Algerithmic Languages (North-Holland, Amsterdam,
1981) 399-416.

[10] E.C.R. Hehner, Predicative programming, Part I and I, Comm. ACM 27 (1984) 134-151.

[11] W.H. Hesselink, Nondeterminism in data types, a mathematical approach, ACM Trans. Programming
Languages and Systems 10 (1988).

[12] W.H. Hesselink, Deadlock and fairness in morphisms of transition systems, Theoret. Comput. Sci.
59 (1988) 235-257 (this issue).

[13] C.A.R. Hoare, Some properties of predicate transformers, JACM 2§ (1978) 461-480.

[14] R. Kuiper, An operational semantics for bounded ncndeterminism equivalent to a denotational
one, in: J.W. de Bakker, ed., Algorithmic Languages (North-Holland, Amsterdam, 1981) 373-398.

[15] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice and fairness: the ethics of concurrent
termination, in: Proc. Internat. Conf. on Automata, Languages and Programmins, Lecture Notes in
Computer Science 115 (Springer, Berlin, 1981) 264-277.

[16] J.-J.Ch. Meyer, Programming calculi based on fixed-peint transformations: semantics and applica-
tions, Thesis, Vrije Universiteit, Amsterdam 1985.

[17] G. Nelson, A generalizatior. of Dijkstra’s calculus, SRC Rep. (DEC), April 1987.

234 W.H. Hesselink

(18] E..R. Olderog and C.A.R. Hoare, Specification-oriented semaatics for communicating processes,
Acta Inform. 23 (1986) 9-66.

[19] D. ™ark, On the semantics of fair parallelism, in: Abstract Software Specifications, Lecture Notes
in Computer Scier.ce 36 (Springer, Berlin, 1980} <24-526.

[20] W.P. de Rozver, Dijkstra’s predicate transformer, non-determinism, recussica, and termination, in:
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 45 (Springer,
Berlin, 1976) 472-481.

