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A et. A language is constructed that supports arbitrary atomic statements, composition, 
alternatives, and mutual recursion in the presence of unbounded nondeterminacy. The concept 
of interpretation is defined axiomatically. By operational means a standard interpretation is 
constructed, which is proved to be the smallest interpretation with respect to the Egli-Milner 
ordering. The corresponding weakest precondition and weakest liberal precondition are character- 
ixed as smallest and largest preparator functions. 

We characterize the interpretations which upon divergence cannot deliver unjustified meaningful 
values. These interpretations form a spectrum that ranges from standard semantics, over various 
forms of fair semantics, to the so-called friendly semantics where error is signalled only if 
divergence can become inevitable after finitely many steps. We determine the corresponding 
preparator functions. 

0. Introdoction 

0.0. Unbounded nondeteminacy 
In programming, data structures and control structures are brought together. Data 

structures consist of sets and operations on the elements of the sets. Control structures 
are language constructs that prescribe which sequences of operations are to be 
performed. 

The avoidance of unnecessary or premature choices in the specification of a data 
structure leads to nondeterminate specifications. If the data structure is unbounded, 
the nondeterminacy can also be unbounded. Therefore, the theory of control struc- 
tures must be able to deal with unbounded nondeterminacy. 

This kind of nondeterminacy is called loose, cf. [ 19, p. 5141. It is a property of 
a specification, which does not exclude deterministic implementations. Thus we see 
no reason to restrict to countable nondeterminacy. This has the advantage that some 
technical problems of [2] disappear. 

0.1. Trhe operational abstraction of a data structure 
From the point of view of the control structure, t er of data values and 

their types are irrelevant. So we put all data values together in one value, iS 
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called the state. The set of the conceivable states is called the 
be thought of as the cartesian product of the relevant data 

An operation f is a way to establish a certain postcondition, 
on the initial state. If the initial state is called x, we use f( 
the states which satisfy the postcondition. It may be that the 
to result in divergence. Therefore, we introduce an error symbol JI that is not element 
of X, and we prescribe that f(x) is a nonempty subset of X u {$}. 
Remark It is not satisfactory to model divergence by means of an empty result 

set f(x). For, in that case, a nondeterminate choice between divergence and a 
meaningful result cannot be specified. The same argument can be used against 
Hehner’s proposal (cf. [IO]) to model divergence by means of a result set f(x) = X. 
The condition that f(x) be nonempty, is Dijkstra’s law of the excluded miracle, cf. 
163. We see no need to drop this law as is done in [17]. 

0.2. Ur@cation of alternative command and routine call 
The control structure needs tests on the state in order to choose between alternative 

actions. Some authors treat tests as operations that in case of a negative answer 
deliver an empty set of results, cf. [4, Theorem 7.8(b)]. This may lead to the 
occurrence of blind alleys so that the semantics require a kind of backtracking 
mechanism, cf. [13, p. 4701. 

Instead of this unification of tests and statements, we have chosen a unification 
of Dijkstra’s alternative command (cf. [6]) and the routine call. The declaration of 
a routine specifies a set of alternative refinements each guarded by its own test. If 
a routine is called, it is replaced nondeterminately by one of the refinements with 
a test that succeeds. The formalism enforces the existence cf at least one such test. 
In this way no backtracking is required. 

0.3. Interpretations 
The semantics of a language is determined by the interpretation. The concept of 

interpretation is defined axiomatically in Section 1. Recursion and loops lead to 
freedom of interpretation. Typical cases are the following loops, where initially the 
integer variable x is positive. 

(A) ox#O+x:=x-1 0 x#O+skip 

(W ox#O+x:= x-l 0 x#O+x:=x+l 

(0 ox#O+x:= x-l 1 x#O+x:=x-2 

In case (.A), the standard semantics gives the possibility of divergence, but a fair 
treatment of the a e loop would guarantee convergence. In case (B), 
fairness is not su nverges under friendly 

le divergence since 
e inevitable after finitely many steplc 
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0.4. Standard semantics 
In Section 2, the standard interpretation is constructed by means of an operational 

model, cf. 121. We prove in Section 3 that this standard interpretation is the smallest 
interpretation with respect to the Egli- , cf. [2,20]. In Section 4, we 
introduce preparator functions as a generalization of the weakest precondition wp 
and the weakest liberal precondition wlp, cf. 161. It is proved that wp and wlp a 
the two extreme preparator functions, cf. [7]. 

In these three sections the results may not be new, but proofs of this generality 
seem to have not yet appeared in the literature. Our principal goal has been to 
provide complete proofs in a most general and elementary setting. 

0.5. Operationally justified interpretations 
The axiomatic definition in Section 1 admits interpretations which upon divergence 

may deliver meaningful but erroneous results. For example, it is not excluded that 
after an initialization x := 3, the loop 

dox#O+x:= 1 od 

is interpreted to deliver a state with x = O9 or x = 1, or x = 2. Such zn interpretation 
is considered to be not operationally justified. The concept of operational justification 
is defined in Section 5. The operationally justified interpretations are constructed 
explicitly in terms of sets of potential divergence. They form a spectrum that ranges 
from standard semantics, over various forms of fair semantics, up to friendly 
semantics (compare Section 0.3). It turns out that the operationally justified interpre- 
tations are in a one-to-one correspondence with a nice class of preparator functions. 

0.6. Semantics of fair termination 
In Section 6 we show that the semantics of termination for all fair execution 

sequences is an operationally justified interpretation. More specifically, we introduce 
T-fairness, where T is a finite family of transition types that are to be treated fairly. 
The T-fair interpretation signals divergence in the case of an infinite, T-fair calcula- 
tion or of a finite calculation that ends in a diverging statement. 

0.7. Elementary tools 
Our main tool is the elementary calculus of set-valued functions. Several 

ingredients of other presentations are missing. We do not use adjoint functors, cpo’s, 
or complete metric spaces, cf. [0,2,14]. We do not need transfinite induction or 
K&rig’s Lemma. The recursion is modeled by means of refinements, so we do nclt 
need substitutions or a block structure. 

0.8. Additional remarks 
We got interested in this field by reading [7]. Our interest was revtided w 

investigating observable equivalence in no ete ata types, cf. [ 11, eorem 

3.53. The results on standard semantics were first obtained by means of the metric 
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space of infinite sequences, cf. [14]. Later we realized that anfigurations are more 
convenient, cf. 121. Friendly semantics was invented as a 
description of the operationally justified interpretations by 
divergence emerged when the first version was almost c 
however, that that section contained a grave error. This was pointed out by one of 
the referees. In the meantime we had learned to appreciate Dijkstra’s rigor of simple 
and explicit proofs. Therefore, the revision became an exercise in balancing between 
almost conflicting styles. Especially, Section 5 was completely rewritten. 

1. Al age its late tiOnS 

1.0. Qperations on the state space X 
Let X be an arbitrary set, not necessarily finite. The set X is called the state space. 

The elements of X are called states. We form the disjoint union 

where @ is a formal symbol, not in X. An operation f on X is defined to be a function 
which assigns to every state x in X a nonempty subset f(x) of X+ . We let Op(X) 
denote the set of all operations f on X As examples of operations we provide skip, 
abort, and havoc, given by 

Remarks. We use the symbol 31 instead of the conventional bottom in order to 
indicate that X+ is not regarded as a flat cpo, cf. [2, p. 4811. We will use !P( U) to 
denote the powerset of a set U. So an operation f on X is a function f : X + 9(X+) 

with nonempty valuesf( x). The condition that the setsf( x) be nonempty, is Dijkstra’s 
law of the excluded miracle, cf. 161. As argued in [3,20], the functional approach 
to nondeterminacy is equivalent to the relational approaches, cf. [7,10,17,19]. We 
use the functional approach for personal convenience and for consistency with [ 111. 

1.1. Composition of operations 
f fe Op(X), then we define f(e) = {JI}. If V is a subset of X+, we define 

f*W=Uwf(x). lx e composition f 0 g of operations f and g is defined by 

fYw=f,kW). 
It is easy to see that composition of operations is associative, and that skip is the 

neutral element for the composition, cf. [2, Proposition 2.31. 

1.2. Statements 
We assume that S is a given alphabet, not necessarily finite. e elements of S 

are called statement symbols. The semantics is defined by a fixed function 
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If s E S, then the operation k(s) is to be 
symbol s. 

of the statement 

1.3. Routine symbols, strings, and rejin 
Let H be a second alphabet. elements of H routine symboh. Let 

A denote the disjoint union oft phabets S and denote the set of the 
strings of elements of A. The empty string is denoted as E. Concatenation of stri 
is denoted by means of a semicolon. A refinementfinction is defined to be a set-valued 
function 

R:HxXd’(A’) 

such that the set R( h, x) is nonempty for any h E H and x E X The strings t E R( h, x) 
are called the refinements of the routine symbol h that are occeptdde to the state x. 

1.4. Interpretations 
Let a refinement function R be fixed. We define an interpretation to be a function 

p : A* + Op(X) at satisfies the following conditions: 
(a) ~(4 = skip; 
(b) if t, UE A*, then p(t; u)=p(u)op(t); 
(c) if s E S, then p(s) = k(s); 
(d) if h E H and XE X, then p(h)(x) = urcRf,,,xj p( 

If p is an interpretation and y Ep( t)(x), we say tha signals the possibility of 
result y for an execution of string t that starts in state In view of the conditions 
(a), (b), (c), an interpretation p is completely determined by the operations p(h) 
with h E H. Condition (d) is a recursive one. In general, the conditions are not 
strong enough to determine the operations p(h) uniquely. In the next section we 
give an example with four different interpretations. 

Remarks. Condition (b) is not imposed by Hehner, cf. [ 10, Definition 1.21. 
Hehner’s interpretations can violate condition (b) only in case of a finite state space, 
but that is because of his restriction to bounded nondeterminism. 

The condition in Definition 1.3 that the sets R( h, x) are nonempty, is motivated 
by the elegance of the above condition (d). In Dijkstra’s alternative command (cf. 
[6]) the absence of a test that succeeds leads to abortion. In our setting this effect 
can be accomplished by putting R( h, x) = {SO} where SO is statement symbol with 
k(s0) = abort. 

1.5. Example of a refinement function with four interpretations 
In an imperative language with nondeterminacy we consider a boolean variable 

x and the loop 

Q x + choose x 

In order to translate the loop into our I 
elements ff and tt. put S=(s) w 
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the routine symbd h with 

R(k,ffl={~} and R(h,tt)=={(s;h)). 

Put = (hj. All interpretations p are easily dete 
operation p(h). It is clear that 

The other case leads to the recursive equation 

P(h)(tt) = pW(ff9 u p( h)(tt). 

Therefore, the set p(h)(tt) cm b 
it may contain tt, or #, or neith 
four different interpretations in this case. 

contains the element ff. So 
er. This shows that there are 

Remark One may argue that an interpretation th tt E p( h)(tt) is not justified. 
This suggests a definition, cf. Definition 5.1 belo 

perational seman : the 43mfigllration graph 

2.0. 77~~ openational construction 
The operational semantics is constructed by means of a directed graph of configur- 

ations, cf. [Z, p. 4861. A configuration consists of a state and a string of statement 
and routine symbols. The transitions in the graph correspond to the execution of a 
statement symbol or the choice of a refinement of a routine symbol. The main result 
of this section is that the semantic function thus constructed is an interpretation in 
the sense of Definition 1.4. 

We have two reasons for considering operational semantics. Although the 
specification of semantics had better be axiomatic or denotational (cf. Definition 
1.4, Theorem 3.3, Definition 4.3 and Theorem 4.3), implementations are likely to 

onal. An abstract operational model SC be necessary to verify the 
correctness of operational implementations. A set ason is that the operational 
semantics yields an existence proof, which is more le than the standard methods 
associated with denotational semantics. 

2.1. The con#iguration graph 
ration is defined to be a pair (x, t) wi x E X+ and t E A*. So the set of 

configurations is the Cartesian product 2 = X+ x *. A configuration is called ter- 
‘nal configuration (x, E) will be 
1s identified with a subset of Z 

orte let denote 
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The set Z is made into a directed , for each 
y = (JC, t), a set of transitions y + z. If y is aborted or t i.e., if x=+ or t= 
then y has no transitions. Otherwise, it holds that x 
and u E A*. Then we distinguish two cases: 

Case (a) If a ES and x#@, the confi ration (x, a; u) has the transitions 
(K a ; u) + (x0, u) with x0 E k(a)(x). 

Case (b) If a E H and x # #, the configuration (x, a; u) has the transiions 
&a;+ 
The set 2 lation “+” is called the configuration graph Z 

2.2. 7%e postulbte of operational semantics 
Let * denote the reflexive and t~~~itiv~ closure of the transition relation + 

the configuration graph 2 Let us write yam to indicate that y*($, t) for some 
aborted configuration (#, t) or that y is the starting point of some infinite path in 
the graph Z We define the semantic function m : 2 + 9(X+) by 

m(y)={xEXJY*x}u{J(Jy*00). 

If a path in 2 cannot be extended, it ends in a configuration which is either terminal 
or aborted. Therefore, the set m(y) is always nonempty. If y = (Q, t) then m(y) = {Jr}. 
It follows that m can be identifie with a function m : A*+ Op(X) such that 
m(t)(x) = m((q I)) holds for every configuration (x, t). Below in Theorem 2.4 we 
will prove that the function m is an interpretation. After that it will be called the 
standard interpretation. 

2.3. Example 
The relevant part of the configuration graph of Example 1.5 consists of four 

configurations with four possible transitions: 

(tt, h) * (tt, S ; h) + (ff, h) --, (ff, E). 

It follows that m( h)( 

2.4. 
The configuration graph 2 has the followi g regularity property. 

. (a) If (x, t) + (x0, u> is a transitio *, then (x, t ; v) + (x0, u ; u) 

is a transition. 
(b) rf (x, t ; v)+ (x0, w) is a transition, then x E 
omposition ; v) swh that (x, t) + (x 
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For configurations (q t) and (x0, w), Definition 2.1 implies that 

) k 04x0, 4 
= (3ad.,p~A*: t=a;p 

~((aESnX~Ek(u)(X)AW=P) 

V(QE 6&x): w=t;p)))) 

EC 8-E 

For t # E, it follows that 

(x, g ; v) -j (x0, w) 

= (3aEA,p,rf = 42 ;p A w = r;p A (~a a)+ (x0, r)) [by (*)] 

= (3aEA,q,rE : t=Q;qAW= r;t#;Vh(X,a)+(XO,r)) 

[usep=q;v] 

= (3u~A*: W=U;e:A(&t)+(XO,hf)) [use (*) a;ld u = r ; q$ 

Since, in general, (x, 5) only has transitions if x E X and t f E, the assertions (a) and 
(b) follow. 0 

2.5. Ingredients of the composition 
If y=(&t) is a nfiguration and VE A* is a string, we define the postlked 

configuration 

y;v=(x, t;v). 

Note that the identification of x in X with (x, E) in Z leads to the equality x ; t = (x, t) 

for any x E X and t E A*. The next result describes the paths that start in a postfixed 
guration y ; v. It is a kind of generalization of Lemma 2.1. 

ition 2.2. For con&urations y. z E Z and a string v E A* we have 

(a) (y;t=+zj = ~~~OEZ:~*~OA~O;V=Z)V(~XEX:~~XA(X~)~Z), 

(b) ty;v+*=Q = (y’+a) V (3X E X: y*X A (X, V)-@. 

f. In both cases the implication “e” is an easy consequence of Lemma 2.1(a) 
.ogether with the transitivity of the relation “A” on Z 

As for the implication “a”, assume that y ; v *, z, or that y ; v* m respectively. 
Then there is a finite or kfinite path (zi 1 i E I) starting in z. = (y ; v) with ziB1 + zi 
for all indices i E I\(O). In case (a) the path ends in the configuration z = z,, say, 
so that I = (i 10~ is m}. In case (b) the path ends in an aborted state z, = (JI, t), 
or the path is infinite so that I = N. Write y = (x, gO) and zi = (xi, WJ with x, xi E X+ 
and to, wi E A*. Since z. = (y ; v), we have x = ~0 and ~0s (to; v). If Wi-I= (ti-1; v), 

-1 E X, and ti-1~ E or Wi = (t, ; V) with (xi-1 3 ti-l)+ 

alternative applies, induction yields a sequence of 
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) oc (b). Otherwise, the construction stops at some index r 
x=x,_,EX and flml = E, and hence y*x. In t at e&e, we have (x, V) = zr_, , and 

therefore, (4 v)* z or (x, v)* 00 respectively that the second disjunct of he 

ha?rd side of (a) or (b) holds. Cl 

ry 2.3. Fory~Z, andxOEX, and ve *, it holds that 

(y;v”+xO) = (3xEX: y*xh(X, v)+dl). 

is follows from Proposition 2.2(a) with z = x0, in w case t 
of Proposition 2.2(a) implies the second one: 

z:y~yor.yo;v=xo) 

[because x0 E X] 

A (4 v)L*xO) [choose x = x0]. El 

gorem 2.4. 7he semantic function m : A + Op(X) is an intebpretation. 

We verify the conditions of Definition 1.4. Let x E X ba: 
(a) The configuration (x, E) belongs to X. It has no transitions, and it does not 

satisfy (x, &)*a~ Therefore, we have m(e)(x) = m((& E)) ={x}. This proves that 
m(E) = skip. 

(b) For t, v E A*, we observe 

{XOEX((X, t;v)*xO~w{~l(5 c [by Def. 2.2) 

{xO~X13xl~X:(q ~)*xl~(xl, v)*xO} [byCor.2.3] 

u{~~3xl~X:(x,t)~xlA(xl,v~~~~u~Jtl~x,~~~ao) 
[by Prop. 2.2(b)] 

(m(t)(x) dbl9u u m(v)(z) [by Def. 2.21 
zeXnm(r)(x) 

m(v9-09b9 [by Def. 1.11. 

(c) For any statement symbol s , we have 

m(s)(x) 

= {xOEX~(x,S)~XO}u{JIj(x&~OO) [by Def. 2.21 

= {~OEX~XOE~(S)(X))~(~~~E~(S)(~)} [by Def. 2.11 

= k(s)(x). 

(d) For any routine symbol h, we have 
m(h)(x) 

1(x, h)~XO}U{Jl~(%, 

= u ({XOE 1(x, r)~xO}u{+~(x, +(x1}) [by Def. 2.11 
rsR(h,x) 

= u mb-9w rER(h,x) 



the semantic fun 

In this section wsz sho 
means in Section 2 is 
semantics. in fact, we 

ilner ordering, cf, [2,203. 

3.1. 
Let p: +Op(X; be an 

p : Z + S(X+ j given by p((x, t)) 

a fkuxtion 

We write y =(q t), 
tion 1.1. If it = E, then p 

(a) and (b). 

1. If x =cb, then P(Y) = W by 
n U(a). By Ddnition 2.1, this 

have .xX and t#e. Write t=(a;u) 
) and 1.1, it holds that p(y) = p( u),( 

union. If a E S, then 

acA and UEA*. By 
x)). We calculate the 

ZZ 

If WS then 

L ! 

[by Def. 2.1(a)] 

[by Def. 1.4(c)] 

[by Def. 1.11. 

[by Def. 2.1(b)] 



X*) of x* is equip 
L-v = (UC VU{Jl})h( 

It is a well known (but 
ordering we always mean 
the set of the interpretations by 

PW = WY E 2: p(y) s e(y)). 

3.4. 
3.3. me standard inteqwetation is the smallest inteqwdtation with respect to 

the ordering G 

p be an arbitrary interpretation. Let y E Z By Theorem 3.2(a) we have 
m(y) c p(y) u {Jr}. By Theorems 2-4 and 3.2(b), we have m(y) =p(y) v JI E m(y). 
This pries that m(y) Q p(y), anA hence that m sp. q 

3. Independent const_ruction 
Some readers may prefer an abstract construction of the smakst interpretation. 

This can be done, cf. [Z, 31. In fact, the powerset @(X+) with the Egli-Milner 
ordering is a cpo. The set Y of the functions p : H x X + P(X) gets an induced cpo 
structure. The interpretations are brou in bijective correspondence with the fixed 
points of a certain order-piessrvin ion F: Y+ Y Usin transfinite induction 
me shows that F has a smallest fixed point in Y. e identificaticn of this smallest 
fixed point with the semantic function m of Definition 2 stiilt requires the a 
of Theorems 2.4 and 3.3. If X is not countable, we ave to xcept the 
countable directed subsets of these cpo’s need not be eventually constant, cf. r3, 
Fact 2.41. 

e results of 
e st an 
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, however, it is more im 
that execution of the s 

liberal precondition. 

(Gf. 120, p. 4773) the weakest precondition 
minimal solution of a certain equation. 

The present section contains a formalization of this fact, and of its liberal analogue. 
It turns out that partial correctness and total correctness represent the two extreme 
solutions. In the case of the qpetition, this result is due to Dijkstra and Scholten, 
cf. 171. For other references we refer to the last part of [16]. 

4.1. i3vdicate tra~asfomers: set tmolsfomem 
A predicate as may be used in programming practice, corresponds to the subset 

of the state space where the predicate h&Is. Therefore, a predicate transformer 
corresponds to a function that maps subsets of X to subsets of X, cf. [20]. Let 
9(X) denote the set of such functions f: 9(X)-, 8(X). We order the set s(X) in 
terms of set inclusion by 

fq = (vvE9(x):f(v)q(v)). 

2. 7k weakest pmondition jbnctions 
The weakest preconditionfinction wp and the weakest liberal precondition jhction 

wlp are defined as the ORS wp, wlp: A* + S(X) given by 

WPW( w = Ix E x 1 m(t)(x) = V}, 

functions wp and wlp, we define preparator functions as 
a kind of objects dual to the interpretations. A functiun w : A* + S(X) is called a 
P ~ator~~c?ioR if it satisfies the following conditions: 

(E) is the identity functon of B(X); 
(b) if t, u E A*, then w( t; u) = w(t) 0 w(u); 

n w(h)(V)={xCXI rE R(h, x): XE w(r)(V)}. 
ering of the set of preparator fu 
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n interpretation induces tar 
+ Op(X) be an arbitrary interpretation. 

functions 
define two associated 

little trick is used to avoid case analysis. If VE ), we write V’ = 
lf’= K Let i be 0 or 1. The f?lnc”oions p” and p‘ are defined by 

p’(t)(V)={XEx~p(t)(X)c Vi}. 

Remark We h3ve wp = m”, and wlp = m’, where m is the standard interpretation. 

Propesitlou 4.1. e functions p” and p’ are preparator functions. 

Proof. We verify the conditions of Definition 4.3. Let VE P(X). 

(a) p’(s)(V) = X n Vi = V IbY wol- 

= {x E X (p(u)*(p( t)(x)) c Vi} [by 1.4(b) and 1.11 

= (x E X Ip( t)(x) c (p’(u)( V))i} [set calculus] 

= p’(t) op’(u)( V). 

(c) The operations m(s) and p(s) are both equal to k(s). It follows that p’(s) = 
wp( S) and that p’(s) = wlp( s). This implies that wp( S) c pi(s) c wlp( s). 

(d) p’(W( V) 

= {xEXIp(h)(x& Vi} [definition p’(h)] 

= {~EX~V~E R(h,x):p(r)(x)c Vi} [by cond. H(d)] 

= {XE XIV~E R(h, x): x~pj(r)( V)} [d&nition p’(r)]. q 

2. Let w be a preparator function. Let t E * with t+E. htx~ 

,uc *: ((x, t) + (x0, u)*Jdk w(u)( 

(W v w(s) = v)(s) f or every statement symbol s E S, the implicaticn %=” of part 
(a) is 

(c) XEW , &EA”: &4x, t)+(xO, u)*(xO=~vXQE w(u)( 
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f. Write t = Q ; t) with a E A and v E A*. We distinguish the cases a E and 

a&. If aeH, then 

(VXOE X+, u E A*: ((x, t)+ (x0, U)3XOE w(u)( V))) 

= (VIE R(u, x): XE w(r; v)( V)) [because of Def. ZI(b)] 

= XE w(a;v)(V) [by Def. 4.3(b, d)]. 

This proves (a), (b), (c) for the case that u E H 
If u E S, then 

(vxo~X+, UE'A*: ((x, t)+(xO, u)*xO~ w(u)(V))) 

= (VXOE k(u)(x): XOE w(v)(V)) [by Def. 2.1(a)] 

= XE wp(u) 0 w(v)(V) [by Defs. 4.2 and 4.3(b)] 

--r, XE w(u;v)(V) [by Def. 4.3(b, c)]. 

?‘his proves part (a). If wp(a) = w(u), the last implication is an equivalence. This 
proves (b). Case (c) follows from 

(VXOEX+, WEA*: ((4 t)+(xO, u)+(xO=JIVXOE w(u)(V)))) 

= (VXOE k(u)(x): XO=I/WXOE w(v)(V)) [by Def. 2.1(a)] 

= xEwlp(a)ow(v)(V) [by Defs. 4.2 and 4.3(b)] 

+= xEW(u;v)(V) [by Def. 4.3(b, c)]. Cl 

Remark The isolation of Proposition 4.2(a) out of the proof of Theorem 4.3 
below is due to one of the refe 

4.6. 

77ie fmction wp is the srnullest prepurator function. 

f. By Proposition 4.1, the function wp is a preparator function. Let w be an 
arbitrary preparator function. Let t E A* and VE 8(X) be given. We have to show 
that wp( t)( V) c w(t)(V). Assume the existence of a state 

xc wp(t)( V)\N)( V). 

We use the configuration (x, t) as a starting point for an infinite path in the 
configuration graph Z Since wp( t) # w(t), we have t f E. Therefore, by Proposition 
4.2(a), there is a transition (x, t)+ (x0, u) with xOe w(u)(V). By proposition 4.2(b) 
we have XOE wp( u)( V). This proves 

xOc WPW( w\ww n 

. es us an infinite 
ictio 
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. ‘Ihe function wlp is the largest preparator finction. 

It is a preparator function, cf. finition 4.4. Let w be an arbitrary preparator 
n. Let t E A*, and VE 8(X), x E w( t)( V). Consider a result XOE m(t)(x) 

that differs from @. Then there is a path (5 t)*(xO, IE) in the graph Z This path 
does not contain configurations of the form ($, u). By inductive application 
Proposition 4.2(c) we get XOE w(E)( V) = K This proves that x E WI 
hence w(t)( V)c wlp(t)( V). 0 

n 4.1 one can show that Theore= 3.3 is a formal consequence 
3 and 4.4 together. Conversely, however, the result in Theorem 

3.3 seems to be not stron to give direct proofs of Theorems 4.3 and 4.4. 
For our purposes it is irrelevant whether or not the preparator functions w satisfy 

the condition 

w(t) ( > n v;: = n w(w) 
&I &I 

for every nonempty family of subsets V;: of the state space X. This condition 
corresponds to unbounded conjunctivity of predicate transformers, cf. [8]. The 
condition holds if w is p” or p’ for some interpretation p. There exist however, 
preparator functions w such that w(t) does not even preserve the inclusion. 

interpretations 

5.0. 

The methods developed for the analysis of standard semantics turn out to be 
sufficiently powerful to determine all interpretations of an interesting class. We will 
define an interpretation to be operationally justified if every result that is signalled 
by the interpretation, is also signalled by the standard interpretation. Since the 
freedom of interpretation is completely due to infinite calculations (cf. Theorem 
3.2) the only remaining freedom for an operationally justified interpretation is to 
choose the infinite calculations that are interpreted as divergence. This choice is 
formalized in the concept of sets of potential divergence. As an answer to a question 
of a referee, we characterize a class of preparator functions, which are in perfect 
duality with the operationally justified interpretations. 

5.1. Operational justijk tion 
Let an interpretation p : A* + 

allowed by p is also allowed by 

if any result 

tE *, XE : p(t)(x) c ~WW. 
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Example. In the case of Example 1.5, the interpretation p is operationally justi 

if and only if tt Lp(h)(tt). 
Remark Specification oriented approaches (cf. [IO, 183) suggest a pr&rence 

for the largest interpretation with respect to the inclusion order. The existence of a 
unique largest interpretation is an easy consequence of the I?naster-Tar&i theorem. 
Usually, this interpretation is not operationally justified. 

5.2. 
.P. For an intevretation p the following conditions are equivalent: 

(a) p is opemtionally just$ed 

(b) Vt E A*, x E X: p(t)(x) n X = m(t)(x) n X. 
(c) 7Ize preparatorfirnction p’ is equal to wlp. 

We have the following equivalences: 

(a) (Vt E A*, XE X: p(t)(x) c m(t)(x)) 

= (VtEA*,xEX:p(t)(x)nXC m(t)(x)) 
[by Theorem 3.2(b) and Def. 2.21 

= (Vt E A*, x E X: p(t)(x) n X = m(t)(x) n X) 
[by Theorem 3.2(a) and Def. 2.21 

= (VtEA*,xEX, V~P(X):p(t)(x)c Vu{+}=m(t)(x)c Vu{*}) 

= (Vt E A*, VE 9(x): p’(t)(v) = wlp( t)( v)) [by Prop. 4.11 

(4 = p’=wlp. 0 

5.3. Sets of potential divergence, and their semantic functions 
Recall that 20 is the set of the aborted configurations (JI, t) with t E A* (cf. 

Definition 24. We define the set of inevitable divergence 

In other words, we have y E 21 if and only if no path from y leads to a terminal 
configuration. Clearly, 20 is contained in 21. We define a subset D of 2 to be a 
set of potential divergence if it satisfies the following conditions: 

(a) Zlc D; 
0)=(3z~D:y+z); 

)=(~ED)v(~xEX:~*XA(X,V)ED). 
vergence, we define the corresponding semantic functio 



Interpretations of recursion under unbounded nondetetminacy 227 

By condition (a), the sets mD(y) are nonempty. If t E A ) then mD((+, t)) = {#}. AS 
in Definition 2.2 it follows that the function mD can be regarded as a function 
??#D : A* -, op(X), with mD( t)(x) = mD((& t)). 

5. . Two extreme cases 
(a) Standard semantics: By condition 5.3(b), every set of potential dive 

is contained in the set E of all configurations z Z with z*oo. 
2.2(b), this set E is a set of potential divergence, and hence the largest set of potential 

ivergence. The function ??& is equal to the standard interpretation m. 
(b) Friendly semantics: Let F be the set of configurations where divergence may 

become inevitable after finitely many steps. So F consists of the configurations y E Z 
such that yh z for some z E 21. By conditions 5.3(a, b), every set of potential 
divergence D contains E Using Proposition 2.2(a) and the fact that for any y c 21 
a relation y 4 z implies z E 21 one can prove that F is a set of potential divergence. 
Therefore, it is the smallest set of potential divergence. The corresponding semantic 
function ??#F is called the friendly semantic function. It only signals divergence if 
divergence can become inevitable after finitely many steps. For examples we refer 
to Example 0.3. 

5.5. 

Theorem 5.2. Let D be a set ofpotential diveqence. Then the function mD : A* + Op( X) 
is an ally justified interpretation. 

We verify the conditions of Definition 1.4. Let x E X be given. By condition 
we have (x, E)& D so that mD(&)(x) = {X}. Tkis proves that m&z) = Sk@, as 

required in Definition 1.4(a). For t, v E A*, we have 

mD(t ; v)(x) 

= {Jl)(x, t;v)E D}u{xOEX)(X, t;v)*xO} [by Def. ??zD] 

)U {#xl E X: (x, t)*xl A (xl, V)E D} [by cond. 5.3(c)] 

u{xOEX~~x1~X:(x,t)~x1h(x1,v)~xo} [by Car. 2.31 

= ({*I n mD(t)b)) u u mD(v)bl) [by Def. mD] 
XlExnm. ,(r)(Jc) 

= mD(v) o mD(t)(d 

thus proving condition 1.4(b). In order to verify conditions 1.4(c, d), we first note 
that for any symbol a E A we have (x; a) e y condition 5.3(b), it follows t 

If a E S, we use Definition 2.1 (a) get mD(a)(x) = W(x), thus proving ~~ndition 

1.4(c). If a E H, it follows from finition 2.1(b) that 

mD(a)(x) = u mD(f%x)- 
r~R(u,x) 
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This proves condition 1.4(d), so that MID is an interpretation. 
the set i3 is contained in E so that mD(t)(x) C (t)(x) for all t an 
that ?nD is operationally justified. El 

Remark. Theorem 2.4 is a 
the conditions of finition 5.3. One m 

is used in 5.3 to ensure that the sets mD(y) are nonempty. 

nt to show 
tion 53(a) 

5.6. Special pqmmtor finctions - 

Let a preparator function w be called special if it satisfies the following conditions: 
(a) for any string t E A* the set w(t)($)) is empty; 
(b) for any statement symbol s E S we have w(s) = wp( s); 
(c) for any string t E A* and any subset V of X we have w(t)(V) = w(t)(X) n 

WlP( O( VI- 
Condition (a) is the law of the excluded miracle (cf. [6]). Condition (c) says that 
total correctness is the conjunction of termination and partial correctness. 

Lion 5.3. If p is an opemtitma~yjustifiecr interpretation, the preparatorfinction 
p0 is specid 

f. For s E A* we have 

= {=Xlp(t)(x)C0} [by Prop. 4.11 

= 0 [p(t)(x) is nonempty]. 

For x E X, and s E S, and Vc X we observe 

x f PO(S)( V) 

= p(s)(x)= V [definition p”] 

= k(s)(x)c V [by cond. 1.4(c)] 

= x E: wp(s)( V) [by Theorem 2.4 and Def. 4.21. 

ftc *, then 

= p(t)(x)c v 

= p(t)(x) c X A m(t)(x) n X c V [by Prop. 5.1(b)] 

[by Prop. 4.1 an 

is proves that p” is special. 0 



potential 
Let w be a special 

nce D with w=mD. 
tor nction. ere is precisely one set of 

r any set of potential divergence 0, we observe 

W=P& 

= (V~EA*: w(t)( 

= (VtEA*,xcX: XE W(t)(X)=$fi?h?lD(t)(X)) 

= (VtEA*,xEX+:x&w(t)(X)=(x,t)ED) [by Def. 5.33 

0 * = D={(q t)dlxL w(t)(X)}. 

This proves uniqueness of D. It remains to prove that the set E specified in line 
(*) is indeed a set of potential divergence. We verify the conditions of Definition 
5.3. Condition 5.3(a) is proved in 

(5 0EZI 
. 

a m(t)(x) = {$} [by Defs. 5.3 and 2.21 

+ XE wlp( t)(b) [by Def. 4.21 

* xe w(t)(X) [by conds. 5.6(a) and (c)3 

= (X,t)ED [Def. of D]. 

Condition 5.3(b) is proved in 

(x, 0E D\ZO 
= xfzX\w(t)(X) [Defs. D and ZO] 

= (3x&X+, uEA*: (x,i)+(xO, u)nxOLf w( 

[by cond. 5.6(b) and Prop. 4.2(b)] 

= (3~ D: (x, t)+z) [Def. of D]. 

Condition 53(c) is proved in 

(x, t;v)E D 

= xf6 w(t;v)(X) 

= xfz w(t)(w(v)(X)) [by Def. 4.3(b)] 

= XL W(t)(x)nwlp(t)(w(v)(X)) [by cond. 5.6(c)] 

= XE w(t)(X)v (3XOEX\W 9: (x, +x0) [by 

= (x, t)E Dv(3xOE :(x, t)hxO&O, V)E D) [ 

5.8. 
t w be a special 

ntial divergence with w = “D (cf: 
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rst steps are similar to those of the uni 

w=p” 

ave 

= (Vt c A*: w(tf!X) =p’(t)(X)) [by cond. 5.6(c)] 

= (VtEA*,xEX: xE w(t)( 

tEA*,xrX:(x,t)eD=@Ep(!!!x)) [by proof 5.7(*)] 

tEA”,xEX: m&)(x)n{$}=p(t)( n bbll [by hf. 5.31 

= (Vte *, x E X. m,(t)(x) = p(t)(x)) 
p. 5.1(b) and theorem 5.21 

Remark Theorems 5.4 and 5.5 establish one-to-one spondences between: 
(i) the set of operationally justified interpretatio 

(ii) the set of sets of potential divergence, and 
(iii) the set of special preparator functions. 

The correspondences are given by p-p*, and D*mD, and formula 5.7(*). 

tics of fair temhation 

6.0. 
In this section we show that the semantics of terminatibn snder f;ait execution, 

as considered for example in [ 1,9,15], can be expressed in terms of a set; of potential 
divergence (cf. Definition 5.3). In the mentioned p ers an execution sequence is 
said to be fair (or strongly fair) if every transition is enabled infkitely many 
times is also taken infinitely many times. A program is said to be fairl: terminating 
if every fair execution sequence is finite. 

In each of the papers there is one guarded repetition of a nondeterminate choice 
between a finite number of statements. In our mo era1 context of arbitrary 
recursion, there is no fixed finite set of transitions. refore, we define fairness 
relative to a finite family of transition types. The gene ation enables us to specify 
not only a fair treatment of the alternative refinement a routine symbol, but also 
of the alternative results of the execution of a statem symbol. It gives a natural 
way to express the fact that only certain aspects of t xecution are fair. 

to be a set of transrii 
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If U is a transition type, then the 

E(U)={y+z~3(y+z’)E U}. 

type E(U) is defined by 

One verifies that E(U) is a transition type, and that it contains U. 
Remark Let a transition y+ z be called simple if y = (or, a) with a E 

= L’ is determined by the simple transitions that it contains. The 
d( V) is determined by its source confi rations of the form y = (x, a) 

with awI. 

6.2. Fair divergence 
A path (Zi i i E I) in the configuration graph 2 is said to be maximal if it cannot 

be extended, i.e., if it is infinite or if its last configuration is terminal or aborted, 
cf. Definition 2.1. A path is said to be divergent if it is infinite or if its last configuration 
is aborted. It follows that y *m holds if and only if some divergent path starts in y. 

Let U be a transition type. A path (Zi 1 i E I) in the graph 2 is said to be U’inJinite 
if there are infinitely many indices i such that the transition xi-1 + zi belongs to the 
transition type U. The path is said to be U-fair if it is U-infinite or if it is not 
E ( U)-infinite. Note that every finite pat 

Let T = ( Uj lj E J) be a finite family of transition types U$ A path in the cotigur- 
ation graph is said to be T-fair if it is &fair for every index j E J. A configuration 
y is said to be T-fairZy diveeent if there is a divergent and T-fair path that starts 
in y. We let D(T) denote the set of the T-fairly divergent configurations. 

6.3. 
Proposition 6.1. For any configuration y there is a maximal and T-fair path that starts 
in y. 

Remark Tk proof oc this result consists of an implementation of a fair strategy 
without deadlock. Such implementations are known already for a long time, cf. [S]. 

Proof (sketch). The configuration graph 2 is enriched with an extra c-qmponent: a 
patience vector q = (qj 1 j E J). The coordinates qj of q are nonnegative integers. The 
idea is that the value qj decreases whenever a transition of the type Uj is enabled 

and that it can only increase if a transition of type Uj is taken. 
t an integral vector q as above be called a patience vector if 

WnEN: card{jEJ&n)~n. 

Let Q be the set of all patience vectors. The Cartesian product Q x 2 is made into 
a directed graph by admitting a transition (q, z) + (q’, z’) if and only if there is 
transition z-, z’ in 2, and, for every index j sue at z + z’ does not belong to the 
type Uj, we have 

qjsgiA((2+2’)EE(Uj) * 
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Let y be a given configuration. Choose an arbitrary patience 
graph Q x Z one constructs a maximal path that starts in the 
the structure of the graph 0x5 one proves that the projection of this p 

the graph is a T-fair path, which is also maximal. For 
. to 1121, where the same scheduler is used to schedule 

processes. The scheduler of [ 11 is slightly different. Cl 

6.4. 
‘7he set D(T) of e T=tiitly diwrgeent configurations is a set of potential 

diwgence. 

f. We verify the conditions of Definition 5.3. 
(a) Let y E Zl. By Proposition 6.1 there is a maximal and T-fair path that starts 

in y. Since y E 21, the path is divergent. This proves that y E D(T). 
(b) A configuration y elongs to D( T)\ZO if and only if some divergent and 

T-fair path of length 2 1 starts in y. The latter condition is equivalent to the existence 
of a transition y+ z with z E D(T). This proves condition 53(b). 

(c) The proof of cndition 5.3(c) is an immediate adaptation of the proof of 
Proposition 2.2(b), based on the property d.lj*) of the transition types. q 

6.5. T-fair semantics 
By Theorem 6.2, we can define the T-fair interpretation as the interpretation 

mDtT) : A* --, Op(X). This interpretation signals the possibility of divergence if and 
only if there exists an i&rite T-fair execution path, cf. [ 1,9,15]. The corresponding 
T-fair preparztor function is m&,: A* * S(X). It gives the weakest precondition 
such that ail T-fair calculations terminate in a state that satisfies the re 
postcondition. 

Remok We leave it to the reader to construct a T-just interpretation (cf. [lS]) 
or equivalently a weakly T-fair interpretation (cf. [l]). The concept of impartiality 
of [lS] can be modeied only approximately. One must be prepared to admit the 
result Jr in eases of inevitable divergence such as the program in [ 15, p. 2711. 

n model is sufficiently powerful 
nal characterizations of the semantics of recursion under 

nally justified inter- 

stra’s law of the excluded szi 
efinitions 1.0 and 1.3, one changes the 
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definitions of operations and refinement functions, in the se se that the sets f(x) 
and R(h, x) are allowed to be empty. In Definitions 2.2 and .3 the proofs of 

nonemptiness are d ed. In Section 5, the set 21 is replaced by 20, an ections 
5.6 and 5.7 

lit 

I had the opportunity to present parts of this material to groups of coiiea 
and groups of students in Amsterdam, Groningen, and Austin (Texas). This was 
very stimulating. The suggestions and criticisms of the referees contributed 
more. 
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