

 University of Groningen

Proof Rules for Recursive Procedures
Hesselink, Wim H.

Published in:
Formal Aspects of Computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1993

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1993). Proof Rules for Recursive Procedures. Formal Aspects of Computing, 5.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232383956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/proof-rules-for-recursive-procedures(78c9b45b-95ac-4d6c-bccf-9d66faba4653).html

Formal Aspects of Computing (1993) 5:554-570
@ 1993 BCS Formal Aspects

of Computing

Proof Rules for Recursive Procedures

Wirn H. Hesselink
Rijksuniversiteit Groningen, Department of Computing Science, Groningen, The Netherlands

Keywords: Proof rule; Recursive procedure; Specification; Weakest precondition;
Well-founded relation

Abstract. Four proof rules for recursive procedures in a Pascal-like language are
presented. The main rule deals with total correctness and is based on results of
Gries and Martin. The rule is easier to apply than Martin's. It is introduced as
an extension of a specification format for Pascal-procedures, with its associated
correctness and invocation rules. It uses well-founded recursion and is proved
under the postulate that a procedure is semantically equal to its body.

This rule for total correctness is compared with Hoare's rule for partial correct-
ness of recursive procedures, in which no well-founded relation is needed. Both
rules serve to prove correctness, i.e. sufficiency of certain preconditions. There are
also two rules for proving necessity of preconditions. These rules can be used to
give formal proofs of nontermination and refinement. They seem to be completely
new.

1. Announcement of Aims and Results

In iterative programming, the proof rules for correctness are well established and
have led to powerful methods for program derivation, culminating in [Kal90]. For
recursive procedures in a language like Pascal, however, a generally accepted proof
rule is still lacking. In [Hoa71], Hoare presented a derivation system to prove
partial correctness of recursive procedures. This system has the disadvantages
that it can only yield partial correctness and that it is incompatible with the
full power of predicate calculus. In [Heh79] and [Mar83], methods are given to
treat total correctness, but a concrete proof rule is not given. In particular, the
combination of recursion and parameters remains implicit.

The purpose of the present paper is to propose a proof rule for total correctness

Correspondence and offprint requests to: Wire H. Hesselink, Rijksuniversiteit Groningen, Department
of Computing Science, P.O. Box 800, 9700 AV Groningen, The Netherlands. email: wim@cs.rug.nl

Proof Rules for Recursive Procedures 555

of recursive procedures with value and reference parameters in a language like
Pascal. The specifications are given in terms of preconditions and postconditions.
The proof rule is given in three versions of increasing abstractness. The most
abstract version is compared with a version of Hoare's Rule that is compatible
with predicate calculus. A second purpose of this paper is to present two proof
rules complementary to the rules for total and partial correctness. These new
rules serve to prove necessity of preconditions instead of sufficiency.

2. Introduction

The main role of the procedure mechanism in programming is that it allows
abstraction and thus serves to separate the invocation of a command from its
implementation. This separation is accomplished by a full specification. The user
of a procedure relies on the specification and the implementer has only the task
to fulfil it. The user has an invocation rule to derive properties of the invocation
from the specification. The implementer has a correctness rule to prove that a
body can serve as an implementation.

Recursion arises when the implementers take the opportunity to use the
procedure(s) they are implementing. In that case, the correctness rule requires the
invocation rule as an induction hypothesis. The resulting problem of circularity
has two solutions. The circularity can be ignored or it can be broken by means
of well-founded relations.

In [Hoa71], Hoare proposes the first solution. He gives a rule that guarantees
only partial correctness: if execution terminates, a postcondition is guaranteed to
be established. Hoare's rule requires a concept of derivability. It can be formalized
in so-called Hoare logic or in dynamic logic, but it has no obvious rendering in
predicate calculus.

In [Mar83], Martin opts for the second solution. He gives a method to prove
total correctness, i.e. partial correctness as well as termination. The method is not
formalized to a concrete proof rule, and it has the disadvantage that it requires
predicate calculus on two different state spaces: the space of the call and the
space of the declaration.

The main result of the present paper is a proof rule for total correctness more
explicit than Martin's method. The rule enables complete and rather concise
correctness proofs by annotation. It has the same power as Martin's method,
though -at first sight- it may seem to be weaker. The rule uses predicates on
only one state space, the space of the call. In exchange for this advantage, we
get the burden that there are more specification values (logical variables) needed
to relate preconditions and postconditions. In fact, following [Gri81] p. 151, we
require that the postcondition does not contain the value parameters, so that
specification values are needed instead.

In section 3, we present a format for specified declaration of Pascal procedures.
This format is accompanied by a correctness rule for the implementer and an
invocation rule for the user of the procedure. The proof rule for total correctness
of recursive procedures is given in three versions: (10), (17) and (19). Section 4
contains rule (10), in which natural numbers are sufficient to prove termination.
Section 5 contains the stronger rule (17), which captures well-founded recursion.
Section 6 contains rule (19), an abstraction in which parametrization, specification
values, invariant predicates and mutual recursion are unified. Subsequently, rule
(19) is proved.

556 W.H. Hesselink

Hoare's rule for partial correctness of recursive procedures is presented as
rule (25) in section 7. Instead of a variant function, it uses quantification over
semantic functions w that generalize the weakest precondition functions wp and
wlp. This quantification serves to eliminate the need for a separate logic or
derivation system, as in [Hoa71]. The new setting of Hoare's rule is used in
section 8 to present a new rule, (27), for proving that the weakest precondition
of a procedure implies a given predicate. This necessity rule can serve in formal
proofs of nontermination and incorrectness. In section 9, we give an example
where rule (27) is used to prove the correctness of a program transformation.

The three rules (19), (25) and (27) suggest the existence of a fourth rule.
Indeed, in section 10, we present necessity rule (31) for partial correctness, which
uses a variant function in a way similar to the rule for total correctness.

We use Hoare triples to denote total correctness, so that

(0) {P} S {Q} =- [P ~ wp.S.Q]

for predicates P and Q and a command S. The truth of either side of (0)
expresses that P is a precondition that guarantees termination of command S in
any state in which Q holds. All results in this paper are sound under (unbounded)
nondeterminacy.

3. Declarat ion and Invocation

We begin with the declaration format, which is inspired by [Gri81] and [Mar83]
but is more closely tuned to Pascal, in that we consider only global variables,
value parameters and reference parameters. For simplicity, we assume that the
procedure has one value parameter x and one reference parameter y and that it
refers to two global variables u and v. The types of x, y, u, v are left out because
they don't concern us here. We assume that precondition P and postcondition
Q use one specification value i ~ C. In this way we arrive at the specified
declaration:

(1) proe h(x ; var y)
{glou, v!; a i l i c C :: preP, post Q}.

The meaning of the specification is defined by

Correctness Rule. An implementation body.h of procedure h is correct if it satisfies
the conditions:

(2) all global variables used in body.h and in predicates P and Q are listed after
the key word glo; global variables that are threatened to be modified (in the
sense of [JEW85]) are indicated by "!",

(3) the value parameters (x) do not occur in postcondition Q,

(4) for all specification values i ~ C, we have {P} body.h {Q}.

Of course, variable modalities that do not occur can be omitted from the
specification. The list after key word glo is needed to exclude aliasing upon
invocation of h. Condition (3) may seem unnecessarily restrictive. There are
three reasons for imposing it. Firstly, it encourages specifications with simple

Proof Rules for Recursive Procedures 557

postconditions (J.E. Jonker). Secondly, if value parameters would be allowed in
the postcondition, the invocation rule (to be treated below) would be complicated
by the fact that the value of the expression for the argument can be modified by
the call. Finally, condition (3) is necessary if one wants to combine condition (4)
with the exploitation of value parameters as local variables (cf. [Gri81] chapter
12).

For recursive implementations the correctness rule is correct but inadequate,
for requirement (4) is too strong; we come back to this in section 4.

A call of procedure h declared in (1) is of the form h(E, t) where E is an
expression and t is a variable, both of which are well defined at the position of
the call. Following [Gri81], we speak of E and t as arguments of the call. The
term "actual parameter" (cf. [JEW85]) had better be avoided since the adjective
"actual" tends to be forgotten.

The meaning of a call h(E, t) can only be inferred from the specification
if there is no aliasing between reference parameters and global variables. We
therefore require that reference argument t be not used as a global variable:

(5) t ~ glo,

where glo is the list headed by glo.
Precondition P and postcondition Q of specification h need not specify that

global variables outside of list glo! are unchanged, where glo! is the sublist of glo
that consists of the variables that are threatened to modified. In the specification
of the call, an additional predicate R can be used to express this fact. Such an
invariant predicate R is required to satisfy

(6) Var.R C~ ({t} tO glo.~ = 0

where Var.R is the list of the variables that occur in R. If glo I -= glo, conditions
(5) and (6) are more symmetrically expressed by stating that the three lists glo,
Vat.R, and the list of reference parameters of h are pairwise disjoint.

The call h(E, t) is specified by

Invocation Rule. (7) If (5) and (6), then for all i c C:

{P~',Yt AR} h(E,t) {QYt A R } .

In words: in the expressions for P and Q, the parameters are replaced by the
arguments.

Remark. If there are more reference parameters, the avoidance of aliasing also
requires that all reference arguments differ. For simplicity of presentation we do
not treat calls of the form h(E, a[F]) where the reference argument is a component
of an array. For that case, the reader is referred to [Gri81] Chapter 12.

Example. A procedure to compute natural powers of integers can be specified
(perhaps unexpectedly) by

proc pow (x : integer ; v a r y : integer)
{ a l l Z E i n t e g e r :: p r e y > _ 0 A Z = x y ,post y = Z } .

Let u and v be global variables of type integer. Assume that we are looking for

558 W.H. Hesselink

a call of pow that satisfies, for all values U and V,

(8) {u = U A v = v >_ o} p o w (?, ?) {,~ = (u + v)V n u = u } .

Invocation rule (7) yields, for every expression E, every variable t, every value Z
and every predicate R that does not use t,

(9) { t > _ O A Z = E t A R } pow(E,t) { t = Z A R } .

Since the precondition and the postcondition of (8) both have the conjunct
u = U, we take R : u ----- U. Subsequently, we see that v should be the reference
argument and that Z should be (U + V) v. In this way, problem (8) is solved by
the annotated invocation

{ u = U A v=V>__0} (* and hence *)

{v_>0 A (u + v) V = (u + v y A u = U }

pow (u + v, v) (* formula (9) with E : u + v *)
{ v = (u + v) V /x u = U} .

Of course, we do not recommend procedures with such unexpected parameter
behaviour. The point is that even such procedures can be treated adequately.
Notice that the call modifies the value of the argument u + v and that the
correctness proof is not influenced by this fact. []

Rule (7) is a variation of Theorem (12.2.12) of [Gri81]. At first sight, it seems
to be weaker than the rule of [Mar83], since the latter rule allows an arbitrary
postcondition. Actually, the adaptation A of [Mar83] plays the same r61e as our
invariant predicate R, although it is a predicate on a different state space. If one
needs a rule with an arbitrary postcondition X, rule (7) easily yields that, for a
variable t ~ glo and an arbitrary predicate R, we have

Var.Rn({t}Uglo!)=O A [Q~ A R ~ X]
{P~y AR} h(E,t) {X}.

In our experience, rule (7) is more convenient.
Notice that, since we do not allow value parameters in the postcondition,

specification values are indispensable. In [Mar83], they are also useful, but they
are only treated there, rather implicitly, in example 4.3.

4. Correctness of Recursive Declarations

We now assume that the body of h in declaration (1) is recursive. This implies that
the Correctness Rule of section 3 must be adapted in such a way that Invocation
Rule (7) can be applied to the recursive calls in the proof of condition (4). In
order to preclude circularity, we use a variant function vf, just as in the proof
rule for the repetition (see e.g. [Gri81] Theorem (11.6)). Roughly speaking, the
condition is that the value of vf is smaller at every recursive call and that there
is no recursion when vf < O.

Correctness Rule. (10) A recursive implementation body.h of procedure h of
specification (1) is correct if conditions (2) and (3) are satisfied and there is a
Z~-valued function vf in the specification value i, the parameters x, y and the

Proof Rules for Recursive Procedures 559

variables in glo, such that, for every m E 7Z and every i E C, the induction
hypothesis that every recursive call h(E, t) satisfies

m~ i,x,y (11) {(P A v f < "",j,E,t A m > 0 A R}

h(E, t)

{Q~,Y A R}

(for all j c C and for all predicates R with (6)), implies

(12) {P A v s m} body.h {Q}.

Rule (10) is long and cumbersome, but of course one cannot expect it to be
simpler than the rule for the repetition. Theorem (19) below is a more concise
and more abstract version, in which parametrization, specification values and
invariant predicates are unified with mutual recursion.

The paper [Mar83] also deals with recursive procedures, but it does not give
a concrete proof rule but rather a method. The main advantage of rule (10) over
Martin's adaptation method is that the invariant predicates R are predicates on
the state space of the (recursive) calls and hence can serve directly in a proof
by annotation. In fact, rule (10) enables complete and rather concise proofs by
annotation.

In our experience, undergraduates in mathematics and computer science that
have learned to program repetitions with invariants and variant functions (e.g.
see [Gri81] Theorem 11.6) can be taught to use Correctness Rule (10) for pro-
gramming recursive procedures.

Notice that condition m > 0 enters only in the precondition of induction
hypothesis (11), that is, in the precondition of the recursive call(s). Condition
m > 0 must not be forgotten, for it is this bound that implies termination.

Example. Consider a procedure for integer division as specified in

proe divi (y : integer)

{glo x! ,q! : integer ;

all X, Y E integer ::

p r e p : x = X > 0 A y = Y > 0 ,

p o s t Q : X = q . Y + x A 0 < x < Y } .

Specification value X is the initial value of global variable x. We use a specification
value Y for the value of parameter y.

Postcondition Q is easily established if X < Y. Therefore, we use the variant
function v f = X - Y. Let m ~ 7/, be given. In the present case, the induction
hypothesis (11) is that, for every expression E and all values X' and Y' and all
predicates R that do not refer to x or q,

(13) {x = X ' > O A E = Y ' > O A X ' -- Y ' < m A m >_ O A R}

divi (E)

{X ' = q . Y ' + x A O <_ x < Y ' A R} .

Fragment (14) contains the body of divi, annotated in such a way that formula
(12) is verified at the same time.

560 W.H. Hesselink

(14) { P A W = m : x=X>_O A y = Y > 0 A X - - Y = m }
i f x < y t h e n { x = X _ _ 0 A y = Y > 0 A x<y}

{ X = O . Y + x A 0 _ < x < Y }

q := 0 {Q}

else { x = X > 0 A y = Y > 0 A X - - Y = m A y<x}
{ x = X _ > 0 A 2 . y = 2 - Y > 0 A X - - 2 . Y < m

A m>_O A y = Y }
divi(2"y); (* (13) with E : 2 . y and R : (y = Y) *)

{ X = q . 2 . Y + x A 0 _ < x < 2 . Y

q := q . 2 ;
{ X = q . Y + x A 0 _ < x < 2 - Y

i f x < y t h e n skip {Q}

A y = Y}

A y = Y}

O<_x--y<Y}
A 0 < _ x < Y} ;

else { X = (q + l) - Y + x - y A

x : = x - - y { X = (q + l) . Y + x
q : = q + l {Q}

fi {collect branches: Q}

fi {collect branches: Q}.

Clearly, if constant parameters are allowed (in the sense of [Gri81] Theorem
(12.4.1)) and y is taken to be such a constant parameter, the specification value
Y is superfluous. []

Remark. An annotated program should not be regarded as a presentation but as
a witness of a proof of correctness. In particular, its sequential order need not be
related to the order of reading. The nesting of the annotated program gives more
indication of the structure. []

Example. In order to enable a comparison with the method of [Mar83], we treat
J. McCarthy's 91-function as presented in [Mar83], section 7. The value parameter
in the postcondition used there is eliminated by means of specification value Y.
We use infix operator max to denote the maximum of its operands. The specified
declaration is

proe p (x : integer; vary : integer)
{all Y Einteger:: pre Y = 9 1 m a x (x - 1 0) , p o s t Y = y } ;

var z :integer;
if x > 1 0 0 then y : = x - 1 0
else p (x + 11, z) ; p(z, y)

fi.

We use proof rule (10) to prove correctness. In view of the procedure body, we
choose the variant function vf = 1 0 0 - x. Let m 6 7Z be given. The induction
hypothesis is that, for every expression E, every variable t, every predicate R with
t ~ Var.R and every value Z,

{Z = 91max (E --10) A 1 0 0 - - E < m A m > 0 A R}

p (e, t)
{z = t A e} .

Proof Rules for Recursive Procedures 561

We now verify that the body of procedure p satisfies proof obligation (12).

{ Y = 9 1 m a x (x - 1 0) A 1 0 0 - - x = m }
if x > 100 then

{ x > 1 0 0 A Y = 9 1 m a x (x--10) A 1 0 0 - - x = m }
{Y = x -- 10}

y := x - 10

{Y = y }
rise { x < 1 0 0 A Y = 9 1 m a x (x--10) A 1 0 0 - - x = m }

(* introduce a value Z *)

{ Z = 9 1 m a x ((x + l l) - - 1 0) A 1 0 0 - - (x + l l) < m A m > 0
A (Z = 9 1 max (x+l) A l O O - - x = m A m > O A Y = 9 1) }

p (x + 11, z) (* ind. hyp. with R between parentheses *)

{ Z = z A Z = 91max (x + l) A 1 0 0 - - x = m

A m_>O A Y = 9 1) }

(* z--10_< 81max (x - 9) _ _ _ 9 1 a n d z _ x + l *)

{Y =91 max (z - 1 0) A 1 0 0 - - z < m A m>_0}
p (z,y) (* ind. hyp. with R : true *)
{Y = y }

fi {collect branches : Y = y } .

In the first case, the invention of predicate R is driven largely by the postcondition
of the call, which is the precondition of the next call. []

5. Termination and Well-founded Subsets

The method of [Mar83] is stronger than proof rule (10) since it allows the use
of arbitrary well-founded sets in termination proofs. In fact, some termination
arguments for repetitions and recursive procedures need a lexical order, e.g. the
unification algorithm (cf. [Ga187] p.391) and the garbage collection algorithms of
[Jon92].

On the other hand, it is often useful that the variant function is allowed to
take values outside of the well-founded set. In fact, both examples in the previous
section had negative values for vs in the nonrecursive alternative. Therefore,
instead of a well-founded set, we use a well-founded subset, (cf. [DIS90] p. 174).

Let " < " be a binary relation on a set Z. A subset N of Z is said to be
~vell-s with respect to < if and only if every nonempty subset, say S, of N
has a minimal element. Here, an element x is called a minimal element of subset
S if and only if

(15) x c S A (V y : y < x : y ~ S) .

The standard example is the subset IN, the set of the natural numbers in the set
7Z of the integers with the usual "less than" relation <.

We let N be a well-founded subset of a set Z with a relation <. The principle
of well-founded induction over N (see e.g. [DIS90] p. 176) states that, for any

562 W.H. Hesselink

predicate f on Z,

(16) (V x E U " f . x)

=- (V x E N : : f . x ~ (V y E N : y < x : f . y)) .

Using this triple (Z, <,N), rule (10) is generalized to the following rule, which
has the same power as the method of [Mar83].

Correctness Rule. (17) A recursive implementation body.h of procedure h of
specification (1) is correct if conditions (2) and (3) are satisfied and there is a
Z-valued function v f in the specification value i, the parameters x, y and the
variables in flo, such that, for every m E Z and every i E C, the induction
hypothesis that every recursive call h(E, t) satisfies, for all j E C and for all
predicates R with (6),

~ i , x , y {(P A v f < m)j,E,t A m E N A R}

h(E, t)

{Q~ A R}

implies {P A vs m} body.h {Q}.

6. A More Abstract Recursion Theorem

For the proof of the soundness of rule (17), some grip on the semantics of recursive
procedures is necessary. We do not completely define the weakest precondition
wp.k for the call of an arbitrary procedure k. We only postulate

(18) wp.k = wp.(body.k),

or equivalently, for all predicates P and Q,

{P} k {Q} = {P} body.k {Q}.

Here we assume that possible parameters are part of the name k.
If the declaration of k does not contain recursion, postulate (18) is clearly

consistent and strong enough to define the semantics of calls of k. In the case of a
recursive declaration, it is not clear that equation (18) is consistent or applicable.
In [Hes90], it is shown that, indeed, equation (18) has a solution. In general,
however, it may have many solutions. The applicability of postulate (18) is shown
below by proving an abstraction of rule (17).

A direct proof of correctness rule (17) would have to be based on the
induction hypothesis with its mess of renamings. Therefore, we apply abstraction
to unify parametrization, specification values and invariant predicates with mutual
recursion. A procedure with parameters can be regarded as a family of procedures.
If the procedure is recursive, it is a family of mutually recursive procedures. Each
of these procedures, say h.e, may be specified by a family of Hoare triples

{P.a.fi} h.c~ {Q.a.fl}.

In this way, specification values and the invariant predicates R, as used above,
can be accommodated. If we now encode the pair (c~, fl} in a single symbol i
and write h.i = h.e, we get a family of procedures h.i with preconditions P.i
and postconditions Q.i, where i ranges over some set. In this way, we obtain the
following abstract version of rule (17).

Proof Rules for Recursive Procedures 563

Theorem. (19) Consider a family of procedures h.i with preconditions P.i and
postconditions Q.i, where i ranges over some set I. Let N be a well-founded
subset of a set Z with relation <. For every i E I, let vf..i be a Z-valued state
function. Assume that, for every m E Z,

(V I E / :: {P.i A vf..i < m A m E N} h.i {Q.i})

=*- (V i E I :: {P.i A vf..i = m} body.(h.i) {Q.i}).

Then {P.i} h.i {Q.i} for all i 6 I.

Remark. The antecedent of the implication is called the induction hypothesis. The
theorem implicitly allows mutual recursion. In fact, the body of h.i may call h.j.
[]

Proof In view of postulate (18), we have

(20) (V I E / : : { P . i A v f . i < m A m E U } h.i {Q.i})

(V i E I :: { P . i A v f . i = m } h.i {Q.i}).

If m ~ N, the precondition of the antecedent is false. Therefore, all Hoare triples
of the antecedent are true, so that formula (20) implies

(21) (V i E I , m E Z \ N : : { P . i A v f . i = m } h.i {Q.i}).

By well-founded induction (16) with (20) and (21), we obtain that, for all m E N,

(V i E I : : { P . i A v s h.i {Q.i}).

This implies that, for all i E I and m ~ Z,

{P.i A vf..i = m} h.i {Q.i} .

On the other hand, for every i E I, we have [(3 m E Z :: vf..i = m)] ; in fact, for
every state x there is a value m with vf..i.x = m. This implies that, for all i E I,

{P.i} h.i {Q.i}. []

7. Hoare's Rule for Partial Correctness

In this section, we present a version of Hoare's Induction Rule for recursive
procedures. The main difference with Rule (19) is that there is no guarantee
of termination and therefore no need for well-founded sets. So, Hoare's rule is
about partial correctness. Recall from [DIS90] chapter 7, that partial correctness
can be expressed by means of the predicate transformer wlp (weakest liberal
precondition). As a first approximation, Hoare's Rule for a procedure h with
precondition P and postcondition Q reads:

I f [P ~ wlp.(body.h).Q] can be inferred f rom [P ~ wlp.h.Q], then [P ~ wlp.h.Q].

Of course, the words "can be inferred" must not be read as a material implication.
For, otherwise, the proposition A : [P ~ wlp.h.Q] would satisfy -,A =~ A, so that
A would be a tautology. Since we do not want to present a separate logic, we
formalize Hoare's Rule in predicate calculus by quantifying over the interpretation
wlp.

Let W be the set of functions w from commands to conjunctive predicate

564 W.H. Hesselink

transformers that satisfy the laws:

(22) w.c.Q = wp.c.Q,

w.(s;t).Q = w.s.(w.t.Q),

w.(s H t).Q = w.s.Q A w.t.Q,

for all simple commands c, all commands s, t and all predicates Q. Here, the
operator "D" stands for nondeterminate choice. We assume that all simple com-
mands c always terminate, so that wlp.e = wp.c. This implies that both wp and
wlp are elements of W.

Every assignment t := E is a simple command with wp.(t := E).Q = Q~. For
a predicate b, the guard ?b is defined to be the simple command given by

wp.(?b).Q = (b ~ Q).

Then the conditional construct can be expressed as

if b then s else t fi = (?b; sH ?(-~b) ; t).

It follows that every w c W satisfies

(23) w.(if b then s else t fi).Q = (b =*. w.s.Q) A (-,b =~ w.t.Q,).

A command built from simple commands by means of the constructors ";" and
" l " is called a straight-line command. It is clear that every straight-line command
s satisfies

(24) w.s = wp.s = wlp.s for all w c W.

Now the above version of Hoare's Rule is formalized to

I f [P =~w.h.Q] implies [P =~w.(body.h).Q] for every w ~ W, then [P ~ wlp.h.Q].

This rule is valid but not very applicable, for it has no place for parameters,
specification values or mutual recursion. A stronger version is formulated as
follows.

Hoare's Rule. (25) Consider a family of procedures h.i with preconditions P.i and
postconditions Q.i, where i ranges over some set. Assume that, for every w c W,

(Vi :: [P.i ~ w.(h.i).(Q.i)])

=~ (Vi :: [P.i ~ w.(body.(h.i)).(Q.i)]).

Then [P.i ~ wlp.(h.i).(Q.i)] for all i.

Remark. The similarity of this rule to Theorem (19) is more striking if formula (0)
is used to rewrite (19) in terms of wp. Rule (25) can be proved from the definition
of wlp as the weakest solution of equation (18) in the set W. In [Hes92] Chapter
4, we give a proof of a stronger version, in which the set W is somewhat smaller.
[]

Example. We give an example in which Hoare's Induction Rule is used to prove
partial correctness. In this example, total correctness fails, so that Theorem (19)
cannot be used.

Let t be an integer program variable. Let procedure h be declared by

(26) body.h = (skipD t : = t - 1 ; h ; t : = t + 2) .

Proof Rules for Recursive Procedures 565

Operationally, it is clear that h need not terminate, but if h terminates then t is
not smaller than it was before. We therefore guess that

[t > i =*, wlp.h.(t >_ i)] f o r a l l i c T Z .

This is proved by means of Hoare's Rule in the following way. We let i range
over 7Z, choose all h.i = h, and the predicates P.i and Q.i equal to t > i. We have
to prove the proper instantiation of the assumption of (25). So, we let w c W be
a function that satisfies the induction hypothesis

[t >_ i ::~ w.h.(t >_ i)] f o r a l l i E 2 Z .

Now it suffices to observe

w.(body.h).(t >_ i)

= {declaration (26) of h}

w . (s k i p D t : = t - 1 ; h ; t : = t + 2) . (t > i)

= {(22) and sk ip = (?true)}

t>_i A w.(t : = t - 1) . (w . h . (t > _ i - 2))

{induction hypothesis with i := i - 2

and monotony of w.(t := t - 1)}

t>_i A w . (t : = t - - 1) . (t > _ i - - 2)

= {(22) and calculus }

t>_i.

A formal proof that h need not terminate is given below as an application of the
next rule. []

8. A Necessity Rule for Total Correctness

As far as we know, the next induction rule is new. It deals with necessity of
preconditions instead of sufficiency. In fact, when dealing with program correct-
ness, we are interested only in the question whether a given predicate implies
the weakest (liberal) precondition. In program transformation or in proofs of
incorrectness, we can also be interested in the necessity of certain preconditions.
Necessity of preconditions is usually shown by means of scenarios. Since scenar-
ios require careful operational reasoning, we prefer a formal instrument like the
following necessity rule for wp.

Necessity Rule. (27) Assume that for every w c W

(V i :: [w.(h.i).(Q.i) ~ P . i])

(Vi :: [w.(body.(h.i)).(Q.i) ~ P . i]) .

Then [wp.(h.i).(Q.i) ~ P.i] for all i.

This rule is based on the postulate that wp is the strongest solution of (18) in
the set W. The rule is not useful for proofs of program correctness. It can be
used, however, for proofs of nontermination, proofs of incorrectness, and proofs
of refinements (see below in Section 8). It is not useful to imagine an operational
interpretation of the rule. The specialization of the rule to the repetition is given
in [Hes91] Section 4.

566 W.H. Hesselink

Example. We use rule (27) to prove that, for every initial state, procedure h of
declaration (26) need not terminate. This is formalized in wp.h.true = false, or
equivalently [wp.h . t rue~ false]. By Rule (27), it suffices to prove that, for every
w E W ,

[w . h . t r u e ~ false] ~ [w.(body.h) . true~ false],

or equivalently

[-~w.h.true] ~ [-,w.(body.h).true].

Therefore, it suffices to use the induction hypothesis [-~w.h.true] and to observe

w.(body.h).true

= {declaration (26) of h}

w . (s k i p H t : = t - 1 ; h ; t : = t + 2) . t r u e

= {(22) and skip = (?true)}

w.(t := t - 1).(w.h.true)

= {induction hypothesis and (22)}

false. []

Example. In the previous example, nontermination is operationally obvious. We
therefore present another case in which nontermination is not easy to see.

Let t be an integer program variable. For integer constants a, b and c, let
procedure h be declared by

body.h = i f t > a t h e n t : = t - b
e l s e t : = t + c ; h ; h f i .

If a = 100, b = 10 and c = 11, this is a different coding of McCarthy's 91-
function, see Section 3. We now consider the case that b and c are integers with
b _> c. Then procedure h only terminates in the nonrecursive case, i.e., under
precondition t > a. This is formalized in

(28) [wp.h.true =~ t > a].

If one tries to prove (28) by means of rule (27), one also needs assertions of the
form

[wp.h.(t > i) =~ t > b + i] for integer i.

This family of assertions is unified with (28) in

(29) [wp .h . (t> i) =~ t > a m a x (b + i)] for a l l i ~ U { - ~ } .

Notice that formula (29) with i = - ~ implies formula (28). Formula (29) is
proved by means of rule (27). In fact, it suffices to consider w c W that satisfies

(30) [w.h . (t> i) =~ t > a m a x (b + i)] f o r a l l i ~ Z E U { - ~ }

and to verify

w.(body.h).(t > i)

= {declaration of h and (23)}

(t > a =*. w.(t := t - - b).(t > i))

A (t < a ~ w . (t : = t + c ; h ; h) . (t > i))

Proof Rules for Recursive Procedures 567

=~ {(22) and (30) twice}

(t > a ~ t - b > i)

A (t_<a =~ t + c > a m a x (b + a m a x (b+i)))
(calculus}

(t > a =~ t > b + i)

A (t_<a =~ t > (a - - c) m a x (a + b - c) max (2 . b + i - c))
= (since b _> c the second conjunct equivales t > a}

t > a m a x (b+i) .

This proves formula (29) and hence formula (28). []

9. Refinement of Procedures

In this section, we give an example of an application of necessity rule (27) to pro-
gram transformation. The example shows formally that refining the constituents
of a procedure leads to a refinement of the procedure itself. Of course, this result
is not surprising. The point is that rule (27) does the job.

Let procedures h0 and hi be declared by

body.h/ -- (ri 0 Si ; hi ; ti)

for i = 0 or 1, where ri, si, ti are straight-line commands for i = 0 or 1. Assume
that r0, so and to are refined by rl, Sl, h, respectively. This means that, for all
predicates q,

[wp.ro.q ~ wp.rl .q]

[wp.so.q ~ wp.sl .q]

[wp.to.q ~ wp .h .q].

Then we claim that h0 is refined by hb that is

[wp.ho.q ~ wp.hl .q] for all predicates q.

Our proof obligation fits Rule (27) with q ranging over the set of all predicates
and

h.q = ho , Q.q = q , P .q = wp.hl.q.

Therefore, by Rule (27), it suffices to prove that for every w c W

(V q :: [w.ho.q ~ wp.hbq]) (induction hypothesis}

=~ (V q :: [w.(body.ho).q => wp.ha.q]).

This is proved by observing that for every predicate q

w.(body.ho).q

= (declaration h0}

w.(ro fl so ; ho ; to).q

= {(22)}'

w.ro.q A w.so.(w.ho.(w.to.q))

= {r0, so, to are straight-line commands and (24)}

568 W.H. Hesselink

wp.ro.q A wp.so.(w.ho.(wp.to.q))

=~ (induction hypothesis with q := wp.to.q, and monotony)

wp.ro.q A wp.so.(wp.hl .(wp.to.q))

=*- {assumption and monotony)

wp.rl .q A wp.s l . (Wp.hl . (wp. t l .q))

= (same calculation as in the first two steps)

wp.(body.hl) .q

= ((18))
wp.hl.q.

This example can be modified by substituting wlp for w p . In that case, one
applies Rule (25) to procedure hi instead of applying Rule (27) to h0.

10. The Remaining Rule

Comparing the three rules (19), (25) and (27), we see striking similarities. Rules
(25) and (27) use induction over elements w E W and lead to partial correctness
of sufficient preconditions and total correctness for necessary preconditions. Rule
(19) uses well-founded induction to yield total correctness of sufficient precondi-
tions. This suggests that there should also exist a rule with well-founded induction
that yields partial correctness for necessary preconditions.

As in Theorem (19), we let N be a well-founded subset of a set Z with a
relation <.

Theorem. (31) For every i E I, let vf.i be a Z-valued state function. Assume that,
for every m E Z,

(V i :: [v[..i < m A r e E N A wlp.(h.i).(Q.i) ~ P.i])

(V i :: [vf..i = m A wlp.(body.(h.i)).(Q.i) ~ P.i]).

Then [wlp.(h.i).(Q.i) ~ P.i] for all i.

Proof. The proof is completely analogous to the proof of (19) (see [Hes92]
Chapter 5). []

Example . Again, we consider procedure h declared in (26). We proved already
that h need not terminate. Operationally, it is clear that, if h terminates, the value
of t may be arbitrarily large. This assertion is formalized in

(V i E 7Z :: [~wlp.h . (t < i)]).

This formula can be proved by means of Theorem (31) with h.i = h and P. i = false
and Q.i = (t < i) for all i E 2E. We use the standard well-founded subset IN of
7Z. By (31) it suffices to give a family of 2E-valued state functions vf.i such that
for every m E 7Z the induction hypothesis

(ViE 7z :: [vf.i < m A m E IN A wlp.h.(t < i) =~ false])

implies for every i

[vf.i = m A wlp.(body.h).(t < i) ~ false].

Proof Rules for Recursive Procedures 569

To this end we first observe that the induction hypothesis is equivalent to

(31) (V i E T Z : : [w l p . h . (t < i) =~ - , (v f i < m A m E IN)]).

Now our proof obligation is fulfilled by

v f i = m A wlp.(body.h).(t < i)

= {declaration of h}

v f i = m A wlp . (sk ip H t := t - 1 ; h; t : = t + 2) . (t < i)

= {(22)}

v f . i = m A t < i A w l p . (t : = t - - 1 ; h) . (t < i - 2)

=> {(32) with i := i - 2 }

vf..i = m A t < i A

wlp.(t := t -- 1).(-~(vE(i -- 2) < m A m C IN))

{choose vf.i = i - t, then first two conjuncts

imply m > 0 and hence m E IN;

since m is constant, this can be used in third conjunct}

i - - t = m A w l p . (t : = t - - 1) . (- ~ (i - 2 - t < m))

= {calculus}
i - t = m A i - - 2 - - (t - - 1) > m

= {calculus}

f a l s e .

Notice that the choice of vf.i is delayed until the point where the expression
indicates a useful choice. []

11. Concluding Remarks

The quadruplet of rules (19), (25), (27), (31) seems to be complete in some language
in which mutually recursive procedures are compared with specifications. For
practical applications, rules (25), (27), (31) can be extended with parameters,
specification values, and invariant predicates to yield rules like (10) and (17). The
quadruplet can also be specialized to yield correctness rules and necessity rules
for total and partial correctness of the repetition. In that case, the correctness
rules are well known and the necessity rule for w p is contained in [Hes91].

Acknowledgements

Sections 1 and 2 have been deeply influenced by discussions with J.E. Jonker and
D. de "Cries. E. Voermans suggested the possibility of necessity rules. I am very
grateful for the criticisms of two referees that led to a complete revision of the
presentation.

References

[DIS90] Dijkstra, E. W. and Scholten, C. S.: Predicate calculus and program semantics. Springer
V. 1990.

570 W.H. Hesselink

[Ga187]

[Gri81]
[Heh79]

[Hes90]

[Hes91]

[Hes92]

[Hoa71]

[JEW85]

[Jon92]

[Kal90]

[Mar83]

Gallier, J.H.: Logic for Computer Science. Foundations of automatic theorem proving.
Wiley & Sons 1987.
Gries, D.: The science of programming. Springer V. 1981.
Hehner, E.C.R.: do Considered od : a contribution to programming calculus. Acta
Informatica 11 (1979) 287-304.
Hesselink, W.H.: Command algebras, recursion and program transformation. Formal
Aspects of Computing 2 (1990) 60-104.
Hesselink, W.H.: Repetitions, known or unknown? Information Processing Letters 40
(1991) 51-57.
Hesselink, W.H.: Programs, Recursion and Unbounded Choice, predicate transformation
semantics and transformation rules. Cambridge University Press, 1992 (Cambridge
Tracts in Theoretical Computer Science 27).
Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Symposium on
Semantics of Algorithmic Languages. (ed. E. Engeler), Springer V. (Lecture Notes in
Math. 188) 1971, pp. 102-116.
Jensen, K. and Wirth, N.: Pascal User Manual and Report, third edition. Springer V.
1985.
Jonker, J.E.: On-the-fly garbage collection for several mutators. Distr. Comput. 5 (1992)
187-199.
Kaldewaij, A.: Programming: the Derivation of Algrithms. Prentice Hall International,
1990.
Martin, A.J. : A general proof rule for procedures in predicate transformer semantics.
Acta Informatica 20 (1983), 301-313.

Received December 1990
Accepted in revised form February 1993 by D. Gries

