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A normally elliptic Hamiltonian bifurcation 

By H. W. Broer I, S. N. Chow 2, Y. Kim 3 and G. Vegter 4 

Dedicated to Klaus Kirchgdssner on his sixtieth birthday 

1. Setting of the problem, outline 

This paper concerns autonomous Hamiltonian systems around an equi- 
librium point, with a double eigenvalue zero. The main problems already 
occur in the case of 2 degrees of freedom, where the other eigenvalues form 
a purely imaginary pair. Therefore, this research is in the Hamiltonian 
tradition of e.g. Meyer [29], Sanders [39], Van der Meer [46] and Verhulst 
[49]. It is our aim to describe versal, viz. generic unfoldings of this 
equilibrium point. Its codimension depends on whether the linear part is 
semisimple or not. The non-semisimple case has codimension 1 and the 
semisimple one codimension 3; this means that they will only be met 
generically if at least 1 respectively 3 parameters are present. The emphasis 
will be with the semisimple case, which is most degenerate, but which 
contains the less degenerate, non-semisimple case in a subordinate way. 
These unfoldings are frequently met in Hamiltonian studies. To fix thoughts 
we include the following example. 

Example. Consider a system of coupled oscillators 

2 + x = f (x ,  y,/~) 

y + = g(x,  y, 

where # = ( e , . . . ) e  ~P is a vector of parameters and where f and g 
contain nonlinearities. For [el ~ 1, such a system goes through many high 
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order resonances. 
applies. 
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The unfolding theory, to be developed below, then 

The conjugate pair of imaginary eigenvalues gives rise to a formal 
rotational symmetry in all unfoldings, i.e. a rotational symmetry in their 
Taylor series. Here the series is considered in dependence on both the phase 
space variables and the parameters. This is an application of Normal Form 
Theory, where the terms of the formal power series are changed by 
canonical coordinate transformations in an inductive process. The symme- 
try, thus obtained, enables a formal reduction to 1 degree of freedom, 
around an equilibrium point with a double eigenvalue 0. For similar 
approaches see some of the above references, also compare e.g. Arnold [6], 
Takens [43, 44], Broer [10, 11], Golubitsky and Stewart [23] and Broer and 
Vegter [16]. This Normal Form Theory will be presented in Section 3. 

In Section 2, we begin studying the 1 degree of freedom 'backbone'- 
problem in its own right. Since in the plane the integral curves of the 
systems are the level sets of the Hamiltonian functions, here the problem 
reduces to Singularity Theory, e.g. compare Br6cker and Lander [9], Gibson 
[22], Martinet [28], Poston and Stewart [37] and Thom [45] for these 
Hamiltonians. It will turn out that the so-called Elliptic and Hyperbolic 
Umbilic Catastrophes contain all the information we want. 

In Section 4 the connection is made between the planar reduction of the 
symmetric system and the 'backbone'-system of Section 2. It turns out that 
the formal integral, obtained by normalization, is a distinguished parameter 
in the sense of Golubitsky and Schaeffer [51] and Schecter [41], also 
compare Wassermann [52]. Now Singularity Theory yields new normal 
forms, that are polynomial of degree 3, at least in the phase-space variables. 
We note that here the normalizing transformations no longer need to be 
canonical. Technical details from Singularity Theory have been collected in 
an appendix (Section 7). After this we suspend, or dereduce, to the original 
4-dimensional setting, so obtaining an integrable, i.e. rotationally symmet- 
ric, approximation of the original unfolding. 

Thus we obtain a perturbation problem, similar to e.g. Broer [10, 12] or 
Braaksma and Broer [8]. The perturbation term is of arbitrarily high order, 
both in the phase space variables and the parameters. This problem is 
briefly addressed in Section 5. 

Remarks. (i) Although in the original family only generic restrictions 
are imposed on the lower order terms, by Normal Form Theory and 
Singularity Theory, the corresponding unfolding is reduced to an arbitrarily 
flat perturbation of a normal form, completely determined by a 1 degree of 
freedom system, which is polynomial of degree 3. This polynomial character 
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may explain why certain 'integrable' characteristics in the unfoldings are so 
persistent. For a related comment  we refer to Verhulst [49]. 

(ii) Our approach differs from e.g. Van der Meer [46], also compare 
Duistermaat [19]. In [46, 19] the dynamics is reduced by the energy-momen- 
tum map as well as the Moser-Weinstein method. This gives information 
related to specific periodic solutions, that is also important  for the dynamics 
as a whole. Instead, we just factor out a formal rotational symmetry, and so 
seem to get a more direct hold on the global dynamics. This procedure is 
along the same lines as e.g. Broer [10, 11] or Broer and Vegter [16]. It would 
be interesting to know how both methods compare in this. 

In Section 6, the paper is concluded by considerations concerning the 
general Hamiltonian problem with one double zero singularity. Also the 
analogue for symplectic maps is discussed. 

2. The planar backbone 

We consider C ~ functions H :  ~ 2 ~  [R with the origin as a critical point. 
The corresponding Hamiltonian vector field, to be denoted by Xn, then has 
the origin as an equilibrium or singular point. We here recall that 

d H  = .), 

where ~ = dx  A dy denotes the standard area 2-form on N2. For this use of 
notation, e.g. see Abraham and Marsden [1] and Arnold [5]. In coordinates, 
for X ,  we get the familiar expression 

8 H  8 H  
 =Tf' Y- 

We recall that, for a vector field i" on N 2 to be Hamiltonian with respect to 
some function H, it is necessary and sufficient for 1" to have divergence zero. 
This, in turn, means that its (solution-) flow preserves the standard area 
mentioned above. 

In this section our concern is with the situation where the linear part of 
1"n at the origin has double eigenvalue zero, and the question becomes what 
are generic unfoldings of this singularity both in the semisimple and the 
non-semisimple case. In the former of these cases the corresponding Hamil- 
tonian H, at the origin, vanishes to third order. We claim that the 
Singularity Theory for the planar Hamiltonian functions provides a good 
framework for this problem, again compare [9, 22, 28, 37, 45]. 

In fact, we start considering a Coo transformation @: R 2 ~  ~2 such that 
for two Hamiltonians H and K one has H = K o aS. Such a map ~ is called 
a right equivalence between the functions H and K. The following lemma 
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compares the Hamiltonian vector field XK with the transformed vector field 
O,(XH), defined by 

O, (XH)(O(p)) .'= DO(p)(XH)(p): 

Lemma 1. O,(XH) = det DOXK. 

Proof. We transport the equation dH=~o(XH, ") by O. Putting 
O,(H) . .=HoO-I=K and O, (co) ..= (0-1)  *(a~) we get dK=dO,(H)= 
O,(~o)(O, XH, "). Here O,(o~) = (det DO)- lm,  whence 

dK = (det DO) - leo(0 ,  (XH), ") = 

= ~o((det DO) - ' O ,  (XH), ") 

and (det DO)-IO,(XH) = XK, which immediately proves the lemma. [] 

Since the vector fields X:_/and O,(X:/)  are conjugate, the presence of the 
scalar factor det DO implies that the Hamiltonian vector fields X,v and ArK 
are equivalent. For this terminology, e.g. see Palis and de Melo [33]. We 
here recall that conjugacies take integral curves to integral curves in a 
time-preserving way. Equivalences, however, do take integral curves to 
integral curves, but without necessarily preserving this time-parametrization. 
Observe that �9 is a conjugacy between X: /and  XK precisely if det DO - 1, 
meaning that �9 is both area- and orientation preserving, which in the 
present setting is the same thing as canonical or symplectic. 

This set up can be widened somewhat by also allowing left-right 
equivalences, which includes transformations in the image space [~ of the 
Hamilton functions. Moreover, in the case where the systems depend on the 
parameters, we use parameter-dependent (left-right) equivalences on the 
Hamiltonians, together with reparametrizations. Such a compound transfor- 
mation is called a morphism of unfoIdings. For precise definitions, also see 
Section 7, below. 

Remark. Without making an essential difference, the (left-) transforma- 
tions on the range E can be restricted to the class of parameter-dependent 
translations, compare [9]. In Section 7, for technical reasons, we take a 
slightly different though equivalent point of view. 

Singularity Theory aims to classify (germs of) generic unfoldings of 
functions under the equivalence relation provided by these morphisms. 
From the above it then may be clear that this classification also is relevant 
for the corresponding Hamiltonian vector fields, even though the classifying 
diffeomorphisms, i.e. the right equivalences, are not necessarily canonical: it 
suffices to give a qualitative picture of the phase portraits. Note, however, 
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that  also many  quantat ive features are kept  track of  in this way. For  similar 
approaches  e.g. see Arnold  [6], Broer [10, 11], Broer and Vegter [16], 
Duis termaat  [19] or Van der Meer [46]. 

2.1. The linear classification 

To fix thoughts ,  let us discuss the linear classification, which is quite 
familiar, speaking in terms of  singularities of  Hami l tonian  vector fields XH. 
So we consider the linear par t  

where L is a 2 by 2 matrix. It is easily seen that  L must  have trace zero, i.e. 
L ~ sl(2, ~ ) =  sp(2, ~). This follows f rom the fact that  div XH = 0. More- 
over, if the Hamil tonian  H at the origin has the Hessian matrix 

then we have 

L =  _ - b  " 

So we consider the 3-dimensional space of  matrices sl(2, R), where our  
morphisms  induce the following equivalence relation: 

L ~ M r162 3S e Gl(2, ~), 3tr e N\{O} �9 S o L o S-~ = xM. 

Note,  that  only using right equivalences would imply ~c = 1. Moreover ,  in 
the case where these right equivalences would be canonical,  even det S -- 1, 
i.e. S ~ Sl(2, ~) = Sp(2, R). The characteristic polynomial  of  a matrix 
L ~ sl(2, ~) is given by 2 2 +  det(L), which directly leads to the following 
part i t ion in equivalence classes; for similar classifications e.g. compare  
Gibson [22] and Pos ton and Stewart [37]. 

i. The 

L =  

ii. The 

L =  

hyperbolic case: det(L) < O, corresponding normal  forms: 

elliptic case: det(L) > O, corresponding normal  forms: 

_ , H ( x ,  y) = ~ (x 2 + y 2). 
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iii. T h e  p a r a b o l i c  case:  det(L) = O, L ~ O, corresponding normal forms: 

(0 ~ ;) 12 
L = , H ( x ,  y )  = -~ y . 

iv. T h e  z e r o  case:  L = O, corresponding normal forms: 

L = O, H ( x ,  y )  = O. 

The situation is illustrated in Fig. 1. The nilpotent variety given by 
det(L) = 0, which is a cone, corresponding to the cases iii and iv. The 
complement consists of two open pieces, corresponding to the cases i and ii. 
The singularities iii and iv are our object of study, iv being the semisimple 
and iii the non-semisimple case. Geometrically it is evident that the zero 
case iv has codimension 3, while the parabolic case iii has codimension 1. 
This also follows from computations as in Arnold [3, 6] in this symplectic 
setting, e.g. compare Broer [10], as well as from the codimension computa- 
tions in Singularity Theory, carried out on the level of 2-jets, again see 
[9, 22, 28, 37, 45]. Note, that by 'normal form' we just mean a preferred, 
simple member of the corresponding equivalence class. For instance, ob- 

1 2 serve that x y  ~ 5(x  - y2). 

a 

(iv) / 

~ ~ ( i )  .' (ii) 

) 
r 

Figure 1 
Stratification of sl(2, ff~) by the equivalence relation ~. 
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2.2. The Fold and the Elliptic and Hyperbolic Umbilic Catastrophes 

What happens to the above, linear picture if higher order terms are 
added? This question is addressed by Singularity Theory, for details we 
again refer to [9, 22, 28, 37, 45]. The codimension 0 cases i and ii can be 
handled by the Morse Lemma, which implies that the normal forms given 
above, also hold with the higher order terms added. The critical points for 
the Hamiltonian are a saddle-point, respectively a maximum or minimum 
and the corresponding singularities of the vector field are a saddle-point, 
respectively a center. These critical points, viz. singularities are called 
nondegenerate. In fact, in these cases structural stability holds: the corre- 
sponding equivalence classes are open, say, in the C ~ topology. Notice that 
here we restrict to the class of functions that in 0 ~ [~2 have the value 0. The 
situation is less easy in the cases iii and iv. Let us briefly discuss what 
Singularity Theory has to say here. 

In the parabolic case iii the Splitting Lemma, compare the  above 
references, tells us that, after carrying out an approximate rnorphism, we 
only need to consider 1-parameter families of the form 

1 2 
H"(x, y) = y + W(x) ,  

where V~ = O(x 3) as x ~ 0. So, the Splitting Lemma splits the unfolding 
in a 'Morse part' ~2,  see above, and a part V~(x) containing a more 
degenerate singularity. The morphism needed to obtain this split form, does 
not involve a change in the parameters. A universal unfolding is given by 

l x 3  H,(x,  y) = ~ y 2 + 3 + #x, 

lX3 'is' where the 'potential' function V~(x)=3 + #x a Fold Catastrophe, 
again compare the above references. Also here, this universal unfolding is a 
normal form, i.e. a preferred member of  its equivalence class, now consid- 
ered in tlhe world of all 1-parameter unfoldings of the present parabolic 
singularity. Moreover, in this set of  1-parameter families the universal 
unfolding is structurally stable, again meaning that its equivalence class is 
open. Finally, generic unfoldings of  the parabolic singularity with more 
than 1 parameter can be reduced to the case with 1 parameter, carrying out 
a projection in the parameter-direction. In this way, a suitable morphism 
leads to the case where all the other parameters are 'mute': the unfolding 
does not explicitly depend on those. 

In Fig. 2 we depicted the corresponding phase portraits: For # > 0 no 
singularities exist, while for # < 0 a (nondegenerate) saddle-point and center 
are present, their distance to the origin being of  the order x~--~. For # = O 
the origin occurs as the 'new', parabolic singularity. We shall refer to this 
bifurcation as the Saddle-Center or Hamiltonian Saddle-Node bifurcation. 
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# = 0  # > 0  u < 0  

Figure 2 
The Saddle-Center or Hamiltonian Saddle-Node bifurcation. 

In the zero case iv, the situation is even more complicated. Since the 
linear part L completely vanishes here, we don' t  have a convenient splitting. 
However, Singularity Theory now provides the following two universal 
unfoldings: 

H~'V'~(x, y) = x 2y +_ ~ y 3 + #(x 2 -T- y 2) q_ l~X -~- Ky, 

the 'upper signs' corresponding to the Hyperbolic and the 'lower signs' to 
the Elliptic Umbilic Catastrophe. In another classification, see Arnold [4], 
these unfoldings are labeled D ~ .  Again universality means being a preferred 
member of ones equivalence class of 3-parameter unfoldings, where the 
number of parameters always safely can be reduced to 3. And also here the 
families are structurally stable in the above sense, so there are two open 
classes of 3-parameter unfoldings. 

We conclude this section with brief descriptions of the two umbilic 
catastrophes, mainly referring to [37, 45]. 

2.3. Description of  the Elliptic Umbilic Catastrophe 

We begin by giving the catastrophe set cg of the Elliptic Umbilic 
Catastrophe in the parameter space. This is the set of parameter-points 
(#, v, ~:) where the Hamiltonian H ~ .... has a degenerate critical point. The set 
cg, depicted in Fig. 3, is given parametrically by 

#2 = X2-+-y2, V = --2#X --2xy,  K = --2#y q-y2--X2, 

with x and y as parameters. Observe that it has a cone-like structure, with 
a curvilinear triangle as base, the edges of which meet in cusps. The axis of 
the 'cone' is the #-axis and the triangle shrinks quadratically in I#l as # ---, 0. 
Moreover, the parameter #, for # :f 0 only effects the characteristic size of 
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Figure 3 
Catastrophe set of the Elliptic Umbilic. 

the phase-portraits, while its sign governs the orientation of the flow. For 
# = 0 the central, umbilical singularity occurs at the origin. 

In Fig. 4 the phase-portraits are given relative to the 2-dimensional 
section # -- 1. We restricted to one sector of the diagram, the other phase 
portraits easily follow by symmetry considerations. Also the central, umbil- 
ical singularity is depicted, as it occurs at (#, v, ~c) = 0. The corresponding 
critical point for the function H~176176 _�89 is called monkey 
saddle. Observe that upon transversal crossing of the edges of the triangle 
the Hamiltonian Saddle-Node, described above, occurs subordinately. In 
the 3-dimensional bifurcation diagram these edges correspond to 2-dimen- 
sional sheets. Moreover, there exist three subordinate local 2-parameter 
subfamilies, transversal to the cusp-curves corresponding to the vertices of 
the triangle, admitting a Splitting Lemma approach. In fact, the 'potential' 
function V ~'v then undergoes a Dual Cusp Catastrophe. The corresponding 
Hamiltonian family, in its own right, has normal form 

1 X4.~#X2JTVX" H,,V(x, y) = ~ y2 _ -4 

It is straightforward to give both the bifurcation diagram and the phase 
portraits for this normal form family. Finally we wish to point at the 
subordinate heteroclinic bifurcations, occurring at the 'bisectors' of the 
triangle. At the center of the triangle we find coincidence of two, and hence 
three, of such bifurcations. In this way, the bifurcation set extends the 
catastrophe set. 
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c e n I ~ r i t y  

D ._> 
Ix 

Y )_ 
Figure 4 
Bifurcation diagram of the Elliptic Umbilic, y ~ 0 fixed. 

C 

2.4. Description of the Hyperbolic Umbilic Catastrophe 

Next we turn to the Hyperbolic Umbilic Catastrophe. Also here we 
denote the catastrophe set by cg, see Fig. 5. This time it is given by 

/22 = y 2 - -  X2, V = --2/iX --2xy, I< = 2 y y  --y2--X2, 

again with x and y regarded as parameters. The story is much the same as 
before. Again the set r has a cone-like structure, but now with a base 
consisting of  the disjoint union of  a smooth curve and a cusp-line. Also the 
role of  the parameter  # is the same as before. In Fig. 6 we show the phase 
portraits related to the section # = 1, as well as the central umbilic singular- 
ity. Observe that again all kinds of subordinate bifurcations occur. Apart  
from Dual Cusp Catastrophes, here we also have the 'ordinary'  Cusp 
Catastrophe, with normal  form 

1 Hm~(x, y) = ~ y2 + ~ x4 +-~ Ctx2 q- vx. 
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Figure 5 
Catastrophe set of the Hyperbolic Umbilic. 

< 
# 

-I 

--> // 

I 

cent~arity 

Figure 6 
Bifurcation diagram of the Hyperbolic Umbilic, # :~ 0 fixed. 

Again bifurcation set as well as phase portraits are easily given. Also note 
that, on the 'bisector' of the cusp a subordinate heteroclinic bifurcation 
O c c u r s .  

Many of the above, 2-dimensional phase portraits also can be found in 
Andronov et al. [2]. For an extensive discussion of both umbilical catastro- 
phes in the context of planar gradient vector fields we refer to Vegter [47]. 
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3. A Hamiltonian normal form: formal reduction to 1 degree of freedom 

We now return to the 4-dimensional setting. To begin with, we notice 
that a direct approach applying Singularity Theory to the Hamilton func- 
tions does not give much information on the dynamics, but only on the 
foliation of their 3-dimensional level sets and its lower dimensional singular- 
ities. Therefore, instead, we present a Formal Normal Form permitting the 
formulation of a perturbation problem related to the 2-dimensional situa- 
tion of Section 2. The relevant normal form theory started with Poincar6 
[35] and Birkhoff [7], for more recent references see Gustavson [24], Moser 
[30, 31], Takens [43, 44], Arnold [5], Sanders [39], Broer [11, 10], Sanders 
and Verhulst [40], Van der Meer [46] and Broer and Vegter [16]. 

3.1. The Normal Form 

To be more precise, we endow R 4 with coordinates (xl, yl, x2, Y2) and 
the natural symplectic form co = dXl /x dyl + dx2/x dy2, considering a C ~ 
family of Hamiltonian functions H ~, where # e RP is a vector of parameters. 
As before, for any Hamiltonian H the corresponding Hamiltonian vector 
field XH is given by dH = cO(Xl-i, "), which in coordinates means 

OH OH 

 xj' 
for j =  1,2. 

We assume that for # = 0 the origin of [~4 is a singularity. Then we 
expand as a Taylor series in (x, y, #) 

H,(x, y) =/ t2(x,  p, ~) +/-/3(x, y, ~) + . - . ,  

where H,  is homogeneous of degree n in (x, y,/~). Assuming that the 
singularity at (x, y, # ) =  (0, 0, 0) has eigenvalues 0 (double) and _+ic~, for 
some real constant c~ r 0, it is our aim to normalize or simplify these 
homogeneous parts, using induction on the degree n. Here 'simple' means 
'rotationally symmetric' in a way to be explained below. To this purpose we 
carry out suitable transformations that preserve the symplectic form co, i.e. 
which are canonical or symplectic. 

First, by Williamson's Normal Form, compare Galin [21] and Kogak 
I,=-~(x~ +y2), we normalize the second order par t / /2  to: [27], abbreviating 1 2 

H2(x, y, ~) = ~I, 

in the semisimple case and 

1 
H~(x, y, ~) = ~I _+ ~ y 



_ 

and 
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in the non-semisimple case. The corresponding (infinitesimally) symplectic 
matrices, being the linear part of the corresponding Hamiltonian vector 
fields XHo, have the respective forms 

0 ~ 0 0 

ct 0 0 0 

0 0 0 0 

0 0 0 0 

) - ~  0 0 00 

+ 1  " 0 0 0 - 0  
0 0 0 

The codimension of these singularities are the same as the corresponding 
ones in Section 2, i.e. 3 for the semisimple one and 1 for the non-semisimple 
one. This directly follows from Section 2 and the fact that pure imaginary 
eigenvalues in the symplectic setting have open occurrence. For other 
approaches to this, see the relevant references given at the end of Section 
2.1. Recalling that our parameter space is RP, we fix p = 3 in the semisimple 
and p = 1 in the non-semisimple case. 

The function/,  viz. the Hamiltonian vector field XI, now will be used to 
give the rotational symmetry as follows: 

Theorem 2. There exists a formal canonical transformation ~(x, y, #) 
keeping the parameters fixed, and a formal power series if(l, x2, Y2, #)  such 
that, formally speaking 

+)(x, s, #) = P(I, x2, y2, #). 

ProoL In fact, let us denote the space of formal power series of 
Hamiltonian functions by lrI.~ 2 xgY. {x, y, #}, where ~4~. {x, y, #} contains 
the homogeneous polynomials of degree n. Then, for each n the adjoint 
action 

adH2: ~ , { x ,  y ,#)  + Jg~n{x, y, #} 

is induced by adH2 : F ~ {H2, F}, where {., .} denotes Poisson-brackets, for 
definitions and further reference see [1, 5]. By the above references 
[11, 10, 43, 44] it follows that for n-> 3, successively all terms can be 
normalized into ker adi c ~ ,  {x, y, #}, using only canonical transforma- 
tions, that preserve the parameters. Indeed, for each n this transformation 
can be generated infinitesimally by the Hamiltonian vector field correspond- 
ing to an appropriate element of ~ ,  {x, y, #}. Moreover, the fact that the 
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normalized terms are in ker adi implies that they Poisson-commute w i th / ,  
in turn implying that they are equivariant with respect to the circle action 
generated by the vector field X~. [] 

Remark. In the non-semisimple case we can 'improve' the normal form 
in the following way, compare [46]: If we write N(x,  y) i 2 �9 "= - 5Y 2 so that 
//2 = eI  + N, the homogeneous part of degree n can be 'normalized' into 
ker ad~\im ad~v _- ~ n  {x, y, #}. Another  way to 'improve' the normal form 
is to incorporate higher order terms of the Hamiltonian in the adjoint 
action. In the present case, however, since we can apply Singularity Theory 
in a straightforward manner, only the rotational symmetry is of importance. 

Let us see what the formal statement of Theorem 2 means on the level of 
Coo functions: 

Corollary 3. There exists a Coo canonical transformation ~,  which keeps 
the parameters fixed, and there exist Coo functions F(L xz, y2, #) and 
P(x, y, #), such that 

1. P is infinitely flat at (x, y, #) = 0, 
2. (H o ~b)(x, y, #) = F(I, x2, Y2, #) + P(x, y, #). 

Proof. The above theorem says, that up to the formal canonical trans- 
formation ~,  the function H has the symmetric Taylor series F(L x2, Y2, #). 
If we stop the induction at the order N, we obtain a real analytic transfor- 
mation q)U, such that for the truncation FN of P at the order N, we get 
(H o (~N)(X, y, #) = FN(I, X2, Y2, #) + O(](X, y, #)IN+ 1). Currently however, 
we work in the C a context, where a theorem of  E. Borel is valid. This 
theorem says the following, e.g. compare [32]: Given any formal power 
series $ in the variables (x, y, #), there exists a C ~ map q~ with $ as its 
Taylor series. A careful look at the level of generating functions ensures us 
that in this particular case it is also possible to choose (I) canonical. Also we 
can treat the series P in this way. Combining this we get the statement of 
our Corollary. For details also see [11, 10, 13]. [] 

Corollary 3 provides the setting for our perturbation problem. In the 
next section we shall consider the 'unperturbed',  symmetric Hamiltonian 
F(L x2, Y2, #), later on studying how much can be said when the flat 
'perturbation'  P is added. 

3.2. The integrable case: reduction to 1 degree o f  freedom 

We now consider the vector field associated to the integrable Hamilto- 
nian F(I, x2, Y2, #). As remarked earlier, one consequence of  the rotational 
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symmetry is that {F, I} = 0, i.e. that F and I Poisson-commute, which 
implies that I is an integral of the system. Our main aim is to use this in 
order to carry out a reduction to 1 degree of freedom, proceeding as in the 
Kepler problem, e.g. compare [5]. To this end, let us define a 27z-periodic 
variable ~0 by 

xl = ~ cos ~0, Yl = v / ~  sin qo. 

We then have 

Corollary 4. In the coordinates (/, q0, x2, Y2) the Hamiltonian vector 
field XF has the form 

0F 
/ = 0,  - & r '  

OF OF 
22 = - - -  Y2 - -  " 

~ Y 2 '  OX2 

Proof. A brief computat ion yields that e) = d I / x  do + dxa/x dy2, telling 
us that we remain within the Hamiltonian formalism. This means that in the 
coordinates (L ~0, x2, Y2) the vector field XF has the canonical form as given 
in the corollary. [] 

The latter two equations in Corollary 4 constitute the reduction to 1 
degree of  freedom" it is a family of planar Hamiltonian vector fields, 
parametrized by I and ~. 

Remarks. 

i. The construction of Corollary 4 is quite familiar, for example again see 
[1, 5]. In fact, one says that ~0 is canonically conjugate to L The fact that 
I is an integral of XF clearly shows from the Corollary; the variable q0 
usually is called cyclic. The coordinates (L (p) often are called Hamilto- 
nian polar coordinates, in this case in the (Xl, y~)-plane. 

ii. Necessarily we have I > 0, so here the parameter space is a manifold with 
boundary, being a halfspace of NI +p. From the symmetry it is easy to 
see, however, that F is smooth at the boundary hyperplane I = 0. 

4. Generic unfoldings in the integrable case 

In this section we consider the integrable Hamiltonian F for its own 
sake. Writing 

FZ'U(x2, Yz) '= F(x2, Yz, I, lO, 
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we obtain the family of functions giving the planar reduction of Corollary 
4. From now on we abandon the world of canonical transformations and, 
as in Section 2, work with less rigid equivalences between the systems. In 
fact, for the planar reductions U '" we use the morphisms based on parame- 
ter dependent left-right equivalence and reparametrization. For the duration 
of Section 4.1, since they do not influence the phase-portraits, we disregard 
the terms in F that do not depend on (x2, Y2). 

In Section 4.2, when interpreting our results back to the integrable case 
with 2 degrees of freedom, the parameter I again will be a phase space 
coordinate. Therefore, in this planar setting we only allow reparametriza- 
tions of the form ( L # ) ~  ~l+Pb~(J~ Y) ~ l + p  with J =  J( / ,#)  and 
v = v(~). Both these reparametrizations and the corresponding morphisms 
will be called restricted. The parameter /, which has an intrinsic physical 
meaning, will be called a distinguished parameter. We adopt this terminol- 
ogy from Schecter, see [41], who studies unfoldings of vector fields near 
saddle connections of quasi-hyperbolic singular points. His approach is also 
based on gearing Singularity Theory to the specific context of the problem. 
This approach, which is in the related setting of contact-equivalence, mainly 
follows Golubitsky and Schaeffer [51]. 

We recall that the restricted parameter I is non-negative. If this property 
is preserved by the morphisms, we say that they respect the boundary. 
Technically this means that J(I, #) = IJ(L #), with J(0, 0) > 0. 

As the main result of this section, we derive normal forms for our 
planar reductions, viz. the family F ~'", using restricted morphisms. The heart 
of our method consists of a standard application of Singularity Theory, 
using ordinary, unrestricted morphisms. Here the backbone systems of 
Section 2 play an important role. 

4.1. The reduction to I degree of  freedom: Singularity Theory revisited 

We begin formulating normal form theorems for both the non-semi- 
simple and the semisimple case. 

Theorem 5. In the non-semisimple case, up to restricted morphisms 
respecting the boundary, generically the family F J'u has the form 

1 2 1 
FZ'~(Xe, Y2) = -~ Y2 + ~ x~ + (l~ +- I)x2. 

Observe that this normal form is structurally stable under restricted mor- 
phisms: C3-small changes of the 1-parameter family yield an equivalent 
family. In fact, we here obtained a universal unfolding with respect to 
restricted morphisms, compare Section 2, also see Section 7, below. In Fig. 
7 the bifurcation diagram is depicted. Although it can be extended over the 
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Figure 7 
Bifurcation diagram for the reduced integrable 
Hamiltonian Saddle-Node bifurcation. 

\ 

boundary I = 0, only the part I > 0 is of importance to us now. Notice that 
the Hamiltonian Saddle Node bifurcation occurs upon traversing the line 
# + I = 0 .  

In the semisimple case the parameter # is 3-dimensional, writing 
# = (#1, #2, #3) we have: 

Theorem 6. In the semisimple case, up to restricted morphisms respect- 
ing the boundary, generically the family F I'p has one of the forms 

1 
Ft'"(x2, Y2) = x~y2 -- _~ y3 + (#, +_ i ) (x  2 + y~) + 61(I, #)x2 + 62(I, #)Y2, 

1 3 rl'u(x2, Yz) = x~y2 + ~ Y2 + (#1 +- I)(x~ --y~) + 61 (I, #)x2 + 62(1, #)Y2, 

for certain coefficient functions 6j' (N x N3, 0) ~([~,  0), j = 1, 2. 

The remainder of this subsection will be devoted to a proof of these 
theorems. As announced before, we apply Singularity Theory to the given 
familites F I'~. A standard application of this theory yields normal forms, 
modulo general, unrestricted morphisms. The first step of our proof will use 
this result in order to find preliminary normal forms, now modulo restricted 
morphisms. Secondly, we simplify these forms as far as possible, only using 
restricted reparametrization. 
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Remark. A similar program, also in the current setting of left-right 
equivalences, is followed by Wassermann [52]. In the case of e.g. Theorem 
5 his procedure yields the simpler normal form 

1 2 1 
FI'#(x2, Y2) = ~ Y2 + ~ X3 + Ix2. 

This difference has to do with the fact that Wassermann uses a larger class 
of reparametrizations. First, most importantly, he does not need our 
constraint that the set {I > 0} has to be preserved. Second, he has more 
left-equivalences at his disposal, since these are allowed to depend on the 
distinguished parameter L (In our case I originates from state-space, so we 
cannot use this extra freedom.) A similar remark holds when comparing 
with the results of [41, 51]. 

At the end we shall give a geometric, though not completely decisive 
argument, saying that the umbilical normal forms of Theorem 6 are not 
structurally stable, but that arbitrarily small changes of the coefficient-func- 
tions (61(L #), 62(1, #)) may yield families that are not equivalent under 
restricted morphisms. 

In the Appendix, cf. Section 7, we consider this problem more in 
general, studying how (uni-) versality under restricted morphisms relates to 
(uni-) versality under unrestricted morphisms. We shall show that a family 
depending on a distinguished parameter I has a universal unfolding with 
respect to restricted morphisms precisely if, considered as a family para- 
metrized by I it is a versal unfolding with respect to unrestricted morphisms. 
In the case of Theorem 6, the 1-parameter family F *'~ is not versal, since 
here any versal family must have at least 3 parameters. This then confirms 
that the normal forms of Theorem 6 are not structurally stable. 

4.1.1. Proofs of Theorems 5 and 6 

We begin deriving preliminary normal forms, under restricted mor- 
phisms. 

1. In the non-semisimple case of Theorem 5, we can apply the Splitting 
Lemma, compare Section 2, yielding a parameter-preserving morphism, 
that gives the form FI'#(X2, Y2) = ~y22 q- Vl"U(x2), for some family V I'# of 
'potentials'. From Section 2 we also know that a normal form for these 
potential functions is the 1-parameter family N~(x2),=lx3+gx2, the 
so-called Fold. So, under the usual (generic) transversality conditions, we 
are given an unrestricted morphism 

x N2 ~ N x N: (x2, I, #) ~ (H(x2, I, #), g(I, It)), 
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with g(0, 0) = 0 such that  

Ng(I'#)(H(x2, [, #)) ~-- VZ,,u(x2). 

In other words, if we consider the slightly adapted form 

- 1  l 
N '"(x2) '=~ x~ + g(I, #)x2 

we conclude by inspection that  the restricted morph i sm 

R x [~2 __. [~ • [~2: (x2, I, #) ~ (H(x2, I, #), I, #), 

satisfies 

iW'~(g(xz, I, #)) = VL~(x2). 

This procedure leaves us with a preliminary normal  form 

1 x3 + g(I, #)x2. 

2. In the semisimple case of  Theorem 6 a completely similar procedure 
yields the preliminary normal  forms 

FI"u(X2, 72) = x2y2 -[- ~ y3 _.~ ~(I, #)(X 2 -~- y2) Dr_ ~l (I, #)X 2 .31- ~-2(I, #)72, 

related to the Elliptic and the Hyperbolic Umbilic, again see Section 2. 

So our  prel iminary normal  forms have rather general coefficients, depending 
on the parameters.  The question now is, how far these coefficients can be 
further simplified, using restricted reparametrizations.  

To this purpose,  more  generally, we consider a map  

h : ~ x ~ '  -~ t~", 

representing the unfolding coefficients as a vector. On [~k x N ~ we use the 
coordinates (I, #), where I =  ( I ~ , / 2 , . . . ,  I~) are distinguished and g = 
(#1, #2 . . . . .  #o) external (unfolding) parameters.  In the above examples we 
have 

1. k = e = l  a n d h = g ;  
2. k = l , e = 3 a n d h = ( g ,  8-~,~D. 

The following lemma will prove useful for our  simplification purposes,  since 
it provides us with a normal  form of  the unfolding coefficients, and hence 
for the unfolding itself. 

Lemma 7. Let k -< c, and let h ,  : ~ x [~o _ , ~  be a map  such that  the 
derivatives D~h,(O, O) and Dih,(O, O) have the maximal  ranks c and k, 
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respectively. Let 7r : ~ ~ ~k be a linear projection onto some k-dimensional 
subspace of  W such that DI(~ o h,) (0 ,  0) has rank k. Then for any map 
h : ~ k x  ~ [ ~  there is a local, restricted reparametrization t h : W x  
W ~ W x  W, defined near (0, 0 ) z  ~ k x  W, that maps the set {(/,/2) 
R k x Rc[ 11 = 0 , . . . ,  Ik = 0} onto itself, such that 

/2)) = /2))) .  

Moreover, if also the derivatives D.h(O, O) and DI(~ o h)(O, O) have the 
maximal ranks c and k, respectively, there is even an invertible re- 
parametrization q~ with these properties. 

In applications of this lemma the map h ,  plays the role of a normal 
form. Under  generic assumptions on h ,  and h we may take for the map 7r 
the canonical projection onto the first k coordinates and hence the identity- 
map in the case of k = c. Then the lemma says that the first k components 
of any map h can be brought into normal form h , .  

Before presenting its proof, let us indicate how Lemma 7 allows us to 
find the normal forms for the Hamiltonian families of Theorems 5 and 6. 
The normal form for the non-semisimple case is obtained by applying the 
lemma to the map h,(I, /2) =/2 +_ L The coefficient of I is taken to be 
positive if the partial derivative with respect to I of g at (/,/2) = (0, 0) is 
positive. In this way we achieve that ~ even preserves the half-plane 
{q,/2) I z _> 0). 

In the semisimple case we have h = (g, 61, 62) , and we apply the 
lemma to the map h,(L/2)  = (/21 + L/22,/23)- In fact only the first compo- 
nent of h ,  matters here. Generically we may assume that (~g/~I)(O, O) ~ O, 
so n may be taken equal to the projection onto the first coordinate. 
Applying Lemma 7 yields an invertible restricted reparametrization 
(/,/2) ~ ~b(/,/2), such that 

=/2,  + I. 

Taking 6; = ~ o ~b - ' ,  for i = 1, 2, we see that 

' 3 I)(X 2 __ y2) + 6, (I, /2)X2 + q~2(L/2)Y2- with FZ'~(x2, Y2) = x~y2 + ~Y2 + (/21 + 
The cases with the minus-signs are treated similarly. This finishes the proof  
of Theorems 5 and 6, leaving us with the task of proving Lemma 7. 

Proof of Lemma 7. Since D.h,(O, 0) has maximal rank, the Implicit 
Function Theorem guarantees that the system of c equations 

h,(O, = h(O, u) 
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has a unique solution fi=q~0(k0 s i r e  for # near 0 ~ W .  Since 
Dt(rc o h , ) (0 ,  0) has also maximal rank we see that 

rc o h , ( I ,  ~,bo(ft)) = 7c o h(0, #) <~ I = 0. 

Again applying the Implicit Function Theorem we get a unique solution 
[ = 4~1 (L ft) e Rk for the system of k equations 

7c o h , ( L  ~b0(ft)) = 7c o h(I, ft) 

for ( / , f  t )  near ( 0 , 0 ) ~ N k x  Re. In particular we now have that 
rc o h,(q~l(0, ft), q~0(ft)) = rc o h(0, #), so we conclude that q~l(0, kt) = 0. In 
other words, the restricted reparametrization ~b : [~k x ~ ' -- ,  ~k x R L, defined 
by ~b(L ft).'= (~bl(L #), ~b0(ft)), satisfies rc o h = rc o h ,  o q~, and maps the set 
{0} x [~c onto itself. 

Finally consider the case in which also the derivatives D~h(O, 0) and 
Dl(rC oh)(0,0)  have the maximal ranks c and k, respectively. Since 
h , (0 ,  ~b0(ft))=h(0, ft), it follows that q5 0 is locally invertible near 0 c W. 
Similarly the map I ~ ~ (L 0) is locally invertible, since rch,(q~ (/, 0)) = 
~zh(L 0). Therefore the reparametrization q5 is invertible. [] 

4.1.2. Miscellaneous remarks 

This subsection is concluded, discussing various aspects of  the Theorems 
5 and 6. 

A geometric picture, structural stability? 

We start presenting a geometric picture of  the situation at hand. This 
picture came about in a discussion with Duistermaat.  Indeed, in the setting 
of  Theorems 5 and 6 we have k = 1. Hence, the map h defines a family of  
half-curves 

{I >- 0 ~ h(I, #) e ~P}u, 

parametrized by ft e ~P. Here p = 1 in the non-semisimple and p = 3 in the 
semisimple case. The range ~P exactly is the parameter-space of  the corre- 
sponding backbone-system of  Section 2. This family of  half-curves, by 
construction is invariant under restricted reparametrization. The fact that 
D~h(O, 0) has maximal rank implies that we can simplify the starting points 
I = 0 of  our curves: in Lemma 7 we e.g. can take h , (0 ,  ft) = ft. The fact that 
also D~h(0, 0) has maximal rank, implies that we can further simplify the 
/ -dependence of exactly one of the components  of  h: we chose 
e(L ft) = ftl -+ L We conclude that, in this way, no further simplification of 
the normal form is possible. 
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A question is whether techniques as used by Wassermann [51] might 
reduce the coefficients 6j further to a polynomial form. In that case the 
normal form only has a finite number of moduli. However, the current 
discussion casts serious doubt on this possibility. Also see an earlier remark 
concerning the role of the set {I = 0}. 

Notice, however that we are constructing our restricted morphisms in a 
specific way, first reducing to a polynomial form in (x2,y2) and then 
carrying out suitable reparametrizations. At this point it is not completely 
clear why further simplification would not be possible in a more general 
approach. As said before, in the Appendix (Section 7), diving a little into 
Singularity Theory, we shall take away this doubt. 

An analogue in higher degree o f freedom 

As we shall see in Section 6.1 below, an analogue exists of the present 
situation in higher degree of freedom. There, at the central equilibrium 
point again we have a double eigenvalue 0, but now we have k pairs 
q-  i (Z l ,  q-  icz2, . . . , q -  i ~ k ,  of normally elliptic eigenvalues, where strong reso- 
nances are excluded. By similar techniques as used here, we then find a 
planar reduction as above, now with k distinguished parameters 
I = (/1,/2, �9 �9 �9 I~). In this case, for k -> 3, by the first part of Lemma 7, we 
obtain a normal form h,(I,/~) ..= (/~1 + 11, fi2 "~ 12,/~3 + I3), modulo restricted 
reparametrization. In fact, the corresponding unfoldings 

FI'U(x2, Y2) = x~y= -t- l y ~  + (]A1 -[- Ii)(x 2 ~ y2) _[_ (]A2 -[- I2)x2 + (]A3 -~ I3)Y2 
3 

are universal with respect to restricted morphisms. 

Remarks. 

i. In the Appendix (Section 7) we shall provide a general, but quite simple 
device for obtaining a universal unfolding with respect to restricted 
morphisms, given an 'ordinary' universal unfolding, i.e. with respect to 
unrestricted morphisms. Let us roughly describe how this goes. Indeed, 
let a family of maps (x, I) ~ (R" x R k) w-~ f(x ,  I) ~ ~ be given, where we 
consider f(x,  I) as an unfolding off0(x)..=f(x, 0). Now, i f f = f ( x ,  I) is a 
universal unfolding off0 with respect to unrestricted morphisms respect- 
ing the set {I = 0}, then a universal unfolding off (x ,  I) in the restricted 
sense is given by F : R" x ~k x Rk_, E, defined by 

(x, o), F(x, I, I~) = f(x ,  I) + Z #J-~j 
j = l  
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where, as before, I is the distinguished and # the external parameter .  
Both  the above result for k >- 3 and Theorem 5 are direct consequences 
of  this, also see Section 7; 

ii. In the higher dimensional  analogue the distinguished parameters 
I 1 , / 2 , . . . ,  I~ all are non-negative.  Therefore,  as in the Theorems 5 and 
6, the restricted morphisms  can be also required to 'respect the 
boundary '  {11 = 0} U {12 = 0} U ' ' ' ~  {Ik = 0}. However,  in that  case there 
is no hope of  finding simple universal unfoldings. An example like 
h(I~, 12, #1, #2) = (Iz + #~, 12 + I, + #2), as it may occur for k = 2, easily 
convinces the reader of  this fact. In our set-up we only require the 
intersection { I = 0 }  = {I, = 0}c~{I2 = 0}n"  �9 -c~{Ik =0}  to be preserved. 

Algorithms 

A drawback of many  applications of  Singularity Theory  is its lack of 
constructiveness regarding the normalizing t ransformations.  This is unlike the 
si tuation in the Normal  F o r m  Theory  of  Section 3. The lack of  constructive- 
ness is felt the strongest, when dealing with concrete examples or applications, 
e.g. see Section 1. In such cases, one would for instance like to compute  the 
coefficients c~j, j = 1, 2, of Theorem 6, which needs the keeping track of  all 
normalizing t ransformations.  Similarly, in the above case with k pairs of 
elliptic eigenvalues, one likes to know where the normalizing morph i sm takes 
the boundary  set { I , = O } u { I 2 = O } w " ' u { I k  =0} .  

Therefore,  generally speaking, one wishes to have a good (algorithmic) 
knowledge of  these normal  form transformations.  It will turn out that  this 
knowledge exists, even to the level of  formula manipulat ion.  In [17] we shall 
come back to this. 

4.2. Interpretation of the planar results to the integrable case 

Now we interpret  the results found in the previous section, for the 
dynamics in the 4-dimensional  phase space. In the present symmetric  case, 
we have the integral L facilitating our considerations.  In the per turbat ion 
analysis to follow, generically I no longer is an integral. In all Hami l tonian  
cases, however,  the Hamil tonian  itself is an integral: the 'energy'. In the 
integrable case this is F" and in the 'per turbed '  case H ~ = F ~ + P~. In order 
to be able to give a convenient  per turbat ion  analysis we therefore describe 
the integrable dynamics both  regarding the level sets of  I and those of  F ". 

4.2.1. Restricting to level sets of  I 

For  each value of  I we find ourselves in the corresponding level set of  L 
For  Iva 0 this level set is diffeomorphic to the 3-dimensional space $1 x ~2, 
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coordinat ized by (q~, x2, Y2). Note  that  these level sets foliate R 4, except for 
the (x2, y2)-plane which is the level set ! = 0. For  I ~ 0 the dynamics is 
given by 

OF ~ OF ~ 
X2 = ~J2 ' . ~ 2 -  GqX2 , 

c~FU 

,k-  a I '  

where we recall that  the first two equat ions are the planar  reduction and 
that  (~F~/~I)]o = ~, recalling that  ~ r 0. Observe that  here we took the 
original meaning of  F, so abandoning  the form in Section 4.1, where the 
'constant  terms'  were deleted. 

It follows that  the non-critical, i.e. non-zero, level sets of I admit  an 
invariant foliation L~,u, the leaves of  which are the intersections with the 
level sets of  the integrable Hamil tonian  F ~'. The integral curves of  the planar 
reductions f rom Section 4.1 are the intersections of  these leaves with the 
section q~ = 0. Note,  moreover ,  that  this foliation is invariant under  all 
rotat ions (~o, x2, Y2) ~ (~o + fi, x2, Y2). F r o m  this we see that  the geometry 
of  L~,u, as a 1-parameter family o f  2-dimensional leaves (cylinders, tori) with 
1-dimensional singularities (circles), by the Theorems 5 and 6, is completely 
determined by Section 2.2. 

Next let us discuss the dynamics in the non-zero level sets of  I. First 
observe that  the corresponding restriction of  the integrable vector field XF, 
has divergence zero: it preserves the volume form &o/x dx2/x dy2. Then,  
regarding the dynamics in the various leaves, we summarize 

Proposition 8. The 'integrable dynamics '  in the leaves of  LI,, is deter- 
mined as follows by the planar  reduction: 

1. The singularities in the planar reductions give rise to 1-dimensional, 
singular leaves, being circles with periodic dynamics.  Their  normal  linear 
behavior  is given by the linear behavior of  the reduced singularities; 

2. The regular curves of  the reduction yield 2-dimensional Lagrangian 
leaves, which are either cylinders or tori. In the cylinders the dynamics 
'spirals', while in the tori, up to smooth  equivalence, the mot ion  is 
parallel. The normal  linear par t  of  the tori identically vanishes. 

Proof. Most  of  the statements are obvious. The 'spiralling' on the 
invariant cylinders just  means that  there exists a Lyapunov  function, the 
level sets of  which are transverse to those of ~o. 

Concerning the dynamics in the tori we have to show that  up to a 
smooth  equivalence the restricted vector field is constant.  In fact, multiplica- 
t ion of the vector field with a suitable C ~ function yields that  ~b = - ~ ,  
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while inside the (x2, y2)-plane we can parametrize the closed orbit by a 
2re-periodic coordinate, proportional to time. If this coordinate is called 0, 
the pair (q~, 0) provides an equivalence as desired. [] 

Remark. Another  way to express what is going on is saying that, 
restricted to a non-zero level o f / ,  the (area preserving) Poincar6 map of the 
section q~ = 0 is the flow over time 1 of a planar Hamiltonian vector field, 
equivalent to the reduction of Section 4.1. 

To fix thoughts, let us discuss what happens qualitatively in the non- 
semisimple case for I r 0. In fact, this is exactly the integrable Hamiltonian 
Saddle-Node bifurcation of closed orbits, compare Fig. 8. For values of 
(/, #) with I + # > 0 we get an invariant foliation of cylinders with spiralling 
flow. On the line I § # = 0 one of the cylinders exhibits a closed integral 
curve of parabolic type. For I + # < 0 this closed orbit falls apart into two 
of these, one of elliptic type and the other hyperbolic. The stable and 
unstable manifold of the hyperbolic closed orbit coincide, enclosing a solid 
2-torus. This solid torus is foliated by parallel invariant 2-tori, shrinking 
down to the elliptic closed orbit. 

The interpretation for I r 0 in the semisimple case is similar: Just take 
any of the planar vector fields from the Figs. 4, 6 and add the rotational 
component  ~b = - e  § h.o.t, yielding the integrable dynamics on S 1 x [R 2. 

Finally, what happens in the zero-level I = 0 is easy to describe: here the 
dynamics exactly is the same as the reduced dynamics of Section 4.1. 

4.2.2. Restricting to energy levels 

The aim of this subsection is to show that, if we restrict to the level sets 
of F ", the same qualitative analysis as before applies. We begin defining the 

Figure 8 
The integrable Hamiltonian Saddle-Node bi- 
furcation of closed orbits for # _+ 1 < 0. 
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2-parameter foliation L,  as follows: it is just LI,,, where Iva 0 also is 
allowed to vary. 

Next consider the map M from the product of phase space and 
parameter space to itself, given by 

M :  ((I, q~, x2, Y2),/0 ~ ( (F"(  I, x2, Y2), q~, x2, Y2), #). 

Since (3U'/c~I)[o=O~, it follows that M is a local diffeomorphism. 
Let M = ( ( E ,  q~,x2, y2),/~) be its decomposition in component  func- 
tions. Note that both I and E are considered as (polar-) coordinate 
functions. 

Observing that F- - -E  o M, we see that the leaves of Lu are given by 

I = c1, E = cE, 

where ci and ce are constants. From this symmetric formulation it follows 
that, restricted to a fixed level set of E, the foliation L~, is given by the levels 
of the function L Let us denote this restricted foliation by LE,,. An equation 
for this restriction then is given by 

I = G ~(E, x2, Y2), 

where G .'=I o M -1. Also let us define GE'u(X2, Y 2 ) : = G U (  E, x2, Y2). 

We end this section by comparing the families F I#' and G E'" of planar 
functions for parameter-values (/, p) and (E, #) near (0, 0). Here observe 
that both I and E are distinguished parameters. From the above we see that 
for x2, Y2 and # fixed, their levels correspond by the map Ml~o= 0. However, 
this does not give us a restricted morphism in the formal sense of Sections 
4.1 and 7. 

Nevertheless such a morphism can be obtained along the following lines. 
First, it is not  hard to see that the central singularities G ~176 and F ~176 are 
equivalent in the common sense. Subsequently, the unfolding G e'~ can be 
treated as in Theorems 5 and 6, yielding similar normal forms for G E'". In 
the non-semisimple case this unfolding will be again universal, and hence- -  
after identifying properly--equivalent  to F 1#'. 

Remark. At this point we come back to the remark following Proposi- 
tion 8. Again, one can restrict to any of the levels of  E, at hand, considering 
the Poincar6 map of the section q~ = 0, which also in this case is area 
preserving. We here recall, that the restriction of any Hamiltonian vector 
field to an energy level preserves an appropriate volume, cf. [1]. Moreover, 
in the present integrable case this map is the flow over time 1 of a planar 
Hamiltonian vector field, equivalent to normal forms as in Theorems 5 and 
6. Following the convention of Broer and Takens [13], such maps, that 
correspond to flows, are called integrable.  
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5. Generic unfoldings in the near integrable case 

415 

In this section we consider the original system, which may be viewed as 
'perturbed' from the integrable normal form truncation studied before. We 
have to say here that the fine-structure is very intricate, in particular for 
parameter values near the bifurcations sets. Many theoretical questions have 
not (yet) been solved in this respect, therefore, our treatment necessarily will 
be somewhat more sketchy. 

So we consider the 'perturbed' family of Hamilton functions 

H"(x, y) = F~(I, x2, Yz) + P(x, y, #), 

compare Corollary 3, where the perturbation function P is infinitely flat at 
((x, y) , /0  = 0. This implies that P is small in the C ~176 where its size 
is controlled by the diameter of the neighborhood of ((x,y), # ) =  0 in 
R4x R p under consideration. The question is, what can be said of this 
perturbed system, in view of the results of Theorems 5, 6. 

One way to formulate the perturbation problem, is to compare in the 
respective energy levels, the Poincar6 maps with respect to the section ~0 = 0. 
In both cases this leads to an area preserving map in the (x2,y2)-plane, 
where the unperturbed one is integrable as described above. The question 
then is which dynamical features are persistent under small perturbation 
and which are not. 

Generically the function I is not an integral of H", and H f~ is not even 
emooth in I at I = 0. In order to avoid difficulties, from R4 • Rp we take 
away a wedge, given by 

where c > 0 is an arbitrary small constant. Let us denote the complement of 
this wedge by C~., from now on restricting to this. 

5.1. Persistent features 

We start with some dynamical phenomena that are persistent under any 
flat perturbation P. Here this means that they can be found for both (x2, Y2) 
and kt sufficiently near O. 

5.1.1. Closed orbits 

By the Implicit Function Theorem all hyperbolic and elliptic closed 
orbits do survive the perturbation. Also the type then is persistent, as well 
as the local behaviour of  the stable and unstable manifolds. 
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5.1.2. KAM-tori 

The integrable approximations in a number of cases exhibit families of 
invariant 2-tori with parallel dynamics, cf. Proposition 8. In the reduction to 
1 degree of freedom such a family corresponds to a 'cylinder' of closed 
orbits. For the integrable Poincar6 map, cf. the end of the previous section, 
these closed orbits are invariant circles. In all cases the cylinder on one side 
is limited by an elliptic equilibrium and on the other by a graph of 
saddle-connections. 

For the persistence of the 2-tori we need to study the frequency-ratio of 
the tori. Compare Arnold [5], Moser [30, 31], or P6schel [36]. For the 
integrable Poincar+ map this ratio is equal to the rotation number. The 
Twist Condition requires that this rotation number varies with the position 
of the invariant circle. 

KAM-theory, for details again see [5, 30, 31, 36], says that under the 
Twist Condition certain tori, with diophantine frequency-ratio persist. 
Moreover, their union has positive measure, even in each energy-level. 

Near the elliptic fixed points the Poincar6 map can be expanded in 
Birkhoff Normal Form, depending on the number of resonances in the 
eigenvalues, e.g. see [7, 30]. If the first nonlinear term does not vanish, the 
elliptic point is density point (in the sense of Lebesgue) of quasi-periodic 
orbits, compare [36]. 

The condition on this coefficient can be seen as a kind of local Twist 
Condition. These Twist Conditions have to be verified on the Normal 
Forms of Theorems 5 and 6, but this would be outside the scope of the 
present paper. This investigation involves study of the period integrals. In 
the non-semisimple case of the Hamiltonian Saddle Node this integral is 
known to be monotonous, see Chow and Sanders [18]. For other special 
cases e.g. see Broer [10, 12]. 

Remarks. 

i. In Broer [11, 10, 12] 1-parameter families of volume preseving vector 
fields are studied. In dimension 3 generically two cases can be distin- 
guished, which in a certain sense are 'contained' in the present umbilical 
unfoldings. 

ii. In the real analytic case the frequency-ratio or rotation number also is an 
analytic function. Because of the limits of cylinders mentioned earlier, its 
image is some halffine. Then it follows that in this case the Twist 
Condition holds almost everywhere. For a similar argument see [42]. 

5.2. Non-persistent features 

Next we come to some features that will change under a generic flat 
perturbation P. We have to point out, however, that P is very close to the 
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zero-function in the C~-topology. Therefore, the phenomena under consid- 
eration can be destroyed by arbitrarily small perturbations in sufficiently 
small neighborhoods of ((x2, Y2),/~) = 0. These phenomena are called flat, 
compare Broer and Vegter [15] or Broer and Takens [13]. 

Presently our considerations are based on Robinson [38], who gives 
Kupka Smale Theorems for conservative systems in the C~ For 
real analytic analogues we refer to Broer and Tangerman [14]. 

5.2. I. Coinciding separatrices 

For the integrable Poincar6 maps there are lots of cases where the stable 
and unstable manifolds of a saddle point coincide. According to [38] this is 
not a generic property. In fact, for generic area preserving maps these 
'separatrices split'. 

If this happens automatically transversal hetero- and homoclinic points 
occur, giving rise to various types of Horseshoes and the corresponding 
chaos. Compare, for example, Moser [30, 31]. 

5.2.2. Resonant tori 

Let us consider the cylinders of invariant circles as they may occur for 
the integrable Poincar6 map. If the Twist Condition holds, see above, there 
is a dense union of these circles with a rational rotation number. Each of 
these circles is a continuum of closed orbits, all with the same period. Again 
according to [38], this is not a generic property. In fact, for generic area 
preserving maps the closed orbits of bounded period are isolated. 

Generically these closed orbits again are either elliptic or hyperbolic and 
also only transversal hetero- and homoclinic points do occur. 

Another, related, matter is the Poincar6-Birkhoff Fixed Point Theorem, 
see [7, 30], implying that in between any two KAM-circles with rotation 
numbers bl < 62, and any rational number & < 0 < b2 there exist periodic 
points with rotation number ~o. 

Remarks. 

i. According to Broer and Takens [13], due to the flatness, in the C~-situ - 
ation the dynamics can be rather complicated. For instance, sufficiently 
near a diophantine circle, any number of closed orbits with a given 
rotation number 0 may generically occur. It is not clear whether this also 
holds true in the real analytic case. 

ii. In real analytic cases sometimes also more explicit, viz. exponential, 
estimates can be given, on the splitting of the separatrices, for instance 
compare Holmes, Scheurle and Marsden [26] or Fontich and Sim6 [20]. 
A question is how to apply these methods in the present setting. 
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6. Generalizations 

We conclude this paper with some general remarks. First we consider 
the case of a double zero eigenvalue with more than one pair of normally 
elliptic eigenvalues and second the case with a general normal eigenvalue 
configuration. In both cases, under certain conditions, reduction to the 
planar case of Section 2 is possible. Finally we give some remarks on a 
similar situation concerning symplectic maps. 

6.1. More  normal ellipticity 

A first question is what changes if in the central singularity, next to the 
double eigenvalue 0, one has pure imaginary eigenvalues _+i~,, _+i~2, �9 �9 �9 , 

_+ ic~k, for k > 2. Here resonances between the c 9 come into play. To be 
precise, if for (m, ~). '= ~ =  1 mj~j, for a given N ~ N one has 

k 

1 <- Z Imj{<_U~(m,~)~O, 
j = l  

then a Normal  Form result holds completely similar to the conclusion of 
Corollary 3, for general reference also compare, for instance [7, 11, 10, 43, 44]. 
In fact one then finds a canonical transformation O, keeping the parameters 
fixed, such that 

( H  o ~)(x ,  y, #) = F( I , ,  I 2 , . . . ,  Ik, Xk + ,, yk + ,) + P(x,  y, #), 

where for the perturbation term P one has the finite flatness P(x,  y, #) = 
O(](x, y, #)[U). SO, up to an N-flat perturbation, one finds k integrals 
11, I 2 , . . . ,  Ik, providing a k-torus symmetry. Factoring out this symmetry, 
for N -> 4, gives a reduction as before, with the same planar backbone and 
a similar perturbation analysis, see Sections 2 and 5 and, in particular, 
Section 4. At the end of Section 4.1, for k > 3, polynomial normal forms are 
obtained, with coefficients that are linear in the /j and in the unfolding 
parameters. 

In particular all this holds in the case where N = oe, where, by the Borel 
Theorem, the term P again becomes infinitely flat, compare Section 3.1. 
Notice that in that case the frequencies ej have to be independent over the 
rationals, i.e. (m, ~)  = 0 <=> m = 0. 

Remarks. 

i. In the case where strong resonances are present, the analysis becomes 
more complicated. In that case a straightforward application of Singular- 
ity Theory as before, does not apply. As an example consider the 3 
degrees of freedom case with eigenvalues 0 and _+ 1, each having multi- 
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plicity 2. Here the difficulties of the present paper are combined with 
those of Van der Meer [46]. 

ii. The approach of this subsection formally is of importance for certain 
problems with infinitely many degrees of freedom where k = oo. It is not 
yet clear to us however, how the asymptotics for k ~ ov can be given a 
sensible meaning. 

6.2. N o r m a l  hyperbo l i c i t y  

A second question is how to deal with non-imaginary eigenvalues. Then 
the usual reduction to the cen ter  m a n i f o l d  applies, e.g. see Hirsch, Pugh and 
Shub [25]. This means that there exists a normally hyperbolic center 
manifold W c, which is tangent to the eigenspace corresponding to the 
imaginary eigenvalues and invariant under the flow. 'Reduction'  then 
means, restriction of the whole bifurcational analysis to this center manifold 
We: all the interesting dynamics takes place in here. E.g. compare Palls and 
Yakens [34]. 

To be precise, let us assume that the phase space is R 2n, with the natural 
symplectic form co = Z 7~ = ~ d x ~ / ~  dyk.  Let Xn be a Hamiltonian vector field 
on R 2n, with the origin as a singularity. We also assume that there are 2m 
purely imaginary eigenvalues, counting multiplicities, so dim We= 2m. 

Our first aim is to point out the quite familiar fact that W ~ inherits a 
symplectic structure, by restricting co to it. This restriction is the pull-back 
i*o~, where i : W c--, ~2n denotes the Inclusion Map. For this use of notation, 
again see [1, 5]. We have 

Lemma 9. The pull-back i'co defines a symplectic form on W C, which is 
preserved by the restriction of X~, to W c. Moreover, there exist local 
coordinates x l , . . . ,  Xm, y l ,  �9 �9 �9 Ym on W ~, such that 

i'co = ~ dxk A dyk. 
k = l  

Proof. Both X,v I Wc and i'co are restrictions to W C, while both W c and 
co are invariant under the flow of X~. The point then is to show that i'co is 
a symplectic form. 

In order to do so, we only have to prove nondegeneracy, which can be 
checked in the origin. In fact, this directly follows from Williamson's 
Normal Form, again see [21, 27]: Just split off the non-imaginary eigenval- 
ues in a separate 'Jordan'-block. The remaining 2m-dimensional space then 
corresponds to the elliptic eigenvalues, and is the tangent space of W% 

Finally, the existence of coordinates as claimed in the lemma, follows by 
inspecting the proof  of Darboux'  Theorem, compare [1, 5]. [] 
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Reduction to the center manifold W c means restriction of H and Xn to 
W c. By the local coordinates of  Lemma 9, we can pass to R 2"~ with the 
natural  symplectic structure. One problem here is the differentiability of  the 
center manifold. On one hand, for any k e N there is a neighborhood of the 
origin, where W c is at least of  class C k. On the other hand examples 
show that W c does not  have to be C ~. Nevertheless, with some care, a 
bifurcational analysis as before can be given, e.g. compare Vegter [48], also 
see [ 17]. 

6.3. Symplect ic  maps  

The analogue for symplectic maps is the fixpoint with a double 1 
eigenvalue. Now there is a Normal  Form Theorem [11, 10, 13, 30,43], 
saying that the map formally is the flow of  a vector field over time 1. To be 
precise, assume that T": R2---> N2 is a C ~ family of  symplectic diffeomor- 
phism, again with/~ ~ NP. Also assume that T~ = 0 and that Do T o has 
double eigenvalue 1. 

Theorem 10. There exists a C ~, parameter  preserving, symplectic trans- 
formation �9 ~ and a C ~ Hamiltonian vector field 1 "~, such that 

(@-1 o T o qb)~ = X ~ +  P", 

where Jf~ denotes the flow over time 1 of X and where P is infinitely flat at 
0, both in phase and parameter  space. 

As a consequence, the vector field X ~ has the origin as a singularity with 
a double zero eigenvalue, so it is subject to the Unfolding Theory of  Section 
2. In the non-semisimple case this leads to the Saddle Node bifurcation for 
symplectic maps, a perturbation analysis similar to Section 5 has to be 
carried out. For  a different approach see Meyer [29]. In the semisimple case 
the Elliptic and Hyperbolic Umbilic Catastrophes again play a role. The 
remarks of  Sections 6.1 and 6.2, mutat is  mutandis,  also apply in this case. 

Remark. Theorem 10 is a special formulation of a more general result, 
see Takens [43]. Let us sketch how this generalization runs. We consider the 
fixed point 0 of  T ~ where the derivative Do T O has only eigenvalues on the 
complex unit circle. Note, that this can always be achieved by restricting to 
a center manifold. Let S denote the semisimple part  of  this derivative, then 
a symplectic (or canonical) t ransformation qS~' and a Hamiltonian vector 
field X u exist, satisfying both 

1. S , X "  = X t', i.e., X" is equivariant with respect to the group generated by 
S; 

2. (q) ~ o T o ~ ) ~ = S o X f + P " , w h e r e  P i s  fiat as before. 
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This result especially is of  interest in the ' resonant '  case, where S has 
eigenvalues that  are roots of  unity. For  an applicat ion with S = - I d ,  
involving period-doubling,  see Broer and Vegter [16]. Also notice, that  
Theorem 10 just  covers the case where S = Id. 

The validity of  this result is not  at all restricted to dimension 2, but  
holds for arbitrary symplectic fixed points. In fact, as in above the vector 
field case, the approach  generalizes to any setting where some appropr ia te  
structure has to be preserved, compare  [11, 10, 44]. This preservation is 
suitably expressed in terms of  Lie algebra's of  vector fields and the corre- 
sponding Lie groups of  diffeomorphisms.  The structures we have in mind 
are given by a volume or a symplectic form, or by a symmetry group.  

7. Appendix 

We pick up the line of  thought ,  left at the end of  Section 4.1. To this 
purpose [~nx N~x N~ is endowed with coordinates x = ( x l , . . . , x , ) ,  
I = (Ii, �9 �9 �9 Ik) and # = ( /~1, . . . , /zc) .  Here I and # are parameters,  where I 
is distinguished. For  precise definitions, see below. We shall consider 
families of  functions f :  R~x  N k ~  N, depending on x and I, as well as 
unfoldings F :  Nn x Nk x N ~  R of  these, so with F(x, I, O) =f(x, I). 

In particular,  we are interested in the case, where the family f(x, I), as 
an unfolding o f f 0 ( x ) , = f ( x ,  0), is (uni-)versal in the 'ordinary '  sense, i.e. 
with respect to general, unrestricted morphisms.  Indeed, the main result of  
this section is 

Theorem 11. Let f :  Nnx N k ~  N be a family depending on a distin- 
guished parameter  I e Nk. Let f0 : Rn ~ [~, defined by fo(X) =f(x, 0), have 
codimension c. Then 

1. f has a universal unfolding with respect to restricted morphisms  if and 
only if f,  considered as an unfolding of  f0, is versal with respect to 
non-restricted morphisms.  

2. Any universal unfolding o f f  (if it exists) has c external parameters.  
3. If f = f ( x ,  I) is a universal unfolding o f f 0  with respect to unrestricted 

morphisms,  then k = c and F : N~ x [~ x N~ ~ N, defined by 

F(x, I, ~) = f(x, I) + ~ #j ~ (x, O) 
j = l  

is a universal unfolding o f f  with respect to restricted morphisms  respect- 
ing the set {I = 0}. 

Below we shall give a p roo f  of  Theorem 11. Preceding this proof,  we present 
a brief overview of some terminology and basic results form 'classical' 
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Singularity Theory. This will provide us with the general context, in which 
the present study becomes self-contained. As before, our main sources here 
are Br6cker and Lander [9], Gibson [22], Martinet [28], Poston and Stewart 
[37] and Thorn [45]. 

Before undertaking this, however, let us examine some examples, so 
obtaining universal unfoldings for the families of Hamiltonian functions in 
this paper. 

Examples 

1. For k - 3, consider the family 

f ( x ,  I1, . . . , Ik_2) = X k ~- I lX -4-" " " + Ik_2 x k - 2 ,  

for a special case of this, compare Theorem 5. This family, parametrized 
by I = ( I 1 , . . . , / h - z )  e Rk-2, is a universal unfolding in the unrestricted 
sense of the function f0, given by f o ( X ) =  x k. Therefore Theorem 11 
applies, so the family 

F(x ,  # , , . . . ,  ]/k- 2, I1, . . . , / k -  z) = x k +  (#1 +/1)x 

~ - "  " " ( ] / k - -  2 "~- I k -2 )  x k - 2 ,  

is a universal unfolding o f f  in the context of restricted morphisms. 
2. Next we consider the family 

f ( x ,  y, 11,12,/3) = xZY +- ~ y3 + i i ( x  2 -T- yZ) + I2x + I3y, 

cf. Theorem 6, which is a universal unfolding of the Elliptic viz. Hyper- 
bolic Umbilic fo(x ,  y)  = xZY +_ �89 Using Theorem 11 we see that 

F(x,  y, 11,12, 13, ]-/19 ] /2 ,  ] /3 )  

= )c2y -t- ~ y3 + (]/1 + 11 )( x2 -~- y2) + (]/2 -t- I2)x + (]/3 + I3)y 

is a universal unfolding of the family f, with respect to restricted 
morphisms. Compare the end of Section 4.1. 

In particular it now rigourously follows that the umbilic families don't have 
versal unfoldings with respect to restricted morphisms, if the number of 
distinguished parameters is less than 3. Again compare the end of Section 
4.1. 

7.1. Elements f rom 'classical" Singularity Theory 

Classical Singularity Theory deals with families of functions depending 
on a number of external parameters. Usually a specific value of the 
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parameter corresponds to a function that has a degenerate singularity. One 
of  the main issues is to determine universal unfoldings of such degenerate 
functions. These may be considered as a model for the set of all functions 
that can be obtained by perturbing the function with the degenerate 
singularity, in the sense that any function obtained by such small perturba- 
tions is equivalent to a function contained in the universal family. 

To make these ideas more precise consider a function f :  R " ~  N. An 
unfolding of f is a function F :  R~x Nc~  ~ such that F(x, 0 ) = f ( x ) .  Since 
we apply this theory to the study of Hamiltonian systems the value of 
functions at the origin of ~ is irrelevant. Therefore we assume through- 
out this section that f (0)  = 0, and that any unfolding F satisfies F(0, g) = 
0 for all # ~ Nc. Occasionally this will be expressed by the notation 
F :  ([~n x I~ ~, 0) --*(~, 0). This is no serious restriction, since one obtains 
similar results in case the value at the origin does matter. One usually needs 
one additional unfolding parameter to account for the variation of the 
0-level of  unfoldings. We refer to [17] for a more complete discussion. 

Remark. Another way to vary 0-levels, is admitting transformations of 
the range ~, compare Section 2. The corresponding morphisms were called 
left-right equivalences. As has been said there, this context does not change 
if only translations in ~ are allowed. Universal unfoldings with respect to 
this wider class of morphisms again have one parameter less than in the 
present setting. 

It should also be noted that our method yields local unfoldings. There- 
fore we shall assume that an unfolding F :  En x R c ~  ~ is only defined for 
(x,/z) near (0, 0) e Nn x Ec. 

We continue giving a formal definition of morphism, tailored for our 
set-up. To this purpose let F : N" x Ec ~ R and G : N" x Ea__. I~ be unfold- 
ings of a fixed function f. Then a morphism from G to F is a pair of smooth 
functions (H, h), where 

1. H :  ~" x Ed__, N, x Nc, with H(x, O) = x, 
2. h : Na__. Re, with h(0) = 0, 

such that 

G(x, v) = F(H(x, v), h(v)). 

The unfolding G is said to be induced from F by the morphism (H, h). The 
unfolding F is called a versal unfolding of the function f if any other 
unfolding of f is induced from F by a suitable morphism. A universal 
unfolding is a versal unfolding with a minimal number of parameters. 

Let C~ denote the ring of functions f :  ~ n ~ ,  or, more precisely, 
the ring of germs at 0 E ~n of such functions. For f c g ,  let J ( f )  de- 
note the Jacobian ideal, viz. the set consisting of all combinations 
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el(Of/6x~) + " ' +  %(Of/Ox=), where e l , .  �9 �9 % range over g , .  Theideal  d/Zn 
consists of functions vanishing at the origin. If f has a singularity (critical 
point) at 0 e N= then J ( f )  c ./~=. In this case the codimension of f is the 
dimension of the real vector space . / ~ , / J ( f ) .  Note that here we deviate from 
the usual definition of codimension, being the dimension of g=/J( f ) .  Our 
definition reflects the fact that we only consider functions whose value at 
0 ~ N= is equal to 0. 

One of the main results from Singularity Theory is the following 
so-called 'universal unfolding theorem', e.g. compare [9, 22, 28, 37, 45]. 

Theorem 12. Let f :  (~n, 0)-~([~, 0) be a function with a singularity at 
0 ~ ~". The c-parameter family F : (R= • ~e, 0) ~ (R, 0), is a universal un- 
folding o f f  if and only if c is equal to the codimension o f f  and 

{~Pl ~ O F  mod Y ( f ) }  (1) OF = o m ~  . . . .  ' O#c =o 

is a basis for the real vector space ,///[n/J(f). The unfolding F is versal if 
J / ~ / J ( f )  is generated by (1). 

Here c3F/O#j I, = 0 is defined by OF/O#j ]~ = o (x) = (OF/O#;)(x, 0). To avoid 
clumsy notation we shall drop the 'rood J ( f ) ' ,  so OF/O#l ]u = 0 is also used to 
denote OF~O#1 [,=o mod J ( f ) .  It will be clear from the context which inter- 
pretation is meant. 

According to Theorem 12 the family F is a versal unfolding if and only 
if 

J/gn = J ( f )  + 0~ { 0ff--gF1 ~ =0'  " ' ' 0#c0F ~= 0} . (2) 

It is easy to show that this condition is necessary. Indeed, in order to see 
that, let 0 : R n ~ R be a function with 0(0) = 0 and consider the 1-parameter 
unfolding G : R n x N ~ R of f defined by 

a(x,  v) = f ( x )  § vO(x). 

Since F is versal there is a morphism (H, h) from G to F, i.e. such that 

a(x,  v) = F(H(x, v), h(v)). 

Taking partial derivatives with respect to v on both sides of the latter 
equality, after putting v = 0 and using the facts that H(x, O)= x and 
h(0) = 0, we obtain: 

3H (x, gh 
O(x) = DxF(H(x, 0), h(O)) �9 -ffV-v O) + D.F(H(x ,  0), h(O)) ~ v  (0) 

= ej (x) (x) ~ OF (x, 0), (3) 
. j = l  = ] 
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where ej(x) is the j - th  componen t  of  (OH/~v)(x, 0) and /~j is the j - t h  
componen t  of  (~b/Ov)(O). This proves (2) and hence the necessity of  this 
condition.  The p roo f  of  its suff ic iency--omit ted  h e r e - - i s  much  harder,  
since this is based on the M a l g r a n g e - M a t h e r  Preparat ion Theorem,  again 
see the above references, in particular [9, 28]. 

As a direct consequence of  Theorem 12 we see that  any two universal 
unfoldings of f have the same number  of  parameters.  The following lemma 
shows that  there is an invertible morph i sm between any two universal 
unfoldings o f f  

Lemma 13. let F~, F2 : Rn • N" - .  N be universal unfoldings o f f :  [~ ~ 
and let (x,/~) ~ (H(x, p), h(/0) be any morph i sm from F2 to F1. Then 
h : R~'-~ Rc, near 0 e N~, is a local diffeomorphism. 

Proof. Take partial derivatives with respect to #i, 1 ~< i-< d, on both  
sides of  the equat ion F2(x, ~) = F1 (H(x, I~), h(#)), and set # = O. We then get 

G ,= 0 +,_- 2, ( ~  #=0" 

Since both  {aF1/M,b=o,...,af,/Mc[,=o} and {~?F2/@~l~=o,...,~F2/ 
@~. I~=0} are bases of  d/ l~/J( f ) ,  we see that  the matrix ((~hj/@;)(0))o= ~,...,d 
is invertible. This proves that  h is invertible near 0 ~ [~. [] 

If  a versal unfolding coincides with a universal unfolding on a linear 
subspace of  the space of  parameters,  then the morph i sm between them can 
be chosen equal to the identity on that  subspace. More  precisely: 

Lemma 14. Let F :  Nnx ~ ~  be a universal unfolding o f f :  ~n-~ R. 
Let G : Nn x ~" x ~ ~ be an unfolding o f f  such that  G(x, #, O) = F(x, #). 
Then there is a morph i sm (x, #, v) ~ (H(x, #, v), h(#, v)) f rom G to F such 
that  

H(x, p, O) = x, h(p, O) = kt. 

Proof. Since F is universal there is a morph i sm (K, k) f rom G to F. Let 
K~v and kv be defined by K~,v(x)= K(x, p, v) and k,,(lO = k(/~, v), respec- 
tively. Since Ko.0(x)=x,  we see that  K~.v is invertible. Fur thermore  
F(Ku.o(X), k0(p)) = G(x, #, O) = F(x, It), so k0 is invertible according to 
L e m m a  13. The map  (H, h), defined by H(x, p, v )=  K2l(K~.~(x)) and 
h(~, v) = kol(kv(#)),  is a morph i sm from G to F satisfying the condit ions 
stated in the lemma. [] 

The following result is a parametr ized version of  a well-known proper ty  
of  submersions,  the so-called 'lifting property ' .  
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Lemma 15. If  the morphism ( ~ ,  ip) : Nn x Nl ~ ~ ,  x R~ is a submersion, 
then for any morphism ((I}, qS):Rn x W - ,  Nnx N' there is a morphism 
(A, 2) : ~n x ~ ~ x W such that 

(~ ,  ~ ) o  (A, 2) = (+,  4). 

There is one more technical result to be needed in the sequel. 

Lemma 16. (Wall, [50]) If ~ b l , . . . ,  ~b~ e En generate an ideal J of  finite 
codimension and for c q , . . . ,  e k e  d~ we have ~ f =  ~ c94~ = 0 index j = 0, 
then ej e J .  

7.2. Unfoldings with distinguished parameters 

Let us now consider a family of  functions f :  ~n x ~k__. ~, depending on 
k distinguished parameters I = ( I 1 , . . . ,  Ik). An unfolding of  f then is a 
function F : ~n x ~k x ~c ~ ~ such that F(x, I, O) =f(x, I) for (x, I)  near 
0 6 R n x ~k. The additional parameters # ~ W will be called external. 

As we have seen in Section 4.1, we only allow transformations in which 
unfolding parameters don ' t  depend on distinguished parameters,  although 
distinguished parameters are allowed to depend on unfolding parameters. 
More formally let F : R n x R ~ x W ~ ~ and G : ~n x ~k x ~d ~ ~ be unfold- 
ings of  f. Then a restricted morphism from G to F is a triple of  smooth 
functions (H, K, h), where 

1. H : R  nx  W x N a ~ R " , w i t h H ( x , I ,  0 ) = x ,  
2. K:  R~x N a ~  Rk, with K(I, O)= I and K(0, #) = 0, 
3. h : N a ~  W, with h(0) = 0. 

such that the following equality holds: 

G(x, I, v) = F(g(x, I, v), K(I, v), h(v)). 

The condition K(0, # ) = 0  reflects the fact that I usually is a special 
parameter  that might only have a physical interpretation if its value is 
non-negative: in our case t h e / s s  are non-negative action variables. There- 
fore our context is more restricted than e.g. Wassermann's,  see [52]. 
Therefore we at least want to preserve the set I = 0 under restricted 
morphisms. The unfolding G is said to be induced from F by the restricted 
morphism (H, K, h). 

Remark. Here and elsewhere, the condition that the (restricted) mor- 
phisms are the identity on the singular object, and therefore near-identity 
maps, is very common.  Again compare the above references. This seems a 
further restriction, but it does not affect the codimension of the singularity. 
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In fact, from the proof  of the necessity of the condition in Theorem 12, we 
see that this is not the case, since there is not  any restriction on functions 
like the ~j. 

The unfolding F is called a versal unfolding with respect to restricted 
morphisms of the function f,  if any other unfolding of f is induced from F 
by a suitable restricted morphism. A universal unfolding in this context is a 
versal unfolding with a minimal number of  external parameters. Compare 
the definitions in the previous subsection. 

At this moment  all terms in the formulation of Theorem 11 have been 
properly defined. The remainder of this section is devoted to its proof. 

7.3. Proof  of  Theorem 11 

We begin this subsection with some tools. These results s h o w - - a m o n g  
other th ings - - tha t  the number of external parameters in a (uni)versal 
unfolding of a family f ( x ,  I) with respect to restricted morphisms is not 
smaller than the codimension of the function f0--fl~=0. Therefore any 
versal unfolding o f f ( w i t h  respect to restricted morphisms) with exactly this 
number of external parameters is universal. 

Len~ma 17. Let F :  Rn x R k x Rd--. ~ be a versal unfolding with respect 
to restricted morphisms of the family f :  Nnx R k ~ R .  Then the family 
F0: [~n x Nd~ [~, defined by Fo(x, #) = F(x, O, #), is a versal unfolding un- 
folding with respect to unrestricted morphisms of the function f0: En--' R 
given by fo (x) = f ( x ,  0). 

Proof. Let G : [~n x NP ~ ~ be an unfolding off0. We have to show that 
there is an unrestricted morphism from G to Fo. 

To this end introduce the unfolding (7: Nn x Nk x NP ~ ~, of  the family 
f, defined by G(x, I, v) = G(x, v) + f ( x ,  I) - fo(x). We consider I ~ ~k 
as a distinguished parameter of G. Since F is universal there is a re- 
stricted morphism (x, I, v) ~-~ (H(x, [, v), K([, v), h(v)) such that G(x, / ,  v) = 
F(H(x,  I, v), K(I, v), h(v)). Taking I = 0 and using the fact that K(0, v) = 0, 
we get: G(x, v) = F(H(x,  O, v), O, h(v)), so (x, v) ~ (H(x, O, v), O, h(v)) is a 
morphism from G to Fo. [] 

Theorem 12 has a counterpart  in the present context of unfoldings of 
families with distinguished parameters. However, we don' t  need such a 
s trongresul t  in our approach: a necessary condition for versality of foldings 
will do. As before, the Malgrange-Mather  Preparation Theorem is needed 
for the sufficiency. The relevant condition is expressed in the following 
result. 



428 H.W. Broer et al. ZAMP 

L e m m a  18. I f  F : [~" x ~ x Nd_, ~ is a versal unfolding with respect to 
restricted morphisms of  the family f :  R" x W ~  R, then for every function 
0 : ~" x R k-~ ~ such that 0(0, I) = 0, the equation 

~ a SF k 8 f  
O(x, I)  = j=l  ~j (X, [) (X, I)  "71- j=12 flJ ~j .  (X, I, 0) "~- j = l  ~ 7j (I) ~j. (x, I) 

(4) 

has a solution ~ j : R " x R  k--,R, for l < j < n ,  f l j s R ,  for l < j < d  and 
7j : Nk ~ R, with 7j (0) = 0. 

The proof  is quite similar to the partial proof  of Theorem 12, see above, and 
therefore it is omitted here. As a technical issue we mention that the 
condition 7 j (0 )=  0 corresponds to the fact that the component  K of a 
restricted morphism (H, K, h) vanishes if the distinguished parameter is 
equal to 0. 

We now have all the tools needed for the proof  of Theorem 11 at our 
disposal. Note that Part 2 is an immediate consequence of Lemma 17. We 
shall first prove Part 3, since this will be used for Part 1. 

7.3.1. Proof  o f  Theorem 11, Part 3 

Let f be a universal unfolding of fo with respect to unrestricted mor- 
phisms. In particular we then have k = c, where c is the codimension offo.  
We have to show that F is a universal unfolding of f with respect to 
restricted morphisms. Our approach bears some resemblance with the 
proofs of the Theorems 5 and 6, cf. Section 4.1. 

Indeed, let G : ~ n x  Rex ~d__,R be an arbitrary unfolding of the 
family f, with distinguished parameter I e R C. Since f is a universal un- 
folding of  f0 there is a unrestricted morphism (x, I, v )e  R ' x  W x RdF--' 
(H(x, I, v), h(I, v)) e IW x [R ~ x [R c such that G(x, I, v) = f ( H ( x ,  I, v), h(I, v)). 

Similarly there is an unrestricted morphism (x, I, #) e [~n x W x Nc 
(M(x,  I, #), N(I, ~ )  e N" x W such that f ( x ,  I, It) = f ( M ( x ,  I, #), N(I, It)). 
Since F(x, I, O) = f ( x ,  I) we may assume that M(x,  I, O) = x and N(I, O) = I, 
see Lemma 14. In particular D I N ( 0  , 0) has maximal rank. 

In order to see that also DuN(O, 0) has maximal rank, we argue as 
follows. Since f is a universal unfolding offo, the necessity part of Theorem 
12 tells us that 

0 ' " "  ~L 0 " 

Since (Sf/Olj)(x, O) = (SFfi?Itj)(x, 0, 0) for 1 < j  < e, we invoke the sufficiency 
part of Theorem 12 in order to conclude that (x, It)~--~F(x, O, It) is a 
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universal unfolding off0.  Since (x, #) ~ (M(x, 0, #), N(0, #)) is a morphism 
from FII= o, the map # ~ N(0, #) is locally invertible near # = 0, cf. Lemma 
13. Therefore D,N(O, 0) indeed has maximal rank. 

Next we apply Lemma 7 to obtain a restricted reparametrization 
~b : ~ x R~~ R c x ~c, such that h = N o ~. 

Since M(x,  O, O) = x, the map x ~ M(x,  I, #) is locally invertible near 
x = 0 e [ ~ =  and for (I ,#)  near (0,0) e R ~ x R  ~'. So there is a map 
(x, I, #) ~ Mi=~(x, I, #) such that M(MinV(x, I, #), I, #) = x. Therefore 
f ( x ,  N(I, #)) = f(M~=V(x, I, #), I, #). 

Combining these results we get 

G(x, I, v) = f (H(x ,  I, v), N(d?(I, v))) 

= F(Minv(H(x ,  [, v), ~(I ,  v)), (9([, v)), 

and we have obtained a restricted morphism from G to F, which ends the 
proof  that F is universal in the restricted sense. 

7.3.2. Proof of  Theorem 11, Part I (sufficiency) 

Now, assuming that f is a versal unfolding off0,  we have to show that 
f has a universal unfolding with respect to restricted morphisms. 

According to Theorem 12, the real vector space Jg/J( fo)  is generated by 
Of/OIl [~ = o,. �9 �9 ~?f/OIk [x = 0. Without  loss of  generality we may assume that 
{? f /? I i [ ,=o , . . . ,  Of/OL[,=o} is a basis for this vector space. Therefore the 
c-parameter  family f :  [~= x [~c_, N, defined by f ( x ,  [) = f ( x , / ,  0), is a uni- 
versal unfolding o f f0 .  Here (/, 0) stands for ( I i , . . . , / c ,  0 , . . . ,  0) ~ ~ x 
Rk-c. In view of the first part  of  the proof  there is a universal unfolding 
F :  ~= x [~cx [ ~ ~  N of f with respect to restricted morphisms. Using F we 
shall construct a universal unfolding for f 

According to the lifting property Lemma 15, there exists a morphism 
(u?, 0) : [~= x R ~ ~ R= x ~c such that 

1. f ( x ,  I) =f(~P(x,  I), O(x, / ) ) ;  
2. ~g(x, L 0) = x and ~(/, 0) = f 

In particular, note that (~P, 0) is a submersion. We now show that the 
family F : N= x N~ x No_, N, defined by F(x, I, #) ,= (F(U?(x, I), t)(I), #), is a 
versal unfolding of  f with respect to restricted morphisms. This immediately 
implies that F is universal, since the number  c of  external parameters is 
equal to the codimension of f0, and therefore minimal, see Lemma 17. 
Occasionally it will be convenient to omit function arguments. We then 
write e.g. F = F + (u?, 0, lc). 

Let us first check that F is indeed an unfolding of  f,  indeed, 
F(x, I, 0) = F ( ~ ( x ,  I), ~(I),  0) = f ( tP (x ,  I), t)(I)) = f ( x ,  I). 
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Next consider an arbitrary unfolding G : N" x Nk x R e ~ R o f f .  All we 
have to do, is finding a restricted morph i sm f rom G to F. Indeed, since 
(T ,  0 , 1 p ) : R ' x N k x R  p - ~ ' x R  c x R  p is a submersion,  there exists a 
family (J : ~" x N~ x R e--, R such that  G(x, I, v) = G(T(x,  I), O(I), v). It 
is again easy to check that  6 is an unfolding of  f In fact, (J(x, [, 0) -- 
G(Ud(x, [, 0), O(L 0), O) = G(x, (L 0), O) = f (x ,  1~ O) = f (x ,  D. 

Therefore there exists a restricted morph i sm (H, K, h) : R" x R c x RP 
[ ~ ' x R  ~ x R  c f rom ( T t o F .  

Using the fact that  (u? ,0 ,  lp) is a submersion,  we may  apply a 
parametr ized version of  Lemma  15 to lift morphisms  via (tp, 0, lp). Lift- 
ing the restricted morph i sm (H, K, h )o  (T ,  0, lp) we obtain a restricted 
morph i sm (H, K, h) : N" x R k x R p ~ [t~ n X ~k X ~P such that  (H, K, h) o 
(W, 0, lp) = (~P, ~, lp) o (H, K, h). Since now 

6 = Go l p  

= F o  ( H , K , h )  o (W, 0, lp) 

= F o (W, ~k, lp) o (H, K, h) 

= F o (H ,  K,  h), 

we have obtained a restricted morph i sm f rom G to F, so F is versal. 

7.3.3. Proof of  Theorem 11, Part 1 (necessity) 

Let F :  • ' x  ~ k x  ~ d ~  ~ be a versal unfolding of  f with respect to 
restricted morphisms.  We will show that  f i s  a versa1 unfolding offo.  In view 
of  Theorem 12, to this end we have to prove that  

J / [ , = J ( f o ) + ~ { ~ i l i =  ~ ~f } (5) ' ' " ' a l k  I=o " 

So let t /~  Jr'n, i.e. q is a function ~n ~ R defined near 0 ~ ~". 
Consider  the funct ion 0 : ~" x Rk ~ R defined by O(x, I) = 11 tl(x). Ac- 

cording to L e m m a  18 there are aj: R" x ~ k ~ ,  1 < j  < n, flj ~ ~, 1 < j  < d 
and 7j: Rk--* R, 1 < j  < k with ?j(0) = 0, such that  

O(x, I) = ~j (x, I) af  (x, I) flj (x, I, O) 7j (I) (x, I). 

(6) 

Putt ing I = 0 we get 

0 =  ~ cg(x, 0)r + j i  r j = l  (x) = (x, 0, 0). (7) 
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Since (x, #) ~ F(x, 0, #) is a universal unfolding off0,  cf. L e m m a  17, the set 
c~F/@dl(i,~,=(o,o, } is a basis for the real vector space 

JHn/J(fo), cf. Theorem 12. Hence d = c, and /~i . . . .  = fij = 0. Therefore 
(7) reduces to ~ ' =  l e/(x, O)(c~fo/~?x/)(x)= 0. Now Lemma  16 allows us to 
conclude that  ej[~=o e J(fo), for 1 < j - <  n. Taking partial derivatives with 
respect to I~ at I = 0 on both  sides of  equat ion (6) we get: 

,a c~2f , ~ a~j x 0Jo = L c j(x, 0) tx, 0) 0) (x) 
j = l  OXj(J'I -~-.j~l ~11 ( ' ~X.i 

k 07j Of x 
+ E j = l  lY.I1 u1 j 

Since e j l z=oeJ ( fo ) ,  for 1 < j - <  n, it follows that  rl e J(Jo) + 
[R{c?f/~?Illr=o,...,c~f/OIkl,=o}. In other words, we have proved (5). D 
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Abstract 

A universal local bifurcation analysis is presented of an autonomous Hamiltonian system around a 
certain equilibrium point. This central equilibrium has a double zero eigenvalue, the other eigenvalues 
being in general position. Main emphasis is given to the 2 degrees of freedom case where these other 
eigenvalues are purely imaginary. By normal form techniques and Singularity Theory unfoldings are 
obtained, having 'integrable' approximations related to the Elliptic and Hyperbolic Umbilic Catastrophes. 
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