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Thermodynamics and Long-Range Order 
of Interstitials in a Hexagonal Close-Packed Lattice 

BART J. KOOI, MARCEL A.J. SOMERS, and ERIC J. Mrlq'EMEIJER 

Statistical thermodynamics was applied to describe long-range order (LRO) of interstitial atoms 
in a hexagonal close-packed (hcp) host lattice. On the basis of the Gorsky-Bragg-Williams 
(GBW) approximation and a division of the interstitial sublattice into six interpenetrating sub- 
lattices, all the possible ordered configurations were derived for this assembly. Special attention 
was devoted to two of the possible ordered configurations of interstitial atoms, viz., the two 
ground-state structures that have been indicated for e-Fe2Nm_z. A description of the order- 
disorder transition was obtained, and the evolution of the occupancies of the different types of 
interstitial sites on changing the total interstitial content was given. Composition-temperature 
regions of stability for the two ordered configurations were given in phase diagrams for different 
combinations of pairwise interaction energies. The results are compatible with observations for 
e-Fe2N~_z as reported in the literature. The advantages of the present treatment were discussed 
relative to an earlier one, which a priori excluded nearest neighboring interstitial sites from 
simultaneous occupancy. 

I. INTRODUCTION 

THE present article is concerned with the thermo- 
dynamics of a binary solid solution consisting of a hex- 
agonal close-packed (hcp) sublattice of atoms 
containing, in its octahedral interstices, atoms that show 
long-range order (LRO). Expressions for the Gibbs free 
energy, the interstitial-site occupancies, and the order- 
disorder transition are derived. The treatment can 
equally well be applied to a binary substitutional solid 
solution with a (simple) hexagonal lattice. 

The energy of a given configuration of atoms can in 
principle be assessed according to statistical thermo- 
dynamics applying the concept of (pairwise) near- 
neighbor interaction. Considering such existing 
descriptions, the generalized Ising model has the most 
general validity: the partition function is obtained by 
summation of the energy for a given configuration of 
atoms over all configurations possible for a certain alloy 
composition. 1~,2j The Ising model naturally incorporates 
disorder and long-range as well as short-range order. So 
far, exact descriptions have only been obtained for two- 
dimensional systems, lq To allow a description of 
three-dimensional systems, approximations to the (gen- 
eralized) Ising model are necessary. Such approxima- 
tions comprise the zeroth or Gorsky-Bragg-Williams 
(GBW) 13,41 and the first approximation 151 (to the long- 
range-ordered solutions) and Kikuchi's cluster variation 
method, t61 If long-range order vanishes, the GBW and 
the first approximation (to long-range-ordered solutions) 
become the zeroth 17~ and first approximation tSI to the reg- 
ular solutions, respectively. 

Here, the effect of long-range order on the thermo- 
dynamics of a system is accounted for by the GBW ap- 
proximation to the Ising model, ~3,41 considering pairwise 
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interaction up to third nearest neighbors. Although it has 
been pointed out that the accuracy of the GBW approx- 
imation, if used, for example, to model the Cu-Au 
system, is rather poor, t~'Sj it is expected to be better in 
the case of interstitial solid solutions, where in general 
pronounced strain-induced interactions occur, t9] Such in- 
teractions extend over several atomic distances and thus 
have a long-range character and, therefore, improve the 
accuracy of the GBW approximation. 19j The successful 
application of the present model to nitrogen absorption 
isotherms of e-Fe2N~_z (i.e., equilibrium nitrogen con- 
tent in t~-FezNl_ z as a function of imposed nitrogen ac- 
tivity) demonstrates its usefulness, t~~ 

Two essentially different routes are followed in the 
present work. The first route starts with a subdivision of 
the interstitial sublattice in six interpenetrating sub- 
lattices, each occupied with a certain, variable concen- 
tration of interstitial atoms. Then, equilibrium requires 
that the chemical potentials of the interstitial atoms on 
these six sublattices are equal, thus providing equilib- 
rium conditions necessary for describing the thermo- 
dynamic properties of the system. As a result, all the 
possible ground-state structures for the considered as- 
sembly are derived (Section Il l-A).  The second route 
begins with two of the ground-state structures found via 
route 1 and which have been proposed for 
e-FezNl_z, llj,121 The adoption of a ground-state structure 
allows definition of the degree(s) of order. Then, equi- 
librium requires that the stable values for the degree(s) 
of order correspond with a minimum value for the Gibbs 
free energy (Section III-B). 

Earlier work on interstitial ordering in an hcp lattice 
has been presented as a "Regular Solution Model" (RS 
model) in Reference 13 and presupposed a complete 
order of interstitials along rows of interstitial sites par- 
allel to the c-axis of the hexagonal lattice, viz., an al- 
ternation of permitted and excluded sites for occupancy 
by interstitial atoms. The present LRO model allows a 
variable degree of order along rows of interstitial atoms 
parallel to the c-axis, because in principle, every site is 
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permitted for occupancy by interstitial atoms. The re- 
sults obtained with the present model are compared to 
those of the regular solution model given in 
Reference 13 (Section IV-B).  

II .  BASIC CONSIDERATIONS 

The binary solid solution M-I is considered, in which 
the I atoms are situated in the interstices of the crystal 
lattice set up by the M atoms. This assembly can be con- 
ceived as constructed from two interpenetrating sub- 
lattices: one for atoms M and one for atoms I. Both M 
and I atoms can only be located at sites of their own 
sublattices. In an hcp M sublattice, the octahedral inter- 
stices are the largest interstitial holes and the ones con- 
sidered for occupation by I atoms; it is assumed that the 
fraction of I atoms residing at tetrahedral interstices is 
negligible. Hence, the sites for I atoms compose a 
(simple) hexagonal sublattice. 

The model to be presented provides a thermodynamic 
description for an M-I alloy, with sublattices for M and 
I as given in the preceding paragraph, as a function of 
interstitial content. A change of the composition is re- 
alized by changing the occupancy of the I sublattice 
only; the M sublattice is and remains completely occu- 
pied. The I sublattice is composed of variable amounts 
of atoms I and empty sites V (vacancies for I atoms). 
The (possible) occurrence of ordering of I and V on their 
hexagonal sublattice is dealt with here. To arrive at a 
thermodynamic description for the M-I alloy, the 
thermodynamics of  the M and the I sublattices, sepa- 
rately, as well as the interaction of  these sublattices will 
be considered. 

It is convenient to conceive the hexagonal I sublattice 
as an alternation of two types of basal planes (1 and 2), 
each containing three different kinds of sites (for plane 
1: A1, B1, and CI;  for plane 2: A2, B2, and C2; 
Figure 1; Reference 13). Thus, for each type of plane 
(denoted as (001) planes hereafter), a particular site is 
surrounded within the plane by sites of the other kinds 
(Figure l(a)). In the direction perpendicular to the planes 
(denoted as the c-direction hereafter), sites A1, B 1, and 
C1 are adjacent to sites A2, B2, and C2, respectively 
(Figure 1 (b)). Apart from the present choice of six sub- 
lattices composing the hexagonal I lattice, other possi- 
bilities for division of the I lattice into sublattices can be 
considered too. If interactions up to third nearest neigh- 
bors on the I lattice are considered a subdivision of the 
(simple) hexagonal I lattice into 6, 8, 10, 12, and 14 
sublattices (kinds of sites), analogous to the division of 
the hcp lattice as described in Reference 14, is appro- 
priate. The subdivision in six kinds of sites (six sub- 
lattices) is preferred here, for it reflects the 
crystallography of the ground-state structures as given 
for e-Fe2N1-z and the anti-CdI2 structure type(s)) 15J* 

*A division into eight sublattices is appropriate for describing 
(dis)ordering in accordance with the ~'-Fe2N, the Co2C (or anti-CaCl2), 
and the anti-CdI2 structure types. The thermodynamic models for the 
subdivision into 8, 10, 12, and 14 sublattices can be obtained and 
dealt with in exactly the same way as the model that will be presented 
here for the subdivision into six sublattices. 

For the case of a random distribution of I atoms over the 
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Fig. 1 - - ( a )  Each (001) plane of the hexagonal (interstitial) sublattice 
of I atoms contains three different kinds of sites: A, B, and C. 
(b) The hexagonal sublattice of I atoms, constituted by the octahedral 
interstices of the hcp sublattice of M atoms, is composed of planes 
of types 1 and 2, together having six kinds of sites (denoted by A1, 
B1, CI, A2, B2, and C2) that constitute a trigonal prism. 

sites of the I sublattice, the six sites constituting a tri- 
gonal prism (Figure l(b)) have the same probability to 
be occupied by an I atom. This probability equals the 
fraction of occupied sites of the I sublattice. 

Ordering can occur, if it is energetically more favor- 
able to form I-V nearest neighbors than I-I and V-V 
nearest neighbors, implying repulsion among I atoms. If 
ordering among atoms on the I sublattice occurs, in prin- 
ciple, each of  the sites A 1 . . . . .  C2 has its own proba- 
bility to be occupied by an I atom. For a hexagonal 
sublattice, the interaction of I atoms on neighboring sites 
of an (001)-plane is not equal to that of I atoms on neigh- 
boring sites in the c-direction. For an ideal hcp sublattice 
of M atoms, the shortest possible separation occurs for 
two nearest neighbors in the c-direction of the hexagonal 
I sublattice: it is only V'2/3 of the separation between 
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two nearest neighbors within the (001)-plane. This sug- 
gests a larger tendency for nonoccupancy of neighboring 
sites in the c-direction than within the (001)-plane. If, 
in the c-direction, the nearest-neighbor sites to an oc- 
cupied site remain vacant, then the maximum I content 
corresponds with the composition M2I. This reduction of 
the number of sites available for occupation by I atoms 
is denoted by site exclusion in the present article and was 
presupposed for the derivation of the regular solution 
model in Reference 13. If all sites of the I sublattice are 
available for occupation by I atoms, the maximum I con- 
tent corresponds with the composition MI. 

IlL LRO MODEL FOR INTERSTITIALS 
IN AN HCP LATTICE 

The zeroth approximation to the Ising model due to 
GBW is adopted to describe LRO. This approach com- 
prises the following: I4j 

The configurational entropy is given by the number of 
permutations of I (and thus V) over the types of 
sites. The molar vibrational entropy for each com- 
ponent (M, I, and V) is assumed constant, and 

The enthalpy is given by the sum of the products of 
each of the probabilities of I-I, V-V, I-V, M-M, 
M-I, and M-V pairwise interactions and their cor- 
responding interaction energies. Interactions on the 
I sublattice of first nearest neighbors (A1-A2, 
B I-B2, C 1-C2), second nearest neighbors (A 1-B 1, 
A1-C1, etc.) and (optionally) third nearest neigh- 
bors (A1-B2, A1-C2, etc.) are taken into account 
here. 

The LRO model can be obtained via two essentially 
different routes, having different (dis)advantages. 
Route 1 begins with a description for the occupancy of 
each of the six sites A1 . . . . .  C2 on the trigonal prism 
introduced and the associated six chemical potentials. 
Equilibrium requires that these chemical potentials are 
equal. Route 2 adopts a ground-state structure (i.e., a 
completely ordered structure that generally can only be 
defined for a (simple) stoichiometric composition) as the 
starting point for distinguishing between order and dis- 
order sites and for defining the degree(s) of order. Equi- 
librium requires that values for the degree(s) of order 
correspond to a minimum value for the Gibbs free 
energy. Both routes are pursued here. Obviously, route 
1 needs less a priori information than route 2 and offers 
(the possibility of) a more general solution. However, if 
the ground-state structure of interest is known a priori, 
route 2 is useful, because it provides directly values for 
the order parameters, which can be related to physical 
properties of the assembly under consideration. 

A. Route 1 

The interpenetrating hcp M and (simple) hexagonal I 
sublattices are considered, the latter having six kinds of 
I sites: A1, B I . . . . .  C2. The M sublattice is completely 
occupied by M atoms. Each kind of site K of the I sub- 
lattice can be occupied by a fraction of I atoms, xK. The 
total number of M sites considered is 6N, and thus, there 
are N sites for each kind of I site. 

1. Gibbs free energy, chemical potential, 
and equilibrium condition 
A full derivation of the expression for the Gibbs free 

energy of the M-I alloy is given in Appendix A for the 
example of a specific subdivision in types of interstitial 
sites (Section B - l ) .  Therefore, only a brief description 
is given here for the case of six different sublattices com- 
posing the I lattice. 

The configurational entropy corresponding to N sites 
of one kind, e.g., A1, is given by 

-Nk[x  M In XAI + (1 - XAI ) In (1 - XAl)]  

where k is Boltzmann's constant and XA~ is the fraction 
occupied sites of kind A1. The summation of such en- 
tropy terms for all six kinds of sites yields the config- 
urational entropy of the whole M-I alloy. 

The probability for simultaneous occupancy of two 
adjacent sites in the c-direction (first nearest neighbors 
on the I sublattice), e.g., A1 and A2, by I is XAIXA2, by 
V is (1 - XA0 (1 -- XA2) and by I and V is XAI(1 -- XAZ) 
+ Xg2(1 -- XA0. The enthalpy (energy) associated with 
these interactions between sites A1 and A2 is propor- 
tional to the sum of the products of these probabilities 
and their corresponding interaction energies ec.a, ec.vv, 
a n d  ec.lV; 

{XAlXA2ec,li -]- (1 - XAI ) (1 - XA2)ec,vV 

+ [xM(I - xm) + XA2(1 -- XA0]ec,lV} 2N z~ 
2 

with Zc/2 being the number of bonds in the c-direction 
per atom (Zc/2 = 1). This term can be rewritten as 

(XAI + XA2) /-/~l.AIA2 + [(1 -- XAl) + (1 -- XA2)] H0V.AIA2 

+ NW~[xM (1 - XA:) + XA2(1 -- XA0] 

w h e r e  /~I,AIA2 = g Z c / 2  ec,ll and /-~V,AIA2 = N Z J 2  ec,vv; 
Wc is the "exchange energy" in the c-direction, de- 
fined as 

Zc 
Wc = 2 (2ec.lV - ec,ll - ec.vv). 

The term /-/~l.AIA2 is a fraction of/-/~l, the enthalpy of N 
atoms of the pure component I (with exactly the same 
lattice as the I sublattice). Accordingly, h0V.MAZ is a frac- 
tion of H~ the enthalpy of N atoms of the pure com- 
ponent V (with exactly the same lattice as the I 
sublattice; for the present case, where V represents 
vacant I sites, ~ of course is zero). Summation of the 
enthalpies associated with the interactions between 
atoms at sites A1 and A2, atoms at sites B1 and B2, and 
atoms at sites C1 andC2 yields the enthalpy correspond- 
ing to all possible pairwise interactions (between first 
nearest neighbors) in the c-direction. The enthalpies cor- 
responding with pairwise interactions between second 
(A1-B1, A1-C1 . . . . .  B2-C2) and third (A1-B2, A1-C2, 
. . . .  C1-B2) nearest neighbors are obtained analogously, 
using exchange energies Wp and W~:, respectively. 

To obtain the enthalpy of the whole M-I alloy, the 
enthalpies of N atoms of the pure component M, H ~ 
and of the interactions of M and the N atoms of I, 
H~ have to be added (H~ of course is zero). The 

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 25A. DECEMBER 1994--2799 



Gibbs free energy GM_ ! of the M-I alloy can thus be given 
as follows: 

GM-I 6(H ~ o = --  TS vib,M ) 

C2 

+ [ H  ~ - + n ~ + 
K=AI 

+ NWp + NWp~] 

--2NWc[XAIXA 2 "~ XBIXB 2 "~- XclXc2 ] 

--NWp[XAIXBI "~ XAIXcI "~ XBIXcI "~ XA2XB2 

+ XA2Xc2 + XB2Xc2 ] 

--NWpc[XAIXB2 "Ju XAIXC2 "]- XBIXA2 Jr XBIXc2 

-~- XcIXA2 "~- XcIXB2 ] 

C2 

+ NkT Z [xKlnxK + (l - xr) l n ( 1 -  xK)] 
K=AI 

[1] 

where T is the temperature, H~ is the enthalpy of N 
atoms of the pure component Q (summation of all en- 
thalpies associated with the pairwise near-neighbor inter- 
actions considered), and ~b.Q is the vibrational entropy 
of N atoms of the pure component Q, which is assumed 
to be independent of composition and ordering. The first 
two terms on the right-hand side of Eq. [1] represent the 
standard state of the M-I alloy. It is noted that the con- 
tribution of the M sublattice and its interaction with the 
I sublattice only changes the standard state and conse- 
quently, does not affect ordering on the I sublattice. For 
brevity of notation, 

= ( n o  _ 0 TS~ib,i + H~ + NWc + NWp + NWpc) 

Considering the sublattice formed by sites of kind K as 
an open system (V has to represent vacancies), the 
chemical potential for N atoms I at sites of kind K,/~i K, 
is by definition given by 

0GM-I 
tz~: = - -  [ 2 ]  

OXK 

Using Eq. [1], one obtains 

= / z  ~ - 2 N W c [ x A 2 ]  - -  N W p [ x B i  + x c d  

1 
L1 - x A ~ j  

[31 

The expressions for/z~ of I atoms on the other kinds of 
sites are similar. 

Thermodynamic equilibrium for this M-I alloy in- 
volves that the chemical potentials/x~ of the interstitial 
element I are equal for all six kinds of I sites; i.e., 

~.LIAI = /.LBI ~- ~ICI = /s = /.LIB2 = ~,LIC2 ~ t-LI [4] 

Thus, a set of five relations nonlinear in xat, . . . ,  Xc2 is 
obtained from Eqs. [3] and [4]. Equal occupancy of the 
six kinds of sites fulfills the equilibrium condition 

Eq. [4], and thus, the disordered state is always a so- 
lution of the set of relations. However, it does not nec- 
essarily yield the lowest possible Gibbs free energy. 

The Gibbs free energy GM-I of the M-I alloy in general 
can be related to chemical potentials of the atoms I,/Xl, 
and of the atoms M, /XM: 

C2 

GM-I = 6p'M + /s Z XK [5] 
K=AI 

2. Order-disorder transition and the evolving types 
of ordering 
An ordered configuration of I atoms on their sublattice 

is only more stable than the random configuration if 
(a) the content of the I atoms is above some minimum 
value and (b) the temperature of the system is below 
some maximum value. The values for the I content and 
the temperature associated with the order-disorder tran- 
sition depend on the values of the exchange energies, Wc 
and Wp and Win. The ordered configuration develops if, 
with respect to the disordered state, (one or some of) the 
fractions of I atoms on the different kinds of I sites are 
differently perturbed. To arrive at the ordered state so- 
lution(s) of the five nonlinear equations, an iterative nu- 
merical method has to be used. Root finding requires a 
good initial guess. ~ For a good initial guess, knowl- 
edge on the order-disorder transition is indispensable. 

The equations of type Eq. [3] can each be written as 
f(x_) = f (XA1 , XBI . . . .  , XC2 ). If _x + dx__ and x are suffi- 
ciently close and if if_x) is continuous for x, it holds that 

any difference in the occupancy of the six kinds of 
sites tends to nil on approaching the order-disorder 
transition from the ordered configuration; 

the six equations that make up Eq. [3] can be replaced 
by their total differentials: 

df(x_)= O f  dxA, + Of dxs, + . . .  + Of dxc2; 
OXA l OXs I OXc2 

within the range x to x + dLS, the infinitesimal changes 
dxM, d-ra~ . . . . .  dxc2 can be taken proportional to 
each other. 

Us i n g f  = dxm/dxM, g = dxo/dxM, h = dXA2/dXAl, 
i = dXaE/dXAl , and j = dXcE/dXAl (dXAl ~;~ 0), one thus 
obtains for changes of the chemical potentials at the 
order-disorder transition defined by 7", and x,: 

1 

- -  = -2We[h] - Wp[f+ g] 
NdxAl 

NdXAl 

NdXAi 

[1] 
-WmIi+j]+kT, x , ( 1 -  x , )  

- -  = - 2 W ~ [ i ]  - Wp[l + g] 

1 
- Wt~[h+J]+fkT'[x,(1- xt)] 

- -2We[j] - Wp[1 + f ]  

Ix 1 ] - W ~ [ h + i ] + g k T ,  ,(1 x,) 

[6a] 

[6b] 

[6c1 
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d~l A2 

NdXAi 
- -  = - 2 W ~ [ 1 ]  - Wp[i + j]  

1 

- Wt~[f + g ] +  hkTt[x t (1-x , ) ]  [6d] 

NdXAl 
= -2We[f] - Wp[h + j] 

i l l  - Wt~[1 + g] + ikT, x,(1 x,) [6el 

NdxA1 
- -2W~[g] - Wplh + i] 

1 

- Wm[1 + f ]  + jkT,[x,( 1 - x,)] [6f] 

Becausef(x) has to be continuous for x and becausef(x)  
represents first derivatives of the Gibbs free energy with 
respect to XA1, XBI . . . . .  Xc2, the order-disorder transition 
(in this analysis) cannot be a first-order phase transition. 
For equilibrium at the order-disorder transition, the six 
equations of  Eq. [6] (linear in f ,  . . . .  j )  have to give 
identical values for dlzl/dXM (cf. Eq. [4]). The problem 
can be solved exactly and provides four sets of solutions. 

For dlx~/dXA~ ~ O, only one solution holds: 

(1) f = g = h = i = j = 1; no ordering occurs. 

For dlxi/dXA~ = 0 and the constraint 1 + f + g + h 
+ i + j = 0 (because the order-disorder transition holds 
for one particular total interstitial content), three solu- 
tions hold: 

(2) h = - l , f = - i , g = - j ,  a n d i + j =  1; an increase 
of the occupancy of sites A1 is associated with a de- 
crease of the occupancies of sites A2 and B 1 + C 1, and 
an increase of the occupancies of sites B2 + C2, i.e., a 
tendency for not forming first and second nearest neigh- 
bors but for forming third nearest neighbors. 
(3) f =  g = 1 a n d h  = i = j =  - 1 ;  an increase of the 
occupancy of  sites A1 is associated with a decrease of 
the occupancies of sites A2, B2, and C2 and an increase 
of the occupancies of sites B1 and C1, i.e., a tendency 
for not forming first and third nearest neighbors but for 
forming second nearest neighbors. 
(4) h = 1 , f =  i , g  = j ,  a n d i  + j  = - 1 ; a n  increase 
of the occupancy of sites AI is associated with an in- 
crease of the occupancies of sites A2 and a decrease of 
the occupancies of sites B1 + C1 and B2 + C2, i.e., a 
tendency for not forming second and third nearest neigh- 
bors but for forming first nearest neighbors. 

The values of the above parameters f ,  g, h, i, and j can 
thus physically be interpreted as a prescription for the 
evolution of (the differences in) the occupancies of the 
different kinds of I sites at the onset of ordering. 

From the condition d~l/dxAi = 0, necessary at the 
onset of ordering (to obtain the sets (2) through (4)), it 
immediately follows from Eq. [6] for the order-disorder 
transition: 

x , = 2  1 -+ + Weff,/ 

where Waf is an effective exchange energy according to 

Waf = -2WcIh] - Wp [f  + g] - Wpc [i + j] [8] 

According to Eq. [7], the critical temperature for the 
order-disorder transition is T~ = -Weff/4k and occurs at 
x = 1/2. 

The three possible starting points for ordering (solu- 
tions (2) through (4)) lead to five distinct cases of  or- 
dering. This is caused by a nonexplicit prescription for 
the values o f f ,  g, i, and j ,  according to the solutions (2) 
and (4). Depending on the actual values for f ,  g, i, and 
j and the values for the exchange energies, two cases of 
ordering are found to be possible for each of the solu- 
tions (2) and (4). The two cases of ordering evolving 
from solution (2) will be considered in detail in 
Section B as configurations A and B and were reported 
to have been observed. [lLI2J71 The case of ordering 
evolving from the order-disorder transition according to 
solution (3) can be regarded as a tendency for forming 
an alternation of fully occupied and completely empty 
(001)-planes of the I sublattice for the composition M2I. 
This has been observed for many cases. |ls'171 

The occurrence of  disordering and of ordering ac- 
cording to the three discussed possibilities (2) through 
(4) can be presented as a function of the various ex- 
change energies in a "phase diagram" (Figure 2). The 
diagrams shown represent only the type of ordering most 
likely to occur in the regions concerned; the actual oc- 
currence of an ordered state requires that the total frac- 
tion of interstitial sites occupied is in between the 
fractions, as prescribed by Eqs. [7] and [8]. The ground- 
state structures of the distinct cases of ordering have also 
been indicated in Figure 2. 

The method applied for the numerical evaluation of 
the cases of ordering evolving from the six nonlinear 
equations that make up Eq. [3] is given in Appendix B. 

B. Route 2 

The derivation of the LRO model according to route 
2 starts with the two ground-state structures obtained by 
route 1 as solution (2), which have first been indicated 
for e-Fe2Nl_z, tl 1.~2; The other possible ground-state struc- 
ture types as given by route 1 will not be dealt with. For 
a ground-state structure, different types of sites can be 
discerned: 

order sites for occupation by I (denoted by i); 
order sites for occupation by V (denoted by v); 
disorder sites (denoted by d), i.e., sites that are in- 

different with respect to occupation by I or V. 

Assuming that the repulsion among I atoms becomes 
stronger on decreasing their separation is in accordance 
with solution (2) obtained by route 1 (see its discussion 
in Section A-2). This leads to the following subdivision 
of the sites of the trigonal prism. If A 1 is an order site 
(i) for I, then A2 is an order site for V (v). Further, either 
site B 1 or site C 1 has to be indicated as an order site for 
V. Here, B1 is taken as an order site for V (v), and 
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Fig. 2--Phase-s tabi l i ty  diagram showing the region of stability for each of the four cases of  interstitial configuration, cases (1) through (4) (see 
text), with respect to the values of W+/kT, Wp/kT, and W~/kT: (a) W~ = 0; (b) Wpc < 0; and (c) W,+ > 0. The corresponding ground-state 
structures on the basis of  the trigonal prism of  interstitial sites have also been indicated; the black, white, and shaded dots represent sites of  type 
i (order sites for I atoms), v (order sites for V), and d (disorder sites), respectively. The diagrams shown represent only the type of  ordering 
most likely to occur in the regions indicated. The actual occurrence of  an ordered state requires that the total fraction of interstitial sites occupied 
is in between the fractions, x,, as prescribed by Eqs. [7] and [8]. As an illustration, the dashed lines in (a) separate the ordered regions from the 
disordered region for various values of  x,. 

consequently, B2 is an order site for I (i). Finally, for 
sites C1 and C2, two possibilities remain: 

(A) one of the two sites is an order site for I (i), and 
the other is an order site for V (v); or 
(B) both sites have the same tendency to become oc- 
cupied by I or V and are disorder (d) sites. 

Now, the possibilities for complete ordering (the 
ground-state structures) at the composition correspond- 
ing with M2I are considered. Situation (A) leads to an 

alternation of (001) planes with unequal compositions, 
viz. ,  iEv and VEi. This is the so-called e-FeEN ground- 
state structure (Figure 3(a)).* Possibility (B) leads to an 
alternation of (001) planes with equal compositions, 
viz., ivd and rid (Figure 3(b))** and is, because of the 

*This structure was proposed for the first time for the distribution 
of nitrogen atoms over the octahedral interstices of  an hcp lattice of 
iron atoms in e-Fe2 Nlu~ and was assessed by X-ray diffraction 
results.1121 

**This structure (with i sites completely occupied and v and d sites 
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d sites, not a ground-state structure in the true sense. The 
specification of these two ground-state structures and the 
three types of sites is only meant to define the reference 
(ideal) structures for the LRO. In reality, the total 
amount of I atoms on the hexagonal sublattice and the 
degree of order deviate from that for the ground-state 
structures, which apply to absolute zero temperature. 

For route 2, the degree of LRO has to be described, 
and to this end, the LRO parameter r is introduced. This 
parameter is defined with respect to the ground-state 
structure(s), such that 0 - r -< 1: 

if the fraction of  the I atoms occupying v sites is equal 
to the fraction of the v sites relative to the total 
number of sites (i + v + d), the distribution of I 
atoms on its sublattice is random: r = 0; 

if no I atoms occupy v sites, the distribution of I atoms 
on its sublattice is ordered: r = 1. 

For the case of ordering conforming to ground-state 
structure (A) with unequal compositions for the two 
types of (001)-planes, two LRO parameters are defined, 
one for each type of plane�9 The results of applying the 
LRO model to this ground-state structure are denoted by 
configuration A hereafter. For the case of ordering con- 
forming to the ground-state structure (B) with equal 
compositions for the two types of (001)-planes, only one 
LRO parameter is defined. The results of applying the 
LRO model to this ground-state structure are denoted by 
configuration B hereafter. 

1. Configuration A 
Site occupancy 
Configuration A is based on the ground-state structure 

with alternating (001) planes of  type izv and v2i. The 
(001) planes of composition izv will be denoted as planes 
of type 1 with order parameter r~; the (001) planes of 
composition v2i will be denoted as planes of type 2 with 
order parameter r2 (Figure 3(a)). The order parameters 
can then be defined as follows. 

For an (001) plane of composition i2v (plane of type 
1), having a total number of N sites, the numbers of I 
atoms on i sites (NLil) and on v sites (Nt.v~) are given as 
follows: 

N 
Ni.i~ = (2 + r l )xl  3 [9a] 

N 
Nt,vt  = XlN - Ni.il = (1 -- rt) Xl 2- [9b] 

3 

where x] is the fraction of the occupied N sites in a plane 
of type 1. Then the numbers of vacancies on i sites Nv,il 
and on v sites Nv,vl are 

2 N 
Nvit = - N - N i i ] = [ 2 - ( 2 + r l )  Xl] _-7 

�9 3 ' 3 
[9c] 

1 N 
Nvvt = - N - N l ~ t  = [1 - ( 1  - r l ) x t ]  _-- 

�9 3 ' 3 

(a) 

[9d] 

I 

plane of type I 

�9 i site ca 
"r 

O v site 

�9 d site 

plane of type12 ~ 

plane of type 1 ~  

�9 i site 
. . (  

O v site 

�9 d site 

plane of type 2 ~  

completely empty) was proposed for the distribution of  nitrogen atoms 
over the octahedral interstices in e-Fe2Nt_: (z = 1/3) mj and was as- 
sessed by X-ray diffraction resultsY 21 

(b) 

Fig. 3 - - ( a )  The ground-state structure consisting of  an alternation of  
(1301) planes of  types 1 and 2 with compositions i2v and v2i, respec- 
tively, and denoted as configuration A in the text. (i = order site for 
interstitial atoms I; v = order site for vacancies V). (b) The ground- 
state structure consisting of  an alternation of  (001) planes of  types 1 
and 2 with composit ions ivd and vid, denoted as configuration B in 
the text (i = order site for interstitial atoms I; v = order site for vacan- 
cies V; d = disorder site). 

For an (001) plane of composition v2i (plane of type 2), 
using analogously defined symbols, it is obtained that 

N 
Nx,i2 = (1 + 2r2) x2 --3 [10a] 

N 
Nkvz = (2 - 2r2) x2 2- [10b] 

N 
Nv.i2 = [1 - (1 + 2r2)x2] 2- [10c] 

.5 
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N 
Nv.v2 = [2 - (2 - 2r2) x2] -~ [10d] 

On this basis, the expression for the Gibbs free energy 
according to the GBW approximation can be derived 
straightforwardly; see Appendix A for the description of 
configuration A. 

2. Configuration B 
Site occupancy 
Configuration B is based on the ground-state structure 

with alternating (001) planes of type ivd and type vid. 
This ground-state structure can only be obtained if the 
tendency for a particular type of site to become occupied 
by I atoms is the same in both planes considered; i.e., 
the degree of order is the same for both planes. This can 
be rationalized as follows. If the i site in (001)-plane 1 
would have a stronger tendency to become occupied by 
I atoms than the i site in plane 2, then--because a 
stronger interaction occurs in the c-direction than within 
the (001) planes--also the v site in plane 1 would have 
a stronger tendency to become occupied by I atoms than 
the v site in plane 2. Thus, the planes of type 1 tend to 
contain more I atoms than the planes of type 2, implying 
that the third type of site is a v site in plane 1 and an i 
site in plane 2. Accordingly, the ground-state structure 
of configuration A results. Hence, if configuration B 
occurs, there is no difference in occupation of i sites (nor 
v or d sites) between planes 1 and 2. Then, for config- 
uration B, only one LRO parameter r and the contents 
xiv and xd--representing the fractions of I on order sites 
(i and v) and on disorder sites (d), respectively--need 
to be considered. The LRO parameter r only applies to 
the order sites. 

In contrast with configuration A, for configuration B 
the same description holds for all (001) planes of the I 
sublattice, each containing N sites. Thus, for a (001) 
plane of composition ivd (or vid), it holds for the total 
numbers of I atoms on i, v, and d sites denoted by Nui 
Ni,v, and NI,d, respectively: 

N 
NI,  i : (1 + r) xiv -~ [1 la] 

N 
NI, ~ = (1 - r)xiv 3 [ l lb]  

N 
Nl.a = Xd "~ [1 lC] 

Then, the numbers of vacancies on i, v, and d sites de- 
noted by Nv,i, Nv,~, and Nv,d, respectively, are 

1 N 
Nv i = - N - Ni i = [1 - (1 + r) Xiv] 3 [ l ld]  

3 

1 N 
N v ~ = - N - N ] v  = [ 1 - ( 1 - r ) x ~ v ] - -  [ l le]  

3 3 

1 N 
NVd. = -N3 --  NId" = [1 - Xd] 3 [ l l f ]  

On this basis, the expression for the Gibbs free energy 

according to the GBW approximation can be derived 
straightforwardly; see Appendix A for the description of 
configuration B. 

IV. R E S U L T S  A N D  D I S C U S S I O N  

A. Results for Long-Range Order Configurations A 
and B 

Neglecting the effect of third nearest-neighbor inter- 
actions (i.e., WpffkT is nil), the order-disorder phase 
boundary is depicted in Figure 4 for various combina- 
tions of values for WffkT and Wp/kT. Evidently, in- 
creasing the value for We with respect to Wp broadens 
the stable composition region of an ordered configura- 
tion and enlarges the stability region of an ordered con- 
figuration up to a higher temperature (Figure 4). 

In the sequel of this section site occupancies of the I 
sublattice and the Gibbs free energy of the M-I alloy are 
discussed for both configuration A and B for fixed 
values of Wi/kT: Wc/kT = - 2 ,  W J k T  = - 3 ,  and Wpc 
= 0,* except where stated otherwise. In Section B, the 

*These values of  W~ and Wp imply that pairwise interaction in the 
c-direction is taken twice as strong as pairwise interaction within the 
(001)-planes (the coordination numbers for these interactions are 2 
and 6, respectively). The values chosen for W f k T  yield representative 
results; the degrees of  order are not very large or small and the com- 
position regions where order and disorder occur are both of  significant 
size. Chosing values for Wt~ different from W~ = 0 does not lead to 
major changes, and the conclusions to be drawn remain unaffected. 

results of the present LRO approach will be discussed in 
relation to those of the Regular Solution (RS) model 
given in Reference 13. 

1.5 

1 . 0  �84 
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Fig. 4 - - P h a s e  diagram showing order-disorder transitions according 
to the LRO model (solid line) and the RS model (dashed line). The 
composition ranges of  the ordered and the disordered regions depend 
on the interaction energies and the temperature, i .e . ,  on the combi- 
nation of  W c / k T  and W J k T  (here W,c = 0). 
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Fig. 5 - - ( a )  Occupied fraction for each of  the six kinds of  I sites AI ,  
. . . .  C2 (Fig. l(b)) as a function of  the total fraction occupied of the 
sites of  the hexagonal sublattice that is occupied by I atoms for con- 
figuration A, according to the LRO model (solid lines) and the RS 
model (dashed lines) for the interaction energies indicated. (b) Site 
occupancies, x, and x2, and degrees of order, r, and r2, as a function 
of the total fraction of  the sites of  the hexagonal sublattice that is 
occupied by I atoms for configuration A, according to the LRO model 
(solid lines) and the RS model (dashed lines; r, and r2 in italics) for 
the interaction energies indicated. 

1. Site occupancies and degrees of order 
for the I sublattice 
The occupied fraction for each of the six kinds of sites 

(AI, B1 . . . . .  C2; Figure l(b)), as obtained by route 1, 
is given in Figures 5(a) and 6(a) as a function of the total 
occupied fraction of I sites, y(y 1/6 c2 = ~K=AI XK). In 
Figures 5(b) and 6(b), the (same) results are presented 
as obtained by route 2: the occupancies of the I sublattice 
and the degrees of order are presented as a function of 
the total occupied fraction of I sites, y(y = (xl + x2)/2 

for A and y = (2xiv + Xd)/3 for B). Using Eqs. [9] and 
[10] for configuration A or Eq. [11] for configuration B, 
results obtained by route 1 can be expressed as results 
obtained by route 2 (and vice versa): it was found that, 
for the present case, routes 1 and 2 yield identical 
results. 

At the composition of  the order-disorder transition, 
the degrees of order are continuous, but their deriva- 
tives, with respect to the total interstitial content, change 
discontinuously (Figures 5(b) and 6(b)). It is observed 
that the values of r are asymmetric with respect to 
y = 1/2. This can be understood from the definition of 
the degree of order, which is not affected in a symmet- 
rical way by occupation by V of i sites and by I of v 
sites: if V "atoms" reside on i sites, r can still be equal 
to one, but if I atoms reside on v sites, r deviates from 
one (Eqs. [9] and [10]). For configuration A, the frac- 
tions Xl and x2 of occupied interstitial sites for the two 
types of (001)-planes diverge gradually at the onset of 
ordering and show a maximum difference at the com- 
position M2I (or IV on the I sublattice) (Figure 5(b)). 
This is accompanied with large differences in occupation 
of the various kinds of sites (Figure 5(a)). For config- 
uration B, at the onset of ordering all I atoms prefer to 
occupy the sites involved in ordering. At the composi- 
tion M2I, the occupied fractions for the two types of sites 
(iv and d sites) are the same (Figure 6(b)). Of  course, 
at the composition M2I, a large difference occurs be- 
tween the occupied fractions of  the i (A 1, B2) and v (A2, 
B1) sites (Figure 6(a)). 

2. Gibbs free energy of the M-I alloy 
The equilibrium Gibbs free energy for the M-I alloy, 

GM.,, is given as a function of the total occupied fraction 
of I sites, y, in Figure 7; these results were obtained by 
substituting the equilibrium values for XA,, XBI, �9 � 9  XC2 
in Eq. [1] (or xl, x2, r,, r2 in Eq. [A14] and xiv, Xd, r in 
Eq. [A22]). This thermodynamic property is taken rel- 

�9 0 __ 0 0 attve to a standard state, viz., GM-i- 6(/ZM + y/xi + 
( 1 -  y)tX ~ (cf., Eq. [1]). The bold square dots in 
Figure 7 indicate the order-disorder transitions; the 
drawn line in between these dots at less negative values 
for the Gibbs free energy, represents the Gibbs free 
energy for the disordered state. 

The chemical potentials of I and M atoms on their 
respective sublattices can be readily obtained from 
GMa, applying Eqs. [2] and [5] for route 1 (or for route 
2: Eqs. [A15] and [A16] for configuration A or 
Eqs. [A23] and [A24] for configuration B). The values 
for the Gibbs free energy are always finite. This is not 
the case for the chemical potentials of M and I: for y ---> 
0, ~LL I --> --00 and /XM ~ 0; for y --> 1, /zt ---> +o0 and /XM 
---> --oo. It can be easily shown that there is no discon- 
tinuity for the first derivative of the Gibbs free energy 
with respect to y, but the derivatives of the chemical 
potentials with respect to y are discontinuous at the 
order-disorder transition. Hence, the order-disorder tran- 
sition as described by the present model is classified 
as second order [1], consistent with the condition 
that it cannot be a first-order phase transition (see 
Section III-A).  

Obviously, for values of y in between the composi- 
tions for the order-disorder transition, ordering accord- 
ing to either of the configurations (A or B) leads to a 
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Fig. 6 - - ( a )  Occupied fraction for each of the six kinds of  I sites A1, 
�9 . . ,  C2 (Fig. l(b)) as a function of  the total fraction of  the sites of  
the hexagonal sublattice that is occupied by I atoms for configuration 
B, according to the LRO model (solid lines) and the RS model 
(dashed lines) for the interaction energies indicated. (b) Site occu- 
pancies, x~ and xa, and degree of  order, r, as a function of  the total 
fraction of the sites of  the hexagonal sublattice that is occupied by I 
atoms for configuration B, according to the LRO model (solid lines) 
and the RS model (dashed lines) for the interaction energies indicated. 

lower Gibbs free energy than that for the disordered con- 
figuration (Figures 7(a) and (b)). In view of the scale of 
the ordinate in Figures 7(a) and (b), the relative stabil- 
ities of configurations A and B cannot be distinguished 
in these figures. Therefore, the difference in Gibbs free 

GM-I M-I, is energy between configurations B and A, B _ G A 
given as a function of  the total fraction of occupied I 
sites, y, in Figure 7(c). Configuration B yields the more 

GM-! M-I < 0 and stable configuration of I atoms if B _ G n 

configuration A yields the more stable configuration of 
I atoms if GB_~ -- GA_I > 0. 

Phase diagrams representing the stability ranges of 
configurations A and B were calculated by considering 
thermodynamic equilibrium between these configura- 
tions for different combinations of the interaction ener- 
~/xies Wp and Wc (i.e., imposition of the conditions A/Xl = 

and A/Z M = B/XM, where J/ZK is the chemical potential 
of atoms K in configuration J). The results are given in 
Figure 8 for two values of Wc/Wp. If [W~/kTI >- 
IWo/kZl, configuration A is the more stable type for the 
entire range of compositions within the ordered region, 

rovided the value for IW /kTI is not too large (i.e., 
I <- -3kT  in Figure 8(a)). This can be understood as 

follows: a strong interaction in the c-direction (i.e., a 
relatively large value of WJkT ) is incompatible with 
the occurrence of d sites. If W~/kT becomes consid- 
erably smaller than ]WJkTI, configuration A is only pre- 
ferred in a narrow composition range around the 
composition M2I. For example, for W~ = 1/2 W e, the 
homogeneity range of configuration A is confined to ap- 
proximately 0.4 < y < 0.6 (Figure 8(a)). It is noted that 
the transition from configuration A to configuration B is 
a first-order phase transition, whereas the disorder-order 
transition is a second-order phase transition. 

The present theoretical results on the relative stabili- 
ties of configurations A and B can be compared with 
X-ray diffraction results for the e-Fe2N/_z phase. This 
iron nitride can be conceived as an hcp sublattice of Fe- 
atoms containing N-atoms at the sublattice formed by the 
octahedral interstices. The crystal structure proposed for 
the composition e-Fe2N2/3 (z = 1/3; y = 1/3) 11~'12j is in 
accordance with ordering of the interstitial nitrogen 
atoms, according to configuration B. The crystal struc- 
ture proposed for the composition e-Fe2N (z = 0; y = 
1/2) lll,lzj is in accordance with ordering of the interstitial 
nitrogen atoms, according to configuration A. These ex- 
perimental results are thus compatible with the theoret- 
ical predictions (Figure 8). 

B. Comparison of the Long-Range Order Model 
with the Regular Solution Model for Ordering 
of Interstitials in an hcp Lattice 

Ordering on the basis of the two ground-state struc- 
tures A and B (cf. Section I l l -B)  was considered in 
Reference 13 by applying a "Regular Solution Model" 
(RS model). In the sequel, the present long range order 
approach will be indicated by LRO and the regular so- 
lution model of Reference 13 will be referred to as RS. 
The principal difference between the LRO and the RS 
models involves a priori exclusion of simultaneous oc- 
cupation of nearest neighbor sites in the c-direction for 
the latter. This site-exclusion condition has a strong 
effect on the distribution possibilities of the I atoms on 
their sublattice and thus on the corresponding configu- 
rational entropy. Moreover, because of the site- 
exclusion condition, interactions in the c-direction do 
not occur, and hence, the corresponding exchange 
energy does not occur, and thus, the enthalpy is affected 
too. A further consequence of the site-exclusion condi- 
tion is that the maximum occupation of the I sublattice 

2806--VOLUME 25A, DECEMBER 1994 METALLURGICAL AND MATERIALS TRANSACTIONS A 



O -  

-7 

-2 

-4 

- 6  

- 8 -  

- 1 0 -  

-12 

1 I I I I 

\ We/kT-~-2 / 

I I 

o o 0,2 0'4 016 0 8  10 
fraction occupied interst i t ial  s i tes  

(a) 

0 . 3 '  

t 

~-~ 0 .2-  
o~ 

0.1 
ID 

,.a 

5 o.o 
~9 
r 

~ -0.1 
" 0  

o"" 
O 

O~ 

O 

I I I I I I I 

" %  Wc/kT=_ 2 

- 8  

-9 

-10 

-I1 

-12 

I /'"\ / .... 

! \ i '  
, WdkT=-3 
; Wp/kT=-3 

t 
~9 
O9 

0 

I I I / I I I 

0.20 0.25 0.30 0.35 0.40 0.45 0.50 
fraction occupied interstitial si tes 

(b) 

We/kT=-2 
Wp/kT=-4 ; 

I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 
fraction occupied Interstitial sites 

(c) 

Fig. 7 - - ( a )  Gibbs free energy, (Gua - G~l.0[(1/3)NkT, as a function of the total fraction of the sites of the hexagonal sublattice that is occupied 
by I atoms. The drawn lines outside and in between the square dots, at the less negative values, represent the Gibbs free energy for a disordered 
distribution of I atoms; the drawn line in between the square dots at the more negative values represents the Gibbs free energy for the LRO 
configurations A and B. The dashed lines hold for the RS model that predicts ordering within the (001)-planes for I contents above that indicated 
by the dot (less negative values: disordered; more negative values: ordered). (b) Enlargement of (a). (c) Difference in Gibbs free energy, GMa, 
between configurations B and A. (G~_] - G~_O/ (I/3)NkT, as a function of the total fraction of the sites of the hexagonal sublattice that is 
occupied by I atoms for different combinations of W,./kT and WJkT. 

is given by y = 1/2. Results of the RS model are pre- 
sented in Figures 4 through 7(a) and (b) by use of dashed 
lines. These results were obtained using analogous pro- 
cedures as employed in the LRO approach. Routes 1 and 
2 (Section III) yielded identical results for the RS model. 

For the content of interstitials at the order-disorder 
transition, x,, it holds according to the RS model t'3] that 

x, = ~ 1 W p -  Wp~ 1 + [ W ; ~ , V p ; j  / [12] 

In Reference 13, Eq. [12] was obtained with W J k  = 
- L / R  (R is the gas constant) and without taking into 
account third nearest-neighbor interaction (represented 
here by Win); this effect is included here to allow com- 
parison with the results of the present LRO model 
(Eqs. [7] and [A21]). A large difference occurs between 
the order-disorder boundaries of the LRO model and the 
RS model (Figure 4). In this respect, it is noted that a 
fully disordered state cannot exist within the RS model, 
since the site-exclusion condition in the c-direction is as- 
sumed for all compositions. Therefore, the dashed line 
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in Figure 4 in fact indicates the order-disorder transition 
within the (001)-planes only. For the RS model, order- 
ing is only possible if (Wp - Wpc) < 0 (cf. Eq. [12]). A 
physically unrealistic situation arises for y = 1/2, be- 
cause for all possible temperatures, full ordering and 
thus no order-disorder transition occurs (Figure 4). This 
result is another immediate consequence of the site- 
exclusion condition: for y = 1/2 the configurational en- 
tropy equals zero, and thus, the Gibbs free energy 
relative to the standard state is independent of temper- 
ature, implying that the ground-state structure occurs at 
all temperatures. 

If IW l is not very small (for site exclusion the virtual 
Iwcl  = the content xt for the order-disorder transition 
as obtained from the LRO model is smaller than that 
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Fig. 8--Phase diagram showing single- and dual-phase regions for 
the ordered configurations (phases) A and B: (a) Wc = WJ2 and 
(b) Wc = W.. 

predicted by the RS model; i .e. ,  ordering according to 
the LRO model starts at smaller interstitial contents than 
according to the RS model. The partial order imposed 
by the site-exclusion condition in the RS model post- 
pones ordering to a higher total occupied fraction. 

1. Site occupancy 
In order to allow a direct comparison of the results 

obtained with the LRO model and the RS model, the 
values for Wp were taken equal. The case of ordering 
under the constraint of the site-exclusion condition in the 
RS model demands the degrees of order to be equal to 
1 at the composition M2I. Equivalently, for this com- 
position, the occupied fractions per type of (001)-plane 
or per type of interstitial site are strictly prescribed. This 
is not the case for the present LRO model. So, in prin- 
ciple, at least near the composition M2I, the site occu- 
pancies according to the LRO and the RS model are 
different. 

In contrast with the RS model, the LRO model does 
not prescribe a zero probability for simultaneous occu- 
pation by I atoms of neighboring sites in the c-direction 
of configurations A and B (cf. Eq. [A4a]). This proba- 
bility is shown in Figure 9 for the values of the exchange 
energies indicated. As compared to the disordered situ- 
ation, on ordering the probability that neighboring sites 
in the c-direction are both occupied by I atoms decreases 
and remains low for interstitial contents smaller than 1/2 
(the composition M2I). Obviously, the amount of nearest 
neighbors in the c-direction increases rapidly on ap- 
proaching the interstitial content 1/2 and beyond. From 
Figure 9, it can be seen that in the LRO approach, si- 
multaneous occupation of nearest neighboring sites in 
the c-direction tends to be excluded. 

2. Gibbs free energy 
Comparing the Gibbs free energies for configurations 

A and B as obtained by the RS model, it was concluded 

1.0- l I I I 
o Wc/kT=-2 
r Wp/kT=-3 

"~ 0.8- 

~ 0.6-  ,"~ 

7 

,/ I 
~ 0 .4-  , 

'~  disordered,  
0.2. 

t 0.0- ~ ' e ' - ~  i I I I 
0.0 0 2 0.4 0.6 0.8 1.0 

fraction occupied interstit ial  sites 

Fig. 9--Probability according to the LRO model for the occurrence 
of simultaneous occupancy by I atoms of neighboring sites in the 
c-direction as a function of the total fraction occupied of the sites of 
the I sublattice. 
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in Reference 13 that configuration B yields a more neg- 
ative value for the Gibbs free energy than configuration 
A for all compositions within the ordered region ac- 
cording to the RS model. This finding is opposite to the 
results obtained with the LRO approach, where config- 
uration A (1) is always stable near the stoichiometric 
composition M2I and (2) for Iwc/krl >> Iw,,/kT"l it be- 
comes stable in the entire ordered region (Figures 7(c) 
and 8 and the discussion in Section A-2). 

The stabilities of a configuration (A or B) according 
to the LRO model and the RS model can be compared 
on the basis of the corresponding Gibbs free energies. 
Such a comparison of the LRO and the RS model is only 
justified (1) if equal values for the exchange energies are 

o used and (2) if the reference states, i.e., GM.I = 
6 (/x ~ + y/z ~ + (1 - y)pO), are identical. Adopting the 
treatment of section III and taking into account inter- 
actions among I atoms up to the third nearest neighbors, 
it holds 

L R O  mode l :  ~ = N(Zr ec,H + Zp/2 et,,~ + Zpc/2 epc,ll); 
RS model: ~ = N(Zp/2 ep,u + Zp~/2 epd0;* 

*The reference state as described in Reference 13 was not explicitly 
defined, but expressed in the present terminology, it holds that/Xl ~ --- 

- T~b.i + /'~M-I + Wp, with/-~ of  the RS model given above. The 
regular solution parameter L of  Reference 13 is identical to -NWp in 
this article. 

where Zpc/2 is the number of bonds among third nearest 
neighbors. Thus, the reference states for the LRO and 
the RS model are not identical because of omittance of 
interstitial interactions in the c-direction by the RS 
model. Then, if the interaction energies ec.w and e~.vv 
are small as compared to ec.H, which is likely to be the 
case if V represents vacancies, the exchange energy Wc, 
as given by Eq. [A7], reads -Z~ /2  edj. Then, the ref- 
erence state for the RS model can be made compatible 
with that for the LRO model by subtracting the value of 
NWc from the value of ~ for the RS model, as indicated 
in this section. The Gibbs free energies for the RS model 
adapted in this way, i.e., to all values for the Gibbs free 
energy the value of NWc is added, are presented in 
Figures 7(a) and (b). 

For small fractions of occupied interstitial sites, the 
RS model yields more negative values for the Gibbs free 
energy than the LRO model, but the differences are rel- 
atively small (Figure 7(b)). However, if the interstitial 
content approaches the composition M2I, a substantial 
difference of opposite sign occurs: ordering as consid- 
ered in the LRO model corresponds to the most stable 
state. The less stable interstitial configuration predicted 
by the RS model near the composition M2I is caused by 
the rigid demand of the site-exclusion condition. Ap- 
parently, even if the repulsion between I atoms in the 
c-direction is strong, the presence of a small fraction of 
I atoms on nearest neighboring sites in the c-direction is 
favorable. Then, the small negative effect on the en- 
thalpy is compensated by the strong positive effect on 
the configurational entropy. 

V. CONCLUSIONS 

1. Long-range ordering of atoms I and vacancies V on 
the sublattice constituted by the octahedral interstices 

of an hcp sublattice of atoms M can be described by 
applying the Gorsky-Bragg-Williams (GBW) ap- 
proximation (or zeroth approximation to the Ising 
model) to a trigonal prism constituted by six kinds of 
sites for atoms I and vacancies V, considering pair- 
wise interaction up to third nearest neighbors. Two 
routes can be followed: 

Route 1 starts with a description for the occupancy of 
each of the six sites on the trigonal prism and the 
associated chemical potentials. 

Route 2 starts with a ground-state structure for distin- 
guishing between order and disorder sites. Relative 
to the ground-state structure, LRO parameters can 
be defined. 

2. The possible ground-state structures on sites of the 
trigonal prism have been derived as a function of the 
pairwise interaction energies following route 1. Two 
of these ground-state structures form the basis for two 
configurations, denoted as configurations A and B, 
to which the GBW approximation is applied follow- 
ing route 2. The ground-state structure forming the 
basis for configuration A is characterized by an al- 
ternation of (001)-planes having average composi- 
tions I2V and IV2; the ground-state structure forming 
the basis for configuration B is characterized by 
(001)-planes having equal compositions. 

3. The stabilities of the ordered configurations A and B 
with respect to one another and with respect to the 
disordered configuration as a function of the overall 
occupancy of the interstitial sublattice can be repre- 
sented by phase diagrams showing monophase (A 
and B and disorder) and dual-phase (A + B) regions. 
Configuration B is the more stable configuration for 
interstitial contents lower than the one for the stoi- 
chiometric composition M3I and higher than the one 
for the stoichiometric composition M312; configura- 
tion A is generally preferred near the stoichiometric 
composition M2I. This agrees with reported data for 
e-Fe2Nt_:. It was found that the stronger the repulsive 
interaction in the c-direction, relative to the repulsive 
interaction within the (001)-planes, the broader is the 
homogeneity range of configuration A. Further, the 
results showed that ordering itself is a second-order 
phase transition, while the transition from one or- 
dered configuration to the other is a first-order phase 
transition. 

4. The results were compared to those of a regular so- 
lution model for interstitials in an hcp lattice that ex- 
cludes simultaneous occupancy of neighboring sites 
in the c-direction for all compositions. The present 
LRO model provides a physically more realistic de- 
scription and leads to thermodynamically more stable 
configurations in the ordered region. 

APPENDIX A 

The thermodynamic description of configuration A, 
based on the prescription of the site occupancies ac- 
cording to Eqs. [9] and [10], and the thermodynamic 
description of configuration B, based on the prescription 
of the site occupancies according to Eq. [11], will be 
given here. 
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Configuration A 

Configurational entropy 
For the (001) planes of type 1, the number of distri- 

bution possibilities Dil of I and V on the il sites follows 
from the total number of il sites (2/3N), the number of 
I atoms on il sites (NLi~, Eq. [9a]), and the number of 
V on il sites (Nv,,, Eq. [9c]): 

2 
- N !  
3 

2 
- N !  
3 

D i  1 - 
Nl,il ! Nv,, ! 

[All 

The numbers of distribution possibilities D,~, Di2 , and 
By2 of I and V on the vl ,  i2, and v2 sites, respectively, 
are obtained in a similar way (using Eqs. [9] and [10]). 

The total configurational entropy S of the pseudo- 
binary alloy I-V (entropy of mixing I and V) for one 
(001) plane of type I and one (001) plane of type 2 (each 
plane containing a total of N sites) is given by 

S = k [In (Dil) -~ In (Dr0 + In (DIE) + In (D,E)] [A2] 

where k is Boltzmann's constant. Substituting the num- 
bers of distribution possibilities (cf. Eq. [A1]) in 
Eq. [A2] and using Stirling's approximation (In (n!) = 
n In (n) - n for large n) the total configurational entropy 
S~o.f is readily obtained as 

1 
Sco.f = 3 Nk {4 In (2) - [(2 + rl) Xl] In [(2 + rl) xl] 

- [ 2  - ( 2  + r O  Xl] In [ 2  - ( 2  + rl) xd 

- [ (1  - r l ) X l ]  In  [ (1  - r l ) X l ]  

- [ 1 - -  ( 1 - -  r O x l ]  ln  [ 1 - -  ( 1 - -  r O x l ]  

-- [(1 + 2r2) x2] In [(1 + 2r2) x2] 

- - [ 1 - - ( 1  +2r2) x2] ln [1-- (1 +2r2) xz] 

- -  [ ( 2  - 2r2)x2] In [ ( 2  - -  2rz)x2] 

- [2 -- (2 - 2r2)x2] In [2 - (2 - 2r2)x2]} 

[A3] 

Since the occupation of the M sublattice is complete and 
M and I atoms do not reside on each other's sublattices, 
M does not contribute to the configurational entropy and 
Eq. [A3] pertains to the whole M-I alloy as well. 

Pairwise nearest neighbor interaction 
in the c-direction of the I sublattice 
The probability P .  that two neighboring sites in the 

c-direction are both occupied by I atoms is given by the 
chance for simultaneous occupancy of il and v2 and of 
vl and i2 sites. Hence, recognizing that the probability 

of occupancy of, e.g., an il site by an I atom is 
Ni,it/(2/3N), it follows that 

2 Ni,il Ni.v2 1 gl , v l  Nl,i2 
ce l  I = _ _  + 

3 2  2 3 1  1 
- N  - N  - N  - N  
3 3 3 3 

[A4a] 

The number of il-v2 neighbors is twice as high as the 
number of vl-i2 neighbors due to the respective com- 
position of the type 1 (i2v) and type 2 (v2i) planes. Fur- 
ther, cPn can maximally equal 1. Both constraints are 
expressed in Eq. [A4a] by the factors 2/3 and 1/3. The 
probabilities CPvv and ~Pw for V-V and I-V nearest 
neighbors, respectively (in the c-direction), are obtained 
likewise: 

2 NV,il gv,v2 1 gv,vl gv,,2 
CPvv = - -  + [A4b] 

3 2  2 3 1  1 
- N  - N  - N  - N  
3 3 3 3 

I-N,,,, Nvv2 + 

+ - m m + ' [A4c] 
3 1 1  ~ J ~ N  ~ N  N 

- 3 

The sum cP~i + Cpvv + ~Piv of course, equals 1. 
The energy E~ resulting from the pairwise nearest 

neighbor interactions in the c-direction is proportional to 
the sum of the products of the probabilities ~Pu, CPvv, 
and ePiv and their corresponding interaction energies 
edl, e~.vv, and e~,iv. Neglecting pressure and volume 
(pV) effects of mixing I and V, the enthalpy Hc is equal 
to the energy Ec. Hence, recognizing that the total 
number of c interactions for a pair of type 1 and type 2 
planes is 2N, it follows for such a pair 

Hc = [ c e l l  e~,ll + ~Pvv e~,vv + CpIv ec,lV] 2N [A5] 

Using Eqs. [9] and [10], substitution of the probabilities 
given by Eq. [A4] in Eq. [A5] yields 

H~ = [x I ~- x2] /'~l,c -~- [(1 - Xl) + (1 - x2)l H~ 

+ NW~[x1(1 - x2)  ']- x2(1 - Xl) ] + 2 N W c r l r 2 x l x 2  

[A6] 

where I-I~L~ = N Z J 2  ec.ii and H~ = N Z J 2  e~,vv with 
Z J 2  being the number of bonds in the c-direction per 
atom (Zr = 1). W~ is the "exchange energy" in the 
c-direction: 

Zc 
Wc = "~- [2ec,tv - ec,n - ec,vv] [A7] 

The term/-/~Lc is a fraction of/-/~, the enthalpy of N atoms 
of the pure component I (with exactly the same lattice 
as the I sublattice). Accordingly, H~ is a fraction of 
H~ the enthalpy of N atoms of the pure component V 
(with exactly the same lattice as the I sublattice; for the 
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present case, where V of the hypothetical IV alloy rep- 
resents vacant I sites, H~ of course is zero). The first 
two terms on the right-hand side of Eq. [A6] represent 
the "ideal mixing" enthalpy of the hypothetical I-V 
alloy. The third term on the right-hand side of Eq. [A6] 
represents the change in enthaipy due to random mixing, 
but taking into account the difference in interaction 
energy of I-I, V-V, and I-V, nearest neighbors. This is 
the same enthalpy change as emerging in the "zeroth ap- 
proximation to the regular solutions" for an I-V alloy. 
The last term on the right-hand side of Eq. [A6] repre- 
sents the change in enthalpy due to ordering. 

Pairwise nearest neighbor interaction within the 
(001) planes of the I sublattice 
The probability lp, that two neighboring sites within 

a plane of type 1 (izv) are both occupied by I atoms is 
given by the chance for simultaneous occupancy by I 
atoms of two il sites and of il and vl sites: 

I Nl iI Nl i, 2 N, iI NLv, 
'P,, = - "--:--' ~ + - ' [A8a] 

3 2  2 3 2  1 
- N  - N  - N  - N  
3 3 3 3 

In a plane of type 1, the number of il-il interactions is 
half of the number of il-vl interactions (Figure 3(a)), 
which is expressed in Eq. [A8a] by the factors 1/3 and 
2/3, respectively. The other probabilities in a plane of 
type 1, 'Pvv and Iplv , are obtained analogously: 

1 Nv il Nv il 2 Nv il Nv ~, 
' P v v  = ~ '  ~ '  + ' ' [ A 8 b ]  

3 2  2 3 2  I 
- N  - N  - N  - N  
3 3 3 3 

'P'v='3[_~N2~N + 2_N3 ~ J N  

+ _  ---:-' ~ "  + ~ '  
3 2 1  2 ~ ] 

- N  - N  - N  N 
-3 3 3 

[A8c] 

The probabilities 2Pn, 2pvv, and 2Piv for a plane of type 
2 (v2i) can be obtained directly from Eq. [A8], by re- 
placing i l by v2 and v l by i2. 

The enthalpy H v for a pair of planes of types 1 and 2 
due to nearest neighbor interaction within the planes is 

He = [(IpII -[- 2pII) ee,II + ( 'Pvv + 2evv) ep,vv 

+ (Ip1v + 2Pw) ee, w] 3N [A9] 

where ee, u, ep,vv, and ee,iv are the interaction energies 
between I-I, V-V, and I-V nearest neighbors within the 
(001) planes, respectively, and the factor 3N accounts 
for the total number of nearest neighbor interactions 
within one plane. Using Eqs. [9] and [10], substitution 
of the probabilities given by Eq. [A8] in Eq. [A9] yields 

H e = Ix I --~ x21 H~ 21- [(I - x,)  dl- (I - .1I~2) ] H~ 

+ NWe[x,( l  - xl) + x2(1 - x2) ] 

+ NVI/e[ ~ (Xlrl)2 + (x2r2) 2] [AI0]  

where I-I~L p = N Zp/2 ep,ll and H~ = N Zp/2 ep,vv with 
Zp/2 being the number of bonds within one (001) plane 
per atom (Zp/2 = 3). The term W e is the "exchange 
energy" for the (001) planes: 

Wp Zp [2ep iv - ep.ii - -  ep,vv] [A11] 
= 2  " 

Interpretation of the terms on the right-hand side of 
Eq. [A10] corresponds to that given for Eq. [A6]. 

Interaction of the M and I sublattices 
Since the occupation of the M sublattice is complete 

and every site of the I sublattice is surrounded by atoms 
M in a similar way, the probability PM~ of finding a pair 
M-I for a pair of planes of type 1 and type 2 is deter- 
mined only by the occupancy of the I sublattice by I 
atom s: 

+ 3 k ~ N  ~ N J j = 2 ( x , + x 2 )  [A12a] 

The probability PMV of finding V adjacent to M is ob- 
tained likewise: 

I 
PMV= 1 - - P M I = 2 ( 1  --Xl + l--X2) [A12b] 

The enthalpy HM~ due to interaction of I atoms and their 
surrounding M atoms, per pair of type 1 and type 2 
planes, can thus be described by 

HMI = (xl + X2)/-/0Ml [A13a] 

where H~ represents the interaction of N atoms I with 
their surrounding M atoms (Note that there are 2N sites 
for I atoms per pair of type 1 and type 2 planes). For 
the enthalpy HMV associated with interaction of M and 
V, it is obtained 

HMV = (1 -- xl + 1 -- x2)/-~MV [A13b] 

where H~ represents the interaction energy of-N atoms 
V with their surrounding M atoms. If V represents 
vacant I sites with no interaction of M and V ,  
/~M-v is zero. 

Gibbs free energy, chemical potential, 
and equilibrium condition 
Using Eqs. [A3], [A6], [A10], and [A13] and super- 

imposing the Gibbs free energy of the M sublattice (i.e., 
the Gibbs free energ), of the pure component M, which 
is given by ~ - TS~vib,M for N atoms M) the total Gibbs 
free energy G~a.~ of the M-I(-V) alloy, for the considered 
pair of type 1 and type 2 planes of the I sublattice and 
the associated pair of planes of the M sublattice (each 
containing N atoms M), becomes 
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= 2(/xOM - TS~vib.M) 

+ Ix, + x~] ( ~ l  - Tg . . . ,  + / r  

+ [(1 - x , )  + (1 - x : ) ]  (/r - Tgib.. ,  +/ -P~. , )  

+ NWr [xl(1 - x2) + X2(1 -- Xl) ] § NW~[2rtr2xlx2] 

+ NWp [xl(1 - xl) + x2(1 - x2)] 

GM-I 

+ .2 + . x . ]   ,co 

[A141 

where Sr is given by Eq. [A3] and/~e is the enthalpy 
of N atoms of the pure component Q (Q = M, I, V; 

=/'/~l,p + H~t, . . . .  ~ v  = H~ + H~ a n d  ~vvib.Q denotes 
�9 the vibrational entropy of N atoms of the pure compo- 
nent Q, which is assumed to be independent of com- 
position and ordering. The first three terms on the 
right-hand side of Eq. [A14] represent the standard state 
of the M-I alloy. It is noted that the contribution of the 
M sublattice and its interaction with the I sublattice only 
change the standard state and, consequently, do not 
affect ordering on the I sublattice. Recognizing that V 
represents empty sites on the I sublattice: evv = 0 and 
/-Pv = 0.  

In GM-1, as given by Eq. [A14], pairwise interactions 
on the I sublattice up to second nearest neighbors (i.e., 
first nearest neighbors within the (001) planes: inter- 
actions A1-B1, A1-C1, etc.) are taken into account. Ac- 
counting for the effect of at least second nearest 
neighbors is necessary to attain a useful thermodynamic 
description. In general, the exchange energies associated 
with the interactions are unknown and should, therefore, 
be considered as parameters to be fitted to experimental 
data. Adding more nearest-neighbor-interaction terms to 
the thermodynamic description increases the number of 
such fit parameters. This number should be kept as small 
as possible. 

The Gibbs free energy GM-I of the M-I allo~r in general 
can be related to chemical potentials t/~ I and '/~v of I and 
V, respectively, in (001) planes of type 1 and to chem- 
ical potentials 2p. I and 2/Xv of I and V, respectively, in 
(001) planes of type 2 and to the chemical potential /ZM 
of M: 

GM-I ~ 2/XM + x j  1[s l n t- (1 - X l )  1]s V 

§ X 2 2[s I § (1 - x2 )  2}[.L V [A15] 

where the chemical potentials pertain to N atoms (M, I, 
V), while the Gibbs free energy pertains to 2N atoms of 
M and (xl + x2)N atoms of I. If V represents vacant I 
sites, it holds that ~ v  = 2/s  ~ 0. Then, the chemical 
potentials t/~t a n d  2/.L I each for N atoms I in the corre- 
sponding planes are defined as for an open system (cf. 
Eq. [2]): 

OGM_I OGM_I Ipq _ , 2/zl = [A16] 
Oxl Ox2 

For equilibrium between I atoms in the two types of 
planes, it holds that 

OGM_I OGM.I 
1/s I = 21L 1 ~ JIZ I ~ - -  - -  = 0 [A17]  

OX 1 OX 2 

The occurrence of ordering originates from a Gibbs free 
energy for an ordered configuration of the I atoms lower 
than that for the disordered configuration. The degrees 
of order in the planes of type 1 and type 2, rl and r2, 
respectively, will take values corresponding with a 
minimum value for the Gibbs free energy, according to 
Eq. [Al4]. Hence, for equilibrium, 

OGM-I OGM.I 
- -  0 and = 0 [A18] 

Or1 Or2 

Thermodynamical equilibrium of the M-I alloy is de- 
scribed by the Gibbs free energy given by Eq. [A14] 
subject to the equilibrium conditions, according to 
Eqs. [A17] and [Al8]. The equations for the equilibrium 
conditions obtained in this way are nonlinear with re- 
spect to the variables xl, x2, rt, and r 2. The numerical 
evaluation method for solving these equations is given 
in Appendix B. 

Order-disorder transition 
The three equilibrium conditions (Eqs. [A17] and 

[A18]) can each be written asf(x_) = f (r l ,  r2, xl, x2) = 
0. If x + d~_ and x are sufficiently close, it holds for all 
x that 

f ( x  + dLc_) = f(x_) + Of drl + Of dr2 + O f  dx, + O f  dx2 
Orl Or 2 OX 1 OX 2 

provided that f (x)  is continuous for x. If equilibrium 
holds for both x and x + dx_ it thus follows that 

:rl drl + Of dr2 + Of dXl + Of dx2=O 
Or2 Oxl Oxz 

Moreover, the infinitesimal changes drt, dr2, dxt, and 
dx 2 within the range _x to x + dx_ can be taken propor- 
tional to one another. The ratios of dr1, dr2, dxl, and dx2 
are defined as follows: dr2 = g" dr1, dXl = h. dr1, and 
dx 2 = i. dr1 (g, h, and i are yet unknown real values), 
provided that dr~ # 0 (this holds within the ordered 
region at least at the order-disorder transition). Explicit 
substitution o f f ( x )  by the three equilibrium conditions 
(Eqs. [A17] and [A18] and dropping the subscript M-I) 
thus yields o(o ) o(o ) o(o ) 

- -  + - -  + h - -  
O r l  g Or2 Oxl 

+ i - -  = 0  
0x2 

+ g - -  + 

0rl 0r2 0xl 

0(0 ) + i - -  = 0  
Ox2 

art g Or2 

+ h - -  + i - -  
OXl 0x2 

[A 19a] 

[A19b] 

= 0  

[Al9c] 
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Since f (x)  has to be continuous for x, and since f (x )  
represents first derivatives of the Gibbs free energy with 
respect to rE, r2, x~, and x2, the order-disorder transition 
cannot be a first-order phase transition. At the order- 
disorder transition, equilibrium requires that 

rl = rE = 0, Xl = X2 [A20] 

Substitution of G according to Eq. [A14] and of 
Eq. [A20] in Eqs. [A19] yields a description of the 
order-disorder transition. It is obtained that 

XE,t 

g = 0.5, h = i ,  

1 (  ~ / 1  4kT Wp)  [A21] 
= x2" = 2 1-+ + 2 W ~ + W p -  c 

respectively, at the 
ordering occurs for 

where xt,, and x2,t are x~ and, x2 
order-disorder transition. Hence, 
(1 - a) < XE + X2 < (1 + a) with a = 
~v/1 + 4kT/(2Wr + Wp - Wpc). In Eq. [A21] (and in a), 
the influence of the third nearest-neighbor exchange 
energy Wpr (due to interactions A1-B2, A1-C2, etc.) on 
the order-disorder transition is also taken into account 
(Section III-A). At the onset of ordering, the evolution 
of the rE and r2 are coupled through g, and the evolution 
of the interstitial contents XE and x2 are coupled through 
h and i. The results of Eq. [A21] are identical to the 
results of Eq. [7] for case (2) as expected. 

Configuration B 

Gibbs free energy, chemical potential, 
and equilibrium condition 
Proceeding analogously, as for configuration A, 

expressions are obtained for the configurational entropy 
of the I atoms on their sublattice and for the enthalpies 
associated with pairwise interactions of I atoms in the 
c-direction as well as within the (001) planes of the I 
sublattice. Then, including the interaction between the 
M and I sublattices, the Gibbs free energy GM-E for a pair 
of (001) planes and the associated pair of planes of M 
atoms is obtained as (cf. Eq. [A14]) 

! GM_I = (~M -- rS~vib M) -~- Xiv + 3 xd (H~I -- TS~vib I -~- ~M1) 
2 ' ' 

[ ~  1 ] 2 
+ NW~ XIv(1-- XiO + 3 x X l  -- Xd) + NW~ 3 (xi~r)2 

[, , 1 ] 
+ NWp -~ &~(1 - x~) + 3 x,~(1 - Xd) + "~ Xd(1 -- X,~) 

1 1 
+ NW, 3 (x:)2 + ~Nkr{[(1 + r)x~d In [(1 + r)&~l 

+ [1 - (1 + r)x~d In [1 - (1 + r)X~vl 

+ [(1 - r)x,v] In [(1 - r)xiJ 

+ l l  - ( 1  - r ) x i v ] l n [ 1  - (1 - r ) x i v ]  

+ [Xd] In [Xd] + [1 -- Xd] In [1 -- Xd]} [A22] 

The Gibbs free energy Gr, cE of the M-I alloy in general 
can be related to chemical potentials P,M, /z~ v, /z~, /~a, 
and/Zdv of M and I and V for iv and d sites, respectively: 

aM_ I = 2 /XM + ~ xidxl + - "~ xi~ 

+ - xdl~f + -- [A231 3 -~xa I-*v 

where the chemical potentials pertain to N atoms (M, I, 
V), while the Gibbs free energy pertains to 2N atoms of 
M and [(4/3)xiv + (2/3)xa]N atoms of I. If V represents 
vacant I sites, it holds that/x~ =/Xav ~ 0. For equilib- 
rium, the chemical potentials of I on the order (i and v) 
and disorder (d) sites, where the two contents xlv and xa 
refer to, have to be identical. It thus holds that (cf. 
Eqs. [A16] and [A17]) 

tZl v = ~ :  ~ ~I  ~ --OGM-E --c3GM'I = 0 [ A 2 4 ]  
2 1 
"3 0Xiv -3 0Xd 

The degree of order r will take a value corresponding 
with the minimum value (stable state) for the Gibbs free 
energy according to Eq. [A22]. Hence, 

OGM_! 
- 0 [A25] 

Or 

Thermodynamical equilibrium of the M-I alloy is de- 
scribed by the Gibbs free energy given by Eq. [A22] 
subject to the equilibrium conditions according to 
Eqs. [A24] and [A25]. The equations for the equilibrium 
conditions obtained in this way are nonlinear with re- 
spect to the variables xiv, x~, and r. The numerical eval- 
uation method for solving these equations is given in 
Appendix B. 

Order-disorder transition 
A description of the order-disorder transition for con- 

figuration B can be obtained in a similar way as for con- 
figuration A. Now, instead of three equilibrium 
conditions with four parameters, there are only two con- 
ditions with three parameters. Of course, the same order- 
disorder transition is found, as expressed by Eq. [7] for 
case (2) (Section III-A) and by Eq. [A21]. No fixed 
interdependence exists for the evolutions of xiv, xd, and 
r at the onset of ordering in contrast with the evolutions 
of xl, x2, rl, and r2 at the onset of ordering, according 
to Eq. [A21 ] for configuration A. 

A P P E N D I X  B 

Numerical evaluation method for route 1 

For the numerical evaluation of the cases of ordering 
evolving from the six nonlinear equations that make up 
Eq. [3], the following route can be conveniently fol- 
lowed. For a particular combination of the values for 
Wc/kT, Wp/kT, and Wpc/kT, Figure 2 indicates the most 
stable configuration and the values f o r f . . ,  j to be con- 
sidered. From Eqs. [7] and [8], xt is obtained. Using 
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one of the six equations of Eq. [3], the value for 
(l~ - I~~ for the order disorder transition can now 
be calculated. By a small variation of this value for 
(Ixl - I~~ the region where ordering occurs is en- 
tered. Next, a guess is made for the corresponding 
change of one of the xK's with respect to x,. The values 
f o r f . . ,  j now provide (estimates for) the change of the 
occupancies of the other kinds of I sites with respect to 
xt. Then, at equilibrium and for the chosen value of 
(l~i - tz~ the real values for XA1 . . . . .  XC2 can be 
obtained from the six equations that make up Eq. [3] by 
an iterative numerical method (e.g., Newton-  
Raphsont~61). Subsequent stepwise variation of the value 
for (tzl - tz~ allows investigation over the whole 
composition range of the M-I alloy, where the values of 
XAt . . . . .  XC2 obtained in the preceding step are used as 
initial guesses for the step considered. 

Numerical evaluation method for  route 2 

For a particular combination of values for Wc/kT,  
W f f k T  and Wpc/kT, the minimum content for ordering 
x, is obtained from Eq. [A21]. Then, one of the inter- 
stitial content variables, x~ for configuration A and xiv 
for configuration B, is raised to a value just above xt. 
Next, for configuration A, the three nonlinear equilib- 
rium conditions (Eqs. [A17] and [A18]) are used to cal- 
culate the values of  x2, r~, and r2 pertaining to the chosen 
value of x~ in an iterative manner applying the Newton-  
Raphson method, where initial guesses for x2, rl, and r2 
were taken such that x2 = x~ and r~ = 21-2 (cf. Eq. 
[A21]). For configuration B, the two nonlinear equilib- 
rium conditions (Eqs. [A24] and [A25]) are used to cal- 
culate the values of Xd and r pertaining to the chosen 
value of xiv in a similar manner. Investigation of the 
entire composition range of the M-I(V) alloy is realized 
by a stepwise increase (by a small amount) of the value 
of x~ for configuration A and the value of xiv for config- 
uration B; for a particular step, the values o f  x2, r~, and 
rE for configuration A and of Xd and r for configuration 
B obtained in the preceding step are used as initial 
guesses for application of the Newton-Raphson 
procedure. 
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