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ABSTRACT

We analyze the generalization ability of a simple perceptron acting on a struc-
tured input distribution for the simple case of two clusters of input data and a
linearly separable rule. The generalization ability computed for three learning
scenarios: maximal stability, Gibbs, and optimal learning, is found to improve
with the separation between the clusters, and is bounded from below by the result
for the unstructured case, recovered as the separation between clusters vanishes.
The asymptotic behavior for large training sets is the same for structured and
unstructured input distributions. For small training sets, the generalization er-
ror of the maximally stable perceptron exhibits a nonmonotonic dependence on
the number of examples for certain values of the model parameters.

1. Introduction

The problem of supervised learning is usually formulated!= as that of a student
network architecture being trained from examples in order to implement a target
input-output relation. The task to be learned is defined through a specific configu-
ration of a teacher network architecture which provides target outputs for randomly
drawn inputs. Most cases analysed to date consider unstructured inputs: vectors of
binary or continuous components are drawn from a uniform or isotropic distribution.

In many practical situations the input distribution is structured: there is a natural
clustering reflecting correlations among the features associated with different compo-
nents of the input vector. The detection of such structures in input space is usually

156 with no reference to a functional

addressed in the context of unsupervised learning,
relation to an output space. The question we address here is that of incorporating
such nontrivial input distributions within the framework of supervised learning.”®
The goal is to investigate potential performance improvements due to some degree of

consistency between the rule output and the clustering in input space.



2. The model

We consider a simple classification task in which N-dimensional vectors £ are
assigned to one of two classes according to the state {; = %1 of a single output
unit. A structure is imposed on the discrete N-dimensional input space {—1, +1}"
through the choice of a specific vector C and a separation p along the direction
¢ = C/V/N so that the inputs are distributed according to the discrete equivalent of
two Gaussian clusters®® centered at +p¢. A cluster label o is chosen from P(c) =
L16(c — 1) + 8(c + 1)], and the components of € follow from
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The input projection h = ¢ - & along the direction that joins the cluster centers is
the superposition of two unit variance Gaussian peaks centered at +p. Projections
along any direction ¢’ L & are structureless: h; = &' - £ is a Gaussian variable of
unit variance and zero mean. The discreteness of input space is not relevant; results
reported here are also valid for the continuous version®® of distribution (1).

Training examples are of the form (£",£(), 1 < p < P, with inputs £ * drawn from
the distribution (1) and class labels ¢ determined through the perceptron rule & =
sign(B-€ /v/N). The resulting dichotomy® corresponds to separating the two classes
with a hyperplane through the origin. The teacher vector B € IRY is perpendicular to
the separating hyperplane. Class labels £ are in general not identical to the cluster
labels o*.

The student network is also a perceptron, with couplings J € IR™ which are
modified through the learning process. Both weight vectors are normalized: | J |*=
| B |?= N. The task is by construction learnable by the student network: the classes
are linearly separable even though the Gaussian clusters overlap.

In this realizable scenario, as in most practical applications, the minimization
of a training error is a natural learning strategy. The object of our analysis is to
investigate the generalization ability of the trained student network as a function of
the normalized number of examples & = P/N, the alignment n = B - C/N between
teacher and structure, and the separation p between the centers of the input clusters.

Training is based on the minimization of a training error

VN 0 else

where £ = min, {&) J-£€"/v/ N} is the stability” of the training set. The training error
(2) reduces to the number of misclassified examples for £k = 0. We apply the stan-

E:i@(ﬁ;— & J-é“), with @(:1;):{1 for @ >0 (2)

dard statistical mechanics formalism® and consider the components of the student
weight vector J as a system of N degrees of freedom subject to the normalization



constraint and interacting through the energy (2). The replica trick within the sym-
metric ansatz? is used to perform the average over the quenched disorder introduced
by all the possible choices for a training set of size P. The zero temperature limit is
taken so as to force the system into its groundstate and minimize the training error
(2).

In addition to the external parameters «, x, p, and 7, the thermodynamic prop-
erties of the system depend on three order parameters: ¢, representing the typi-
cal overlap between two zero—energy student vectors J, and the additional overlaps
R=J-B/N and D =J-C/N. Equilibrium values for the order parameters result

from solving the system of saddle point equations:
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which follow from the minimization of the corresponding zero-temperature free energy.
In writing (3) we have used Dt = di exp(—1?/2)/2x, H(z) = [>° Dt, and W =
(w+iv/g— R+ p signh (nR— D) — (AR )/ —q.

The performance of the trained student network is measured through the general-
ization error which follows from averaging the error function e = O [—(J - £ )(B- £ )]
over the input distribution P(§ ). The result

S-1- 3 > [ o H( Ry*””), (1)

T=F—opn

is fully determined by the external parameters p and 7, and the equilibrium values of
the selfaveraging order parameters R and D as follow from solving the saddle point
equations (3) at fixed «.

3. Three Learning Scenarios

We first consider learning the perceptron of mazimal stability,”'° defined as the
maximal value of x for which the groundstate solution still has zero energy at fixed



Fig. 1. The generalization error versus « for = 0.3 and p= 0 (solid), 2 (dashed), and 4 (dotted).
Inset: ¢, for small values of «.

a. The corresponding J is unique and is selected in the ¢ — 1 limit.® The saddle
point equations (3) are solved in this limit to obtain the values of R, D, and &.
Deterministic algorithms available to obtain the weight vector of maximal stability
for any linearly separable training set'!=13 allow for comparisons between our analytic
results and numerical simulations. Results are summarized below.

For n = 0 there is no correlation between the labeling direction B and the direction
C which characterizes the clustering of the input data. In this regime the generaliza-
tion error becomes independent of the cluster separation p, and the resulting ¢,(«)
is identical to the known result for unstructured data.'® Improved performance at
p > 0 arises even for weak correlation between B and C. as shown for n = 0.3 in
Figure 1: performance improves monotonically with increasing p at fixed a. The
p = 0 curve provides a universal bound. The advantage of learning structured data
increases monotonically as the alignment  between B and C increases. Performance
improvement is a finite « effect which disappears asymptotically, as indicated by the
merging of the curves in Figure 1 with increasing «. In the a — oo limit, R — 1,
D — n,and D — nR. In this limit the generalization error becomes independent of
both p and 7, and exhibits the same decay* as in the p = 0 case: ¢,(a) & 0.50/a.

The competition between B and C results in a novel effect only observable for n <
1: a nonmonotonic dependence of the generalization error on «, illustrated for p = 4
in Figure 1. The mechanism for this small a anomaly is found in the o dependence
of the order parameters R and D, as shown in Figure 2. Numerical solutions to the
saddle point equations are found to be in very good agreement with simulation results,
and reveal the following behavior: R increases monotonically towards 1, although at
a slower rate than for p = 0, while the rapid growth of D at small « identifies a



R,D

Fig. 2. Order parameters D (O) and R (A) versus « for p = 5 and n = 0.3. The solid lines
correspond to the numerical solution of the saddle point equations. The data points represent the
results of simulations for a system with N = 500 input units, averaged over 100 independent training
sets. Standard error bars would be approximately the size of the symbols.

regime dominated by alignment of the student vector J with C instead of its target
B. Such behavior is possible at intermediate values of p, and requires a small training
set for which the class labels & happen to be to a large extent consistent with the
cluster labels ¢*. Among all possible hypothesis J compatible with these labels, the
maximum stability requirement favors a separating hyperplane perpendicular to C.
The compatibility between o* and the correct labels £ is broken as o increases, and
D decreases towards its asymptotic value D = nR. Large values of D at small «
result in a detectable loss of generalization ability at intermediate and small values
of . This nonmonotonicity is a direct consequence of the misalignment between C
and B, which is likely to arise in realistic circumstances.

We now consider (ibbs learning. In this scenario, student vectors J which provide
a correct classification for the training set define a version space® of equivalently good
solutions to the learning problem, posed here as the minimization of the training error
(2) at zero stability. The saddle point equations (3) are solved at k = 0 to obtain
the values of g4, Rs, and Dg. Since the solution is not unique, the typical overlap
gc; between two error—free student vectors is smaller than one. The symmetry ¢ = R
is not satisfied, since possible teacher vectors B in version space are subject to the
additional constraint B-C/N =n.

Numerical solutions to the saddle point equations for zero-stability learning dis-
play a rather simple dependence of ¢;, Rg, and Dg on a: for all values of p and n
the order parameters increase monotonically towards their asymptotic values; both
ge and Rg — 1, and Dg — 1, as a — oo. The strictly monotonic increase of the



various order parameters with « results in a monotonic decrease of the generalization
error with increasing « for all values of p and . The generalization error at fixed «
decreases monotonically with increasing p or . The p = 0 curve provides here again
a universal upper bound, and describes the asymptotic behavior: in the o — oo
limit the generalization error becomes independent of p and 7, and exhibits the same
decay? as for p = 0: ¢,(a) ~ 0.62/a.

Finally we consider the selection of a specific student vector: the optimal learner
J* defined as the center of mass of the version space.!* The corresponding order
parameters are simply related to those obtained for a Gibbs learner: R* = R/ /qa
and D* = Dg/\/qa. R is found to increase monotonically with « for all values of
p and n. D* increases monotonically with « at small p, but exhibits nonmonotonic
behavior resulting in a peak at small « for sufficiently large p. The nonmonotonicity
of D* is similar to the behavior of D for the maximally stable perceptron, but a slower
decay to the D* — n asymptotic value results here in wider peaks. This softer effect
is not sufficient to reverse the monotonic decrease of the generalization error with
increasing « observed for all values of p and 5. The generalization error at fixed «
decreases with increasing p at fixed n; the same trend is observed when increasing
n at fixed p. The p = 0 curve provides here again a universal upper bound. The
dependence of €, on p and n disappears as o — oo, resulting in the same asymptotic
behavior'*!5 as for the p = 0 case: ¢,(a) &~ 0.44/a.
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