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Control Charts for Monitoring

the Mean of AR(1) Data

Jaap E. Wieringa∗

March 12, 1998

Abstract

Control charts are designed to detect a special cause of variation in a se-
quence of observations. Traditionally, the assumption is made that suc-
cessive observations are independently distributed. However, in practice,
the observations are often serially correlated. This point has received
considerable attention in the literature the last decade. Roughly speak-
ing, two kinds of control charts were developed in order to deal with
serial correlation in the observations: the modified Shewhart chart and
the residuals chart. In this paper it is investigated how well these con-
trol charts are able to detect a shift in the mean of AR(1) data. The
performance of these charts is compared to the well studied case of in-
dependent observations. It turns out that for negative autocorrelation,
the residuals chart is the best of these two, for positive autocorrelation
it is best to choose the modified Shewhart chart. A modification of the
residuals chart is developed that outperforms both charts in case of pos-
itive autocorrelation, which is most commonly encountered in practice.
In case of negative autocorrelation, the residuals chart remains the best
choice. The procedure is illustrated by two examples. The first is based
on a data set from Shewhart (1931), the second is a simulated example.

Keywords: Residual Control Charts, SPC, Time Series models.

1 Introduction

Control charts were originally developed by Walter A. Shewhart in the twen-
ties, and are widely used in practice as a tool for reducing variability in process
outcomes. The success of the control chart is based on Shewhart’s classifi-
cation of sources of variation into two groups: common causes of variation,
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and special causes of variation. The variation due to common causes of vari-
ation is the joint effect of numerous small causes that act upon the outcomes
of the process, and that cannot be removed without a profound revision of
the process. This variation is inherently part of the process, and is always
present. Usually, it is not within the power of an operator to influence the
effect of common causes of variation on product outcomes. The second group
of sources of variation consists of special causes of variation. They are not
part of the process, and occur only accidently. However, when a special cause
of variation is present, it will have a large effect on process outcomes. If
removal is possible, a special cause can usually be eliminated without revis-
ing the process. In many cases, an operator can be instructed to recognize
and remove special causes of variation, thereby improving the quality of the
outcomes of the process. It is the task of the control chart to discriminate
between situations where only common causes are affecting the outcomes of a
process and situations where there are also special causes of variation present.
If only common causes are present, the process is said to be in control.

In most literature on SPC it is assumed that Xt, an observation of a quality
characteristic at time t, can be modelled as Xt

i.i.d.∼ N (µt, σ
2
Xt

), for t∈ ZZ .
The index t in µt and σ2

Xt
indicates that the mean and the variance of the

observations may change in time due to the presence of special causes of
variation. With these assumptions, the process is in control if and only if
µt = µ and σ2

Xt
= σ2

X for all t for certain µ and σ2
X . For this reason, a

production process is usually monitored using two control charts, one for
monitoring the variance, and one for monitoring the mean of the process.
Control charts that can be used include the Shewhart, the CUSUM, and
the EWMA control chart (see for example textbooks like Ryan (1989) or
Montgomery (1996)).

In this paper, we will limit ourselves to Shewhart type control charts
for the mean. Therefore, we make the assumption that a special cause can
only affect the mean of the process, and that the variance is constant. The
statistical properties of a Shewhart type control chart for detecting a shift in
the mean of independent observations are summarized in Section 2.

In the sections following Section 2, the independence assumption is loos-
ened to include observations from an AR(1) process. For detecting a shift in
the mean of such a process two approaches are suggested in the literature.
The first approach is a modification of the classical Shewhart control chart.
The control limits are modified to allow for serial correlation in the data. The
modified Shewhart chart is discussed in Section 3. The second approach is
a so-called residuals control chart. It will be discussed in Section 4. On the
basis of Average Run Length (ARL) curves, the performance of these charts
is compared to the performance of the Shewhart chart for independent obser-
vations. From this comparison, it is possible to evaluate the loss of efficiency
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due to serial correlation.
In Section 5, a modification of the residuals control chart is presented that

has a better ARL performance than the modified Shewhart and the residuals
control chart.

A simulated example is discussed in Section 6, and the conclusions are
summarized in Section 7.

2 The i.i.d. case

In the classical situation, it is assumed that subsequent observations of a
quality characteristic are independently distributed. In this paper, we will
denote a sequence of independent observations by {Xt}. An observation may
be the mean of a sample, or an individual observation. We will assume that
the variance of the observations remains constant over time, and that a special
cause of variation may cause a shift in the mean of the process. Assuming
normality, we have the following model for Xt, an observation of the quality
characteristic at time t

Xt
i.i.d.∼ N (µt, σ

2
X) for t∈ ZZ, (2.1)

where the expectation of Xt is indexed by time, to indicate that the mean of
the process may shift due to special causes of variation.

A special cause occurring at an unknown time point T is modelled as

µt =




µ for t < T

µ + δσX for t ≥ T.
(2.2)

The size of the shift is expressed in units of the standard deviation of the
observations. This facilitates comparison of control charts for processes with
different variances.

The classical Shewhart control chart has control limits µ ± 3σX . After a
shift of size δσX has occurred, we can write for P(δ), the probability that an
observation falls within the control limits

P(δ) = P(µ − 3σX ≤ Xt ≤ µ + 3σX)

= Φ(δ + 3) − Φ(δ − 3),

where Φ(·) denotes the cumulative distribution function of the standard nor-
mal distribution. It can be computed that P(0) = 0.9973, so that it is very
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unlikely to observe an out of control signal if δ = 0. Therefore, if an observa-
tion outside the control limits is encountered, the presence of a special cause
of variation is suspected. This interpretation of an out of control signal relies
on the independence and normality assumptions made for model (2.1). In the
following sections, the independence assumption is loosened to include obser-
vations from an AR(1) model. The performance of control charts for AR(1)
models is compared to the performance of the Shewhart chart for independent
observations on the basis of ARL curves.

The ARL is defined as the average number of observations upto and in-
cluding the first out of control observation. The ARL is a function of δ. For
the case of independent observations, ARL(δ) can be computed as

ARL(δ) =
∞∑

i=1

iP(δ)i−1[1 − P(δ)] =
1

1 − P(δ)
.

In Figure 2.1, the ARL curve of a Shewhart chart with three sigma limits is
depicted.
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Figure 2.1: ARL curve of a Shewhart chart.

Figure 2.1 shows that the ARL is high if δ = 0, and that the ARL is low
if δ is large. This is desirable behavior. The ARL curves of control charts
discussed in the remainder of this paper will be compared to the curve in
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Figure 2.1. A control chart having the same ARL(0), and lower ARL(δ) for
δ > 0 is more efficient, since on average less observations are needed to detect
a change in E(Xt). Analogously, a control chart having the same ARL(0) and
higher ARL(δ) for δ > 0 is less efficient.

From a theoretical point of view it is interesting to investigate the effect
of serial correlation on the performance of control charts. However, the main
motivation for this extension stems from practical situations, where the as-
sumption of independence of the observations is often not fulfilled. Serial
correlation in observations may for example arise from mixing of tanks with
raw material, so that it is not always possible to remove serial correlation
without affecting the proper functioning of the process. It has been the ex-
perience of many SPC practitioners that simply ignoring serial correlation by
monitoring the process with a control chart designed for independent observa-
tions produces misleading results. In the next section, it is shown in figure 3.1
that first order autocorrelation makes a control chart less sensitive for changes
in the mean. When designing a control chart for serially correlated data, the
correlation should be accounted for.

3 The modified Shewhart control chart

3.1 The AR(1) process

In the following sections, we will evaluate the ability of control charts to de-
tect a shift in the mean of an AR(1) process. In this subsection, we will
briefly describe the AR(1) process. To distinguish from a sequence of inde-
pendent observations, a sequence of AR(1) observations will be denoted by
{Yt}. Again, an observation may be the mean of a sample or an individual
observation. We assume that Yt is generated by a stationary AR(1) model if
the process is in-control:

Yt − µ = φ(Yt−1 − µ) + εt for t∈ ZZ, (3.1)

where {εt} is a sequence of i.i.d. disturbances, εt ∼ N (0, σ2) for t∈ ZZ .
Subsequent observations of model (3.1) are serially correlated, since

Cov(Yt, Yt−k) = φkσ2
Y ,

where

σ2
Y = Var(Yt) =

σ2

1 − φ2
.
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Obviously, E(Yt) = µ for all t in model (3.1). A model that includes the
possibility of a shift in E(Yt) ≡ µt is

Yt − µt = φ(Yt−1 − µt−1) + εt for t∈ ZZ. (3.2)

The process is in-control if µt = µ for all t in ZZ. Analogous to the i.i.d. case,
we want to study the ARL behavior of a control chart that is designed to
detect a shift of size δσY in E(Yt). Note that the i.i.d. case is a special case
of the process discussed in this section, since if φ = 0, model (3.2) reduces to
model (2.1).

Several authors have considered detecting a shift in model (3.2). Their
work can roughly be classified into two categories. The first group of authors
recommends plotting the original observations, and adjust the control charts
for the effect of serial correlation that is present in the data. This approach
will be discussed in this section. The second group suggests fitting a time
series model, and monitor the residuals for a departure from the in-control
model. This will be discussed in the next section.

3.2 Modified Shewhart limits

The first group of authors recommends plotting the original observations in
control charts with modified limits. These authors include Vasilopoulos and
Stamboulis (1978) who discuss modifications of Shewhart control charts to
account for serial correlation, Johnson and Bagshaw (1974) and Bagshaw and
Johnson (1975), who investigated the effect of serial correlation on CUSUM
control charts. Schmid (1997) proposes a modification of the EWMA control
chart to account for serial correlation.

The word ‘modified’ refers to two adaptations compared to the control
chart for i.i.d. observations. The first adaptation is very natural: for deter-
mining the width of the control limits the variance of the observations is used
instead of the variance of the disturbances. The variance of Yt is σ2, multi-
plied with a factor of 1/(1 − φ2) > 1. If φ is in- or decreased from zero, the
variance of the observations increases. A shift in the mean that is hidden in
a sequence of observations with larger variance is harder to detect. There-
fore, it is to be expected that monitoring AR(1) observations driven by white
noise with variance σ2 for a shift in the mean of size δσ is not as efficient as
monitoring an independent series with variance σ2 for a shift of the same size.
The first adaptation of the control limits compensates for the increase in the
variance of the observations: the observations from model (3.2) are compared
to control limits µ ± 3σY instead of µ ± 3σ.

The second adaptation follows from the ARL properties of the first adap-
tation. Hence, it will be discussed after we have evaluated the ARL.
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For evaluating the ARL of the modified Shewhart chart, the Markov chain
approach can be used (see Brook and Evans (1972)). However, we will use
the integral equation approach presented by Crowder (1987). Suppose that
the sequence {Yt} is generated by (3.2), and that on time T a shift of size
δσY has occurred in E(Yt). For t ≥ T + 1, the observations of Yt are then
generated by

(Yt − µ) − δσY = φ (Yt−1 − µ) − φδσY + εt

If the value of Yt−1 is s, we can write for v, the realization of Yt

v = µ + δσY + φ (s − (µ + δσY )) + εt

= φs + (1 − φ)µ + (1 − φ)δσY + εt,

provided t ≥ T +1. The observations are compared to control limits µ±3σY .
The run length is one if the next observation v falls outside the control limits.
If v is within the control limits, the run length is one plus some additional
observations, which can be regarded as a run length of the AR(1) process,
starting in v. Let Lφ(δ, s) denote the ARL of the modified Shewhart control
chart as a function of δ and s, the value of the AR(1) process when we started
to take observations. The latter is of importance since the observations are
serially correlated. The function also depends on the AR parameter φ. We
can write the following for Lφ(δ, s):

Lφ(δ, s) = 1 +
∫

{ε| µ−3σY ≤v≤µ+3σY }

Lφ (δ, v) f(ε) dε

= 1 +
∫ µ+3σY

µ−3σY

Lφ (δ, v) f [v − φs − (1 − φ)(µ + δσY )] dv,

where f(ε) is the density function of ε. Note that for φ = 0, Lφ(δ, s) does not
depend on s, and hence is a constant relative to s. This makes sense because
the observations are independent if φ = 0. From the integral equation above
it follows that L0(δ, s) = ARL(δ) for all s ∈ (µ − 3σY , µ + 3σY ), as expected.
The unknown function Lφ(δ, s) can be numerically evaluated using Gaussian
Quadrature.

The function Lφ(δ, s), is the ARL function of the modified Shewhart chart
if we start to take observations after the shift has occurred. In practice, we
are often interested in how quickly on average a shift is detected starting
from the moment the shift occurs. The computation of this ARL function is
slightly different. If it is assumed that the value of YT−1 is s, we can write for
v∗, the realization of YT
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v∗ = µ + δσY + φ (s − µ) + εT

= φs + (1 − φ)µ + δσY + εT .

We will denote the ARL of a modified Shewhart chart when the first obser-
vation is taken at the time of the shift by L∗

φ(δ, s). This function is related to
Lφ(δ, s) as follows

L∗
φ(δ, s) = 1 +

∫ µ+3σY

µ−3σY

Lφ (δ, v∗) f [v∗ − φs − (1 − φ)µ + δσY ] dv∗.

The difference between L∗
φ(δ, s) and Lφ(δ, s) is small. For negative values of

φ, L∗
φ(δ, s) ≥ Lφ(δ, s), while for positive φ, L∗

φ(δ, s) ≤ Lφ(δ, s).
In Figure 3.1 L∗

φ(δ, 0) curves are drawn for φ = −0.6, 0, 0.6 as functions of
δ. The curve for φ = 0 is identical to the curve depicted in Figure 2.1.
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Figure 3.1: ARL curves of the modified Shewhart chart for various
AR(1) processes.

The ARL curves in figure 3.1 show the result of a simple adaptation of the
Shewhart chart. The correlation is basically ignored. The width of the control
limits is based on σY , which is the standard deviation of the observations, and
not on σ, the standard deviation of the disturbances. Figure 3.1 shows that,
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compared to the Shewhart chart for i.i.d. observations, the adapted control
chart has a higher in-control ARL. This agrees with a result in Schmid (1995),
where it was proven that in-control ARL values for arbitrary Gaussian pro-
cesses are always larger than the in-control ARL for i.i.d. observations. This
effect is advantageous. For δ > 0, the ARL curves are adversely affected by
first order autocorrelation. Compared to the i.i.d. case, the adapted control
chart is less sensitive for detecting shifts in the mean.

The curves drawn in Figure 3.1 show the typical behavior of L∗
φ(δ, 0) for

nonzero φ in the sense that a nonzero φ results in a larger L∗
φ(0, 0), but also

in larger L∗
φ(δ, 0) for δ > 0.

Whether the net effect of first order autocorrelation is beneficial or not is
not clear from Figure 3.1. To make a proper evaluation, a second adaptation
of the control chart is needed. The adaptation consists of tightening the limits
of the adapted Shewhart chart in such a way that L∗

φ(0, 0) ≈ ARL(0).
The resulting ARL curves for φ = −0.9 and φ = 0 are depicted in Fig-

ure 3.2. ARL curves of intermediate values of φ were not drawn, since there is
no visible difference with the curve of φ = 0 (this can be checked in Figures 4.2
and 4.3). The curves for various φ ≥ 0 are drawn in Figure 3.3.
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Figure 3.2: L∗
φ(δ, 0) as a function of δ for φ = −0.9 and φ = 0.

Figures 3.2 and 3.3 were drawn with the objective to show that all but one
ARL curves are close together. The ARL curves corresponding to negative
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Figure 3.3: L∗
φ(δ, 0) as a function of δ for various φ ≥ 0.

values of φ practically coincide with the curve corresponding to the i.i.d. case.
For positive values of φ, the modified Shewhart chart is performing worse.
However, for φ = 0.3 and φ = 0.6 the differences with the i.i.d. case are small.
For the values of φ considered, the modified Shewhart chart behaves only
considerably worse for φ = 0.9.

In conclusion, if one monitors AR(1) data for a shift in the mean with the
aid of a modified Shewhart control chart, then the performance is comparable
to a Shewhart chart for independent observations, provided φ is not too large.

3.3 Discussion

In this subsection the modified Shewhart chart for AR(1) data is compared
to the EWMA control chart for independent observations. It turns out
that they are very similar. The EWMA control chart was firstly present-
ed by Roberts (1959). More recent references include Hunter (1986), Crow-
der (1987), and Lucas and Saccucci (1990). In these references, it is shown
that the ARL behavior of the EWMA control chart is better than the ARL
performance of the Shewhart chart for independent observations. Therefore,
one might expect that the ARL performance of the modified Shewhart chart
for AR(1) data is also better than that of the Shewhart chart for independent
observations. However, in the previous subsection it was argued that the ARL
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performance of the modified Shewhart chart for AR(1) data is comparable to
that of the Shewhart chart for independent observations. In this subsection,
it is explained why the ARL performance of the modified Shewhart chart for
AR(1) data is not as good as the ARL performance of the EWMA chart for
independent observations.

Suppose that we have a sequence of i.i.d. observations {Xt}, which satis-
fy (2.1) and (2.2). The EWMA statistic at time t will be denoted by Wt and
is constructed as follows

Wt = (1 − λ)Wt−1 + λXt for t = 1, 2, · · · , (3.3)

where λ ∈ (0, 1). The EWMA chart may be started by setting W0 equal to
a target value or (an estimator of) µ. If W0 = µ, it is easy to verify that
E(Wt) = µ for t = 0, 1, 2, · · ·,T. For t ≥ T we have that

E(Wt) = µ +
[
1 − (1 − λ)t−T+1

]
δσX ,

which approximately equals µ+δσX for t � T . Hence, {E(Wt)}, the sequence
of expected values of the EWMA statistic, approximately mimics {E(Xt)}.

The relation between (3.3) and the AR(1) model (3.2) becomes prevalent
if we subtract µt on both sides of equation (3.3):

Wt − µt = (1 − λ)(Wt−1 − µt) + λ(Xt − µt). (3.4)

Note that {λ(Xt−µt)} may be considered a white noise process with variance
λ2σ2

X . As long as µt = µ for t = 0, 1, 2, · · ·, we conclude that computing the
EWMA statistic is equivalent to converting a sequence of i.i.d. observations
into an AR(1) sequence with AR parameter φ = 1 − λ. Moreover, using
an EWMA control chart is in some sense equivalent to monitoring AR(1)
observations in a Shewhart type control chart. In Lucas and Saccucci (1990)
it was shown that the properties of the EWMA are very close to those of
CUSUM schemes. Small shifts in the mean are on average more quickly
detected on an EWMA control chart than on a standard Shewhart control
scheme.

The argument above seems somewhat in contradiction with the conclu-
sions of the previous subsection. There we observed that for φ = 0.9 the
modified Shewhart control chart for AR(1) data is not very sensitive in de-
tecting small changes in the mean. A value φ = 0.9 corresponds to a value of
λ = 0.1. For this value of λ, an EWMA chart is much more sensitive than a
Shewhart control chart for detecting small shifts in the mean of a sequence
of independent observations. The discrepancy between these results can be
explained by studying a ‘signal to noise’ ratio: a number that relates the size
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of the shift to the standard deviation of the process. This ratio allows us to
compare shifts in means in processes with different variances. We define the
‘signal to noise’ ratio as the size of the shift divided by the standard deviation
of the process.

For the modified Shewhart chart, the size of the shift is δσY after time
T . The standard deviation of the AR(1) process is σY . Hence, the ‘signal to
noise’ ratio is δ.

In the case of the EWMA control chart, the size of the shift in E(Wt)
approximately equals δσX for t � T . The variance of the EWMA statistic is

Var(Wt) = σ2
X

(
λ

2 − λ

) [
1 − (1 − λ)2t

]
.

Hence, for large t � T , the ‘signal to noise’ ratio equals approximately
δ
√

(2 − λ)/λ, which is larger than δ for 0 < λ < 1. A popular choice of
λ for the EWMA chart is λ = 0.1. In this case, the ‘signal to noise’ ratio is
approximately δ

√
19 for large t � T .

Hence, computing the EWMA of a sequence of i.i.d. observations leaves
the pattern of expectations approximately unaltered, but improves the ‘signal
to noise’ ratio. This is combined with the introduction of first order positive
autocorrelation. From the ARL curves in the previous subsection, we learned
that first order positive autocorrelation has a negative effect on the perfor-
mance of the ARL. Apparently, this effect is offset by the positive effect of the
improved ‘signal to noise’ ratio. We conclude that the efficiency of the EW-
MA control chart is not the result of the autocorrelation that is introduced.
It is the improvement of the ‘signal to noise’ ratio that makes the EWMA
control chart efficient.

4 The residuals control chart

A second approach for monitoring AR(1) observations is amongst others dis-
cussed by Montgomery and Mastrangelo (1991), Alwan and Roberts (1988),
Berthouex, Hunter and Pallesen (1978), Harris and Roberts (1991), and in
Kramer and Schmid (1996). The idea is to monitor the process using residuals
of fitting a time series model to the data. If a shift in the mean of the process
occurs, this will cause a shift in the mean of the residuals. Furthermore, if
the time series model fits the data well, the residuals will be approximately
uncorrelated. This provides a theoretically elegant way to monitor a serially
correlated process using control charts that were designed for independent
observations.

12



4.1 Residuals of an AR(1) process

The residual control chart is based on charting residuals

et ≡ Yt − Ŷt|t−1,t−2,···, (4.1)

where Ŷt|t−1,t−2,··· is a forecast of Yt, based on observations upto and includ-
ing time t − 1. The linear forecast that minimizes the mean square error is
E(Yt|Yt−1, Yt−2, · · ·), see for example Harvey (1993). In the case of AR(1) data
generated by the in-control model (3.1), we have

Ŷt|t−1,t−2,··· = E(Yt|Yt−1, Yt−2, · · ·) = µ + φ(Yt−1 − µ). (4.2)

In practice, µ and φ will have to be estimated from a data set that was
obtained in a period where only common causes of variation were affecting
the process. Throughout this paper we will assume that enough in-control
observations are available so that µ and φ can be estimated accurately.

As long as the process is in control, observations are generated by mod-
el (3.1), and et, the quantities that will be plotted in the residuals control
chart satisfy

et = Yt − Ŷt|t−1,t−2,···
.= εt for all t (4.3)

where the last relation is exact if µ and φ are known. Suppose that a special
cause shifts E(Yt) at time T by an amount of δσY . Since we are not aware of
this shift, we compute eT , eT+1, · · · as if the process were in control. Hence,
also for t > T , computation of et is given by (4.1), with Ŷt|t−1,t−2,··· computed
as in (4.2).

The elements of the sequence of residuals {et} satisfy

et
.=




εt for t < T

εt + δσY for t = T

εt + (1 − φ)δσY for t = T + 1, T + 2, · · · .

(4.4)

Note that the sequence {et} is approximately independently distributed since
we assumed that εt

i.i.d.∼ N (0, σ2). Hence, we are back at the i.i.d. case. For
φ > 0 only a fraction of the shift in E(Yt) is transferred to the residuals for
t > T . For φ < 0, the shift is blown up. Therefore, we expect the residuals
chart to perform better for AR(1) data with negative φ relative to AR(1) data
with positive φ, since the ‘signal to noise’ ratio is higher for negative φ.
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4.2 The ARL of the residuals chart

In the case where the first observation is taken after the shift in E(Yt) has
occurred, the computation of the ARL of the residuals chart is analogous
to the computation of the ARL curve of a Shewhart chart for independent
observations, as described in Section 2.

However, if the first observation is taken at the time of the shift, or if
we are interested in the expected number of observations that a shift goes
undetected, the computation is slightly different. The reason for this is that
the probability of observing a residual between the the control limits at the
time of the shift differs from the probability that a residual falls between the
control limits after the shift. Let us denote the probability that a residual
falls between the control limits for t > T by P(δ), and let P1(δ) denote the
probability that a residual falls between the limits at time T . It can be shown
that ARLrc(δ), the ARL of the residuals chart, satisfies

ARLrc(δ) = 1 +
1

1 − P(δ)
P1(δ) (4.5)

if the first observation is taken at the time of the shift. Note that, if P1(δ) =
P(δ), the right hand side reduces to 1/(1 − P(δ)), which is the ARL of the
residuals chart if the first observation is taken after the shift in E(Yt) has
occurred.

The difference between ARLrc(δ) and 1/(1−P(δ)) is negligible for negative
φ. However for large positive φ the difference is quite large. This can be
explained by looking at ‘signal to noise’ ratios. At time T , the size of the shift
that is transferred to the residuals is approximately equal to δσY . Dividing
this quantity by σ, we have that

δσY

σ
=

δ√
1 − φ2

.

Hence, the ‘signal to noise’ ratio converges to infinity as φ → 1. As a result,
the probability that the shift will be detected at the first observation converges
to one as φ → 1. Consequently, P1(δ) → 0 for δ 6= 0. This affects ARLrc(δ)
positively, since it follows from equation (4.5) that ARLrc(δ) converges to 1
as P1(δ) → 0.

For t > T , the ‘signal to noise’ ratio is approximately equal to

(1 − φ)δσY

σ
= δ

√
1 − φ√
1 + φ

, (4.6)
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which converges to 0 as φ → 1. Hence, for values of φ very close to one it is
very hard to detect a shift if it is not detected at the first observation.

In Figures 4.1 through 4.6 ARL curves of the residuals chart are compared
to ARL curves of the modified Shewhart chart for various values of φ. For
these curves it is assumed that the first observation is taken at the time of
the shift. As a reference, also the ARL curve for the i.i.d. case is depicted.
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Figure 4.1: Various ARL curves for AR(1) process with φ = −0.9.

The ARL curves for the modified Shewhart chart were depicted earlier
in Figures 3.2 and 3.3. In these figures, also the ARL curve for φ = 0 was
depicted. Since all three curves coincide for φ = 0 (the i.i.d. situation), we
did not include a graph for this case here.

4.3 Discussion

From Figures 4.1 through 4.6, we conclude that for negative first order auto-
correlation, the residuals chart is performing better than the Shewhart chart
for independent observations. This was to be expected, since in Subsection 4.1
it was shown that for negative autocorrelation, a shift in AR(1) observations
is blown up in the residuals.

Compared to the Shewhart chart for independent observations, the per-
formance of the residuals chart is worse for positive autocorrelation. This
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Figure 4.2: Various ARL curves for AR(1) process with φ = −0.6.
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Figure 4.3: Various ARL curves for AR(1) process with φ = −0.3.
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Figure 4.4: Various ARL curves for AR(1) process with φ = 0.3.
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Figure 4.5: Various ARL curves for AR(1) process with φ = 0.6.
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Figure 4.6: Various ARL curves of AR(1) process with φ = 0.9.

is caused by the fact that only a fraction of the shift is transferred to the
residuals for positive φ.

For values of φ very close to one, we argued in the previous section that
the corresponding ARL curve will converge to 1 for all δ > 0. A value of
φ = 0.9 is not close enough to 1 to show this convincingly in Figure 4.6.
Therefore, in Figure 4.7, the three ARL curves are drawn for φ = 0.99. This
graph shows that the ARL performance of the residuals chart is improved for
values of φ very close to 1.

The conclusions drawn from Figures 4.1 through 4.6 and Figure 4.7 agree
with a comment of Ryan (1991):

“A residuals chart for AR(1) data will perform poorly unless φ is
negative or extremely close to 1. In most applications we would
expect to have φ̂ > 0 and not particularly close to one”.

This is an important disadvantage of the residuals chart.
At the start, the residuals chart seemed to be attractive. By removing the

serial correlation, the problem is reduced to the well known case of detecting
a shift in the mean of independent observations. In contrast, the modified
Shewhart chart basically ignores the serial correlation in the data. The control
limits are adjusted in a rather ad-hoc manner to ensure a certain in-control
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Figure 4.7: Various ARL curves of AR(1) process with φ = 0.99.

ARL. However, for positive φ, the modified Shewhart chart is performing
better than the residuals control chart.

The findings of the last two sections can be summarized in the advice to
use the modified residuals chart for detecting a shift in the mean of AR(1)
data with positive φ, and to use the residuals chart in case of AR(1) data with
negative φ. For φ < 0, a shift in the mean is then on average detected faster
than in the i.i.d. case, while for φ > 0 not much efficiency is lost relative to
the i.i.d. case, provided that φ is not too large.

5 A modification of the residuals control chart

In the previous section it was concluded that the bad performance of the
residuals chart for positive φ is caused by the fact that only a fraction of the
shift in the mean is transferred to the residuals. As a result the ‘signal to
noise’ ratio is smaller than δ for t > T and φ > 0 (see formula (4.6)). This
has a negative effect on the performance of the residuals control chart. In
general, a higher ‘signal-to-noise’ ratio will result in a more efficient control
chart. For example, in Subsection 3.3 we concluded that the efficiency of the
well known EWMA chart is mainly due to a good ‘signal-to-noise’ ratio. The
bad ‘signal-to-noise’ ratio for positive φ is an important disadvantage of the
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residuals chart.
On the other hand, the residuals chart is theoretically very appealing

because it takes the serial correlation explicitly into account, and reduces the
problem to the well known case of detecting a shift in the mean of independent
observations.

5.1 The idea

In this section, we try to combine the theoretical appeal of the residuals
chart with a good ‘signal-to-noise’ ratio. We suggest a modification of the
residual chart that roughly maintains independence of the residuals, while
the ‘signal-to-noise’ ratio is approximately δ within a few observations after
the shift. In this way, the main drawback of the residuals chart is overcome,
and serial correlation is explicitly accounted for. The modified residuals can
be monitored using control charts that were designed for detecting a change
in the mean of independent observations.

Our suggestion is to plot ut at time t, where ut is defined for t = 0, 1, 2, · · ·
as

ut ≡ Yt − φYt−1 + φµ̂t, (5.1)

where µ̂t is an estimator of µt that quickly responds to changes in the mean
of the process, such as an exponentially weighted moving average. The ratio-
nale behind this suggestion is the following. Suppose that µ̂t is a very good
estimator for µt, so that

µ̂t
.=




µ for t = 0, 1, · · · , T − 1

µ + δσY for t = T, T + 1, · · · .
(5.2)

In that case

ut
.=




µ + εt for t = 0, 1, · · · , T − 1

µ + δσY + εt for t = T, T + 1, · · · .
(5.3)

The right hand side of (5.3) represents an ideal situation, where the successive
ut are independent, and the shift in µt is fully transferred.

Of course, in practice, such a perfect estimator of {µt} is not available.
Simulation studies of the ARL curve of the modified residuals chart have
shown that an exponentially weighted moving average (EWMA, see also Sub-
section 3.3) is a better option than a regular moving average. How to choose
the EWMA smoothing parameter λ will be discussed in Subsection 5.3.
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5.2 Comparison to other procedures

To judge the effect of the modification, we compare the ARL curve of the
modified residuals chart to ARL curves of the control charts we discussed
earlier. In each of the Figures 5.1 through 5.6, ARL curves corresponding to
the four different control charts are drawn for a fixed value of φ ranging from
φ = −0.9 to φ = 0.9. Again, the graph for φ = 0 is left out because all curves
coincide.

For all of the curves it is assumed that the the first observation is taken at
the time of the shift. The ARL curve for the modified Shewhart chart is com-
puted using formula (4.5), the ARL curve for the residuals chart is L∗

φ(δ, s).
The ARL curve for the modified residuals chart is derived by simulation. The
curve consists of 101 points, which are means of 10,000 replications. The
random number generator we used is described in Knypstra (1997). A value
of λ = 0.1 was chosen for computation of the EWMA.
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Figure 5.1: Various ARL curves for AR(1) process with φ = −0.9.

From Figures 5.1 through 5.6 we conclude that for negative φ, the perfor-
mance of the modified residuals is better than the modified Shewhart chart
and the Shewhart chart for independent observations. However, the excel-
lent performance of the residuals chart for negative φ is not equalled by the
modified residuals chart. Hence, for φ < 0, the residuals chart remains the
best choice, and the modified residuals chart is a well performing second-best
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Figure 5.2: Various ARL curves for AR(1) process with φ = −0.6.
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Figure 5.3: Various ARL curves for AR(1) process with φ = −0.3.
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Figure 5.4: Various ARL curves for AR(1) process with φ = 0.3.
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Figure 5.5: Various ARL curves for AR(1) process with φ = 0.6.
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Figure 5.6: Various ARL curves of AR(1) process with φ = 0.9.

option.
For positive φ, the modified residuals chart outperforms both the modified

Shewhart chart and the residuals chart. The loss of efficiency due to serial
correlation relative to the i.i.d. case is negligible for φ ≥ 0.6. However, for
larger positive values of φ this procedure becomes less efficient, too.

5.3 Choice of the EWMA smoothing parameter

For a good performance of the suggested modification, it is necessary to have
a good estimator for E(Yt) available, one that quickly adapts to persisting
changes which may occur due to the presence of special causes of variation.
In various simulation studies, we experimented with a regular moving average
with a small window size of say, 5 to 10 observations. From these simulations
we learned that a regular moving average is not the best option: hardly any
efficiency is gained for positive φ relative to the modified Shewhart chart. Ex-
periments with the EWMA show that this alternative is preferable. However,
the choice of the value of λ requires some care. In table 5.1, the effect of the
choice of λ on the ARL of the modified residuals chart for an AR(1) process
with φ = 0.9 is summarized. This value of φ was chosen since for the values
of φ considered, this ARL curve could use some improvement.

From table 5.1 we conclude that to a limited extend, the choice of λ can
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be used as a design parameter for the modified residuals chart. If large shifts
of size 2σY or 3σY are to be detected quickly, a small value of λ = 0.01 is
recommended. A value of λ = 0.05 is a good choice for detecting a shift of
size σY .

Table 5.1: The effect of λ on the ARL of the modified
residuals chart for φ = 0.9.

ARL(0) ARL(1) ARL(2) ARL(3)

λ = 0.01 377.4 77.3 9.7 1.1
(3.94) (0.67) (0.22) (0.02)

λ = 0.025 372.1 69.3 10.6 1.8
(3.75) (0.62) (0.19) (0.03)

λ = 0.05 366.9 67.4 12.3 1.8
(3.76) (0.64) (0.18) (0.04)

λ = 0.075 368.6 70.6 13.4 2.1
(3.75) (0.71) (0.18) (0.05)

λ = 0.1 364.4 73.1 13.7 2.3
(3.68) (0.74) (0.18) (0.05)

λ = 0.125 365.0 75.0 14.2 2.4
(3.63) (0.77) (0.18) (0.05)

λ = 0.15 364.7 78.0 14.3 2.5
(3.65) (0.80) (0.19) (0.05)

5.4 Discussion

In summary, the modified residuals chart has an overall good performance:
if φ is negative, it is more efficient than the Shewhart chart for independent
observations. It also performs better than the modified Shewhart chart. The
efficiency gain of the residuals chart for negative φ is only partly attained
by the modified residuals chart. For positive φ, it outperforms both the
residuals chart and the modified Shewhart chart. For small to moderate φ
there is virtually no loss of efficiency compared to the benchmark curve of the
Shewhart chart for independent observations.

The crux of the modification is the addition or subtraction of a portion of
µ̂t. The estimator that is used needs to adapt quickly to persisting changes
in the level of the observations, but must be insensitive to the effect of short
term random disturbances. As it turns out, an EWMA is a better choice
than a regular moving average. The smoothing parameter λ should be chosen
somewhere within the range [0.01, 0.15]. Within this range, it is to a limited
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extend possible to choose λ in such a way that the modified residuals chart is
most sensitive for shifts of a given size. Table 5.1 can provide some guidance
when choosing a value of λ.

In practice, it is of course not possible to estimate the sequence {µt} per-
fectly. If this were possible, formula (5.3) would become an exact relationship,
and the corresponding ARL curve would equal the curve of the Shewhart chart
for independent observations. Hence, the latter may be viewed as a kind of
limiting ARL curve for the modified residuals chart with a very good smooth-
ing procedure. In the simulation studies leading up to this paper, we only
considered regular moving averages with a small window size and the EW-
MA. It is possible that another smoothing procedure performs even better for
large positive values of φ, in the sense that the corresponding ARL curve is
closer to the ARL of the Shewhart chart for independent observations. This
remains to be investigated.

For practical purposes, the modified residuals chart is an improvement
over existing procedures since the chart outperforms both other Shewhart
type control charts for the case of φ > 0. We believe that this case is more
likely to occur in practice than the case of negative φ. But also from a
theoretical point of view this approach is appealing. The extra information
on the data structure that is provided by the presence of serial correlation is
used explicitly, and the problem is transformed approximately into the more
familiar case of monitoring a sequence of independent observations. However,
due to the imperfect estimate of {µt}, some serial correlation remains, and
some ad-hoc adjustments to the control limits are needed to attain a desired
in-control ARL.

6 Examples

In this section, we illustrate the use of previously discussed control charts
by two examples. The first is a real life example, based on a data set that
appeared in Shewhart (1931). In his treatment of the data set, Shewhart
did not take the presence of serial correlation into account. By using the
control charts discussed in this paper, we arrive at other conclusions than
Shewhart did. The second example is a based on a simulated AR(1) series
with a persistent change in the mean of the observations.

6.1 A real life example

The first book on quality control stems from the year 1931. It is written
by the developer of the control chart: Dr. Walter A. Shewhart. In this
very well written work, the newly developed concepts of quality control are
illustrated with real-life examples. The second data set that appears in this
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book consists of 204 observations of the resistance of a certain insulation
material. In table 6.1, these observations are reprinted. The observations

Table 6.1: Electrical resistance of insulation in megohms

5,045 4,635 4,700 4,650 4,640 3,940 4,570 4,560 4,450 4,500 5,075 4,500
4,350 5,100 4,600 4,170 4,335 3,700 4,570 3,075 4,450 4,770 4,925 4,850
4,350 5,450 4,110 4,255 5,000 3,650 4,855 2,965 4,850 5,150 5,075 4,930
3,975 4,635 4,410 4,170 4,615 4,445 4,160 4,080 4,450 4,850 4,925 4,700
4,290 4,720 4,180 4,375 4,215 4,000 4,325 4,080 3,635 4,700 5,250 4,890
4,430 4,810 4,790 4,175 4,275 4,845 4,125 4,425 3,635 5,000 4,915 4,625
4,485 4,565 4,790 4,550 4,275 5,000 4,100 4,300 3,635 5,000 5,600 4,425
4,285 4,410 4,340 4,450 5,000 4,560 4,340 4,430 3,900 5,000 5,075 4,135
3,980 4,065 4,895 2,855 4,615 4,700 4,575 4,840 4,340 4,700 4,450 4,190
3,925 4,565 5,750 2,920 4,735 4,310 3,875 4,840 4,340 4,500 4,215 4,080
3,645 5,190 4,740 4,375 4,215 4,310 4,050 4,310 3,665 4,840 4,325 3,690
3,760 4,725 5,000 4,375 4,700 5,000 4,050 4,185 3,775 5,075 4,665 5,050
3,300 4,640 4,895 4,355 4,700 4,575 4,685 4,570 5,000 5,000 4,615 4,625
3,685 4,640 4,255 4,090 4,700 4,700 4,685 4,700 4,850 4,770 4,615 5,150
3,463 4,895 4,170 5,000 4,700 4,430 4,430 4,440 4,775 4,570 4,500 5,250
5,200 4,790 3,850 4,335 4,095 4,850 4,300 4,850 4,500 4,925 4,765 5,000
5,100 4,845 4,445 5,000 4,095 4,850 4,690 4,125 4,770 4,775 4,500 5,000

Source: Shewhart (1931), page 20, Table 2.
Reprinted with permission of the American Society for Quality.

are taken in the order in which they are observed. Shewhart decides to take
subgroups of size four, and presents a control chart for the mean. The 51
subgroup averages are compared to control limits ‘within which experience
has shown that these observations should fall’. Since this data set is presented
in one of the introductorily chapters, Shewhart does not explain precisely how
the control limits are computed. However, on page 296, Shewhart suggests
computing the control limits as

¯̄X ± 3
σ̂√
n

,

which is a formula that is very familiar to most SPC practitioners. The central
line is the overall mean, which can be computed as 4,498MΩ. Estimating σ
as the mean of the sample standard deviations of the subgroups, corrected
by the constant c4(4), results in a lower control limit of 4.006MΩ, and an
upper control limits of 4,991MΩ. These values agree closely with the control
limits that Shewhart depicted in the corresponding control chart. Eight of the
subgroup averages fall outside the control limits, see Figure 6.2(a). Shewhart
interprets these out-of-control signals as ‘an indication of the existence of

27



causes of variability which could be found and eliminated’. He reports that
further research was instituted to find these causes of variability. The search
was successful and a second control chart is presented, wherein data points are
depicted that were taken after elimination of these causes. All values remain
within much tighter limits, and Shewhart concludes that ‘this variation should
be left to chance’.

However, if we take a closer look at the data set in table 6.1, it appears that
the successive values exhibit serial correlation. In fact, the data set appears
to be a typical example of observations that can be successfully modelled
using an AR(1) model. The sample autocorrelation function is exponentially
declining, and the sample partial autocorrelation function shows a single spike
at lag 1, see Figure 6.1.
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Figure 6.1: Analysis of the data in table 6.1.

The AR parameter φ can be estimated as φ̂ = 0.549. In Figure 6.1 it is
shown that the residuals of this model show no significant serial correlation.
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A normal probability plot of the residuals indicates the presence of two or
three outliers. All other observations lie more or less on a straight line, even
after removal of the suspected data points. The histogram of the residuals is
a little skewed to the right. Nevertheless, we feel it is safe to assume that the
residuals of this model are uncorrelated and normally distributed.

The autocorrelation function of the 51 subgroup averages shows less con-
vincingly that serial correlation is present. Here we observe a well known
phenomenon: by taking subgroup averages, the serial correlation is reduced.
Ignoring the serial correlation in the data seems therefore justifiable. But, as
we will see, by taking the serial correlation into account, less out-of-control
signals are generated. Wardell, Moskowitz, and Plante (1992) warn for this
kind of inconsiderate subgroup taking:

“However, if the data are truly autocorrelated, the points on the
Shewhart chart will still show runs which are essentially due to
correlation resulting from common causes rather than any special
cause”.

In Figure 6.2, four control charts corresponding to the data in table 6.1 are
depicted. Figure 6.2(a) shows a control chart of subgroup averages, as pro-
posed by Shewhart (1931). In Figures 6.2(b)–6.2(d), the modified Shewhart
control chart, the residuals control chart and the modified residuals control
chart are depicted, respectively.

The control limits in Figures 6.2(b)–6.2(d) are adjusted to have an approx-
imate in-control ARL of 370.4. This was presumably Shewhart’s intention.
In Figure 6.2(b), two sets of control limits are depicted. The dashed limits
are computed using an residuals-based estimate of σY , which is in our opinion
preferable to an estimate based on the correlated observations. The dotted
control limits correspond to the latter estimate.

The reason why we prefer estimating σY on the basis of residuals and not
on the basis of the correlated observations is the following. From the results
in Anderson (1971), it can be shown that the expectation of

S2 =
1

n − 1

n∑
i=1

(
Yi − Ȳ

)2

where Y1, · · · , Yn is a sequence of observations of a stationary AR(1) process,
is equal to

E(S2) = σ2
Y − 2

n − 1

n−1∑
r=1

(
1 − r

n

)
φr

σ2
Y

.
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Figure 6.2: Four control charts corresponding to table 6.1.
(a)=Chart for subgroup averages, (b)=modified Shewhart,
(c)=residuals chart, (d)=modified residuals chart.
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For positive φ, this means that E(S2) is biased downwardly. For n → ∞ the
bias disappears, since the process is assumed to be stationary. The downward
bias of E(S2) explains why the control limits in Figure 6.2(a) are so much
tighter than the control limits in the other control charts. The control limits
in Figure 6.2(a) are computed using estimates of σY based on n = 4 correlated
observations. For the residual control charts in Figure 6.2(c) and 6.2(d), the
standard deviations of approximately uncorrelated residuals determine the
width of the control limits.

The downward bias in E(S2) also explains the difference between the two
sets of control limits in Figure 6.2(b). However, since n = 204 is large, the
difference is small in this case.

The control charts in Figures 6.2(c) and 6.2(d) are residual control charts.
In the previous sections, we argued that these charts have a high probability
of detecting a shift at the first observation. This agrees with the control charts
in Figure 6.2, where both Figures 6.2(c) and 6.2(d) generate an out-of-control
signal, while the modified Shewhart chart does not.

Based on the results in this subsection, we have reason to suspect observa-
tions 60, and 121 and perhaps observation 16, too. The out-of-control signals
on the last three control chart in Figure 6.2 indicate the presence of special
causes of variation, each causing a single spike in the mean of the process. In
this paper, we concentrated mainly on persistent changes in the mean of the
process. The example discussed in this section is nevertheless useful since it
clearly shows the pitfalls of ignoring the presence of serial correlation.

6.2 A simulated example

In this subsection, we will illustrate the use of the control charts that were
considered in this paper on a simulated AR(1) sequence with a persistent
shift in the mean. To this end, we simulated 150 observations of an AR(1)
process with φ = 0.6. The expectation of the first 79 observations is 2, at
observation 80, a shift to µ = 3.25 is introduced, which corresponds to a shift
in the mean of the process of 1σY . In Figure 6.3, respectively the modified
Shewhart chart, the residuals chart, and the modified residuals chart are used
to monitor these observations.

Figure 6.3(a) shows that the modified Shewhart chart signals at observa-
tion 93. The residuals chart in Figure 6.3(b) signals at the 84th and the 92nd
residual. For the modified residuals chart in Figure 6.3(c) a value of λ = 0.1
is used for the EWMA. Out-of-control signals are observed at 84th, the 92nd,
100th, and the 122nd residual. The control limits are in all cases chosen such
that the in-control ARL is approximately 370.

The example shows that for this sequence of observations, the modified
residuals chart signals the shift in the mean early, and generates the largest
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Figure 6.3: Control charts for a simulated AR(1) series.
(a)=modified Shewhart chart,
(b)=residuals chart, (c)=modified residuals chart.
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number of out-of-control signals.

7 Conclusions

In this paper we discussed three Shewhart type control charts that are able
to take first order autocorrelation in the observations into account. The per-
formance of these control charts was compared by means of ARL curves.

The first control chart that was evaluated is a modification of the clas-
sical Shewhart control chart. It basically ignores the autocorrelation; the
control limits are in an rather ad-hoc manner adjusted to attain a certain in-
control ARL. For negative and moderate positive first order autocorrelation,
the ARL performance of this control chart is comparable to that of the classi-
cal Shewhart control chart for independent observations. This is a comforting
observation: out-of-control signals of the modified Shewhart chart can be in-
terpreted just as in the i.i.d. case in a large number of practical situations.
However, the fact that the extra information on the data structure remains
unused is a little unsatisfactory.

Secondly, the residuals chart was discussed. This chart utilizes the resid-
uals of a fitted time series model to monitor the process for shifts in the
mean. If the time series model is appropriate for the data, the residuals are
approximately uncorrelated. In this way, the serial correlation is explicitly
taken into account, and the problem is reduced to the well known case of
detecting a shift in the mean of independent observations. For negative first
order autocorrelation and for values of φ that are extremely close to one,
the performance of the residuals chart is excellent. Compared to the case of
independent observations, a shift in the mean is on average detected faster.
However, for values of φ > 0 and not close to one, the residuals chart behaves
poorly. This is an important drawback of the residuals chart.

To overcome this drawback, a third control chart is introduced in this
paper. It is a modification of the residuals chart. This chart was shown to
have a good overall ARL performance. For negative values of φ it is not as
efficient as the regular residuals chart, but it is more efficient than the modified
Shewhart chart and the classical Shewhart chart for the i.i.d. case. For positive
φ, it outperforms both the modified Shewhart chart and the residuals chart.
The difference with the classical Shewhart chart for independent observations
is negligible for a large region of φ-values. For large φ (say φ > 0.8) however,
improvement of ARL performance remains desirable. Further research into
this is needed.

Examples were discussed to illustrate the use of these control charts. The
first example taken from Shewhart (1931), showed that ignoring serial correla-
tion in the data may result in misleading conclusions. The example underlines
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the importance of developing control charts that are able to take serial cor-
relation into account.

In the second example, the three control charts were used to monitor a
simulated AR(1) sequence for a shift in the mean. The results agreed with
the behavior that was expected on the basis of the ARL comparisons.

Finally, we would like to make two general remarks. Firstly, in this paper,
only Shewhart-type control charts were discussed. For each of the proce-
dures considered, improvement of the ARL performance is possible by uti-
lizing CUSUM or EWMA control schemes instead. Some work concerning
comparison of the ARL performance of such control schemes has been carried
out by other authors. However, this remains a topic for further research. Sec-
ondly, throughout this paper we assumed that the process parameters were
known. In practice, these have to be estimated. In Kramer and Schmid (1996)
it is shown that both the modified Shewhart and the residuals chart react sen-
sibly to parameter estimation. The robustness for parameter estimation of
the modified residuals chart needs to be investigated.
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