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ABSTRACT

A review is given of the various determinations of the different πNN coupling constants
in analyses of the low-energy pp, np, pp, and πp scattering data. The most accurate
determinations are in the energy-dependent partial-wave analyses of the NN data. The
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1 Introduction

It is exactly 50 years ago that the pion was discovered in cosmic rays by Lattes, Occhialini,
and Powell [1] in Bristol. Since then we have come to know quite a lot about the pion
and its interactions. We will concentrate here on the pion-nucleon-nucleon (πNN) coupling
constants, and review the various determinations of the πNN coupling constants in analyses
of the low-energy pp, np, pp, and πp scattering data.

One can distinguish in principle 4 different πNN coupling constants. The coupling
constant f(pπ− → n) =

√
2 f− denotes the strength at the vertex at which a proton is

annihilated and a neutron created and where either a π− is annihilated or a π+ created.
The coupling constant f(nπ+ → p) =

√
2 f+ denotes the strength at the vertex at which

a neutron is annihilated and a proton created and where either a π+ is annihilated or a
π− created. The coupling constant f(pπ0 → p) = fp denotes the strength at the vertex
at which a proton is annihilated and another proton created and where a π0 is either
annihilated or created. The coupling constant f(nπ0 → n) = −fn denotes the strength at
the vertex at which a neutron is annihilated and another neutron created and where a π0

is either annihilated or created. Important combinations are f 2
c = f+ f− and f 2

0 = fp fn.
The factors in front of f+ , f− , and fn are chosen in such a way that we get in the case of
charge independence:

fp = fn = f+ = f− = f . (1)

Because the strong interactions are invariant under charge conjugation there is a relation
between the pion-nucleon-nucleon coupling constants and the pion-antinucleon-antinucleon
coupling constants. By using the charge-conjugation operator C we can define the antipro-
ton p = Cp and the antineutron n = Cn. The neutral pion is its own antiparticle and is
an eigenstate of the charge-conjugation operator Cπ0 = ηcπ

0 with as eigenvalue the charge
parity ηc = 1 . The coupling constants of the neutral pion to the antinucleons are related
to the coupling constants of the neutral pion to the nucleons by

f(pπ0 → p) = ηcf(pπ0 → p) and f(nπ0 → n) = ηcf(nπ0 → n) . (2)

This leads to the following relations

f(pπ0 → p) = fp , f(pπ+ → n) =
√

2f−
f(nπ0 → n) = −fn , f(nπ− → p) =

√
2f+ .

(3)

The pion is a pseudoscalar (JPC = 0−+) particle. The coupling of the pion to the
nucleons can be described by either the PS (pseudoscalar) interaction lagrangian LPS or
the PV (pseudovector) interaction lagrangian LPV , where

LPS = g
√

4π(iψγ5ψ)φ and LPV =
f

ms

√
4π(iψγµγ5ψ)∂µφ . (4)

We prefer to use the PV coupling, because of chiral symmetry and because of SU(3,F ) flavor
symmetry of the pseudoscalar-meson couplings to the baryon octet [2]. The scaling mass
ms was introduced to make the PV coupling constant dimensionless. It is convention [3] to
choose ms = m+, where m+ is the mass of the π+. Unfortunately, there are physicists [4]
who take ms equal to the mass of the quanta of the field φ. This leads to an unnecessary
large charge-independence breaking in the coupling constants. We strongly advice to use
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the convention. The PS coupling constant g and the PV coupling constant f are related
by [5] the equivalence relation

g

M1 +M2
=

f

ms

. (5)

This means g2
p = 180.773f 2

p , g2
c = 181.022f 2

c , and g2
n = 181.271f 2

n.

One must realize that charge independence or SU(2,I) isospin symmetry for the PV
coupling constants leads to broken SU(2,I) symmetry for the PS coupling constants. For
example, when we take f 2 = 0.0747, then we get g2

p = 13.50, g2
+ = g2

− = 13.52, and
g2
n = 13.54. For most purposes charge independence for the values of the coupling constants

can be assumed. We recommend to use

either f 2 = 0.075 , or g2 = 13.5 . (6)

This implies that the Goldberger-Treiman discrepancy is only ∆πN ' 2%.

2 Early determinations

It is impossible for us to give a proper and historically correct review of the various de-
terminations of f 2. To get an impression about what was going on we will give a short,
incomplete, and at certain places possibly incorrect, description.

In the early fifties pion-photoproduction experiments were much more accurate than the
πN scattering experiments. Also the NN scattering experiments were still in their infancy.
To our knowledge, the first estimate f 2

c ' 0.3 of the πNN coupling constant came in 1950
from the photoproduction of charged pions [6]. The Kroll-Ruderman Theorem [7] shows
that f 2

c can be determined directly from the photoproduction reactions near threshold.
Using this method Bernardini and Goldwasser [8] found in 1954 the already much better
value f 2

c = 0.065.

Perhaps the best place to determine the πNN coupling constants is from the NN
scattering data. Probably the first determination in NN scattering was made in 1952
by M.M. Lévy [9]. In order to reproduce the low-energy parameters (binding energy of
the deuteron and the s-wave scattering lengths) he needed f 2 = 0.054. In 1955 Chew
and Low’s static nucleon extended-source interaction Hamiltonian (PV) was applied by
Gartenhaus [10] in his calculation of the one- and two-pion-exchange NN potential. This
potential with f 2 = 0.089 described the low-energy NN data well.

Encouraged by Lévy’s result Chew [11] studied around 1953 in a series of papers the
low-energy πN scattering data using the nonrelativistic Tamm-Dancoff method. He found
f 2
c = 0.058. At about the same time Sartori and Watighin [12] used the Cini-Fubini method

to study the same data. They came up with the value f 2
c = 0.065.

The very first applications of dispersion relations to the πN data to determine the
pion-nucleon coupling were by Haber-Schaim [13], Davidon and Goldberger [14], and
Gilbert [15]. The value obtained by Haber-Schaim was f 2

c = 0.08(1). Using forward
dispersion relations Schnitzer and Salzman [16] obtained in a careful analysis of the πN
data the value f 2 = 0.08(1).

Then there is the determination of f 2
c by Jackson [17]. Using the Chew-Low effective-

range plot for the P33 phase shift he found f 2
c = 0.08(2).
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In 1958 Chew [18] pointed out that the backward np scattering was possibly a good
place to determine f 2

c . As will be pointed out later, that “this is a good place” has
incorrectly become part of our folklore. This method was for the first time applied to the
np data by Cziffra and Moravcsik [19] with the result that f 2

c is between 0.06 and 0.07 with
a very large error. They already pointed out that a partial-wave analysis of NN scattering
data would not suffer from the disadvantages of an extrapolation method and give more
reliable and realistic results.

Around this time the outstanding series of NN partial-wave analyses (PWA) by the
Livermore-Berkeley group was started. They regularly produced a value for the πNN
coupling constant. In a single-energy phase-shift analysis of the pp data at 310 MeV
MacGregor et al. [20] found in 1959 either f 2

p = 0.062(11) or f 2
p = 0.069(17). In 1968

they [21] found for this coupling constant f 2
p = 0.081(5). Applying forward dispersion

relations to the pp data Bugg [22] determined in 1968 the value f 2
p = 0.075(4).

In a study of the πN data in 1973 Bugg et al. [23] used fixed-t dispersion relations
to determine the coupling constant f 2

c = 0.079(1). They stated over-optimistically that
their small error is “believed to cover both statistical and systematic uncertainties.” This
determination has been the standard for almost two decades.

The outstanding Karlsruhe-Helsinki partial-wave analyses [24] of the πN data used the
value of Bugg et al. as input. In 1980 Koch and Pietarinen [25] used fixed-t dispersion
relations and found again that f 2

c = 0.079(1). However, this is more a consistency check
than a real determination, because the value of the coupling constant was used as input in
the analyses. Other values of f 2

c were not tried as input. It is interesting to read the claim
made by Koch and Pietarinen that “the error is our estimate due to systematic effects.
The statistical error is completely negligible”! It is incomprehensible to us how theory can
remove or reduce the statistical errors. It should also be remarked that the Karlsruhe-
Helsinki analyses of the πN data did not include a treatment of the normalization errors
of experimental data.

In 1981 Kroll [26] applied pp forward dispersion relations to determine f 2
p . He came to

the conclusion that f 2
p = 0.080(2). Later on, more attention will be paid to this special

method.

We see that around 1980 all dispersion-relation determinations from πN data as well
as from NN data seem to agree on the charge-independent value f 2 = 0.079(1). Dispersion
relations were then considered by many people the method to be used in determining
coupling constants.

For references to other work on the determination of coupling constants the reader is
referred to the classic book [27] by H.A. Bethe and F. de Hoffmann and to the various
editions [3, 28, 29, 30, 31, 32] of the “Compilation of Coupling Constants and Low-Energy
Parameters.”

3 Newer determinations

In 1975 the Nijmegen group [33] published the Nijmegen D NN potential. This is a
hard-core potential, which reproduced the then available NN data very well. It required
f 2 = 0.0741. It is interesting to see that already then the NN data favored a small value
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for the coupling constant and that the deuteron properties of that potential were excellent.
The soft-core Nijmegen NN potential Nijm78 was published [34] in 1978. Also in this
potential the coupling constant preferred a low value. Because we were at that time still
indoctrinated by the πN people that f 2 = 0.079(1), we prevented our coupling constant
from going “too low,” and ended up with the value f 2 = 0.0772.

It was around 1983 that we became convinced that the π0pp coupling constant was much
lower than 0.079. At the 1983 Few-Body Conference in Karlsruhe we [35] stated that “we
believe that f 2

p is probably more in the neighborhood of 0.075 than of 0.080.” This belief
was based on our PWA of the low-energy pp data. It lasted until 1987 before we could
make our suspicions hard, that is, before we could give solid evidence based on statistics. In
our energy-dependent PWA [36] of the pp scattering data below Tlab = 350 MeV we found
f 2
p = 0.0725(6). Unfortunately, the magnetic-moment interactions were not yet included

in these analyses. When that was finally done [37], we [38, 39] obtained f 2
p = 0.0749(6).

At that time we had not made a determination of f 2
c by ourselves. Therefore we had

to assume that the value for f 2
c determined in πN scattering was correct and that there

was thus evidence for a large breaking of charge independence. That raised hell. Many
people [40, 41, 42, 43, 44, 45, 46] had their own explanation about what was wrong with our
analyses. Those “explanations” were almost all based on wrong assumptions and ignorance
about energy-dependent PWA’s. Nobody, on the other hand, questioned seriously the value
for f 2

c from πN analyses.

Of course there are people who are familiar with PWA’s. Arndt et al. noticed that in the
energy-dependent VPI&SU analyses of the np data a lower coupling constant was favored.
This encouraged them to have a fresh look at the πN data. In 1990 the VPI&SU group [47]
came up with the new value f 2

c = 0.0735(15). Again, many people [44, 48, 49, 50, 51] had
their own “explanation” about what was wrong with this analysis. Of course, nothing was
really wrong! In order to try to appease the opposition the VPI&SU group [52] included
dispersion-relation constraints in their analyses of the πN data. This lead then to the
value f 2

c = 0.0761(8). In our opinion, it is better not to impose such constraints, because
it is almost impossible to make the proper corrections for the electromagnetic interactions.

In Nijmegen we were at that time also very busy to get determinations of f 2
c . A study

of the backward np data was very disappointing. Despite the folklore [18] that this charge-
exchange reaction was the best place to determine f 2

c , we were unable to get a sufficiently
accurate determination [53] such that we could distinguish between the values 0.075 and
0.079 for f 2

c .

An energy-dependent analysis [54] in 1991 of the charge-exchange reaction p+p→ n+n
gave us the value f 2

c = 0.0751(17). To convince ourselves that we were really looking at the
OPE potential, we determined the mass of the exchanged particle. This turned out to be
mπ+ = 145(5) MeV, which must be compared with the experimental value mπ+ = 139.57
MeV. This 1991 result was the main motivation for a new accurate measurement of the
charge-exchange cross section by the PS206 group at LEAR. The completed NN PWA of
1993 gave [55] f 2

c = 0.0732(11).

Our energy-dependent PWA’s of the np data required an enormous effort. Finally, in
1991 our first analysis [56] of the combined pp and np data was completed. We then were
able to make independent determinations of various πNN coupling constants. We found
f 2
p = 0.0751(6), f 2

0 = 0.0752(8), and f 2
c = 0.0741(5). For the charge-independent value we

found f 2 = 0.0749(4).
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It was now evident that the energy-dependent PWA’s of the pp, np, pp, and πp data
all lead to about the same value f 2 = 0.075 for the πNN coupling constant. We were
surprised to note the many physicists trying to hold on to the old values. To counter their
arguments we published in 1993 a paper [57] in which we studied in detail various aspects
of our determinations of coupling constants. In that paper [57] we paid special attention to
Chew’s proposal [18] to determine f 2

c from single-energy studies of the backward np data.
We showed explicitly that extrapolating to the pion pole is very inaccurate, and clearly
not a good method to make a reliable determination of f 2

c with a small error.

4 Present situation

The coupling constant f 2
p can best be determined from the pp scattering data. Our latest

published value stems from 1993. In an analysis [58] of 1787 pp data below 350 MeV with
21 model parameters, we obtained χ2

min = 1787 and f 2
p = 0.0745(6).

This analysis has been updated [59]. The 1997 Nijmegen pp database contains 1955
data. These can be described very well with 20 model parameters. We find χ2

min = 1962
and f 2

p = 0.0753(5). When we leave out the recent data from Haeberli et al. [60], then we
get f 2

p = 0.0747(5). We have here a nice example of a non-dedicated experiment, which
does influence the value of the coupling constant.

The np scattering data give the combinations f 2
c and f 2

0 . In the 1993 Nijmegen PWA [58]
of the pp and np data below 350 MeV we analyzed 2512 np data. In this analysis we found
χ2
min = 2480 and f 2

c = 0.0748(3). We have also been able to do PWA’s of the np data
alone [61]. This analysis uses all np data, Ndata = 3964, below 500 MeV. We get χ2

min = 4005
with f 2

c = 0.0748(3) and f 2
0 = 0.0745(9).

Another useful place to determine these coupling constants is in NN scattering. The
elastic pp data give f 2

p , and the charge-exchange data give f 2
c . In these analyses [54, 55, 62]

all data below 925 MeV/c were analyzed. In 1991 884 observables were analyzed [54]. Using
23 model parameters we reached χ2

min/Nobs = 1.15 and we determined f 2
c = 0.0751(17).

The 1993 analysis [55] contained 3646 data (elastic as well as charge exchange) and 30 model
parameters were used; χ2

min/Ndata = 1.04 was reached with f 2
c = 0.0732(11). This analysis

has been updated, where the latest charge-exchange data from the LEAR experiments
PS199 [63, 64] and PS206 [65] were incorporated. Analyzing now 3847 data with 36 model
parameters [62] χ2

min/Ndata = 1.05 was obtained with f 2
c = 0.0736(10).

Traditionally, the most important source for the πNN coupling constant has been πN

scattering. Neutron exchange in elastic π+p scattering depends on the combination f 2
c .

The analysis of the elastic and charge-exchange π−p scattering is more complicated, and
various combinations of the coupling constants come into play. We have already seen
that Arndt et al. determined in 1990 [47] the value f 2

c = 0.0735(15). In 1994 they [52]
included dispersion-relation constraints. This raised their value for f 2

c to 0.0761(8). Bugg
has redone his 1973 dispersion analysis [66] and his updated value is f 2

c = 0.0771(14). This
determination is not based on an energy-dependent PWA.

Another analysis is the Los Alamos-Groningen energy-dependent PWA of the πN data
by Timmermans [67]. After a careful selection the π+p database below 410 MeV contains
1092 data. The PWA uses 14 parameters and reaches χ2

min/Ndata = 0.98 with f 2
c =
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0.0743(8). Extending this analysis to the coupled π−p and π0n channels results in a
database containing 898 data. In this analysis 17 parameters were used and χ2

min/Ndata =
1.11 was reached with the charge-independent coupling f 2 = 0.0756(9).

It takes too much space and time for a proper discussion of all determinations of the
coupling constants in single-energy PWA’s. Such determinations are inherently much more
inaccurate than the energy-dependent analyses. One of the reasons is just the number of
data that is involved. In single-energy PWA’s this is about a few tens, but in energy-
dependent PWA’s about a few thousands. Roughly a factor of 100 difference. This implies
about a factor of 10 difference in the statistical accuracy. Because we feel very strongly
that single-energy PWA’s are vastly inferior to energy-dependent PWA’s, we will not dis-
cuss determinations based on such single-energy studies (with the exception of the recent
Uppsala work, see below).

It must be clear from the above, that (i) the energy-dependent PWA’s of the about
12.000 NN , NN, and πN data are all in agreement, that (ii) there is at present no evidence
for a breaking of charge independence in the coupling constants, and that (iii) the charge-
independent value is f 2 ' 0.0750.

5 Breaking of charge independence

In which way the breaking of charge independence influences the values of the coupling
constants is a widely studied topic [68, 69, 70, 71, 72, 73, 74]. An earlier paper discussing
the radiative corrections was by Morrison [68]. Later, estimates were made using various
quark models [69, 70] and more recently QCD sum rules [72] were applied. A difficulty
with these various methods and models is that the predictions differ (even in sign) from
model to model. In some of the simpler models one has the relation fc = (fp + fn)/2.
Friar, Goldman, and van Kolck studied this issue in chiral perturbation theory [71].

Using the QCD sum rules for the appropriate pion-nucleon three-point functions Meiss-
ner and Henley [72] calculated the splitting between fp, fn, and fc due to isospin breaking
in the strong interaction. They found a large breaking of isospin in these coupling con-
stants, the lower limit of which will result approximately in f 2

n = 0.074, f 2
c = 0.075, and

f 2
p = 0.076.

The present accuracies in the determination of the various coupling constants are such,
that with a little improvement in the data and in the analyses these charge-independence
breaking effects could be checked.

6 Energy-dependent PWA versus

single-energy PWA

In the energy region below Tlab = 350 MeV one energy-dependent PWA of all NN data
could be performed. Let us take as example the Nijmegen 1993 PWA [58]. We simultane-
ously analyzed 1787 pp data and 2514 np data for a grand total of 4301 NN data. Or one
could divide all these data in about 10 energy intervals, clustered around the energies: 0,
1, 5, 10, 25, 50, 100, 150, 210, and 320 MeV, and perform 10 single-energy PWA’s. Both

6



these total analyses will furnish phase shifts at these above energies. The big advantage
of the energy-dependent PWA is that the multienergy (m.e.) phases are much smoother
as a function of energy. The statistical fluctuations in the single-energy (s.e.) phases are
averaged out in the m.e. phases. As a result, the errors in the m.e. phases are much
smaller than the errors in the s.e. phases. When new data are added to the database these
m.e. phases are much more stable than the s.e. phases. What is needed for a successful
energy-dependent PWA is a good description of the energy dependence of the phases.

The difficulty with the single-energy PWA’s is that they are overparametrized. In the
above mentioned m.e. PWA we use 39 parameters. To describe exactly the same data in
the 10 s.e. PWA’s we need 116 parameters. In both analyses we use 4301 NN data. In
the m.e. analysis we reach χ2

min = 4276. In the s.e. analyses we describe all data with
χ2
min = 4096. We need 77 more parameters to obtain a drop in χ2 of only 180. This

overparametrization of the s.e. phases results in a large noise content in these phases. This
makes such s.e. phases rather useless. This is the reason that the Nijmegen group will
not present any more s.e. phases. We strongly feel that such phases should not be used
anymore.

Important in energy-dependent PWA’s is a good description of the fast energy depen-
dence of the phases. The slow energy dependence can easily be parametrized. The fast
energy dependence is determined by the longest-range forces. It is therefore important to
have a good description of the long-range electromagnetic forces. In the Nijmegen analyses
we have paid very special attention [75, 37] to these longest-range forces. The longest-
range nuclear forces are due to one-pion exchange (OPE). An important part of the energy
dependence of the phases comes from OPE. This is the main reason that we can determine
the coupling constants so accurately. The most accurate data are the pp data. The np data
are definitely less accurate. Still, we can determine the charged-pion coupling constant f 2

c

in the np PWA with the very small error 3 × 10−4. The reason is that in np scattering
the electromagnetic force is essentially absent (only magnetic-moment interactions). The
long-range OPE force in pp scattering is hidden under the longer-range electromagnetic
interaction. This “explains” why we can determine f 2

p only with the somewhat larger error
6× 10−4.

7 Backward np scattering

Recently, backward np scattering experiments at Tlab = 162 MeV were performed in Upp-
sala [76]. These data were then used in a modified Chew extrapolation method to determine
f 2
c . The authors claim a “high” value for f 2

c with an incredible small error. This value is
obtained from only 31 data and is in flagrant disagreement with the values deduced in the
energy-dependent PWA’s of the 12.000 pp, np, NN , and πN data. Let us look at what is
going on.
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7.1 OPE amplitude

Forgetting about the np mass difference the one-pion-exchange amplitude evaluated in
Born approximation reads

MOPE = −
4πf 2

m2
s

(σ1 · k)(σ2 · k)

k2 +m2
π

, (7)

with k2 = 2p2(1 ∓ cos θ). Here p is the center-of-mass momentum. We see that MOPE

is energy (E or p2) dependent, θ dependent, and mass dependent. The Nijmegen energy-
dependent PWA’s take both the energy dependence and the θ dependence into account.
Also the mass dependence has been studied and the masses of the exchanged particles were
determined with excellent results [56].

Recently, there has appeared a new gimmick: dedicated experiments. This seems to
mean:
“Dedicated to the proposition that all PAC’s are equally easily led astray.”
In the analyses of the dedicated experiment [76] only the θ dependence of the one-pion-
exchange amplitude is taken into account, and that only approximately.

We would like to point out that the π0-exchange amplitude vanishes in the forward
direction (θ = 0), and that the π±-exchange amplitude (forgetting the np mass difference)
vanishes at θ = 180◦. This implies that the backward peak (θ = 180◦) in np scattering is
not due to π± exchange. The fall-off of the differential cross section for θ < 180◦ is due to
destructive interference between π± exchange and the background.

7.2 The data

The data, as published [76], have an incredibly large χ2 with respect to the standard
PWA’s of the VPI&SU [77] and Nijmegen [78] groups. We find χ2 = 291.6 for 31 data. We
have tried to understand what causes this. The data consist of several independent and
unnormalized data sets. When one compares these sets in the regions where they overlap
one notices inconsistencies. Next, these sets are incorrectly normalized. In this way large
systematic errors are introduced. Our conclusion about these data is that, first, one must
clean up the systematic deviations between the individual data sets and that, second, the
data badly need reanalysis, where better attention should be paid to the normalization.

We want to point out that the problem is not just between the Uppsala data and
other backward np cross sections. Even if all backward np cross sections are removed from
the database, the Uppsala data are still in flagrant disagreement with the remainder of
the data. This means that the Uppsala data are also in disagreement with all the spin
observables, such as polarization and spin-correlation data. Moreover, as mentioned, the
Uppsala data are internally inconsistent.

The Uppsala group has claimed that there are two “families” of np cross sections, and
that in the Nijmegen PWA only one “family” is accepted. This unfounded claim we find
ludicrous. According to our findings, the second “family” consists only of the incorrectly
normalized Uppsala data.
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7.3 Extrapolation Method

The authors try to extrapolate the backward differential cross section to the charged-pion
pole. They consider several extrapolation procedures and claim that their modified Chew
extrapolation method is model independent. Moreover, they think that this method can
reduce the statistical errors. We would like to stress that no method of analysis can reduce
statistical errors: These are inherent to the experimental data.

Arndt et al. [79] used exactly the same method as used by the Uppsala group to all
available backward np data sets. They showed that the average of all extrapolations is
consistent with f 2

c = 0.075 and that the error in each individual determination is much
larger (about a factor of 10) than claimed by the Uppsala group.

The model dependence of the Uppsala method is easily demonstrated. We applied
exactly the same method as used by the Uppsala group. For the comparison potential
we use the Nijmegen np potential Nijm93, as was done by the Uppsala group. However,
we constructed different versions by only changing the πNN coupling constant f 2

c in this
comparison potential.

In Model I we use f 2
c = 0.075. In the fit to the data 2 parameters are needed and we

find f 2
c = 0.0809(3). The error is here the estimate of the statistical extrapolation error

only. This is exactly the same model as used by the Uppsala group and our results are
therefore exactly the same as the results of the Uppsala group.

In Model II we use f 2
c = 0.079. In the fit to the data we now need 4 parameters and

we find f 2
c = 0.0808(30). This model gives the same value for f 2

c as Model I, but the error
estimate is now a factor 10 larger (and much more realistic).

In Model III we use f 2
c = 0.071. To produce a good fit only 1 parameter is needed.

This time we find a much lower value for the coupling constant, f 2
c = 0.0747(1), but a

very unrealistic small error (because in this model we need only 1 parameter: the more
parameters, the larger the error).

This simple exercise clearly demonstrates the model dependence introduced by the
comparison potential. We have shown here that both the value of the coupling constant
and the value of the error are model dependent. We claim that the real error is 0.003 and
not 0.0003 as given by the Uppsala group. The result then is in total agreement with our
previous conclusions [57] and also in agreement with Arndt’s results [79].

This large error makes the determination of the coupling constant by the Uppsala
group totally uninteresting and shows that the label “dedicated” for such experiments is
presumptuous and completely unwarranted.

Similar conclusions hold for Chew-type extrapolations of the forward
p + p → n + n cross sections to determine f 2

c [80, 81, 82]. Such extrapolations cannot
compete with determinations in the energy-dependent PWA of all pp data [54, 55, 62].

8 Forward dispersion relations

Forward dispersion relations are often seen as the ultimate tool in determining coupling
constants. This is definitely not correct for the pp forward dispersion relations. One reason
for this is the problematic treatment of the electromagnetic interactions [83, 84, 85, 26].
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The scattering amplitude M between charged particles can be written as

M = Mem +MN , (8)

where Mem is the electromagnetic amplitude [38] and MN the nuclear amplitude. Forward
dispersion relations cannot be written down for this nuclear amplitude, because it contains
too many remnants of the electromagnetic interaction. For example, this amplitude MN

does not have a pion pole, but it has a branchpoint singularity like 1/(k2 +m2
π)1+iη, where

η = α/vlab is the relativistic Rutherford parameter [86]. By removing all Coulomb effects
from MN one can construct a new amplitude M ′

N , for which one could possibly write down
forward dispersion relations.

A somewhat similar situation exists for the 1S0 pp scattering length. Here one also
likes to remove all Coulomb effects. This time from the pp scattering length [87] ac(pp) =
−7.806(3) fm, such that the resulting nuclear pp scattering length aN(pp) ' −17.3 fm can
be compared to the np scattering length [58] a(np) = −23.738 fm. The latter is obtained
at very low energies from the effective-range function F (p2) = p cot δ by the zero-range
expansion F (p2) = −1/a. We will compare aN(pp) with M ′

N . The pp scattering length
aem(pp) which is obtained from a much more complicated effective-range function [88, 89,
90, 91] (including effects of the full electromagnetic interaction) must then be compared
with MN . Various pp scattering lengths, ac, aE, and aem, exist. They all arise from different
treatments of the electromagnetic interaction (including vacuum polarization, relativistic
effects, etc.) in the construction of effective-range functions. We will explain below that
there are also different definitions of MN .

Very important in the treatments of forward dispersion relations has been the optical
theorem. However, big question marks must be placed by the application of the optical
theorem in reactions between charged particles. Because of the presence of the long-
range Coulomb interaction (with screening effects neglected) the total cross section σT is
infinite. This is a well-known result, but the consequences are sometimes not properly
understood [92, 93]. To get finite results one has to remove in one way or another the
Coulomb interaction. That this is a far from trivial and model-dependent procedure is often
not appreciated. One then defines such theoretical concepts as the “total hadronic cross
section” σhT . This is not a measurable experimental quantity, but a theorist’s invention.
Moreover, one has to realize that the hadronic cross section is related to MN and not to
M ′

N . Therefore the hadronic cross section is not related to ImM ′
N and cannot be used in

the dispersion integrals. Hence, the optical theorem cannot be used in connection with
M ′

N .

The scattering amplitude M between charged particles was written down in Eq. (8),
where the electromagnetic amplitude Mem is given by [38]

Mem = Mc1 +Mc2 +Mmm +Mvp . (9)

Here Mc1 is the standard Coulomb amplitude, Mc2 a two-photon exchange contribution,
Mmm the magnetic-moment contribution, and Mvp the vacuum-polarization contribution.
The standard Coulomb amplitude Mc1 can be written either as the divergent partial-wave
series [94, 95, 96]

Mc1 =
∞∑
`=0

(2`+ 1)
e2iξ` − 1

2ip
P`(x) , (10)

10



where x = cos θ and the phases ξ` will be discussed below, or as the sum

Mc1 =
η

2p

1

(1− x)1+iη
e2iΦ F (k2) . (11)

The nuclear amplitude is given by

MN =
∞∑
`=0

(2`+ 1) e2iσem,`
e2iδ` − 1

2ip
P`(x) . (12)

Now there are choices that must be made. Do we want to include in Eq. (11) a form factor
F (k2), or do we take F ≡ 1? When we include a form factor, then we need to find a way to
calculate the corresponding Coulomb phases ξ`. Only in the case of point charges we know
these Coulomb phases analytically: ξ` = σ` ≡ Γ(` + 1 + iη). Because of the uncertainty
of how to handle the long-range screening of the Coulomb potential, the overall phase Φ
in Eq. (11) is really unknown. There are two standard ways [94, 95, 96] to treat this for
point charges: either we choose Φ = σ0, then ξ` = σ`, or we choose Φ = 0, but then
ξ` = σ` − σ0. In Nijmegen we opted for the latter choice. The σem,` in Eq. (12) is the sum
of the choice for ξ` of the standard Coulomb amplitude Eq. (10), the two-photon phase [75]
ρ`, the magnetic-moment phase [37] φ`, and the vacuum-polarization phase [97] τ`.

We hope that we made it clear that the phase of the Coulomb amplitude is “theorist
dependent.” The same holds then for the nuclear amplitude. This means that therefore
also the imaginary part of the nuclear amplitude is theorist dependent. This has repercus-
sions for the optical theorem. Consider the optical theorem in the case of purely elastic
scattering. When f` is the partial-wave nuclear scattering amplitude and σ

(`)
elas the hadronic

cross section in this partial wave, then

σ
(l)
elas ∼ |f`|

2 = sin2 δ` and Im f` = sin δ` sin(δ` + 2σem,`) . (13)

Clearly, Im f` 6= |f`|2: The optical theorem for these partial-wave amplitudes and for the
amplitude MN is obviously not valid.

Let us now return to the pp forward dispersion relations. One cannot write down a
dispersion relation for the forward scattering amplitude MN(x = 1). First, one needs
to correct this amplitude for the electromagnetic interaction. This is the same type of
correction as for the pp scattering length, only it has to be done for all partial waves at
every energy. These corrections are difficult to make and are often not very acurate. Doing
this with Gamow factors is certainly too inaccurate. In the physical region below the pion-
production threshold the nuclear amplitude is constructed using a PWA. In that PWA a
choice was made for the πNN coupling constant. Above the pion-production threshold the
treatment makes essential use of the optical theorem. But we did show that the optical
theorem is not really valid for MN nor for M ′

N . In the physical region of the NN channel
one again needs the optical theorem. The largest uncertainty comes from the treatment
of the unphysical cut. Many parameters need to be introduced in order that the fixed-t
dispersion relations can describe the experimental data with sufficient accuracy. This can
only be done in a PWA of the pp scattering data. Such work could be performed, but it
will require such an enormous effort that it probably will not be done soon. Again such
a PWA requires as input a value for the πNN coupling constant. We therefore come to
the conclusion that an accurate determination of the π0pp coupling constant in forward pp
dispersion relations is not very realistic. It may not be impossible, but it will require many
man-years of hard and tedious work.
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9 Conclusions

We have seen that there is overwhelming evidence that the charge-independent value for
the πNN coupling constant is f 2 = 0.0750 with a total error of perhaps less than 9 in
the last digit. This error includes possible systematic errors. We think that the present
accuracy is such that the determination of charge-independence breaking effects is soon
within reach.

We would like to comment here on another, much-quoted result of the Karlsruhe-
Helsinki analysis [98]: the value κρ = 6.1 of the vector-to-tensor ratio of the ρNN coupling
constants. Vector-meson dominance of the electromagnetic form factors gives κρ = 3.7.
The Nijmegen soft-core potential Nijm78 [34] produces κρ = 4.2; its update Nijm93 [99]
κρ = 4.1. Because it is clear that the value of πNN coupling constant has changed a lot
since 1975, one [43] can place also question marks by the more than 20 years old Karlsruhe
value for κρ. We may assume that the newer data will change that value.
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