

 University of Groningen

Machine learning of phonotactics
Tjong-Kim-Sang, Erik Fajoen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Tjong-Kim-Sang, E. F. (1998). Machine learning of phonotactics. Groningen: s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232382699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/machine-learning-of-phonotactics(2ece6c26-7db4-48f8-b5f7-49f93af880e5).html

Machine Learning of

Phonotactics

Erik F. Tjong Kim Sang

The research described in this thesis has been made possible by a grant from the
Dutch Research School in Logic (formerlyNederlands Netwerk voor Taal, Logica en
Informatie).

GRONINGEN DISSERTATIONS INLINGUISTICS 26

ISSN 0928-0030

RIJKSUNIVERSITEITGRONINGEN

Machine Learning of Phonotactics

Proefschrift

ter verkrijging van het doctoraat in de
Letteren

aan de Rijksuniversiteit Groningen
op gezag van de

Rector Magnificus dr. D.F.J. Bosscher,
in het openbaar te verdedigen op

maandag 19 oktober 1998
om 16.15 uur

door

Erik Fajoen Tjong-Kim-Sang

geboren op 6 december 1966
te Utrecht

Promotor: Prof. Dr. Ir. J.A. Nerbonne

Acknowledgements

It is customary in my research group to add to one’s PhD thesis a section with reflec-
tions about life during the production of this book and acknowledgements to people
who have been friendly to the author during this period. I will make no exception to
this custom. Over the past eight years and twenty one days I have, with some interrup-
tions, worked on a research project about the application of machine learning methods
in natural language processing. Over these years I have learned a lot but I have also
found out that there is a lot left to be learned. My average writing speed of nineteen
words per day has resulted in the PhD thesis on this subject which I am submitting
right now.

I want to thank Frans Zwarts and Jan de Vuyst for starting this research project
and giving me the opportunity to work in it. I am also grateful to the organization Ne-
derlands Netwerk voor Taal, Logica en Informatie (currently Dutch Research School
in Logic), which has supplied the grant that has made my research project possible.
John Nerbonne has played a major role in the fact that this the project has resulted
in a PhD thesis. He has been responsible for the project supervision including the
initial suggestion of the final thesis topic. John also created the possibility for me to
stay longer at the department of Alfa-informatica than the time offered by my original
project. Thanks!

My colleagues of the department Alfa-informatica of the University of Groningen
in The Netherlands were responsible for creating a pleasant working environment dur-
ing the five years I was allowed to spend with them. For that reason I want to thank
Bert Bos, Dicky Gilbers, Erik Kleyn, Garry Wiersema, George Welling, Gertjan van
Noord, Gosse Bouma, Harry Gaylord, Joop Houtman, Mark-Jan Nederhof, Mettina
Veenstra, Peter Blok, Petra Smit, Rob Koeling, Shoji Yoshikawa and Yvonne Voge-
lenzang. I am specially indebted to Mettina and Bert. I was fortunate enough to spent
most of my Groningen years working in the same room as them. They played a major
role in my development during these years, both on a scientific and a personal level.
Thanks!

After Groningen I have spent three years at the department of Linguistics of Up-
psala University in Sweden. I want to thank Anna S˚agvall Hein for offering me the
opportunity to work in what I have regarded as a demanding but instructive environ-
ment. During my years in Uppsala I have been fortunate enough to work with the
following people: Annelie Borg-Bishop, Bengt Dahlqvist, Gunilla Fredriksson, Hong
Liang Qiao, Jon Brewer, J¨org Tiedemann, Klas Prytz, Lars Borin, Leif-J¨oran Olsson,
Malgorzata Stys, Mariana Damova, Mark Lee, Mats Dahll¨of, Olga Wedbjer Rambell,
Per Starb¨ack and Torbj¨orn Lager. I want to reserve a special word of gratitude to my
former students in Uppsala which as a group have been a great example of motivation
towards their studies and general friendliness both inside and outside the classroom.
Thanks!

5

No thesis can be finalized without being read by and approved by a thesis committee.
I want to thank Anton Nijholt, Ger de Haan and Nicolay Petkov for being part of my
thesis committee and for reading and commenting the thesis.

In the past eight years I have met many nice people in different circumstances
both in Groningen, Uppsala and at other locations. Their kindness has had a positive
influence on my general well-behavior which has contributed to the completion of this
thesis. I want to thank all of them.

Groningen, August 21, 1998,

Erik Tjong Kim Sang

6

Contents

Acknowledgements 5

Contents 7

1 Introduction 11
1 Theoretical background: 12

1.1 Problem description: 12
1.2 Data representation: 13
1.3 Positive and negative learning examples: : : : : : : : : : : 14
1.4 Innate knowledge: 14

2 Experiment setup: 15
2.1 Goals: 16
2.2 The training and test data: : : : : : : : : : : : : : : : : : 17
2.3 Data complexity: 18
2.4 The linguistic initialization model: : : : : : : : : : : : : : 20
2.5 Elementary statistics: 22

3 Related work: 23
3.1 The work by Ellison: 23
3.2 The work by Daelemans et al.: : : : : : : : : : : : : : : : 24
3.3 Other work: 25

2 Statistical Learning 27
1 Markov models: 27

1.1 General description of Markov models: : : : : : : : : : : : 27
1.2 The forward procedure: 29
1.3 The Viterbi algorithm : 31

2 Hidden Markov Models : 34
2.1 General description of Hidden Markov Models: : : : : : : 34
2.2 The extended forward procedure: : : : : : : : : : : : : : : 35
2.3 The extended Viterbi algorithm: : : : : : : : : : : : : : : 37
2.4 Learning in a Hidden Markov Model: : : : : : : : : : : : 39
2.5 Using Hidden Markov Models in practice: : : : : : : : : : 44

7

3 Initial Experiments: 45
3.1 A test experiment : 45
3.2 Orthographic data with random initialization: : : : : : : : : 46
3.3 Orthographic data with linguistic initialization: : : : : : : : 48
3.4 Discussion: 50

4 Experiments with bigram HMMs: : : : : : : : : : : : : : : : : : : 52
4.1 General bigram HMM experiment set-up: : : : : : : : : : 53
4.2 Orthographic data with random initialization: : : : : : : : : 53
4.3 Orthographic data with linguistic initialization: : : : : : : : 55
4.4 Phonetic data with random initialization: : : : : : : : : : : 58
4.5 Phonetic data with linguistic initialization: : : : : : : : : : 60

5 Concluding remarks: 63

3 Connectionist Learning 65
1 Feed-forward networks: 65

1.1 General description of feed-forward networks: : : : : : : : 66
1.2 Learning in a feed-forward network: : : : : : : : : : : : : 68
1.3 Representing non-numeric data in a neural network: : : : : 71

2 The Simple Recurrent Network (SRN): : : : : : : : : : : : : : : : 72
2.1 General description of SRNs: : : : : : : : : : : : : : : : : 73
2.2 Learning in SRNs : 75
2.3 Using SRNs for language experiments: : : : : : : : : : : : 76

3 Experiments with SRNs: 77
3.1 General experiment set-up: : : : : : : : : : : : : : : : : : 78
3.2 Finding network parameters with restricted data: : : : : : : 80
3.3 Orthographic data with random initialization: : : : : : : : : 83
3.4 Orthographic data with linguistic initialization: : : : : : : : 85

4 Discovering the problem: 87
4.1 The influence of the number of valid successors of a string: 87
4.2 Can we scale up the Cleeremans et al. experiment?: : : : : 88
4.3 A possible solution: IT-SRNs: : : : : : : : : : : : : : : : 90
4.4 Experiments with IT-SRNs: : : : : : : : : : : : : : : : : : 91

5 Concluding remarks: 93

4 Rule-based Learning 95
1 Introduction to Rule-based Learning: : : : : : : : : : : : : : : : : 95

1.1 Positive versus negative examples: : : : : : : : : : : : : : 96
1.2 The expected output of the learning method: : : : : : : : : 97
1.3 Available symbolic learning methods: : : : : : : : : : : : 97

2 Inductive Logic Programming: 99
2.1 Introduction to Inductive Logic Programming: : : : : : : : 99
2.2 The background knowledge and the hypotheses: : : : : : : 102
2.3 Deriving hypotheses: 105
2.4 The hypothesis models and grammar theory: : : : : : : : : 107

8

9

3 Experiments with Inductive Logic Programming: : : : : : : : : : : 110
3.1 General experiment setup: : : : : : : : : : : : : : : : : : 110
3.2 Handling orthographic and phonetic data: : : : : : : : : : 112
3.3 Adding extra linguistic constraints: : : : : : : : : : : : : : 113
3.4 Discussion: 116

4 Alternative rule-based models: 118
4.1 Extending the model: 118
4.2 Deriving extended hypotheses: : : : : : : : : : : : : : : : 120
4.3 Experiments with the extended model: : : : : : : : : : : : 122
4.4 Compressing the models: : : : : : : : : : : : : : : : : : : 124

5 Concluding Remarks: 128

5 Concluding remarks 131
1 Experiment results: 131
2 Recent related work: 134
3 Future work : 136

Bibliography 139

Samenvatting 145

Chapter 1

Introduction

This thesis contains a study of the application of machine learning methods to natural
language. We will use the learning methods Hidden Markov Models, Simple Recur-
rent Networks and Inductive Logic Programming for automatically building models
for the structure of monosyllabic words. These three learning algorithms have been
chosen as representatives for three main machine learning paradigms: statistical learn-
ing, connectionist learning and rule-based learning. The language data to which they
will be applied has been limited to monosyllabic words in order to keep down the
complexity of the learning problem. We will work with Dutch language data but we
expect that the results of this study would have been the same if it had been done with
another related language.

The study will focus on three questions. First, we want to know which of the
three learning methods generates the best model for monosyllabic words. Second,
we are interested in finding out what the influence of data representation is on the
performance of the learning algorithms and the models they produce. Third, we would
like to see if the learning processes are able to create better models when they are
equipped with basic initial knowledge, so-called innate knowledge.

This book contains five chapters. The first chapter will describe the problem. In the
second chapter we will introduce the statistical learning method Hidden Markov Mod-
els and present the results of the experiments we have performed with this method. In
the third and fourth chapters we will do the same for the connectionist method Simple
Recurrent Networks and the rule-based method Inductive Logic Programming respec-
tively. The final chapter contains a comparison of the results of all experiments and
some concluding remarks.

11

12 chapter 1

1 Theoretical background

In this section we will give a description of the learning problem we want to tackle:
building phonotactic models for monosyllabic words. We will also introduce some
theoretical issues related to this problem: the importance of a good representation of
data, the influence of negative training examples and the influence of innate knowl-
edge.

1.1 Problem description
Why is panda possible English word whilepadn is impossible in English? Why is
mlodaa possible Polish word but not a possible Dutch word? For giving the answers to
these questions one has to know the syllable structures which are allowed in English,
Polish and Dutch. Native speakers of English can tell you thatpand is a possible
English word and thatpadnis not. Judging the words does not require that the native
speakers have seen them before. They use their knowledge of the structure of English
words to make their decision. How did they obtain this knowledge?

In the example we have presented we showed that the possibility that a word exists
depends on the structure of the language the word appears in. Certain languages, like
Polish, allowml onsets of words but others, like English and Dutch, do not. The
structure of words in a language is called the phonotactic structure of a language.
Different languages may have different phonotactic structures.

There are two possibilities for entering a language dependent phonotactic structure
into a computer program. The first is by making humans examine the language and
make them create a list of rules defining the phonotactic structure. This requires a lot
of labor which has to be done for all languages. The second possibility is making the
programlearn the phonotactic structure of a language by providing it with language
data. People manage to learn phonotactic rules which restrict the phoneme sequences
in their language so it might be possible to construct an algorithm that can do the
same. If we are able to develop a model for the phonotactic structure learning process
we can use the model to analyze the phonotactic structure of many languages.

Both artificial intelligence and psychology offer a wide variety of learning meth-
ods: rote learning, induction, learning by making analogies, explanation based learn-
ing, statistical learning, genetic learning and connectionist learning. We are not com-
mitted to one of these learning methods but we are interested in finding the one that
performs best on the problem we are trying to tackle: acquiring phonotactic struc-
ture. For our experiments we have chosen three machine learning paradigms: statis-
tical learning, connectionist learning and rule-based learning. We will use learning
methods from these three paradigms and compare their performance on our learning
problem.

A possible application of these phonotactic models lies in the field of Optical Char-
acter Recognition (OCR). OCR software frequently has to make a choice between two
or more possible interpretations of a written or printed word, for example betweenball

Theoretical background 13

andbaII. The most easy way of solving this problem is by looking up the words in a
dictionary and choosing the one which appears in the dictionary. This approach fails
when neither one of the words is present in the dictionary. In that case the software
should be able to determine the probability that the words exist in the language which
is being read. A phonotactic model for the language can be used for this.

This study on phonotactics is also important for our research group because it is
our first application of machine learning techniques to natural language processing.
The problem chosen is deliberately simple in order to make possible a good under-
standing of the machine learning techniques. The results of this study will be the
basis of future research in even more challenging applications of machine learning to
natural language processing.

1.2 Data representation
Every artificial intelligence text book emphasizes the importance of knowledge rep-
resentation. The way one represents the input data of a problem solving process can
make the difference between the process finding a good result or finding no result. A
nice example of the usefulness of knowledge representation is the Mutilated Checker-
board Problem presented in (Rich et al. 1991). Here a checkerboard from which two
opposite corner squares have been removed, needs to be covered completely with
dominoes which occupy two squares each. This problem is unsolvable. This fact can
be proven by trying out all possible domino configurations but that will require a lot
of work.

The solution of the Mutilated Checkerboard Problem can be found more quickly
by changing the representation of the problem and representing the board as a collec-
tion of black and white squares. An inspection of the board reveals that it contains
30 white squares and 32 black squares. Each domino must cover exactly one white
square and exactly one black square so this problem is unsolvable. One could ask
if this more suitable problem representation could have been foreseen. Unfortunately
the best way for representing data is dependent on the problem that one wants to solve.
There is no algorithmic method for deciding what data representation is the best for
what type of problem.

The input data for our learning problem can be represented in several ways. We
will take a look at two representation methods. The first one is called the orthographic
representation. Here words are represented by the way they are written down, for
example:the sun is shining. The second way of representing the words is the phonetic
way. If we use the phonetic representation then the sentencethe sun is shiningwill be
represented as [��ŝ nIMainI8]. We do not know which of the two representations will
enable the learning processes to generate the best word models. Acceptance decisions
of words by humans may be based on the way the words are written but they may also
be based on the pronounceability of the words. We are interested in finding out which
representation method is most suitable for our learning problem. Therefore we will
perform two variants of our learning experiments: one with data in the orthographic

14 chapter 1

representation and one with the same data in the phonetic representation.

1.3 Positive and negative learning examples
A learning algorithm can receive two types of learning input: positive examples and
negative examples. A positive example is an example of something that is correct in
the language that has to be acquired and a negative example is an example of some-
thing that is incorrect. Together with the examples the algorithm will receive classifi-
cations (correct/incorrect).

Gold’s landmark paper (Gold 1967) has shown that it is not possible to build a
perfect model for a general language that contains an infinite number of strings by
only looking at positive examples of the language. The reason for this is that for any
set of positive example strings there will be an infinite number of models that can
produce these examples. Without negative examples it is not possible to decide which
of these models is the correct one. The research result of Gold has consequences
for natural language learning. Natural languages are infinite because they contain an
infinite number of sentences. This means that according to language learning theory
it is not possible to build a perfect model for a natural language by only looking at
correct sentences of that language.

With Gold’s research results in mind one would predict that children use negative
language examples for acquiring natural language. However, research in child lan-
guage acquisition has found no evidence of children using negative examples while
learning their first language (Wexler et al. 1980). Even when children are corrected
they will pay little attention to the corrections. Here we have a problem: according
to computational learning theory, children need negative examples for learning if they
want to be able to learn a natural language. Children do not seem to make use of
negative examples and yet they manage to acquire good models for natural languages.

We will approach the acquisition of models for monosyllabic words from the re-
search results in child language acquisition. We will supply our learning methods with
positive information only. However mathematical language learning theory predicts
that negative examples are required for obtaining good language models. We will
assume that negative information can be supplied implicitly. In the next section we
will deal with a possible solution for the absence of negative examples in our learning
experiments.

1.4 Innate knowledge
There have been a number of attempts to explain the gap between what learning theory
states about the necessity of negative examples and what child language acquisition
reports about the absence of these negative examples. One proposed explanation as-
sumes that the learners use available semantic information for putting constraints on
natural language utterances (Finch 1993). Another explanation suggests that learn-
ers acquire reasonably good language models rather than perfect models (probably

Experiment setup 15

approximately correct (PAC) learning (Adriaans 1992)). A third explanation restricts
the languages that human learners can acquire to a small subset of the languages which
are possible theoretically (Finch 1993).

All three explanations have some cognitive plausibility and could be applicable to
our learning problem. The usage of extra semantic information in computational learn-
ing experiments has a practical problem: this information is unavailable (Finch 1993).
The ideas behind probably approximately correct (PAC) learning are interesting and
we will use some of them in our experiments. As in PAC learning we will accept mod-
els that perform as well as possible rather than restricting ourselves to perfect models.
However unlike some PAC learning algorithms we will rely on the fact that all of our
learning examples are correct and we will not use the ORACLE concept mentioned in
(Adriaans 1992) because that would imply using negative examples.

We will perform learning experiments in which the set of languages that can be
acquired will be restricted. This can be done in practice by enabling the learning algo-
rithm to choose from a small set of models instead of all possible models. This simpli-
fies the task of the learning algorithm. Restricting the set of languages is an approach
which is also suggested in human language acquisition theory (Wexler et al. 1980)
(Chomsky 1965). Humans are not regarded as being capable of learning all mathe-
matically constructible languages. They can only acquire languages of a smaller set:
the natural languages. The restriction to this smaller set is imposed by innate cogni-
tive constraints. Human language learning can be modeled by a system which sets
parameters in a general language device in order to change it to a language-specific
device.

While it might be necessary to assume extra initial knowledge for the acquisi-
tion of a complete language model, one could also try to generate some reasonably
good language models without using initial knowledge. The thesis of Steven Finch
(Finch 1993) gives some examples of extracting lexical information from positive data
without assuming innate language knowledge. We do not know whether such an ap-
proach would be successful for our learning problem. We are interested in what gain
artificial language learning systems can get from equipping them with initial linguistic
knowledge. Therefore we will perform two versions of our experiments: one version
without initial knowledge and another in which the learning algorithm starts from ba-
sic phonotactic knowledge. The linguistic model that we will use as initial knowledge
will be explained in section 2.4.

2 Experiment setup

This section contains the practical issues concerning approaching our phonotactic
learning problem. We will start with describing the goals of the experiments we want
to perform. After that we will take a look at the format and the complexity of our
training and test data. We will continue with examining the linguistic model we will
use in our experiments which start with basic phonotactic knowledge. The section will
be concluded with a paragraph containing the statistical theory which will be used for

16 chapter 1

interpreting the experiment results.

2.1 Goals
We will perform experiments with monosyllabic phonotactic data and attempt to de-
rive a phonotactic model from positive examples of the data. The model should be
able to decide whether strings are members of the language from which the training
data has been taken or not. It can be considered as a black box which takes strings as
input and returnsyesif the string is a possible member of the training language and
no if it is not. The model might assign more than two evaluation scores to the strings.
If that is the case then we will assume that the scores can be ordered and that the com-
parison of their values with a threshold value will determine whether they should be
counted asyesor no.

Our training algorithms will not receive the complete set of monosyllabic data
during the training phase. The consequence of this is that memorizing the training
data is insufficient for obtaining a good model. The phonotactic models will have to
be able to give a reasonable evaluation of unseen words which might be correct despite
the fact that they were not present in the training data. In other words: the models have
to be able to generalize.

In order to test the generalization capabilities of the models we will test them with
unseen positive data. We will require that after training the models accept all training
data so we can skip testing their performance on this data. We will also test the models
with incorrect data to make sure that they do not accept a lot of incorrect strings. The
two tests will result in two scores: the probability of accepting a string of the unseen
positive data and the probability of rejecting a string of the negative data.

While performing the phonotactic model acquisition experiments we will look for
the answers to the following questions:

1. What learning algorithm produces the best phonotactic model?

2. What data format results in the best phonotactic model?

3. Does starting from initial knowledge produce better phonotactic models?

We will perform the same experiment with algorithms representing three different
machine learning paradigms: Hidden Markov Models (statistical learning), Simple
Recurrent Networks (connectionist learning) and Inductive Logic Programming (rule-
based learning). All experiments will be done with the same training and test data and
under the same conditions to make a comparison of the results fair. It is not possible
for us to test every possible learning algorithm so the final comparison might not point
to the best algorithm. However it will give an indication to which machine learning
paradigm performs best on this problem.

We will compare two different data formats: the orthographic format and phonetic
format (see section 1.2). For each experiment we will perform two variants: one with

Experiment setup 17

training and test data in orthographic format and one with the same data in phonetic
format. We are interested in finding out which data format will enable the learning
algorithms to produce the best phonotactic models.

We would also like to find out whether learning algorithms that are equipped with
initial phonotactic knowledge will generate better phonotactic models than algorithms
without this knowledge. Therefore we will perform two variants of each learning
experiment: one in which the learning algorithms start without any knowledge and
one in which they have some initial phonotactic knowledge. The initial model will be
derived from a phonological model which will be described in section 2.4.

Thus we will perform twelve variants of a phonotactic acquisition experiment with
three learning techniques, two data formats and two initialization types. Care will be
taken to perform the experiments under the same conditions so that a final comparison
between the results will be fair.

2.2 The training and test data
The learning algorithms will receive a training data set as input and they will use this
set for building models for the structure of Dutch monosyllabic words. The models
will be able to compute acceptance values for arbitrary strings. They can either accept
a string as a possible monosyllabic Dutch word or reject it. A good phonotactic model
will accept almost all correct unseen words (positive test data) and reject almost all
impossible words (negative test data, also called random data).

The positive data sets have been derived from the CELEX cd-rom (Baayen et al.
1993). From the Dutch Phonology Wordforms directory (dutch/dpw/dpw.cd) we have
extracted 6218 monosyllabic word representation pairs.1 The first element of each
pair was the orthographic representation of the word (field Head) and the second the
phonetic representation of the word (field PhonolCPA). We have removed 10 words of
the list because they were not mentioned in the standard Van Dale dictionary for Dutch
(Geerts et al. 1992) (flute, flutes, frite, Joosts, move, moves, rocks, straight, switchand
switcht). Another three words have been removed because they had been incorrectly
classified as monosyllabic words (racend, fakendandshakend). We obtained 6205
unique pairs. The list contained 6177 unique orthographic strings and 5684 unique
phonetic strings.

After this we randomly chose 600 pairs from the list. We made sure that these
pairs contained neither duplicate orthographic strings nor duplicate phonetic strings.
The 600 orthographic strings and the corresponding 600 phonetic strings will be used
as test data. The remaining 5577 orthographic words and 5084 phonetic words will be
used as training data. The orthographic data contained the twenty six characters of the
alphabet plus the quote character ’ in order to allow for words asski’s. The phonetic
data contained 41 different characters.

1The monosyllabic words have been selected by removing all lines with hyphenation marks and all lines
with empty phonetic representations. After that the fields Head and PhonolCPA were extracted, the upper
case characters were converted to lower case and the duplicate pairs were removed.

18 chapter 1

We have used the character frequencies of the orthographic data for generating
700 random orthographic strings. The generation process has assumed that characters
occurred independently of each other. We have transcribed the 700 random strings
and thus we have obtained a list of 700 random phonetic strings. From the lists we
have removed 60 strings that resembled Dutch strings, 2 strings that had a phonetic
representation that occurred earlier in the list and 38 strings from the end of the list.
We obtained a list of 600 unique implausible orthographic strings and a list of 600
corresponding unique phonetic strings. We will use these lists as negative test data
files for our experiments.

The final operation we performed on the data sets was appending to each string
an end-of-word character.2 This was necessary because in the statistical and the con-
nectionist learning methods the words will be presented to the learning algorithms in
a sequence and the algorithms will need some way for determining where the current
string ends and a new string begins.

2.3 Data complexity
The performance of the learning algorithm is dependent on how difficult the data is.
Acquiring a phonotactic model for a language that consists of the stringsa, aa and
aaa is much easier than acquiring a model for monosyllabic Dutch words. There are
different measures which formalize this intuitive notion of data complexity. In this
section we will look at two of these. We will also apply these complexity measures to
our data.

The first complexity measure we will examine is calledENTROPY.3 This is a
number which indicates how uncertain the result is of drawing elements from a set.
For example we have a set containing twox’s, oney and onez and the probability of
drawing anx is 50% and the probability of drawing ay or a z is 25%. The entropy
of this experiment is 1.5 (the computation will be performed below). A small entropy
means that it is easy to predict the results of the draws and a large entropy means that
the prediction is difficult.

The results of draws from a set can be represented with the conceptSTOCHASTIC

VARIABLE . Our example is equivalent to a stochastic variable with the valuesx, y and
z in which the probabilities of the values are 50%, 25% and 25% respectively. We give
this stochastic variable the nameW and call the three valuesc1, c2 andc3. Then we
can compute the entropy H(W) of this variable by using the probabilities P(ci) of each
value and the formula (Charniak 1993):

H(W) = -
P

ci
(P (ci) � log2(P (ci))

So H(W) is the negation of the sum of the products of the probability P(ci) and its log2
value for all valuesci. If we apply this formula to our example with the probabilities

2In chapter 2 we will give a motivation for using a start-of-word character as well.
3The complexity measurePERPLEXITYis related to entropy. It will not be not discussed here.

Experiment setup 19

P(x)=0.5, P(y)=0.25 and P(z)=0.25 then we obtain the following computation: H(W)
= -(0.5*log2(0.5) + 0.25*log2(0.25) + 0.25*log2(0.25)) = -(-0.5+-0.5+-0.5) = 1.5.

In order to be able to compute the entropy of our data we will regard the words
in the positive data as sequences of draws from a set of characters. The probability
of each character can be estimated by computing the frequency of the character in
the positive data and dividing it by the total number of characters in the data. After
having acquired the character probabilities we can compute the entropy of the data.
Our positive orthographic data with 6177 words and 41005 characters of which 29
are unique has an entropy of 4.157. Our positive phonetic data with 5684 words and
34430 characters of which 43 are unique has an entropy of 4.294.4

A language model that estimates the validity of a word by looking at isolated char-
acters is called aUNIGRAM MODEL. Such a model uses probabilities of characters
without looking at their contexts. We will also use models which compute the prob-
ability of a character given information about previous characters. The probabilities
in these models will say something about the occurrence of pairs of characters and
therefore they are calledBIGRAM MODELS.

Words in natural languages are not arbitrary sequences of characters. The context
of a character has an influence on its probability. For example, in our positive ortho-
graphic data the probability that an arbitrary character is au is 3.8% but the probability
that a character following aq is au is 92%. The task of predicting a character in word
is easier when one knows the preceding character. Thus the earlier defined concept of
entropy is not very useful for bigram models.

In order to describe the data of a bigram model we need to use a kind of conditional
entropy which we will callBIGRAM ENTROPY. The value is computed in a similar
way to standard entropy. However instead of character probabilities this computation
uses conditional character probabilities: the probability of a certain charactercj given
that a specific characterci precedes it. We have used an adapted version of the formula
presented in (Van Alphen 1992) page 96:

H(W) = -
P

ci
P (ci)

P
cj
(P (cj jci) � log2(P (cj jci))

We have applied this formula to our orthographic and phonetic data and obtained the
bigram entropy values of 3.298 and 3.370 respectively.5 From these values we can
conclude that the data is less complex when it is considered as a sequence of character
bigrams rather than a sequence of isolated characters. In other words, it is easier to
predict a character of a word when one knows the preceding character.

Entropy and bigram entropy give an indication about the complexity of the data. It
is unclear how useful these concepts are for predicting the degree of learnability of the
data. The general expectation is that data with a large entropy is more difficult to learn

4In both orthographic and phonetic data each word contains a start-of-word and an end-of-word charac-
ter. Without these characters the orthographic data has an entropy of 4.255 while the phonetic data has an
entropy of 4.551.

5The bigram entropy values without the end-of-word characters were 3.463 for the orthographic data
and 3.617 for the phonetic data.

20 chapter 1

than data with a small entropy. However there are counter-examples. The entropy of
a language A consisting of strings that contain an arbitrary number ofa’s is 0 while a
language B with strings that contain any combination ofa’s andb’s has an entropy of
1. If we restrict A to strings with a lengthn wheren must be a prime number then A
would probably be more difficult to learn than B. Yet the entropy of A is still 0 which
predicts that A is easier to learn than B.

An alternative measure which can be used for determining the complexity of our
data is the CHOMSKY HIERARCHY. This is a hierarchy of classes of grammar which
can be used for modeling artificial and natural languages. The hierarchy distinguishes
one grammar class for finite languages and four grammar classes for infinite lan-
guages. The complexity of a language is determined by the place in the hierarchy
of the least complex grammar that is capable of producing it.

Our phonotactic data is finite. The longest strings in our data contain nine charac-
ters without begin-of-word and en-of-word character. Monosyllabic words with a few
more characters might be possible but the existence of an English or Dutch monosyl-
labic word of twenty or more characters should be ruled out. Both our orthographic
and our phonetic data should be placed in the lowest spot in the Chomsky hierarchy:
the group of finite languages. This indicates that a model for the data can be acquired
by looking at positive data only (Gold 1967).6

A problem of using the Chomsky hierarchy for determining the complexity of data
is that the differences within each language/grammar class are large. The empty lan-
guage and the language consisting of prime numbers with less than a million digits are
both finite languages. Yet the first is much easier to learn than the second. The Chom-
sky hierarchy and the related language learning classes put forward by (Gold 1967)
give only a rough indication of the learnability of languages (see also (Adriaans 1992)
section 2.3.4).

We conclude that the available techniques for determining data complexity do not
have an exact answer on the question of how difficult the learning process will be.

2.4 The linguistic initialization model
We will perform two versions of our learning experiments: one that starts with initial
phonotactic knowledge and one that start without any initial knowledge. As an initial-
ization model we have chosen the syllable model which is presented in (Gilbers 1992)
(see Figure 1.1). This model is a mixture of syllable models by (Cairns and Feinstein
1982) and (Van Zonneveld 1988). Hence it will be called the Cairns and Feinstein
model.

The Cairns and Feinstein model is a hierarchical syllable model consisting of a tree
with seven leaves. Each leaf can either be empty or contain one phoneme. The ap-
pendix leaf may contain two phonemes. Each leaf is restricted to a class of phonemes:
in models for Dutch and many other languages the peak may only contain vowels and

6Derivation of a perfect model is only guaranteed if one is able to evaluate the complete data set. How-
ever we will not provide the complete data set to our learning algorithms.

Experiment setup 21

pre-margin margin core satellite peak

onset

satellite coda appendix

nucleus

rhyme

syllable

margin

Figure 1.1: The syllable model of Cairns and Feinstein

the other leaves may only contain consonants. The exact phonemes that are allowed
in a leaf are language dependent. In the syllable model there are vertical lines be-
tween nodes and daughter nodes which are main constituents. A slanting line between
two nodes indicates that the daughter node is dependent on the sister node that is a
main constituent. A dependent constituent can only be filled if its main constituent
is filled. For example, the margin satellite can only contain a phoneme if the margin
core contains a phoneme.

This syllable model can be used to explain consonant deletion in child language.
For example, the wordstopfits in the model likes:pre-margin,t:margin core,o:peak
andp:coda. An alternative structure witht in the margin core satellite is prohibited by
a constraint for Dutch which states that satellite positions only may contain sonorant
consonants (likel, m, n andr). The model predicts that a child which has difficulty pro-
ducing consonant clusters will delete the dependent part in the onset cluster and pro-
ducetop. The alternativesopwould violate the constraint that dependent constituents,
in this case pre-margin, cannot be filled if the corresponding main constituent, here
margin, is not filled. Another example is the wordglad which fits in the model like
g:margin core,l:margin satellite,a:peak andd:coda (theg is prohibited in the pre-
margin in Dutch). In this case the model will predict that the child that has problems
with producing consonant clusters will delete thel rather than theg. Both predictions
are correct.

In our experiments with initial knowledge we will supply the learning algorithms
with the syllable structure presented in Figure 1.1. Two extra constraints will be pro-
vided to the algorithms: the fact that the peak may only contain vowels while the other
leaves are restricted to consonants. Furthermore the division of phonemes in vowels
and consonants will be made available for the learning algorithms. Their task will be
to restrict the phonemes in each leaf to those phonemes that are possible in the lan-
guage described by the learning examples. By doing this they will convert the general
Cairns and Feinstein model to a language-specific syllable model.

22 chapter 1

2.5 Elementary statistics
In this thesis we will need to compare the performances of different learning algo-
rithms on the acquisition of phonotactic models. The performance of the models is
defined by two scores: the percentage of accepted correct strings and the percentage
of rejected incorrect strings. Both scores have an average and a standard deviation.
The question is how we can compare these scores and determine whether one is sig-
nificantly better than the other.

Two numbers with an average and a standard deviation can be compared with
the t-test (Freedman et al. 1991). By using this test we can determine whether the
difference between the numbers is caused by a real difference or by a chance error. The
test computes a numbert by dividing the difference of the averages of two numbers
we want to compare by the standard error of this difference. The standard error of the
difference is equal to the square root of the sum of the squares of the standard errors of
the two input numbers. Here are all necessary formulas for comparing two numbers
which have averages AVGx and AVGy and standard deviations SDx and SDy based
on measuring themn times:

SEx = SDx/
p
n� 1 (standard error ofx)

SEy = SDy/
p
n� 1 (standard error ofy)

SEd =
q
SE2

x + SE2
y (standard error ofx-y)

t =
AVGx�AV Gy

SEd
(t-score)

The result of these computations will be a numbert(n-1). This number can be looked
up in at-table to find out what the probability is that the difference was caused by a
chance error. If the probability is smaller than 5.0% then we will assume that there is
a real significant difference between the two numbers.

Example: We have performed two sets of 5 experiments with Hidden Markov
Models that process orthographic data: one set was randomly initialized and the other
one was initialized with a general version of the Cairns and Feinstein model. In the
first set of experiments the HMM needed 108, 87, 81, 48 and 65 training rounds to
become stable. In the second experiment set the learning algorithm needed 43, 17,
63, 22 and 47 training rounds. The models with phonotactic initialization seem to
train faster and we want to know if the difference is real. Therefore we compute the
averages (77.8 and 38.4), the standard deviations (20.3 and 16.9), the standard errors
(10.1 and 8.4) the standard error of the difference (13.3) andt(4) (3.0). We look up this
t(4) value in at-table and find out that the probabilityp that the difference between the
two number lists was caused by a chance error is between 1.0% and 2.5% (<5.0%).
We will adopt the notation used in (Van den Bosch 1997) and express this result as
t(4)=3.0,p<0.025. So the difference cannot be explained by a chance error: HMMs
with phonotactic initialization train faster than randomly initialized HMMs for this
problem.

Related work 23

3 Related work

In this section we will examine literature on the problem of machine learning of
phonotactics and related areas. We will start with the work of T. Mark Ellison who
has published a thesis and some papers about applying machine learning to phonol-
ogy. After that we will take a look at the work of Walter Daelemans and his group
on using machine learning for building models for hyphenation, syllabification, stress
placement and grapheme-to-phoneme conversion. We will conclude with an overview
of related work by other authors.

3.1 The work by Ellison
In the thesis (Ellison 1992) Mark Ellison investigates the possibility of using machine
learning algorithms for learning phonological features of natural languages. He im-
poses five constraints on the algorithms:

1. they should work in isolation, that is without help of a human teacher,

2. they should be independent of the way the (phonetic) data has been encoded,

3. they should be language independent,

4. they should generate models which are accessible and

5. they should generate models which are linguistically meaningful.

The goal of Ellison in his thesis is to show that it is possible to create success-
ful machine learning applications which satisfy all five constraints for phonological
problems. He evaluates a number of existing learning applications in related domains
and concludes that none of them fulfills all five requirements. Many learning sys-
tems violate the first constraint because they are supplied with extra knowledge like a
vowel-consonant distinction or monosyllabic data. Other systems like statistical and
connectionist learning algorithms fail to generate models which are accessible and
linguistically meaningful.

Ellison investigates machines learning techniques on three different phonological
tasks with positive input data. The first task is the derivation of vowel-consonant
distinction models. For this derivation Ellison used an inductive learning technique
combined with a model evaluation measure which favored a simple model over more
complex models. The learning algorithm represented phonological models as sets of
parameters and searched the parameter space for the best model by using the searching
technique simulated annealing. Ellison’s learning algorithm was applied to data from
thirty languages. In all but four languages it divided the phonemes in two groups: the
vowels and the consonants. The problems in the four languages were caused by the
fact that the program erratically had divided either the consonants or the vowels in two
groups based on their positions in the words.

24 chapter 1

Ellison applied the same learning algorithm to the second and the third learning
task. The second task consisted of deriving the sonority hierarchy of natural languages
where sonority means the loudness of phonemes. As in the first task the learning algo-
rithm was applied to data from thirty languages. It generated on average three sonority
classes per languages and put the vowels in different classes than the consonants in
all except one language. The program performed well in separating consonants from
vowels but performed less well in building vowel hierarchies and consonant hierar-
chies.

In the third learning task the algorithm had to derive harmony models. These
models contain context constraints on phoneme sequences. The learning algorithm
was applied to data from five languages. It discovered correct constraints on vowel
sequences for all five languages. Ellison wanted to study vowel harmony and therefore
he supplied the learning algorithm with vowel sequences. He argued that this does not
mean that the learning algorithm fails his first isolation constraint because it should be
considered as part of a larger program in which the vowel-consonant distinction was
discovered by the untutored first learning program.

The learning algorithm used by Ellison in his three experiments satisfies his five
learning constraints. Its is interesting to compare the experiments we want to perform
with these constraints. Only one of our algorithms will satisfy the fourth and the
fifth constraint about generating accessible and meaningful results: the rule-based
learning method. Neither the statistical nor the connectionist method will generate
accessible and meaningful phonotactic models. All our algorithms will be language-
independent and use an arbitrary data representation. However they will not satisfy
the first untutored constraint because they will process monosyllabic data and will be
supplied with linguistic knowledge in the initialized experiments.

3.2 The work by Daelemans et al.
The group of Walter Daelemans has done a lot of work on applying machine learning
in natural language processing areas such as hyphenation, syllabification, placement
of stress, grapheme-to-phoneme conversion and morphological segmentation. In this
work different machine learning algorithms have been applied to several linguistic
problems. The algorithms used are inductive memory-based techniques and connec-
tionist techniques. The learning methods that performed best were memory-based
techniques which simply stored learning examples rather than building an abstract
representation for them.

(Daelemans et al. 1993) describes the application of three learning methods for
acquiring the stress pattern in Dutch. Their data contained 4868 monomorphemes
for Dutch words. In their first experiment they have applied backpropagation (BP),
Analogical Modeling (ANA) and Instance-Based Learning (IBL) for predicting the
stress patterns of the words. IBL and BP performed approximately equally well on
unseen data while ANA performed slightly less well. IBL and ANA were used in a
second experiment with two versions of the data set (one phonetic version). Their

Related work 25

learning methods performed reasonable even for stress patterns which are difficult to
predict for state-of-the-art theory. The authors conclude that computational learning
methods such as ANA, BP and IBL are an alternative to Principles and Parameters
based learning theories.

(Daelemans et al. 1995) presents a study in which machine learning techniques are
used for building a models for determining the diminutive suffix of Dutch nouns. The
learning method used is the decision tree learning method C4.5 (Quinlan 1993). The
model generated by C4.5 performed well: it obtained an error rate of 1.6% on this
task and outperformed the theoretical model presented in (Trommelen 1983) which
paid special attention to the formation of diminutives. By comparing the results of
training C4.5 with different parts of the data the authors have been able to falsify
Trommelen’s claim that rhyme information of the last syllable of a Dutch noun is
sufficient for predicting its diminutive suffix.

(Daelemans et al. 1996) discusses grapheme to phoneme conversion based on data-
oriented methods. The authors have used the machine learning technique IG-Tree
for building grapheme to phoneme conversion for the languages Dutch, English and
French. IG-Tree performed significantly better than a connectionist state-of-the-art
solution (NETtalk, Sejnowski et al. 1987) and a theoretical model (Heemskerk et al.
1993). Daelemans and Van den Bosch conclude that IG-Tree has three advantages: it
does not require gathering rules, it is reusable and it is accurate.

(Van den Bosch et al. 1996) describes the application of four inductive learning
algorithms and one connectionist method on three variants of the problem of dividing
words in morphemes. The algorithm that generated the best model for all three tasks
was IB1-IG, an inductive algorithm that stores all learning examples and compares
unseen data with the stored data while taking into account that some data features
are more important than others. The algorithm uses information gain, a concept from
information theory, for computing the importance of each data feature for the task. It
uses the current character and six characters in its context to decide whether to insert
a morpheme boundary or not.

(Van den Bosch et al. 1997) presents a motivation for the good results of lazy
learning techniques in the domain of natural language learning. A categorization of
language data will contain many small clusters of related elements. Since lazy learn-
ing techniques store the complete training data they will have less chance of miss-
ing small variations than learning methods which summarize data. Equipped with an
information-theoretic-based weight of the data features lazy learning techniques will
be even more successful in categorizing the data. The authors present an empirical
study with a word pronunciation task to support their claims.

3.3 Other work
In (Wexler et al. 1980) Kenneth Wexler and Peter W. Culicover describe a method for
learning transformational grammars describing natural language syntax. Transforma-
tional grammars are capable of generating arbitrary type 0 languages (Partee et al. 1993)

26 chapter 1

and therefore they are neither learnable from positive examples only nor from both
positive and negative information (Gold 1967). The learning method of Wexler and
Culicover is based on putting restrictions on the transformational grammars that are
to be learned. The input of the method consists of positive example pairs(b,s)where
b is a phrase-marker ands is the corresponding surface string.

The five transformational grammar restrictions suggested by Wexler and Culicover
are: the Binary Principle, the Freezing Principle, the Raising Principle, the Principle
of No Bottom Context and the Principle of the Transparency of Untransformable Base
Structures (see (Wexler et al. 1980) section 4.2). The authors have proven that the
restrictions are necessary for making the grammars learnable. They have also dis-
cussed the linguistic plausibility of the restrictions and they have concluded that first
one probably is linguistically plausible, the second one is plausible and the third one
probably not. The plausibility of the fourth and the fifth restriction have not been
discussed.

(Adriaans 1992) describes a rule-based learning method for learning categorial
grammar. The learning method has access to an example sentence generator and
an oracle which evaluates arbitrary sentences. Adriaans has put restrictions on the
generator and the grammatical rules that should be learned. The generator produces
sentences in an order based on their complexity and the complexity of the rules is
restricted by the assumed complexity of the complete grammar.

Adriaans’s algorithm contains four steps. In the first stepssentences are generated
wheres is dependent on the expected complexity of the grammar. After that all pos-
sible rules explaining the sentences will be extracted. In the third step these rules will
be combined and simplified. Finally the validity of the rules will be tested by using
them for generating sentences and supplying the sentences to the oracle. Adriaans
has been able to prove that his learning system can effectively learn context-free lan-
guages when the restrictions on the generator processing and target rule complexity
are satisfied.

(Gildea et al. 1996) describes an interesting learning experiment in which an in-
duction algorithm is applied to problem with and without extra domain constraints.
The problem was deriving phonological rules for phenomena as flapping, r-deletion
and word-final stop devoicing. The rules were represented as deterministic transduc-
ers. The learning algorithm without the constraints failed to learn the rules. How-
ever equipped with the three constraints Faithfulness (usually an underlying segment
will be the same as the corresponding surface segment), Community (segments with
similar features will act the same) and Context (rules need context information) the
algorithm was able to learn the target rules from positive information only. With this
experiment the authors have shown that computational learning methods applied to
natural language can benefit from being equipped with basic linguistic knowledge.

The three studies described in this section have in common that they attempt to
tackle the learnability problems of complex domains by adding restrictions to the do-
main. By showing that these restrictions are linguistically plausible they have con-
tributed to reduce the gap between mathematical learning theory and observations in
child language acquisition.

Chapter 2

Statistical Learning

In this chapter we will examine the application of a statistical learning technique to
the acquisition of phonotactic models. The learning technique which we will use is
called Hidden Markov Models. The chapter will start with an introduction to stan-
dard Markov models. After this we will examine the more elaborate Hidden Markov
Models (HMMs). The experiments we will perform with HMMs have been divided in
two groups. The first group of experiments consists of test experiments with a small
data set. With these experiments we will try to find out what restrictions we have to
impose on the HMMs and their training data in order to be able to make them acquire
phonotactic knowledge. These experiments will be discussed in the third section. The
fourth section will present the results of the HMMs that were applied to our main data
set. The final section of the chapter will give some concluding remarks.

1 Markov models

Before discussing the Hidden Markov Models, we will present the standard Markov
models. We start with a general description of these models. After this we will in-
troduce two basic algorithms which are used in connection with Markov models: the
forward procedure and the Viterbi algorithm.

1.1 General description of Markov models
A Markov model is a model consisting of states and weighted transitions. The task
of a Markov model is recognizing or producing sequences. An example of a Markov
model is shown in figure 2.1. It shows some popular target locations in a tourist walk

27

28 chapter 2

0.4

City Hall

0.3

0.2

Museum

Car-park

1.0

0.5

0.2

0.1

0.7

0.6

0.1

0.9

0.1

Martini Tower

Railway Station0.8

0.1

Figure 2.1: The City Walk Markov Model: A Markov model for a tourist walk through
the city of Groningen. The states modeling locations are represented by filled circles
and the transitions by arrows connecting them. The weights indicate the probability
of moving from one state to another, e.g. when you are in the Museum the probability
of moving to the Martini Tower is 0.5.

through the city of Groningen: the Museum (MU), the City Hall (CH) and the Martini
Tower (MT). People start their walk from the Railway Station (RS) or from the Car
park (CP).

These five locations are represented as states in the model. The weights of the
links between the states indicate the probability that a visitor of a certain location will
go to another location. 60% of the people present in the Car park at timet will be in
the Museum at timet+1 (0.6 link). All people in the City Hall will walk to the Martini
Tower (1.0 link) and no people present in the Martini Tower will continue their walk
by visiting the Railway Station next (no link). The starting locations of the walk are
marked with links that start from outside the model. The probability that a walk starts
in the Car park is 20% (0.2 link) and the probability that it starts in the Railway Station
is 80% (0.8 link). A walk ends when the outward link from Car park (0.1) or Railway
Station (0.1) is used.

The parameters of a Markov model can be arranged in matrices. One matrix, the
A-matrix, contains the probabilities that concern the weights of internal links and an
elementaij of this A-matrix indicates the probability that a transition between statei
and statej will be made. The�-matrix contains the probabilities of starting in states
so�i indicates the probability that a Markov process starts in statei. Figure 2.2 shows

Markov models 29

A =

2
66664

0:00 0:90 0:00 0:00 0:00
0:40 0:00 0:10 0:50 0:00
0:00 0:60 0:00 0:30 0:00
0:00 0:20 0:10 0:00 0:70
0:00 0:00 0:00 1:00 0:00

3
77775 � =

2
66664

0:80
0:00
0:20
0:00
0:00

3
77775

Figure 2.2: Parameter definition of the City Walk Markov Model1. In the A-matrix a
horizontal rowi contains the probabilities of leaving statei and moving to a statej.
The order of the states is<Railway Station, Museum, Car park, Martini Tower, City
Hall> The�-matrix contains the probabilities of starting in statei. Examples: The
probability of moving from the Museum to the Railway Station is 0.40 (coordinate 2,1
in the A-matrix) and the probability of starting in the Car park is 0.20 (third number
in �-matrix.

the matrix representation for the City Walk Markov Model.

1.2 The forward procedure
Now suppose that the people that are engaged in a walk change location once an hour.
What would be the probability that someone is in the Martini Tower after a walk
of two hours? If we want to compute this probability we have to find out all paths
from starting locations that reach the Martini Tower in two steps. Then we have to
compute the probabilities of these paths and compute their sum. This will give us the
probability we are looking for.

Inspection of figure 2.1 reveals that there are two paths possible from one of the
starting locations which reach the Martini Tower in two steps: Car park! Museum
! Martini Tower and Railway Station! Museum! Martini Tower. The probability
of starting in Car park is 0.2, moving from Car park to Museum has probability 0.6
and moving from Museum to Martini Tower 0.5. Therefore the probability of the first
path is 0:2 � 0:6 � 0:5 = 0:06. In a similar fashion we can compute the probability
of the second path: 0:8 � 0:9 � 0:5 = 0:36. The probability that someone is in the
Martini Tower after a walk of two hours is equal to the sum of these two probabilities:
0:06+ 0:36= 0:42.

The general procedure that is used for computing the probability that a Markov
model will be in a states at a timet is called the FORWARD PROCEDURE: �s(t). The
definition of this procedure is:

1In general the A-matrix and the�-matrix satisfy the properties
P

j
A[i; j] = 1 and

P
i
�[i] = 1.

The first property is not satisfied by this A-matrix because we did not include the two model-leaving 0.1
arcs in the matrix. We will elaborate on this in section 3.1.

30 chapter 2

�s(t) = the probability of being in state s at time t:

�s(0) = �s (2.1)

�s(t+ 1) =
X
k

�sk (t) � ask;s (2.2)

Equation 2.1 defines that at time 0 the probability of being in a states is equal to the
probability of starting in states. We can compute the probability of being in a states
at time pointt+1 if we know the probability of being a state at timet. First we have to
multiply the probability of being in a statek with the weight of the link between state
sk and states. After this we have to compute the sum of all these products (equation
2.2). Weights of non-existent links are defined to have value0.

The forward procedure can be used for computing the probability that someone is
in the Martini Tower after a walk of two hours. The procedure value we are looking
for is �MT (2). We start with computing all�s(0). With these values we compute all
�s(1) values which in turn can be used for computing�MT (2).

�RS(0) = �RS = 0:8

�CP (0) = �CP = 0:2

All other �s(0) are equal to 0 because the probability of starting in these states (�s)
is 0. In the following equations we will assume that the states are ordered, that is:
s1=Railway Station (RS),s2=Museum (MU),s3=Car park (CP),s4=Martini Tower
(MT) ands5=City Hall (CH). Now the next step is:

�RS(1) =
X
k

�sk(0) � ask;RS = 0

�MU (1) =
X
k

�sk(0) � ask;MU =

= �RS(0) � aRS;MU + �CP (0) � aCP;MU =

= 0:8 � 0:9+ 0:2 � 0:6= 0:84

�CP (1) =
X
k

�sk(0) � ask;CP = 0

�MT (1) =
X
k

�sk(0) � ask;MT =

= �CP (0) � aCP;MT =

= 0:2 � 0:3= 0:06

�CH(1) =
X
k

�sk(0) � ask;CH = 0

Markov models 31

�leave(1) =
X
k

�sk (0) � ask;leave =

= �RS(0) � aRS;leave + �CP (0) � aCP;leave =

= 0:8 � 0:1+ 0:2 � 0:1= 0:1

There are no links from starting locations to the states Railway Station, Car park and
City Hall. These locations cannot be reached in one step so their�s(1) value is equal
to 0. The Martini Tower state can be reached from the Car park state in one step and
the Museum state can be reached from both the Railway Station state and the Car park
state. They have an�s(1) value which is larger than0. The leave state stands for
leaving the city.

With the values of the forward procedure for time 1 we can now compute�MT (2):

�MT (2) =
X
k

�sk (1) � ask;MT =

= �MU (1) � aMU;MT =

= 0:84� 0:5= 0:42:

The Martini Tower can only be reached in two steps from one of the starting locations
if the first step takes the tourist to the Museum. The probability�MT (2) is equal to
the one we have computed earlier.

By using the forward procedure we can speed up the computation of the probabil-
ity of being in a statesat timet. For example, suppose that we have to perform such a
computation for a ten-state Markov Model in which all states are connected with each
other and in which each state can be a starting state. Suppose that we want to know a
probability at time 10. If we compute this by summing the probabilities of all possible
paths to the state we will get into trouble. We can start in ten different states (time 0)
and at each new time point we can move to ten different states. This means that there
are 1010 different paths to a state at time 10. Since every path from time 0 to time 10
requires 10 multiplications, we will need 10*1010=1011. multiplications in order to
compute the probability in this fashion.

With the forward procedure we can simplify this computation. At each time step
we can compute eachas(t) with 10 multiplications (see equation 2.2). There are 10
as(t), so at each time step we will need 102 multiplications. For a probability at time
10 we will need 9 of those sets of multiplications and 10 additional multiplications for
the final time slice. In total we need 910 multiplications with the forward procedure
compared with the 1011 multiplications with the naive method.

1.3 The Viterbi algorithm
Now suppose that the city council wanted to put signs along a popular walk through
Groningen. The budget of the council is limited, and they only have enough money

32 chapter 2

for a walk passing four locations. They want as many people as possible to see the
signs so they want to know what four-step path starting from a starting location is the
most likely one.

In total there are 48 4-step paths starting in one of the two initial positions. If
we compute the probability of each of these paths, we will find out that the path
Railway Station! Museum! Martini Tower! City Hall ! Martini Tower is the
most probable 4-step path (probability 0.252). We saw in the previous section that
the number of paths can become quite large. In fact, the number of possible paths
increases exponentially as path length increases. For longer paths computing the most
likely one in this manner will take a lot of effort. Fortunately a good computational
method exists for computing the most probable path: the VITERBI ALGORITHM. Its
definition is:

�s(t) = the probability of the most likely path arriving

in state s at time t:

�s(0) = �s (2.3)

�s(t+ 1) = maxk(�sk (t) � ask;s) (2.4)

The probability of the most likely path to a state at time 0 is equal to the probability of
starting in that state (equation 2.3). Probabilities at other time points can be computed
by using the probabilities of the previous time points (equation 2.4). Partial paths that
cannot contribute to the most likely path are pruned by themaxfunction. The Viterbi
algorithm can be used to find out the most likely four-step path in the City Walk
Markov Model. In this example it will have to compute 5*5=25 probabilities instead
of the 48 probability computations that were necessary with the previous method. We
start with computing�s(0):

�RS(0) = �RS = 0:8

�CP (0) = �CP = 0:2

The other�s(0) are equal to 0 and have been left out. We continue by computing
�s(1):

�MU (1) = maxk(�sk (0) � ask;MU) =

= max(�RS(0) � aRS;MU ;

�CP (0) � aCP;MU) =

= max(0:8 � 0:9; 0:2 � 0:6) = 0:72

�MT (1) = maxk(�sk (0) � ask;MT) =

= �CP (0) � aCP;Martini Tower =

= 0:2 � 0:3= 0:06

Markov models 33

Again, the other�s(1) are equal to zero and have been left out. We will not compute
�leave(t) because the probability of leaving the Markov model has no influence on
the probabilities at later time points; in this model people that leave the city are not
coming back. Here are the computations for�s(2)

�RS(2) = maxk(�sk (1) � ask;RS) =

= �MU (1) � aMU;RS =

= 0:72� 0:4= 0:288

�MU (2) = maxk(�sk (1) � ask;MU) =

= �MT (1) � aMT;MU =

= 0:06� 0:2= 0:012

�CP (2) = maxk(�sk (1) � ask;CP) =

= max(�MU (1) � aMU;CP ;

�MT (1) � aMT;CP) =

= max(0:72� 0:1; 0:06� 0:1) = 0:072

�MT (2) = maxk(�sk (1) � ask;MT) =

= �MU (1) � aMU;MT =

= 0:72� 0:5= 0:36

�CH(2) = maxk(�sk (1) � ask;CH) =

= �MT (1) � aMT;CH

= 0:06� 0:7= 0:042

The computations of�s(3) and�s(4) can be performed in a similar fashion. We will
not list the complete computations here but confine with the results:

�RS(3) = 0:0048

�MU (3) = 0:2592

�CP (3) = 0:036

�MT (3) = 0:042

�CH(3) = 0:252

�RS(4) = 0:10368

�MU (4) = 0:0216

�CP (4) = 0:02592

�MT (4) = 0:252

�CH(4) = 0:0294

34 chapter 2

Location Likes (L) Dislikes (D)
Railway Station 0.7 0.3
Museum 0.5 0.5
Car park 0.1 0.9
Martini Tower 0.9 0.1
City Hall 0.8 0.2

Figure 2.3: The probabilities of liking locations in the City Walk through Groningen.
Probabilities are only dependent on the currently visisted object. We assume that
previously visited locations do not influence the opinion of the tourists. Example:
the probability that someone that visited the Martini Tower disliked it is 0.1 and the
probability that the person liked it is 0.9.

As we can see�MT (4) has the largest value (0.25200) so the path starting at the
Railway Station and ending at the Martini Tower is the most likely path containing 4
steps. This�-value only gives us the final point of this path. If we want to know the
other locations present in the path, we will have to trace back the equations:�MT (4)
most probable ancestor was�CH(3), its most probable ancestor was�MT (2) which
on its turn was preceded by�MU (1) and�RS(0). So the most probable four-step path
is Railway Station! Museum! Martini Tower! City Hall ! Martini Tower and
its probability is 0.252.

2 Hidden Markov Models

In the previous section we have examined Markov models. In this section we will
present an extended version of these models: Hidden Markov Models. We will give
a general description of these models and present the adapted versions of the forward
procedure and the Viterbi algorithm which are used in Hidden Markov Models. After
this we will describe how they can learn and how they can be used in practice.

2.1 General description of Hidden Markov Models
A researcher of the University of Groningen dedicates himself to finding out if people
that take part in a city walk through Groningen like the locations they visit. To find
the answer to this question he makes people fill in forms in which they are asked if
they like the locations they have visited. The results of these forms are summerized in
the table in figure 2.3.

The probability that someone likes the Railway Station (L) is 70% while the prob-
ability that the person does not like it (D) is 30%. All other probabilities are listed in
the table. Now every walk through Groningen can be represented by a sequence con-

Hidden Markov Models 35

B =

2
66664

0:70 0:30
0:50 0:50
0:10 0:90
0:90 0:10
0:80 0:20

3
77775

Figure 2.4: An Extension of the parameter definition of the City Walk Markov Model:
the B-matrix. In this matrix an entrybsi;tj represents the probability that in statesi
tokentj can be produced. Example: the probability of producting L (like,t1) in the
Car park state (s3) is 0.10 and the probability of producing D (dislike,t2) in the same
state is 0.90. The A-matrix and the�-matrix remain unchanged.

taining the tourist’s opinion about the different locations. For example, if the previous
most-probable walk Railway Station! Museum! Martini Tower! City Hall !
Martini Tower was made by someone who likes the Martini Tower and the Museum
but does not like the Railway Station, the Car park and the City Hall, we would get
the sequence DLLDL.

The DL-sequences are an interesting by-product of the City Walk model. They are
not in a unique correspondence with state sequences. For example a walk consisting
of Car park! Martini Tower! Museum! Railway Station! Museum taken by
the same tourist can also be represented with the sequence DLLDL. Furthermore,
the same walk of a tourist that likes all locations can be represented by LLLLL. So
different walks can be represented with the same DL-sequences and the same walk
can generate different DL-sequences when made by different tourists.

It is possible to extend Markov Models to make them simulate this behavior. In
order to do that we define that in a state of the model different tokens can be produced.
The probabilities that tokens are produced will be stored in a new parameter matrix
of the model: the B-matrix (figure 2.4). In this matrix an entrybsi;tj represents the
probability that in statesi token tj can be produced. The other model parameters
incorporated in the A-matrix and the�-matrix remain the same as in figure 2.2.

Now we have obtained a HIDDEN MARKOV MODEL (HMM). The model is called
hiddenbecause from the token sequences generated by the model it is in general im-
possible to find out which states were passed through while generating the sequence.
In the specific example of the City Walk Markov Model different state sequences
could lead to the same DL-sequence. Therefore it was impossible to find out the state
sequence used if we only know a token sequence.

2.2 The extended forward procedure
We have presented the forward procedure and the Viterbi algorithm for Markov mod-
els by asking two questions. We will do the same for the related functions for HMMs.

36 chapter 2

Our first Markov model question can be rephrased to: what is the probability of being
at the Martini Tower after a walk of two hours in which the tourist did not like the
starting location but in which he did like the second and the third location? In Hidden
Markov Model terms, what is the probability of being at state Martini Tower after two
steps while having produced token sequence DLL? We cannot use the forward proce-
dure for Markov Models for computing this probability because it does not take into
account the token production probabilities. A function that uses these probabilities is
the EXTENDED FORWARD PROCEDURE:

�s(t; x0::xt) = the probability of being in state s at time t

after producing sequence x0::xt

�s(0; x0) = �s � bs;x0 (2.5)

�s(t+ 1; x0::xt+1) =
X
k

�sk (t; x0::xt) � ask ;s � bs;xt+1 (2.6)

The probability of producing a token in a state at timet = 0 is equal to the probability
of starting in that state multiplied with the probability of producing the token in the
state (equation 2.5). The probability of producing a tokenxt+1 in state s at timet+ 1
is equal to the sum of all values of the forward procedure for timet and statesk
multiplied with the probability of moving from statesk to s and the probability of
producingxt+1 in s (equation 2.6). Note that the extended forward procedure uses the
probabilities of all tokens up to the current one. So the probability computed by this
function is not only dependent on the current token but also on all previous tokens in
the sequence.

We can use the extended forward procedure for answering the question we men-
tioned at the start of this section:

�RS(0; D) = �RS � bRS;D =

= 0:8 � 0:3= 0:24

�CP (0; D) = �CP � bCP;D =

= 0:2 � 0:9= 0:18

�MU (1; DL) =
X
k

�sk (0; D) � ask;MU � bMU;L =

= �RS(0; D) � aRS;MU � 0:5+ �CP (0; D) � aCP;MU � 0:5=

= 0:24� 0:9 � 0:5+ 0:18� 0:6 � 0:5= 0:162

�MT (1; DL) =
X
k

�sk (0; D) � ask;MT � bMT;L =

= �CP (0; D) � aCP;MT � 0:9=

= 0:18� 0:3 � 0:9= 0:0486

Hidden Markov Models 37

All �s(0; x0) and�s(1; x0::x1) which are equal to 0 have been left out. Now we can
compute the probability we are looking for:

�MT (2; DLL) =
X
k

�sk (1; DL) � ask;MT � bMT;L =

= �MU (1; DL) � aMU;MT � 0:9=

= 0:162� 0:5 � 0:9= 0:0729

The probability which is the result of this computation is smaller than the�MT (2)
which was computed for the Markov Models (0.42) because of the multiplications
with the token production probabilities (bsi;tj <1).

2.3 The extended Viterbi algorithm
We can also rephrase our second Markov Model question for Hidden Markov Models:
what is the most probable two step walk in which the tourist liked all locations? Or
in Hidden Markov Models terms what is the most probable path corresponding with
the sequence LLL? We cannot use the Viterbi algorithm for Markov Models because
it does not include token production probabilities. We have to adapt this function to
obtain the EXTENDED VITERBI ALGORITHM:

�s(t; x0::xt) = the probability of the most likely path

ending in state s and producing token

sequence x0::xt

�s(0; x0) = �s � bs;x0 (2.7)

�s(t+ 1; x0::xt+1) = maxk(�sk (t; x0::xt) � ask;s � bs;xt+1) (2.8)

The probability of the most likely path that ends in states and produces a sequence
containing one tokenx0 is equal to the probability of starting ins multiplied with the
probability of producingx0 in s (equation 2.7). The probability of the most likely
path ending ins for a longer sequence is the maximal value that can be obtained by
multiplying the probability of the most likely path for the prefix of the sequence with
the probability of moving from the final statesk of the prefix tos and the probability
of producing the current token ins. The computation this extended Viterbi algorithm
performs is sequence-specific just as the computation of the extended forward proce-
dure.

This extended Viterbi algorithm can be used for finding out the most probable
state path corresponding with the sequence LLL. First we compute the values of the
�-function for timet = 0:

38 chapter 2

�RS(0; L) = �RS � bRS;L =

= 0:8 � 0:7= 0:56

�CP (0; L) = �CP � bCP;L =

= 0:2 � 0:1= 0:02

We can use values for computing the values of the functions fort = 1:

�MU (1; LL) = maxk(�sk (0; L) � ask;MU � bMU;L) =

= max(�RS(0; L) � aRS;MU � 0:5; �CP (0; L) � aCP;MU � 0:5) =

= max(0:56� 0:9 � 0:5; 0:02� 0:6 � 0:5) = 0:252

�MT (1; LL) = maxk(�sk (0; L) � ask;MT � bMT;L) =

= �CP (0; L) � aCP;MT � 0:9=

= 0:02� 0:3 � 0:9= 0:0054

The�s(0; L) and�s(1; LL) that are equal to zero and have been left out. With these
results we can compute all�s(2; LLL):

�RS(2; LLL) = maxk(�sk (1; LL) � ask;RS � bRS;L) =

= �MU (1; LL) � aMU;RS � 0:7=

= 0:252� 0:4 � 0:7= 0:07056

�MU (2; LLL) = maxk(�sk (1; LL) � ask;MU � bMU;L) =

= �MT (1; LL) � aMT;MU � 0:5=

= 0:0054� 0:2 � 0:5= 0:00054

�CP (2; LLL) = maxk(�sk (1; LL) � ask;CP) � bCP;L =

= max(�MU (1; LL) � aMU;CP � 0:1;

�MT (1; LL) � aMT;CP � 0:1) =

= max(0:252� 0:1 � 0:1; 0:0054� 0:1 � 0:1) = 0:00252

�MT (2; LLL) = maxk(�sk (1; LL) � ask;MT � bMT;L) =

= �MU (1; LL) � aMU;MT � 0:9=

= 0:252� 0:5 � 0:9= 0:1134

�CH(2; LLL) = maxk(�sk (1; LL) � ask;CH � bCH;L) =

= �MT (1; LL) � aMT;CH � 0:8=

= 0:0054� 0:7 � 0:8= 0:003024

Hidden Markov Models 39

From these computation we can conclude that the most probable path that produces
LLL ends in the Martini Tower. We can find out the previous locations by checking
what state was used in the maximal part of the�MT (2; LLL) computation and this
turns out to be the Museum (�MU (1; LL)). The location before that can be found
by checking what state was used in the maximal part of the�MU (1; LL) computa-
tion. This turns out to be the Railway Station (�RS(0; L)) so the most probable path
producing LLL is Railway Station! Museum! Martini Tower.

2.4 Learning in a Hidden Markov Model
Now suppose that in some distant country a group of engineers decides to rebuild the
main tourist attractions of Groningen. The engineers also want to enable the visitors
of New Groningen to experience the famous City Walk through Groningen. Unfortu-
nately, the engineers do not know what the main buildings look like and which build-
ings were connected with each other. The only feature about the City Walk they were
able to collect is a list of DL-sequences that were produced by participants in the City
Walk through Groningen. The engineers decide to set up some wooden barracks with
roads connecting them to each other and make tourists walk through this village. The
tourists all take with them a form in which they mention what locations they visited
and whether they liked the location. If the tourists thus produce a DL-sequence that
is in the list the engineers are trying to reproduce, the engineers will do nothing. If,
however, the DL-sequence is not in the list the engineers start improving or damaging
the buildings and the roads. This process continues until the tourists only produce
sequences that are in the list. The engineers have then succeeded in reproducing the
City Walk through Groningen and they have succeeded in reconstructing the underly-
ing Hidden Markov Model as far as the production of DL-sequences is concerned.

The problem of finding a Hidden Markov Model which produces a specific set of
token sequences is a common task. Our goal is to obtain a Hidden Markov Model
that produces sequences of characters. The model should assign high probabilities to
sequences that are words in some language and low probabilities to sequences that
cannot appear as words in the language. Note that we are not aiming at reproducing
the exact underlying model for the language. We will try to find a model thatbehaves
like the underlying language model. Like the engineers of New Groningen we only
know the token sequences produced by the model we are trying to rebuild. We will be
satisfied if we succeed in creating a model that is able to reproduce our data.

The problem is that there is no direct method for computing the parameters (the
matrices A,� and B) of a Hidden Markov Model that is able to produce a specific set
of sequences with a large probability. Fortunately, there are methods for estimating
the values of the parameters of such a Hidden Markov Model. The most well-known
method for estimating the parameters of a Hidden Markov Model from a set of se-
quences is called the BAUM -WELCH ALGORITHM or the forward-backward algorithm
which has been described in (Rabiner et al. 1986) and (Van Alphen 1992) among oth-
ers. This algorithm consists of three steps:

40 chapter 2

1. Initialize the Hidden Markov Model with random parameter values.

2. Make the Hidden Markov Model compute the probability of every sequence in
the set. During this computation we count how often transitions between states
are used and how often tokens are being produced in each state. We use the
resulting numbers for computing a new set of parameters.

3. We use the new parameter values for reinitializing the Hidden Markov Model.
The new Hidden Markov Model will assign a higher probability to the set of
training strings. Now we repeat step 2 and 3 until the behavior of the Hidden
Markov Model stabilizes.

There are different methods for deciding when a HMM has become stable. We will
discuss these in a later section. It is possible to prove that the Baum-Welch algorithm
terminates so we can be sure that the algorithm will always be able to produce a stable
HMM in a finite amount of time. The proof is complex and we will not list it here.
Interested readers are referred to section 5.4 of (Huang et al. 1990)

The most complex step of the Baum-Welch algorithm is step 2. We will formalize
this step by using the extended forward procedure (see equations 2.5 and 2.6) and
three other algorithms we will introduce in this section. Our goal is to find new values
for the HMM parametersaij , bsi;m and�si . The definitions of these parameters are:

asi;sj =
probability of making a transition from si to sj

probability of being in state si
(2.9)

bsi;m =
probability of being in si while producing token m

probability of being in state si
(2.10)

�si = probability of being in state si at time 0 (2.11)

In equations 2.9 and 2.10 it is necessary to divide the numerator probabilities by the
probability of being in statesi to make sure that for eachsi all asi;sj add up to 1 and
all bsi;m add up to 1. In order to be able to compute new values for the A-matrix, we
should be able to compute the probability that in a production of a sequence a specific
transition between two states will be made. We can view the production of a sequence
as consisting of three steps: the production of the current token, the production of the
prefix of this token and the production of the suffix of the token.2 We have an algo-
rithm that models the production of the prefix of a token: the forward procedure. The
first algorithm we will introduce here is theBACKWARD ALGORITHM: an algorithm
that models the production of the suffix of a token (e is the empty sequence andT is
the time at which the final element of the sequence is produced):

2In this chapter we do not use prefix and suffix as the linguistic terms. For us the prefix of a sequence
is the subsequence from the start to the current token (non-inclusive) and the suffix a sequence is the subse-
quence from the current token (non-inclusive) to the end of the sequence.

Hidden Markov Models 41

�si(t; xt+1::xT) = probability that a sequence xt+1::xT is produced

while the state at time t is si:

�si(T; e) = 1 (2.12)

�si(t; xt+1::xT) =
X
j

�sj (t+ 1; xt+2::xT) � asi;sj � bsj ;xt+1 (2.13)

The backward algorithm is the counterpart of the extended forward algorithm. It com-
putes the probability that a suffix of a sequence is produced while starting in a specific
state (si). The probability that the empty string is produced in statesi at timeT is
defined to be equal to one (equation 2.12). If we know the probabilities of a sequence
which starts at timet+ 1 in any of the statessj then we can compute the probability
of the same sequence preceded by some token at timet and statesi by multiplying
the known value with the probability of moving fromsi to sj and the probability of
producingxt+1 in sj and adding all these products together. Note that in this defini-
tion the production of a token is imagined as happening directly after the transition to
the state that produces the token. That is why equation 2.13 containsbsj ;xt+1 and not
bsi;xt and why in 2.12 no token production has been taken into account.

We can combine the forward and the backward algorithm for computing the prob-
ability that the HMM assigns to a sequence:

Ph(x0::xT) = probability assigned to sequence x0::xT by an HMM

Ph(x0::xT) =
X
i

�si(t; x0::xt) � �si(t; xt+1::xT) (2.14)

The term�si(t; x0::xt) � �si(t; xt+1::xT) computes the probability of being in state
si at time t while producing sequencex0::xT . Equation 2.14 computes the sum for
all i which gives us the probability of producing sequencex0::xT while being in an
arbitrary statesi at timet. This is equal to the probability of producing the sequence
x0::xT . We can usePh(x0::xT) for computing the probability of being in statesi at
time t:

si(t) = the probability of being in state si at time t

si(t) =
�si(t; x0::xt) � �si(t; xt+1::xT)

Ph(x0::xT)
(2.15)

We need to divide�si(t; x0::xt) � �si(t; xt+1::xT) by the probability of producing
sequencex0::xT in order to make sure that for eacht the
si(t) probabilities sum up
to 1. With this
si(t) and the equations 2.10 and 2.11 we are now able to compute
new values for�si andbsi;m:

42 chapter 2

SS
hia

tt-1

ih S

t+1

aij
j

Figure 2.5: The computation of
si(t), the probability of being in statesi at time t
while producing the sequencex0::xT . Compute the probability that the prefix of the
sequence ends insi (�si(t; x0::xt)), multiply it with the probability that the suffix of
the sequence starts insi (�si(t; xt+1::xT)) and divide the result by the probability of
the sequence (Ph(x0::xT)).

�si = probability of being in state si at time 0 =

=
si(0) (2.16)

bsi;m =
probability of being in si while producing m

probability of being in state si
=

=

P
tf
si(t) j xt = mgP

t
si(t)
(2.17)

The numerator of equation 2.17 computes the sum of all
si(t) for which xt = m

holds. The summations overt in equations 2.17 are necessary to take into account
all
si(t) (bsi;m is independent of time). Apart from abling us to compute these two
HMM model parameters,
si(t) can also be used for computing the denominator for
equation 2.9. Now we have to develop a function for computing the numerator of that
equation. We start by expanding equation 2.14:

Ph(x0::xT) =
X
i

�si(t; x0::xt) � �si(t; xt+1::xT) =

=
X
i

�si(t; x0::xt) �
X
j

�sj (t+ 1; xt+2::xT) � asi;sj � bsj ;xt+1 =

=
X
i

X
j

�si(t; x0::xt) � asi;sj � bsj ;xt+1 � �sj (t+ 1; xt+2::xT)

(2.18)

The first line is equal to equation 2.14 and in the second line we have applied the
definition of�si(t; xt+1::xT) (equation 2.13). By reordering the elements of that line

Hidden Markov Models 43

s ,h si S S
a

SjS

tt-1 t+1 t+2

i j kh

as , sas , si j k

Figure 2.6: The computation of�si;sj (t; xt+1), the probability of making a transition
from statesi to sj : Compute the probability that the prefix of the sequence ends insi
(�si(t; x0::xt)), multiply it with the HMM transition probabilityasi;sj , the HMM to-
ken production probabilitybsj ;xt+1 and the probability that the suffix of the sequence
starts insj (�sj (t + 1; xt+2::xT)) and divide the result by the probability of the se-
quence (Ph(x0::xT)).

(�si(t; x0::xt) is independent ofj) we have derived the equation at the third line. We
have expanded the�-term in order to get a term within the sums in which both the
computation of the probability of making the transition fromsi to sj (asi;sj) and the
production of tokenxt+1 (bsj ;xt+1) are visible. We can use the final part of equation
2.18 for computing the probability of making a transition from one state to another
(see also figure 2.6):

�si;sj (t; xt+1) = probability of making the transition from state

si to sj at time t and producing xt+1

�si;sj (t; xt+1) =
�si(t; x0::xt) � asi;sj � bsj ;xt+1 � �sj (t+ 1; xt+2::xT)

Ph(x0::xT)

(2.19)

Now we need to divide�si(t; x0::xt) � asi;sj � bsj ;xt+1 � �sj (t+ 1; xt+2::xT) by the
probability of producing sequencex0::xT in order to make sure that for everyt the
�si;sj (t; xt+1) probabilities sum up to 1. With this�si;sj (t; xt+1) function we are now
able to compute theasi;sj parameters of the HMM:

asi;sj =
probability of going from si to sj while producing xt+1

probability of being in state si
=

=

P
t �si;sj (t; xt+1)P

t
si(t)
(2.20)

Again the summations overt are necessary to take into account all values of the func-
tions for differentt (asi;sj is independent of time). Now we have obtained formulas

44 chapter 2

for computing new values for HMM parameters. Our training process will start with
random values for the HMM parametersasi;sj , bsi;m and�si . We make the HMM
process the training data and by using the equations 2.16, 2.17 and 2.20 we will be able
to obtain better values for the HMM parameters. We continue applying this process
until the probabilities that the HMM assigns to the training data become stable. At
that point we hope to have obtained an HMM which is a good model for the training
data.

2.5 Using Hidden Markov Models in practice
In this section we have introduced the mathematical background of Hidden Markov
Models (HMMs). In the next two sections we will apply HMMs on training data
that consists of monosyllabic Dutch words. Instead of DL-sequences the HMMs will
process arbitrary sequences of characters. The HMMs will assign scores to these
sequences. This scores will be equal to:

Ph(x0::xT) =
X
i

�si(t; x0::xT) � �si(T; e)

=
X
i

�si(t; x0::xT) (2.21)

This is the sum for allsi of the extended forward procedure applied at the complete
string of which the production ended in statesi. This equation was derived from
equation 2.14.�si(T) is equal to 1 for allsi (equation 2.12). The HMM will be
trained by presenting the training data to it and applying the Baum-Welch algorithm
until the HMM becomes stable. Here we have defined a stable HMM as an HMM
that assigns scores to training strings that do not differ more than 1% of the scores
assigned by the HMM before the final training round. In each training round the
complete training data set will be processed.

When the HMM has become stable we will test it by applying it to the positive
and the negative test data sets that we have described in chapter 1. The HMM should
accept as many strings from the positive test data as possible and reject as many neg-
ative data as possible. We need to define a threshold score for deciding if a string is
acceptable or of it is not. If a string receives a score that is higher than the threshold
score it will be accepted and if it is lower than this threshold the string will be rejected.

The problem is that different HMMs will assign different scores to strings. There-
fore it is impossible to determine a universal threshold value. Each HMM will require
its own threshold value. Since we want all strings in the training data set to be ac-
cepted we will define theTHRESHOLD SCOREas the smallest score that is assigned to
an element of the training data set.

Initial Experiments 45

3 Initial Experiments

We have performed three initial experiments to find out how we need to configure
the Hidden Markov Models (HMMs) in order to enable them to learn the phono-
tactic structure of monosyllabic Dutch words. In these experiments we have used a
small data set: 3507 monosyllabic Dutch words which were extracted from the Dutch
spelling guide (Spellingscommissie 1954). The HMMs were trained with 3207 words;
300 words were used as positive test data. The test data also contained an additional
set of 300 randomly generated words that were constructed by taking into account the
character frequencies and word length frequencies of the strings in the training data
and the positive test data. No effort was taken to remove strings from the random data
set that occurred in the training data or the positive test data. The data contained char-
acter representations of words rather than phonetic transcriptions. Three experiments
have been performed with HMMs which contained seven states:

1. An experiment with standard data sets and random initial HMM parameter val-
ues.

2. An experiment with modified data sets and random initial HMM parameter val-
ues.

3. An experiment with modified data sets and initial HMM parameter values which
had been derived from a phonological model.

We have chosen a seven-state HMM rather than an HMM with any other number of
states because the linguistic model we have used for initializing the HMMs (the Cairns
and Feinstein model, see section 2.4 of chapter 1) also contains 7 states. Using HMMs
with the same number of states made the initialization process easier.

The next sections describe the results of these experiments.

3.1 A test experiment
In our first experiment we initialized the A, B and� matrices with random values.
Then we used the Baum Welch algorithm to train the HMM. We stopped training when
the scores assigned by the HMM to the words in the training set did not change more
than 1% compared with the values after the previous training round. The parameters
of the HMM after training can be found in figure 2.7.

In HMMs the probabilities of the outgoing transitions of each state have to sum up
to 1. In this HMM this is not the fact. The reason for this is that this HMM does not
handle word boundaries explicitly. For example, the outgoing transitions probabilities
of the first state (top row A-matrix) sum up to 98%. This means that the probability
of leaving the model after visiting states1 is 2%.

Because of this implicit handling of the word boundaries the scores assigned to
words were worthless. The HMM will never assign prefixes of a sequence a score that
is smaller than the sequence itself because the score ofsequence + x is computed

46 chapter 2

A =

2
666666664

0:04 0:94 0:00 0:00 0:00 0:00 0:00
0:00 0:51 0:31 0:00 0:06 0:02 0:00
0:00 0:00 0:00 0:15 0:25 0:00 0:00
0:00 0:00 0:00 0:00 0:20 0:00 0:00
0:00 0:00 0:00 0:00 0:00 0:53 0:00
0:37 0:00 0:00 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:00 0:00 0:00

3
777777775
� =

2
666666664

0:93
0:01
0:00
0:00
0:06
0:00
0:00

3
777777775

Figure 2.7: Parameter definition of the test HMM after training. The B Matrix is
omitted. Apart from the backward connection from state 6 to state 1 (0.37) the HMM
contains forward links only. The probabilities in the rows of the A-matrix do not add
up to 1 because word boundaries were handled implicitly.

by multiplying the score ofsequence with the probability ofx (a number with 1 as
maximal value). For example,rot will receive a larger score thanrots androts itself
will receive a larger score thanrotst. After merging the test results with the random
results we discovered that, apart from two exceptions, all words of length n+1 received
a smaller score than words of length n. This means that the HMM will consider
impossible four-character strings more probable than valid five-character words. This
clearly is wrong. Of course, in natural language it is not always the fact that a complex
suffix is less improbable than a simple suffix. For example, in Dutch a syllable ending
in the characterc is more improbable than a syllable ending inch. Some way has to
be found to model this fact.

To handle this problem we have added an end-of-word character to all words in
our training and test data. This extra character can only be the output of an eighth state
in the HMM. After processing a word the HMMs have to be in this last state. This
state is a so-called null state ((Van Alphen 1992)): no transitions are possible from
this state. The eighth state has not been made visible in the pictures in this chapter.
All transition probabilities from the other states to the last state have been put in a
special vector
 (analogous to the� vector, compare figure 2.7 with 2.8).

3.2 Orthographic data with random initialization
Our next experiment was similar to the previous apart from the fact that we have used
modified data sets (with end-of-word characters). Again the A, B,
 and� matrix of
a seven-state HMM were initialized with random values. The Baum Welch algorithm
(see section 2.4) was applied repeatedly until all training pattern scores stayed within
a 1% distance of the previous scores which required 51 training rounds. The result
of this was an HMM (see figure 2.9) without backward transitions (see figure 2.9, the
initial HMM contained some backward transitions). The character output of the states
was interesting. Here is a list of characters which are most likely to be the output of

Initial Experiments 47

A =

2
666666664

0:19 0:64 0:16 0:01 0:00 0:00 0:00
0:00 0:00 0:33 0:67 0:00 0:00 0:00
0:00 0:00 0:00 1:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:68 0:25 0:06
0:00 0:00 0:00 0:00 0:01 0:81 0:13
0:00 0:00 0:00 0:00 0:00 0:00 0:27
0:00 0:00 0:00 0:00 0:00 0:00 0:28

3
777777775
� =

2
666666664

0:17
0:68
0:12
0:03
0:00
0:00
0:00

3
777777775

 =

2
666666664

0:00
0:00
0:00
0:01
0:05
0:73
0:72

3
777777775

Figure 2.8: Parameter definition of the randomly initialized HMM after training. The
HMM does not contain backward links. The elements of each row in the A-matrix
together with the corresponding element in the
-matrix add up to one.

0.81
S S S S S S S1 2 3 4 5 6 7

0.64

0.19
0.67

0.16

0.33

0.06

0.68

0.25

0.01

0.01

0.27

0.13
0.28

1.00

Figure 2.9: The randomly initialized HMM for monosyllabic Dutch words after train-
ing. This is a graphical representation of theA-matrix of figure 2.8. The HMM after
training contains no backward links while before training links in any direction were
possible.

the states in order of decreasing probability (ignoring characters which had less than
5% chance of being produced in the states):

� s1: s c

� s2: k t h p b v g d m z

� s3: r l w n

� s4: o a e i u

� s5: e a n o u r i l j

� s6: k r p l n f g m d s t

� s7: s t

State s4 has changed into a vowel production state. Only the five vowelsa,e,i,o andu
are produced by this state with a probability larger than 5%. In Dutch they can be used

48 chapter 2

both as a vowel and as a consonant. In fact,y is the only other token that is produced
by s4 with a score that is larger than 10�8. The probability of producing aj, which is
used in Dutch writing as a suffix for thei to create a frequent diphthong, is largest in
the after-vowel state s5. The initial values in the A and B matrices of the HMM were
random so the HMM did a good job in discovering the difference between vowels and
consonants and discovering the special position of thej in Dutch.

The HMM assigned the following scores for sequences in the data sets:

training data positive test data negative test data
Maximum: 4.361*10�04 4.379*10�04 1.183*10�04

Average: 7.472*10�05 8.329*10�05 3.429*10�06

Median: 1.298*10�05 1.286*10�05 0.000*10+00

Minimum: 1.927*10�11 7.910*10�21 0.000*10+00

The difference between the positive test data and the negative test data is most obvious
in the difference between the medians. The average score of a data set is not a good
comparison value because a small number of highly probable sequences will have a
large influence on this average. When we consider the median value, the score of the
negative data is a lot smaller than the score of the positive data. Therefore we can say
that the HMM recognized the difference between the negative data set and the positive
data set.

In individual cases it is more difficult to falsify data. For example, the sequence
pajn (score 1.971*10�05), which clearly is not a Dutch syllable, would be ranked
126th in the list of 300 test data. It receives a larger score than the perfect Dutch
syllableworp (score 1.868*10�05).

By using our threshold definition we obtain a threshold value of 1.927*10�11, the
minimum score that the HMM has assigned to an element of the training data. With
this threshold value the HMM accepts 298 words of the positive test data. It rejects
2 words: stoischt(2.49*10�12) and tsjech(7.910*10�21). This number of rejected
words is acceptable. However, the HMM also accepts 57 words of the negative test
data. Among these accepted words are words which are impossible in Dutch likejlaj
(6.744*10�7) andufhf (3.099*10�11). This HMM does not work as we would like it
to do.

3.3 Orthographic data with linguistic initialization
In the third experiment the initial parameter values of the HMM were derived from
the syllable model defined in (Cairns and Feinstein 1982) (see section 2.4 of chapter
1). All state transitions and character productions which are possible in the Cairns and
Feinstein model received a random value. The others, for example the probability of
moving from s7 to s1 and the probability of producing a consonant in the vowel state,

Initial Experiments 49

A =

2
666666664

0:00 1:00 0:00 0:00 0:00 0:00 0:00
0:00 0:05 0:24 0:71 0:00 0:00 0:00
0:00 0:00 0:00 1:00 0:00 0:00 0:00
0:00 0:00 0:00 0:32 0:17 0:48 0:00
0:00 0:00 0:00 0:00 0:00 1:00 0:00
0:00 0:00 0:00 0:00 0:00 0:14 0:19
0:00 0:00 0:00 0:00 0:00 0:00 0:00

3
777777775
� =

2
666666664

0:16
0:80
0:00
0:04
0:00
0:00
0:00

3
777777775

 =

2
666666664

0:00
0:00
0:00
0:03
0:00
0:67
1:00

3
777777775

Figure 2.10: Parameter definition of the linguistically initialized HMM after training.
The training process has only changed the values of the non-zero entries in these ma-
trices. The zero entries in the matrices represent impossible links that were initialized
on zero. The training process could not change these values.

0.48

S S S S S S S1 2 3 4 5 6 7
1.00

0.05

0.24

0.71
0.32 0.14

0.190.17 1.001.00

Figure 2.11: The linguistically initialized HMM for monosyllabic Dutch words after
training. This is the graphical version of the A-matrix in figure 2.10. The training
process only changed the weights of the links present in this picture. The result of
removing specific links from the model in advance is that the HMM after training is
more simple than the one in figure 2.9.

were set to zero. It was impossible for the HMM to change these zero-values. Its task
was to find out the best values for the non-zero HMM parameters.

Again the Baum Welch algorithm was applied until the scores of the training pat-
terns stayed within a 1% distance of the previous scores. This time only 15 training
rounds were necessary. The parameters of the HMM after training can be found in
figure 2.10. The characters which are most likely to be the output of the states are in
order of decreasing probability (ignoring characters which have a probability of less
than 5%):

� s1: s

� s2: k t h p b l v g c d

� s3: r l w

� s4: e a o i u

50 chapter 2

� s5: n r l j m

� s6: s t k p l d n f g r

� s7: t s

Again, all five vowels in Dutch (a,e,i,o,u) are assigned to state 3. This was already the
fact in the initial HMM and training did not change this fact.

The HMM assigned the following scores for sequences in the data sets:

training data positive test data negative test data
Maximum: 9.644*10�04 6.794*10�04 1.497*10�04

Average: 7.588*10�05 8.634*10�05 3.653*10�06

Median: 6.945*10�06 7.654*10�06 0.000*10+00

Minimum: 7.418*10�13 6.781*10�13 0.000*10+00

A comparison between positive test data and negative test data leads to the same result
as in the previous experiment: the average scores show no difference while the median
scores show a clear difference between the two data sets. Comparing individual cases
remains a problem. The acceptance threshold value is 7.4*10�13. With this threshold
the HMM rejects one word of the positive test data set (tsjech). However, the HMM
accepts 112 words of the negative test data among which words likelve (9.202*10�07)
andfbep(4.111*10�07). This HMM accepts too many strings.

3.4 Discussion
Ideally it should be possible to choose some threshold score for an HMM and decide
that every sequence with a score above this threshold is a possible sequence in the lan-
guage while a sequence with a score below the threshold is not. In order to be able to
do this correctly, all impossible words should receive a lower score than the ‘most im-
probable’ word in the language. However, we have not been able to find such a perfect
threshold in the previous experiments. The most improbable word of the positive test
data,tsjech, has received the score 6.781*10�13 of the linguistically initialized HMM.
This score is lower than the scores of some words of the negative data set which are
impossible in Dutch, for examplezrag (1.747*10�05), pesf(7.323*10�06) and jlaj
(5.496*10�07). Figure 2.12 shows a comparison between words in the positive test
data and words in the negative test data. The randomly generated impossible word
ddneis about as probable as the Dutch wordsnoodst, the impossiblegvnais about as
probable asplachtand there are more couples like that.

There are two explanations for this behavior. The first is that HMMs in general will
assign a lower score to longer words than to shorter words. The Dutch wordtsjechcon-
tains six characters while the non-words mentioned only contain four. However, this
HMM feature can only be a part of the explanation. When we try finding impossible
six-character words in the negative test data we findletfdh(score 8.218*10�11), fobhlh

Initial Experiments 51

281 0.00000002702359 schrap yuz
282 0.00000002672019 knapst yuz
283 0.00000002419223 grootst yuz
284 0.00000002289886 zeeuws daxn
285 0.00000002171036 joodst daxn
286 0.00000001651132 fijnst tzoeh
287 0.00000001589515 schaak tzoeh
288 0.00000001508380 blondst tzoeh
289 0.00000000943477 snoodst ddne
290 0.00000000889425 bruutst yjw
291 0.00000000858229 schold ywua
292 0.00000000758883 placht gvna
293 0.00000000730357 schoor sewz
294 0.00000000710498 smacht sewz
295 0.00000000636563 speech uuuar
296 0.00000000050732 schoolst zgoyt
297 0.00000000003132 echtst odhnf
298 0.00000000002609 stoischt odhnf
299 0.00000000001088 knechts qnpu
300 0.00000000000068 tsjech fobhlh

Figure 2.12: The 20 most improbable words (according to linguistically initialized
HMM) in the positive test data together with negative test data that is equally probable.
The scores assigned to negative strings are too high. In this respect the performance
of the HMM can be improved if it can recognize that certain characters pairs do not
occur in monosyllabic Dutch words:yu, xn, dd, yj, yw, gv, wz, zg, dn, qnandlh.

(1.03*10�12) andedfgdg(6.5*10�13). These are all impossible six-character words in
Dutch and only the third one receives a lower score than the valid six-character word
tsjech.

Another explanation for the behavior of the HMM can be found when we look at
the most probable processing sequence of the Dutch wordpijn (pain) by the linguisti-
cally initialized HMM. The HMM will start in s2 (p), move to s4 (i), move to s5 (j) and
finish in s6 (n). Now let’s keep this state sequence and replace the characters which are
produced by other characters. For example, we can replace thei produced in s4 by an
a. Thea is more likely to be produced in s4 than thei (see the state character schema in
section 3.3, on each row characters are ordered from most frequent to least frequent)
so we have obtained a wordpajnwhich has a more probable main state sequence than
the wordpijn. Unfortunately,pajn is impossible in Dutch.

The problem here is clear. In monosyllabic Dutch words aj can follow ani but
it cannot follow ana. However, the probability that the HMM will produce aj in s5

is independent of the character produced in s4. The HMM does not have memory of

52 chapter 2

previous parts of the sequence. Therefore it will still assign incorrect scores to some
sequences.

A straightforward solution to this problem is to change the tokens the HMMs
process from one character tokens to two or three character tokens. So we change
the HMMs from a unigram model (no context characters) to a bigram model (one
character context) or a trigram model (two character context). A test with a bigram
HMM resulted in the desired behavior: because noaj bigrams occur in the training
data a randomly initialized HMM will rejectpajn (score 0.0) after training. This data
format modification solves the problem ofpajnbut it might cause a new problem when
we are going to work with HMMs that start from some initial phonotactic knowledge.
If we want to use bigrams or trigrams, we will have to find out how to initialize a
model that processes these structures. The initialization model we want to use, the
Cairns and Feinstein model (see section 2.4 of chapter 1), does not contain an explicit
context environment.

Another problem is that in HMMs a sequence can never be more probable than
its prefix (the sequence without the final character). HMMs compute the score of a
sequence consisting of a prefix plus one extra character by multiplying the score of the
prefix with the probability that the character follows the prefix. Neither of these values
will be larger than one. Because of this way of computation longer sequences will
receive a smaller score than shorter sequences. We want to compute the probability
that a sequence is present in the vocabulary of a language. This probability does not
depend on the length of the sequence only. Therefore the scores the HMM compute
should be changed to sequence-length-independent scores.

After having examined the scores the bigram HMM had assigned to the training
data, we observed that the average scores of sequences of length n were about 10 times
as large as scores of sequences of length n+1. Therefore we have decided to multiply
all HMM scores with a factor 10sequence length in order to decrease the influence of
length on sequence score.

4 Experiments with bigram HMMs

In this section we will describe four series of experiments that we have carried out
with bigram HMMs. We will start with a general description of the set-up of the
experiments. After that we will present the results of the four experiment series. The
series are divided in two groups: in one group we have used orthographic data and in
the other group we have used phonetic data. In each group we have performed two
series of experiments: one with HMMs that were initialized randomly and one with
HMMs that we initialized by using the phonological model of Cairns and Feinstein
that was described in chapter 1. Each experiment will be described in a separate
section.

Experiments with bigram HMMs 53

4.1 General bigram HMM experiment set-up
In order to create a bigram HMM, we modified the way the HMM interpreted strings.
The unigram HMM interprets one character as one token:splash=s-p-l-a-s-h. Our
bigram HMM divides strings into two-character tokens:splash=sp-pl-la-as-sh. By
using this simple input interpretation, we were able to use the same theoretical learning
model as in the previous experiments.

The interpretation created a problem. We consider an HMM production of a bi-
gram as the production of the second character of the bigram in the context of the first.
This means that the production of a six-character word likesplash? (? is the word-end
character) contains six steps (the five bigrams mentioned above plus the bigramh?).
These six steps produce the charactersplash?. The first character of the word will
never be produced because during word production there is no bigram which contains
the first character at the second position.

The omission of the production of the first character of the words generated erratic
behavior from the HMMs. The one-character words in the training set received a
zero-score from the HMMs which caused them to collapse. We solved this problem
by expanding our data representation by adding a word-start character to all words.
The production of a word then involved the production of a word-start character/first
character bigram (forsplashthis is^s, ^ is the word-start character) which means that
now the first character of the word will be produced.

Apart from changing the representation of the data, we made another change in
these bigram experiments. We observed that the random initialization of the HMM
parameters influences the HMM performance. Because of the initial values of the
model, the learning performance can differ. To minimize this influence we performed
have five experiments with different initial values in each series. The average perfor-
mance of the five experiments has been used as the result of the experiment series.

In these experiments we have used the large data set described in section 2.2 of
chapter 1: 5577 words in orthographic representation or 5084 words in phonetic rep-
resentation as training data, a 600 words positive test data set and a negative test data
set containing 600 strings.

4.2 Orthographic data with random initialization
The first series of five experiments involved training randomly initialized HMMs on
orthographic data. We have used the orthographic data described in section 2.2 of
chapter 1: a training data set of 5577 monosyllabic Dutch words, a positive test data
set of 600 monosyllabic Dutch words that did not occur in the training data set and a
set of 600 negative test strings that did not occur in the previous two data sets. The
results of these experiments can be found in figure 2.13.

On average the HMM needed 77.8 rounds to become stable. The stability criterion
used was the same as in the earlier experiments: the HMM was considered stable
when after a training round the evaluation scores of the words in the training sequence
remained within a 1% distance from the scores that were assigned to them before this

54 chapter 2

nbr. rounds threshold positive accepts negative rejects
1. 108 3.599*10�13 591 564
2. 87 1.090*10�12 594 535
3. 81 5.909*10�14 594 544
4. 48 1.311*10�13 594 523
5. 65 5.637*10�13 594 565

avg. 77.8�20.3 593.4�1.2 (98.9%) 546.2�16.4 (91.0%)

Figure 2.13: The results of five experiments with randomly initialized bigram HMMs
that processed orthographic data. After an average of 78 training rounds the HMMs
accepted on average 593 words of the positive test data set (98.9%) and rejected 546
strings of the negative test data set (91.0%). Nineteen negative strings were accepted
by all five HMMs and five positive words were rejected by all five HMMs.

round. The resulting models accepted on average 593.4 of the 600 positive test words
(98.9%) and rejected 546.2 of the 600 negative strings (91.0%). Six positive test words
were rejected by all models:ij’s , q’s, fjord, f ’s, schwungandt’s. The models assigned
a low score toij’s because it contains a trigram (ij’) that does not occur in the training
data. The other five words contain a bigram that was not present in the training data.
The HMMs set the probability of occurrence of this bigram to zero. Therefore the
scores of these words also became zero.

Nineteen of the 600 negative strings were accepted by all five models:deess,
enc, horet, ieer, maung, metet, oarp, ooe, oui, ousc, sassk, sspt, teaq, tskip, tspt,
uai, uast, waeseandwoic. These strings are not acceptable as monosyllabic Dutch
words. Some of them consists of two syllables (horet andmetet) and others do not
even contain a vowel (ssptandtspt). Most of these misclassifications of the models
can be explained by the small context the models have been using. For example,ieer
consists of three very common bigramsie, eeander and the models use this fact to
assign a high score to the word. However, the combination of these three bigrams in
a Dutch monosyllabic word is not possible. The models could have been prevented
from making this mistake if they had been using a larger context: the trigramieedoes
not occur in the training data. The two-syllable strings in this set can be explained
by the occurrence of some accepted words from foreign languages in the training data
like shaketandfaket. Acceptance of the consonant words was caused by the presence
of the two consonant interjectionspstandsstin the training data set.

The errors for the positive test set are reasonable but we are less satisfied with the
errors the HMMs make for the negative test data. The tendency of the models to accept
too many unacceptable strings can be contributed to the small one character context
that they are using. Expanding the context of the models would mean using trigrams
instead of bigrams. However, then we would run into computational problems. The
trigram models will simply need more computational resources for training than we
presently have available. Therefore we will try to improve the performance of these

Experiments with bigram HMMs 55

A =

2
666666664

0:0 1:0 0:0 0:0 0:0 0:0 0:0
0:0 1:0 1:0 1:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0 1:0 1:0 0:0
0:0 0:0 0:0 0:0 0:0 1:0 0:0
0:0 0:0 0:0 1:0 0:0 1:0 1:0
0:0 0:0 0:0 0:0 0:0 0:0 1:0

3
777777775
� =

2
666666664

1:0
1:0
0:0
1:0
0:0
0:0
0:0

3
777777775

 =

2
666666664

0:0
1:0
0:0
1:0
0:0
1:0
1:0

3
777777775

B =

2
4 vowels 0:0 0:0 0:0 1:0 0:0 0:0 0:0

consonants 1:0 1:0 1:0 0:0 1:0 1:0 1:0
y 1:0 1:0 1:0 1:0 1:0 1:0 1:0

3
5

Figure 2.14: Initial configuration for bigram HMMs for orthographic data that start
learning from linguistic knowledge. The value 0.0 indicates an impossible link or
an impossible character output and the value 1.0 indicates possible links or character
output.

models in a different fashion. We will supply the HMMs with some initial linguistic
knowledge and thus attempt to put constraints on the models that will be produced by
training. Our hope is that the constrained models will be more strict when evaluating
negative strings.

4.3 Orthographic data with linguistic initialization
In the second series of experiments we have used the bigram HMMs with an initial
configuration that was derived from the model from Cairns and Feinstein. In the initial
configuration we ignored the first characters of bigrams and we treated the output of a
XYbigram as the output of aYunigram. The initial configuration contained two types
of values: value 0.0 and values larger than 0.0. The first value type indicated links
or bigram outputs which are impossible according to the phonological model from
Cairns and Feinstein. It was impossible for the HMM to change this value during
training. The other value type was used for parameters that represented possible links
or possible bigram outputs. These parameters were initialized with a random value.

An outline of the initial HMM configuration can be found in figure 2.14 and figure
2.15. This initial configuration was based on the Cairns and Feinstein model (see
section 2.4 of chapter 1). The original version of the Cairns and Feinstein model is
unable to explain the structure of all strings in orthographic training data. An HMM
that would use this model as initialization model would assign zero-scores to part of
our training data. This would make it unfit as an orthographic model since strings with
zero-scores should be rejected and we require that our models accept all training data.

We have made three extensions to the standard Cairns and Feinstein model in
order to make it usable as an initial orthographic model. First, the initial configuration

56 chapter 2

SS S S S S1 2 3 4 5 6 7

pre-margin appendixpeaksatellitemargin core codasatellite

S

Figure 2.15: Initial bigram HMM for orthographic data. This is a graphical represen-
tation of the HMM parameters presented in figure 2.14. The visible features that were
added to the original Cairns and Feinstein model are the self-links at state 2 (margin
core), state 4 (peak) and state 6 (coda), the outward link from state 2 (margin core)
and the backward link from state 6 (coda) to state 4 (peak). These links are necessary
to enable the model to handle consonant clusters (ch, vowel clusters (diphtongs) and
the non-vowel words in the training data set likeb, c, pstetcetera.

for the A-matrix contains three extra links from a state to itself namely for state 2
(margin core), state 4 (peak) and state 6 (coda). These links are necessary because in
orthographic data some consonants (for examplech) and some diphtongs (for example
au) are represented by two tokens while the production of specific tokens is restricted
to specific states by the B-matrix, for example vowels can only be produced by state
4 (peak). When sounds are represented by a cluster of tokens it is necessary to use
a state that should produce such a cluster a number of times in succession. In order
to be able to do that the state should contain a link to itself. The link from state 7
(appendix) to itself is necessary because the appendix can contain more than ones
or t, for example:tam, tamsandtamstin which thes’s andt’s should appear in the
appendix (this is already a feature of the standard Cairns and Feinstein model).

The second extension is the backward link: state 6! state 4 = coda! peak.
The HMMs were not able to process the training data set without this backward link.
Leaving out the backward link would make the HMMs assign zero-scores to accepted
loan words asace, cremeandfile. These words contain two isolated vowel groups.
However, we will enable only one state (peak) to produce vowels. To be able to
process words with two isolated vowel groups the HMMs will have to use this state
twice and therefore a backward link to state 4 (peak) is necessary. The danger of
having such a link in the HMMs is that they could use it for assigning high scores to
multiple syllable words.

The third extension of the Cairns and Feinstein model in this initial model is the
added possibility to finish a string after having processed the margin core (state 2).
In the initial model this is represented by a link from state two to the hidden eight
state. This link becomes visible in the second element of
-matrix in figure 2.14. The
link is necessary to enable the HMMs to process interjections likepstandsstand the
consonants of alphabet (b, c, d, etc.) that are also present in our training data set as
words.

Experiments with bigram HMMs 57

nbr. rounds threshold positive accepts negative rejects
1. 43 3.313*10�15 595 509
2. 17 9.947*10�17 595 511
3. 63 3.337*10�15 595 508
4. 22 1.036*10�16 595 513
5. 47 1.439*10�14 595 514

avg. 38.4�16.9 595.0�0.0 (99.2%) 511.0�2.3 (85.2%)

Figure 2.16: The results of five experiments with linguistically initialized bigram
HMMs that processed orthographic data. After an average of 38 training rounds the
HMMs accepted 595 words of the positive test data set (99.2%) and rejected on aver-
age 511 strings of the negative test data set (85.2%). Eighty-two negative strings were
accepted by all five HMMs and five test words were rejected by all five HMMs.

The initial B-matrix contains three groups of tokens. The first group consists of
the vowels which can only be produced by state 4 (peak). The second group consists
of the consonants. These can be produced by any state except state 4 (peak). We have
regarded the single quote character (’, among others present ind’r , j’s andvla’s) as a
vowel. Finally there is they which can be used both as a vowel and a consonant in
Dutch. This character can be produced by any state.

Like in the previous section we performed five experiments with different initial
parameter values. The results can be found in figure 2.16. The HMMs needed on
average only 38.4 rounds to become stable. Thus they trained faster than the HMMs
that were initialized randomly (t(4)=3.0, p<0.025, see section 2.5 of chapter 1). The
linguistic initialization procedure resulted in small increase of the positive test words
that were accepted: on average 595.0 compared with 593.4 for the randomly initialized
HMMs (t(4)=2.7, p<0.05). Contrary to our goal the HMMs with linguistic initializa-
tion rejected fewer incorrect strings from the negative test data set than the HMMs
that were initialized randomly: 511.0 compared with 546.2 (t(4)=4.3, p<0.01). We
have to conclude that the phonological model we used for initializing the HMMs is
not suitable for our orthographic data.

We have inspected one of the HMMs that resulted after training from a random
initialization. This model suggested that we should make three changes to our initial
model. First, we should allow vowel production in two states instead of one state. The
model suggested to use state 6 as an extra vowel state. This state would be allowed
to produce both consonants and vowels. The extra vowel state is necessary for being
able to process the foreign words with two vowel clusters. As a result of extending
the production capabilities of state 6 we can remove the backward link between state
6 and state 4. This is the second change we make to the model. Finally, the trained
HMM processed the quote character as a consonant, not as a vowel. We will make this
change in the initial model as well. There were other differences between the trained

58 chapter 2

A =

2
666666664

0:0 1:0 0:0 0:0 0:0 0:0 0:0
0:0 1:0 1:0 1:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0 1:0 1:0 0:0
0:0 0:0 0:0 0:0 0:0 1:0 0:0
0:0 0:0 0:0 0:0 0:0 1:0 1:0
0:0 0:0 0:0 0:0 0:0 0:0 1:0

3
777777775
� =

2
666666664

1:0
1:0
0:0
1:0
0:0
0:0
0:0

3
777777775

 =

2
666666664

0:0
1:0
0:0
1:0
0:0
1:0
1:0

3
777777775

B =

2
4 vowels 0:0 0:0 0:0 1:0 0:0 1:0 0:0

consonants 1:0 1:0 1:0 0:0 1:0 1:0 1:0
y 1:0 1:0 1:0 1:0 1:0 1:0 1:0

3
5

Figure 2.17: Modified initial configuration for bigram HMMs for orthographic data
that start learning from linguistic knowledge. In order to mimic the behavior of the
trained models with random initialization, we have removed the backward link from
state 6 to state 4 and allowed state 6 to produce vowels. Furthermore, we have treated
the quote character ’ as a consonant instead of a vowel.

randomly initialized model and our linguistic initial model but these three were the
most important ones. The initial model can be found in figure 2.17 and 2.18.

The HMMs trained with this initial configuration performed better with respect
to the negative strings than the previous linguistically initialized HMMs (figure 2.19).
They rejected 567 of the 600 negative strings (94.5%) compared with on average 511.0
rejected strings by the previous HMMs (t(4)=49.1, p<0.005) The training time needed
was about as long as the previous HMMs (52.2 rounds compared with 38.4 rounds,
t(4)=1.1 p>0.1) while they accepted fewer strings of the positive test data (593.4 com-
pared with 595, t(4)=6.5, p<0.005). If we compare these HMMs with the randomly
initialized HMMs we find out that they need about the same training time (52.2 rounds
compared with 77.8 rounds, t(4)=1.8, p>0.05), accept the same number of positive test
words (593.4 compared with 593.4, t(4)=1.8, p>0.25) and reject more strings of the
negative test data set (567 compared with 546.2, t(4)=2.5, p<0.05).

We can conclude that for orthographic data the performance of the HMMs can
be improved by starting training from a good initial HMM configuration. Construct-
ing the initial HMM from a phonological model without making any data-specific
adjustments did not provide us with good results. The difference between a good
phonological model and a good orthographic model is too large.

4.4 Phonetic data with random initialization
The third series of five experiments involved training randomly initialized HMMs to
process phonetic data. We have used the phonetic data described in section 2.2: a

Experiments with bigram HMMs 59

SS S S S S1 2 3 4 5 6 7S

Figure 2.18: Modified initial bigram HMM for orthographic data. This is a graphical
representation of the HMM parameters presented in figure 2.17. The backward link
from state 6 to state 4 has been removed from the model. The other features that were
added to the original Cairns and Feinstein model, the self-links at state 2 (margin
core), state 4 (peak) and state 6 (coda), and the outward link from state 2 (margin
core), remained in the model.

nbr. rounds threshold positive accepts negative rejects
1. 55 2.841*10�14 593 567
2. 52 5.974*10�14 594 567
3. 21 6.092*10�14 594 567
4. 82 2.778*10�14 593 567
5. 51 2.847*10�14 593 567

avg. 52.2�19.3 593.4�0.5 (98.9%) 567�0.0 (94.5%)

Figure 2.19: The results of five experiments with bigram HMMs that processed or-
thographic data and used the modified linguistic initialization. After an average of 52
training rounds the HMMs accepted 593 words of the positive test data set (98.9%)
and rejected 567 strings of the negative test data set (94.5%). 33 negative strings were
accepted by all five HMMs and 6 test words were rejected by all five HMMs.

training data set of 5084 monosyllabic Dutch words, a positive test data set of 600
monosyllabic Dutch words that did not occur in the training data set and a negative
test set of 600 strings. The results of these experiments can be found in figure 2.20.

These five HMMs performed equally well as the five randomly initialized HMMs
that were trained on the orthographic data. They needed on average 68.6 training
rounds to become stable (similar the 77.8 for orthographic data, t(4)=0.5, p>0.25)
after which they accepted on average 594.6 words (99.1%) of the positive test data
set (similar to the 593.4 for orthographic data, t(4)=1.7, p>0.05) and rejected 565.6
strings (94.3%) of the negative test data set (better than the 546.2 for orthographic
data, t(4)=2.4, p<0.05). Five words of the positive test data set were rejected by all
five HMMs: fjord [fj=rt], fuut [fyt], schwung [Mwu8], schmink [Mmi8k] and schminkt
[Mmi8kt]. These words contain bigrams that are not present in the training data: [fj],
[fy], [u8] and [i8]. The HMMs assign the score 0 to these bigrams and therefore the
scores of these words also become 0.

60 chapter 2

nbr. rounds threshold positive accepts negative rejects
1. 48 3.401*10�10 595 566
2. 58 6.274*10�11 595 568
3. 131 2.151*10�10 593 563
4. 41 4.240*10�10 595 565
5. 65 4.425*10�10 595 566

avg. 68.6�32.3 594.6�0.8 (99.1%) 565.6�1.6 (94.3%)

Figure 2.20: The results of five experiments with randomly initialized bigram HMMs
that processed phonetic data. After an average of 69 training rounds the HMMs ac-
cepted on average 595 words of the positive test data set (99.1%) and rejected 566
strings of the negative test data set (94.3%). Twenty-eight negative strings were
accepted by all five HMMs and five positive test words were rejected by all five
HMMs. Twenty-four of the universally accepted negative strings had an acceptable
phonetic representation. When we take this into account, the average performance of
the HMMs on the negative test data set becomes 98.3%.

Twenty-eight negative strings were accepted by all five HMMs: astt [�st], brhat
[br�t], cci [ki:], ckeds [sk"ts], cto [sto], deess [de:s], ejh ["j], ejss ["js], fovhst [f=fst],
hurwd [hœrwt], kkraeb [kre:p], klolc [kl=lk], kuktzt [kœktst], nalc [n�lk], oarp [o:rp],
ousc [�usk], piuttd [pju:t], roqks [r=ks], sassk [s�sk], teaq [ti:k], terh [t"r], tskip [tskıp]
ttik [tık], ttra [tra:], ttui [t^y], twosd [tw=st], udsb [œtsp] and uzs [y:s]. The or-
thographic representations of these words are not acceptable as monosyllabic Dutch
words but 24 of the 28 of the phonetic representations are acceptable. The four strings
that do not have an acceptable phonetic representation are: hurwd [hœrwt], klolc
[kl=lk], tskip [tskıp] and udsb [œtsp]. The conversion of the orthographic represen-
tations to the phonetic representations has been done by a native Dutch speaker and
this might have resulted in ‘quasi-Dutch’ transcriptions. An inspection of the negative
data set resulted in two more acceptable transcriptions: tzips [tsIps] and ttsue [tsy:].
If we omit the 26 acceptable negative strings from the data, the model has rejected on
average 564.23 of 574 negative strings (98.3%) which is a good score.

4.5 Phonetic data with linguistic initialization
The results of the randomly initialized HMMs that processed phonetic data were ac-
ceptable. Still we are interested what the HMMs will do when they are provided with
basic initial phonotactic knowledge. In this experiment series we will apply linguis-

3When the strings tzips [tsIps] and ttsue [tsy:] are removed from the data the average rejection scores
will decrease with 1.0 because all HMMs rejected ttsue [tsy:] and with another 0.4 because two HMMs
rejected tzips [tsIps].

Experiments with bigram HMMs 61

A =

2
666666664

1:0 1:0 0:0 0:0 0:0 0:0 0:0
0:0 0:0 1:0 1:0 0:0 0:0 0:0
0:0 0:0 0:0 1:0 0:0 0:0 0:0
0:0 0:0 0:0 0:0 1:0 1:0 0:0
0:0 0:0 0:0 0:0 0:0 1:0 0:0
0:0 0:0 0:0 0:0 0:0 0:0 1:0
0:0 0:0 0:0 0:0 0:0 0:0 1:0

3
777777775
� =

2
666666664

1:0
1:0
0:0
1:0
0:0
0:0
0:0

3
777777775

 =

2
666666664

0:0
1:0
0:0
1:0
0:0
1:0
1:0

3
777777775

B =

�
vowels 0:0 0:0 0:0 1:0 0:0 0:0 0:0

consonants 1:0 1:0 1:0 0:0 1:0 1:0 1:0

�

Figure 2.21: Initial configuration for bigram HMMs for phonetic data that start from
basic phonotactic knowledge. The value 0.0 indicates an impossible link or an im-
possible character production and the value 1.0 indicates possible links or possible
character productions. The non-zero parameters were initialized with random values
before training.

tically initialized HMMs to phonotactic knowledge. The initialization model we will
use is the model of Cairns and Feinstein we have introduced in section 2.4 of chapter
1. Again we had to adapt the standard Cairns and Feinstein model in order to enable it
to handle all words of the training data set. This set contains two interjections (pstand
sst) and one abbreviation (s) that cannot be explained with the Cairns and Feinstein
model. In order to enable the models to handle these words we have added a link
from state 2 (margin core) to hidden eight state (see
-matrix in figure 2.21 and figure
2.22). This link will enable the model to accept strings that do not contain a vowel.
Furthermore, we had to link state 1 (pre-margin) to itself in order to enable the models
to process the consonant clusters inpst andsst. All impossible links were removed
from the HMMs and they were prevented from restoring them. The initial model can
be found in figures 2.21 and 2.22.

Like in the experiments with the orthographic data the program was supplied with
information about the difference between vowels and consonants. Vowels were al-
lowed as the output of state 4 (peak) only and consonants were allowed as the output
of any other state (see B-matrix in figure 2.21). The task of the HMMs was to find out
the best values of the state transitions in the model (A-matrix,�-matrix and
-matrix)
and discover what consonants are allowed in which state (B-matrix). The values of
impossible links (A-matrix,�-matrix and
-matrix) and probabilities of impossible
productions of characters were initialized with zero. All other model parameters were
initialized with a random value. We performed five experiments with this set-up. The
results can be found in figure 2.23.

The HMMs needed on average 28.2 rounds to become stable. Thus they need less
training rounds than the models without linguistic initialization (68.6 rounds, t(4)=2.3,

62 chapter 2

margin core

S S S S S S S1 2 3 4 5 6 7

peak satellite coda appendixsatellitepre-margin

Figure 2.22: Initial bigram HMM for phonetic data. This is a graphical representation
of the HMM parameters presented in figure 2.18. The two visible differences between
this model and the original phonological model of Cairns and Feinstein are the extra
link leaving state 2 (margin core) and the self-link at state 1 (pre-margin). These links
are necessary to enable the model to handle the non-vowel interjectionspst andsst,
the abbreviationsand the consonant clusters in these strings.

nbr. rounds threshold positive accepts negative rejects
1. 33 1.575*10�10 594 570
2. 48 1.614*10�10 595 570
3. 17 1.213*10�10 595 570
4. 10 3.562*10�11 595 569
5. 33 3.562*10�11 594 570

avg. 28.2�13.4 594.6�0.5 (99.1%) 569.8�0.4 (95.0%)

Figure 2.23: The results of five experiments with linguistically initialized bigram
HMMs that processed phonetic data. After an average of 28 training rounds the
HMMs accepted on average 595 words of the positive test data set (99.1%) and re-
jected 570 strings of the negative test data set (95.0%). When we removed strings
with an acceptable phonetic transcription from the negative test data the HMMs ob-
tained a rejection score of 99.1% on this test set.

p<0.05). The models accepted on average 594.6 words of the positive test data and
this is exactly as many as the HMMs with random initialization (594.6 words, t(4)=0.0,
p>0.25). They rejected more strings of the negative test data set (569.8) than the
models of the previous section (565.6 strings, t(4)=5.0, p<0.005).

Twenty-nine negative strings were accepted by all five HMMs and five test words
were rejected by all five HMMs. The five uniformly rejected test words were the same
as in the experiments with randomly initialized HMMs. Again the words received
the score zero because they contained bigrams that do not occur in the training data.
Of the 29 accepted strings from the negative test data set 24 were in the set of 26
reasonable phonetic transcriptions (see previous section). The other five universally
accepted strings were not acceptable: ephtsb ["ptsp], hurwd [hœrwt], klolc [kl=lk],

Concluding remarks 63

sfhi [sfi:] and udsb [œtsp]. When we remove the 26 reasonable transcriptions from
the data the HMM has rejected on average 568.6 of 574 negative strings (99.1%).
This is an improvement compared with the average score of 98.3% achieved in the
experiments with random initialization (t(4)=4.9, p<0.005).

5 Concluding remarks

It is possible to use Hidden Markov Models (HMMs) for building phonotactic models
from a list of monosyllabic words. The resulting HMMs show recognition of language
specific features such as vowel-consonant distinction. Unigram HMMs perform well
in recognizing the difference between a set of positive test data and a set of negative
test data. However, recognizing the difference between individual cases is a problem:
the unigram HMMs often assign higher scores to incorrect data than to correct lan-
guage data. The main problems are that standard unigram HMMs do not pay attention
to the context of a character and that they exaggerate the influence of sequence length
on sequence score. Providing the unigram HMMs with initial phonotactic knowledge
shortens the training phase but it does not increase their performance after training.

Bigram HMMs with score correction for sequence length perform better. They
misclassify few words and recognize a clear difference between positive test data and
negative test data accepting on average 99.1% of a set of unseen correct words in pho-
netic representation (98.9% for orthographic data) while rejecting on average 98.3%
of a set of impossible negative phonetic test sequences (91.0% for orthographic data).
Providing initial linguistic knowledge to the HMMs caused a significant and large
increase of the training speed for the phonetic data but only small increases in perfor-
mance. The number of training rounds needed went down from an average of 68.6 to
28.2 for phonetic data (t(4)=2.3, p<0.05, see section 2.5 of chapter 1). The acceptance
rate for the positive phonetic test data was the same for randomly and linguistically ini-
tialized HMMs (99.1%) but the rejection rate of the negative test data showed a small
increase from 98.3% for the randomly initialized HMMs to 99.1% for the linguisti-
cally initialized HMMs (t(4)=6.2, p<0.005). HMMs with initial linguistic knowledge
that processed orthographic data needed approximately the same number of training
rounds as HMMs that were initialized randomly and performed worse. The phonolog-
ical model that we used for initializing the HMMs was not suitable for orthographic
data.

We can examine two of the three research questions mentioned in chapter 1. The
phonetic data format seems to be better suitable for our problem. HMMs that pro-
cessed orthographic data accepted as many positive test words as those that processed
phonetic data but the latter rejected significantly more negative strings. Starting from
basic phonotactic knowledge enables the HMMs to produce better models but the dif-
ference was only noticeable in the rejection rates of the negative data. Both HMMs
that processed orthographic data as those that processed phonetic data accepted as
many positive test data with and without initial knowledge but the rejection rates for
negative data were significantly larger for the initialized HMMs.

64 chapter 2

The models that we have built in this chapter suffer from one of the problems that
were mentioned in (Fudge et al. 1998) namely the presence of loan words in the data.
These words have complicated the models. However, it is not easy to remove the loan
words from the data set without making assumptions about the structure of the words.
Therefore, we have chosen to leave these words in the training and test data. Fudge
and Shockey have also recognized the problem of accepting incorrect strings when
no context information is used. We have discussed this problem in section 3.4 with
the example stringpajn and solved the problem by using bigram HMMs instead of
unigram HMMs. Our orthographic bigram models reject two of the three problematic
words mentioned in (Fudge et al. 1998):smlasrandsdring. These strings should also
be impossible in Dutch. The third word,ssming, is accepted by the models because
the unusual onsetssoccurs in the interjectionsstwhich is present in the training data.

Fudge and Shockey also discuss the difference between accidental and systematic
gaps in language patterns. Our approach to this is to regard any string that is not
accepted by a model as a systematic gap and regard all strings that are accepted by a
model but that are not present in the language as an accidental gap. Thus the difference
between accidental and systematic gaps has become a model-dependent difference.

The models derived in this chapter satisfy two of the five properties Mark Ellison
outlined in his thesis (Ellison 1992). They are cipher-independent (independent of the
symbols chosen for the phonemes) and language-independent (they make no initial
assumptions specific for a certain language), but their internal structure is neither ac-
cessible nor linguistically meaningful. The HMMs also fail to satisfy Ellison’s first
property (operation in isolation) because they receive preprocessed language input:
monosyllabic words. The removal of the monosyllabicity constraint we put on our
training data is an interesting topic for future work.

Chapter 3

Connectionist Learning

Connectionist approaches have become increasingly popular in the field of natural
language processing. These approaches use built-in learning mechanisms. Therefore
they should be of interest to research in language acquisition and language learning
as well. In this chapter we will examine the promises connectionist approaches, also
called neural network approaches, have for natural language learning. We will con-
centrate on the language learning task which is central in this thesis: the acquisition
of phonotactic structure. In the first section we will give an introduction to a class of
neural networks: feed-forward networks. In the second section we will introduce the
network we have chosen to experiment with: the Simple Recurrent Network (SRN)
developed by Jeffrey Elman. The third section covers the acquisition experiments we
have performed with this network. This set of experiments will not give us optimal
results. We will use the fourth section for laying bare the problem that is the cause of
these suboptimal results and presenting a method for restructuring the input data that
could enable the networks to obtain better results. In the final section we will present
a summary of this chapter with some concluding remarks.1

1 Feed-forward networks

In this section we will give an introduction to a specific type of neural network: the
feed-forward network. We will start with a general description of this network type.
After that we will show how feed-forward networks learn. We will conclude with
showing how non-numeric data can be encoded in a feed-forward network.

1Some parts of this chapter have earlier been published in (Tjong Kim Sang 1995).

65

66 chapter 3

in

in

in

out

11

i

n

w
w

wn

i

A possible computation performed by the cell:out = 1
iff w1�in1+:::+wi�ini+:::+wn�inn � threshold

elseout = 0 Hereini is the input value on linki, wi

is the weight corresponding to linki, out is the output
value of the cell andthreshold is a threshold value.

Figure 3.1: An example of a cell in a neural network and the computation it performs.

1.1 General description of feed-forward networks
Artificial neural networks have been inspired by biological neural networks. They
consist of cells which are connected to each other by weighted links. The weights
of the links determine the function the network performs. Artificial neural networks
usually contain a learning function which adapts the value of the weights to optimize
the network’s performance on a task.

Connectionist or neural networks have often been compared with rule-based mod-
els in cognitive science literature. Researchers have posed that neural networks are
more suitable for modeling cognitive tasks such as language processing because they
are robust and because they are biologically plausible. Robustness, the ability to deal
with noisy data, is an interesting property. It will enable the networks to handle train-
ing data with errors. The errors will be infrequent and thus have little influence on
the final model. Neural networks share the robustness feature with statistical models.
However, robustness is not a feature that is often contributed to rule-based models.

There are many different types of neural networks available. A quick glance in
a neural network introductory book like (Wasserman 1989) will reveal that there are
about a dozen main types of neural networks and the main types have many vari-
ants. Some of these networks are biologically or psychologically plausible and oth-
ers are just parallel cell models with smart learning algorithms. The cells used in
the second network type have a far more simple structure than human brain cells
(Zeidenberg 1990). We are interested in solving our problem, the acquisition of phono-
tactic structure, as well as possible. We feel that using biologically or psychologically
inspired artificial neural networks is an interesting approach to solve the problem
However, we refrain from committing ourselves to using only biologically or psy-
chologically inspired artificial neural networks.

We have described a neural network as a collection of cells which are connected to
each other with weighted links. The cells use these links to send signals to each other.
The links are one-way links: signals can only travel through a link in one direction.
Furthermore, signals are numbers between zero and one. The cells perform a simple
function: they multiply incoming signals with the weight of the link the signals are on
and compute the sum of all multiplications. When this result is larger than or equal to
a threshold value, the cell will put a signal 1.0 at its output link otherwise it will put a
signal 0.0 on its output link. The function that the cell performs to compute the output
signal from the input signals is called theACTIVATION FUNCTION.

Feed-forward networks 67

in1 in2 XOR(in1; in2)

0 0 0
0 1 1
1 0 1
1 1 0

Figure 3.2: The XOR-function. It will produce a 1 if and only if exactly one of the
two binary input parameters is equal to 1. Otherwise the function will produce 0.

When we connect these cells with each other and give cells input and output con-
nections with the outside world, we have created a neural network. After presenting
the network a set of input signals, it will produce a set of output signals. Sets of sig-
nals are also called patterns So it is capable of converting an input pattern to an output
pattern. As an example we will design a network that computes the XOR-function
(see figure 1.1).

We can try to build a network that performs this function by starting from a random
collection of cells with a random number of links between them. However, we will
to divide the network in groups of cells so that we can use the learning algorithm
which will be described in the next section. We will call these cell groups layers.
We will number the layers and impose a hierarchy on them. Cells in the first layer
receive input from outside and send their output to cells in the second layer. Cells in
the second layer receive input from the first layer and send their output to cells in the
third layer, and so on. Cells in the final layer send output to the outside world. So
the data will first enter the first layer, then it will move to the second layer then to the
third and so on until it reaches the final layer via which it is sent to the outside world.
Because the data flows from the back to the front of the network this network is called
a feed-forward network.

Figure 3.3 shows a three-layer network which is able to compute the XOR-function,
a binary function with two input parameters and one output parameter which is only
equal to one if exactly one of the input parameters is equal to one. The cells in the
network all have a threshold value of 0.1. The two input cells do not change their
input: they simply pass it on to the second layer. The table presents an insight into the
information flow in the network. For example, the [0,1] pattern (in1=0 andin2 = 1)
will be passed to the second layer and result in a [1,0] output signal of the second
layer. This will result in a [1] signal as output of the network.

This network prefectly computes the XOR-function because it contains the correct
weights to do this. But now the question is: how do we get a network to compute an
arbitrary function? In other words: how do we find weights that enable a network to
compute a specific function? We will deal with this question in the next section.

68 chapter 3

out

in

-0.3
in

1

2

0.5

0.6

-0.9

0.9

A

B

C

D

E
0.3

in1 in2 outA outB outC outD out

0 0 0 0 0 0 0
0 1 0 1 1 0 1
1 0 1 0 0 1 1
1 1 1 1 0 0 0

Figure 3.3: A network that computes the XOR-function. Signals travel through the
network from left to right. These signals have been represented by binary numbers in
the table. The numbers next to the links in the network are the weights of the links.
All cells have a threshold value of 0.1.

1.2 Learning in a feed-forward network
We want a feed-forward network to perform a task which is computing a specific
function. This can be done by presenting the network the input and the corresponding
output of the function and making it learn a weight configuration that can be used for
simulating the function. This kind of learning is calledSUPERVISED LEARNING: the
learner is provided with both input and output for a particular task. In unsupervised
learning the learner will only receive the task input (Zeidenberg 1990).

One of the learning algorithms which can be used for deriving a network weight
configuration is the backpropagation algorithm described in (Rumelhart et al. 1986).
In this algorithm the output of the network for the training patterns is compared with
the required output. The difference between these two, the error, is used for improving
the current weights. First the error of the network output is used for computing the
weights of the links to the last layer, then for the weights to the next to last layer
and so on. The error is propagated from the output layer of the network back to
the input layer, hence the name of the algorithm ‘backpropagation’. This learning
algorithm is not biologically plausible. However it is still the most frequently used
connectionist learning algorithm because it will produce a reasonable model for most
data sets (Rumelhart et al. 1986).

Let us look at the backpropagationalgorithm in more detail (Rumelhart et al. 1986).
First we define 6 variables:

Feed-forward networks 69

targetc;l the target output value of cellc of layer l
outc;l the actual output value of cellc of layer l
�c;l the error in the output of cellc of layer l (targetc;l-outc;l)
wc1c2;l the weight of the link between cellc1 in layer l-1 and cellc2 in layerl
�wc1c2;l the size of the change ofwc1c2;l as computed by the algorithm
� the learning rate, a parameter of the algorithm

Here layer 1 will be the input layer, layer 2 will be the first hidden layer, layer 3 will
be the second hidden layer if present and so on. When there aren hidden layers,
layer n+2 will be the output layer. We will use one hidden layer and therefore in
our networks layer 3 will be the output layer. The first step of the backpropagation
algorithm consists of computing the�c;l values for the cells in the output layers:

�c;l = (targetc;l � outc;l) � (1� outc;l) � outc;l (3.1)

The simplest formula for computing a�c;l would have been�c;l = (targetc;l�outc;l)
in which case the error would have been equal to the difference between the target
output value and the actual output value. However, for the correctness proof of the
backpropagation algorithm it is convenient to use the complex error equation that has
been displayed. In this complex equation the error is the product of the simple error
function and the derivative of the activation function with respect to the input.2

When we know the error values, we can use them for computing the weight change
values for the output layer�wc1c2;l and these can in turn be used for computing the
new values of the weights of the links between the hidden layer cells and the output
layer cells:

�wc1c2;l = � � �c2;l � outc1;(l�1) (3.2)

new wc1c2;l = old wc1c2;l +�wc1c2;l (3.3)

The change of a weight of a link�wc1c2;l is proportional to the network parameter,
learning rate�, the error value of the cell at the end of the link�c2;l and the value of
the signal on the linkoutc1;(l�1). The equation contains an input signal value because
multiple input signals determine the output value of a cell and the weights correspond-
ing with the signals that contribute most to this output value should receive the largest
increase or decrease. The new value of the weight will be the old value increased with
the change.

The learning rate� is a model parameter that backpropagation has in common
with hill-climbing algorithms (Rich et al. 1991). These algorithms can in general be
used for solving the problem of a walker attempting to find the highest spot in a misty
mountain area. In the case of backpropagation, a set of correct weights would be a
representation of the location of the highest point of the mountain. Then each�wc1c2;l

2We are using the activation function defined in (Rumelhart et al. 1986), equation (15):outc;l = (1+
e
inc;l+�c;l)�1 whereinc;l =

P
c1

wc1c;l�1�outc1;l�1 and�c;l is the threshold value for cellc of layer

l. The derivative of this function with respect to the inputinc;l is (1� outc;l) � outc;l).

70 chapter 3

corresponds to one step of the walker. A large value for� increases the size of the steps
that the walker makes and enables him to reach the target faster. However, larger�

values also introduce the danger that the walker might step over the target location
and never be able to reach it (we assume that the walker is able to make steps of many
kilometers). In terms of finding the correct weight configuration: a large� value
enables backpropagation to move faster to the target weight configuration but it also
increases the chance of never reaching this target.

By using equations 3.1, 3.2 and 3.3 we will be able to compute new values for
the weights of the links between the hidden layer and the output layer. The latter two
equations will also be used for the computation of the new values for the weights of
the other links. Equation 3.1, however, cannot be used for that purpose because it
contains the termtargetc;l. While we know the correct output value for the output
layer, it is impossible to tell what the correct output value for the cells in the hidden
layer needs to be. Therefore we will use a different equation for computing�c;l for
non-output cells:

�c1;l = (
X
c2

�c2;(l+1) � wc1c2;(l+1)) � (1� outc1;l) � outc1;l (3.4)

In this equation we have approximated(targetc1;l � outc1;l) with the sum of the
weights of the output links of cellc1 (wc1c2;(l+1)) multiplied with the error computed
for the cell that the link provides input for�c2;(l+1). The� values computed for layer
l + 1 will be used for computing the� values for layerl. This operation can be per-
formed for any number of network layers.

With the equations 3.1, 3.2, 3.3 and 3.4 we are able to update all the weights of the
network. (Rumelhart et al. 1986) have introduced an improved version of equation
3.2, one which will increase the learning speed with minimal chance of the algorithm
becoming instable3:

�wc1c2;l(t) = � � �c2;l � outc1;(l�1)(t) + � � (�wc1c2;l(t� 1)) (3.5)

The weight change as defined in equation 3.2 is now increased with the previous value
of the weight change�wc1c2;l(t � 1) multiplied with the momentum parameter�
which is a value between 0 and 1. The idea behind this is that the process of reaching
the correct weight values usually consists of a large number of small steps in the
same direction. By adding to each step a portion of the value of the previous step,
successive steps in the same direction will increase the size of the steps and thus
enable the algorithm to reach the target weight configuration faster.

The backpropagation algorithm will have to perform a number of weight modifi-
cations before it reaches a good weight configuration. The number of modifications
that are necessary will be determined by the values of the algorithm parameters� and
�. We would like the algorithm to arrive at a correct network configuration as soon

3A network is instable when it is unable to converge to a more or less constant model for the training
data in a finite amount of training rounds.

Feed-forward networks 71

as possible and therefore we are interested in finding optimal values for these two pa-
rameters. Unfortunately, the optimal values of� and� are dependent on the task to
be learned and the network initialization. Usually finding good values for these two
algorithm parameters is a matter of trial and error.

In our experiments with feed-forward networks we will use an error function for
measuring the performance of the network for a certain task. The error function takes
all cell output values of all output patterns, subtracts from them the desired output
values and adds the squares of these subtractions together:

E =
X
pat

X
cell

(desired outputpattern;cell � actual outputpattern;cell)
2 (3.6)

The result, theTOTAL SUM SQUARED ERROR, is an indication of the performance of
the network. A small error value indicates that the network is performing the task
well.

Now training the network is a four step process:

1. Present an input pattern to the network and make the network compute an output
pattern.

2. Compare the actual output pattern of the network with the target output values
and use the equations 3.1, 3.4, 3.5 and 3.3 for computing new values of the
weights.

3. Repeat steps 1 and 2 for all patterns.

4. Repeat steps 1, 2 and 3 until the total sum squared error has dropped below a
certain threshold or the number of times that these steps have been performed
has reached some predefined maximum.

In an alternative schedule step 2 will only use the equations 3.1, 3.4 and 3.5 for com-
puting the weight updates. These will be stored in some buffer and the actual update
of the weights will be made in step 3 when all patterns have been processed.

1.3 Representing non-numeric data in a neural network
In the example in which we computed the XOR-function with a neural network, repre-
senting data was not difficult because the data was numeric and the network processed
numeric data. But in language we want to process sounds and symbols and therefore
we have to find out a way to represent non-numeric data in a neural network. When
we consider using four charactersa, b, c andd in a network, there are three basic ways
for representing them in a network.

First we can represent the characters by using one signal and assigning numeric
values to the characters, for example:a = 0.0,b = 0.3,c = 0.6 andd = 0.9. However,
this approach will fail because imperfect data cannot be interpreted unambiguously.

72 chapter 3

If the network does not know which of two outputs is correct, it typically produces
an intermediate value. A draw betweena andc can result in an output value of 0.3,
which actually is the representation ofb. It is impossible to tell if a 0.3 output is the
result of the network choosing forb or that the network cannot choose betweena and
c. The network output can not be analyzed because the representation of characters is
inappropriate.

A second way to represent the characters is to use two binary signals:a = [0,0],b =
[0,1], c = [1,0], d = [1,1]. However, this representation suffers from the same problem
as the previous one: errors can occur when the network output needs to be inter-
preted. For example: if the network cannot choose betweenb andc it might produce
a [0.5,0.5] output. However, this output can also be interpreted as the intermediate
pattern fora andd. Furthermore, binary representations can invoke unintended sim-
ilarities between the symbols. It is possible to use five bits for representing twenty
six characters and use [0,0,0,0,0] (0) fora up to [1,1,0,0,1] (25) forz. It that case the
representations fore, [0,0,1,0,0], andm, [0,1,1,0,0] are similar. The network will use
this artificial similarity during processing. We might not want it to do that.

A third way to represent the characters in by using the localist mapping described
in (Finch 1993) among others. Then every character will be linked to a particular cell
in the representation and only one cell in the representation can contain a one:a =
[1,0,0,0],b = [0,1,0,0],c = [0,0,1,0] andd = [0,0,0,1]. In this case we need four sig-
nals. This representation does not have the problem of the two previous ones. If the
network produces an intermediate value the candidates that it suggests can unambigu-
ously be pointed at, for example: if the network would generate a [0.5,0.5,0,0] output
then we know that it had difficulty to choose betweena andb. Furthermore all rep-
resentation patterns are equally alike so the network cannot recognize non-intended
similarities from the representations. However, the price we pay for this is that this
way of representing characters requires more cells than the previous two. More cells
means more links and more weights and, because computations will be performed for
all weights during training, more cells means longer training times.

When a lot of symbols have to be processed, using the localist mapping can prove
to be time-consuming during the training phase. In that case a balance has to be found
between the two problems of large representations and non-intended similarities be-
tween patterns. A balance can be found by choosing some intermediate representation
size and making the network itself find out meaningful representations of that size.
(Blank et al. 1992), (Elman 1990) and (Miikkulainen et al. 1988) show three differ-
ent methods for making networks build fixed length representations for symbols. The
representations built by the network reflect the task the network learned to perform
with the symbols. So a different network task will result in different representations.

2 The Simple Recurrent Network (SRN)

In this section we will present the network we will use in our phonotactic experiments:
the Simple Recurrent Network (SRN). We will start with a general description and af-

The Simple Recurrent Network (SRN) 73

ter that we will show how SRNs learn. The section will be concluded with a summary
of language experiments performed with SRNs by others.

2.1 General description of SRNs
The three-layer feed-forward network we have presented in the previous section can-
not perform all the tasks we would like to apply it to. An example of a task in which
the network cannot achieve a score that is higher than 50% is predicting the next bit
in a bit list like:

1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 ...

Only one bit of the list is available at one time point. This bit list first appeared in
(Elman 1990). At first sight the elements of the list seems to be chosen randomly and
correctly predicting bits of the list seems impossible. However when we take a closer
look at it, it turns out to be possible to discover three-bit patterns in the list. The first
two bits of each pattern are random but the third is the XOR of the first two. In order
to be able to predict this third bit correctly, the network must know the values of the
previous two. However, as we said only one bit of the list is available at each moment
and the network does not have memory to store the previous bit. Therefore the feed-
forward network cannot predict the third bit of each three-bit pattern correctly. The
network cannot do any better than guessing future bits which will result in a score of
50%.

The only way to improve the performance of the network is to give it memory.
We can use a buffer to store input and only process the input when it is complete,
an approach which has been chosen in (Weijters et al. 1990). To solve this problem
we will need to a buffer size of one pattern. However, for general problems in which
memory is required we might not know how large the buffer size needs to be. If we
choose a buffer size that is too small, the network will not be able to solve the problem.
Therefore we have not chosen this approach.

There are two other standard ways of adding memory to a three-layer feed-forward
network. Both consist of adding a feedback loop to the network which enables it to
store and use context information for the input sequence.

The first way of giving the network memory is by feeding the output of the network
back to the input. This approach was developed by (Jordan 1986) and the resulting
network has become known as the Jordan network. The input layer of the network
is extended with the same number of cells as the output layer. These extra cells, the
CONTEXT CELLS, contain a copy of the previous output layer activations. Like the
input layer cells, they are connected with all cells in the hidden layer. Every output
cell is connected with a context cell. Furthermore, each context cell is connected with
itself and with every other context cell (see figure 3.4). The weights of the backward
and the inter-context cell links are equal to one and these weights cannot be changed.
Signals only flow through these links when the input of the network is updated.

74 chapter 3

in

in

1

2 out

out

1

2

out

in

in

1

2

out 2

1

Figure 3.4: A Jordan network (left) and a Simple Recurrent Network (right). Except
when arrows indicate otherwise, all connections are forward connections. The two
context cells at the bottom left of each network make the difference between these
two networks and the networks we have discussed in the previous section. These
context cells implement the memory of the networks.

The second way of adding memory to the network is by feeding the output of
the hidden layer back to the input layer. (Elman 1990) first used this approach and he
named the network Simple Recurrent Network (SRN). Now the input layer is extended
with as many context cells as the hidden layer. The other aspects of the network are
the same as in the Jordan network apart from the internal context layer links which are
present in the Jordan network but do not exist in the SRN (see figure 3.4).

Both networks are capable of performing the XOR-sequence task correctly. An
example of the output of an SRN after training can be found in figure 3.5. The average
error of the network for the third, the sixth and the ninth bits in the test list is 0.40 or
lower but for other bits it is about 0.50. While this network does not perform perfectly,
it seems to have recognized the structure of the bit lists.

For other tasks performance of these two network types can be different: some-
times the Jordan network performs better and sometimes the SRN. The Jordan network
trains faster in a supervised task because the correct input values of the context cells
are known during training (context cell input = previous network output in Jordan net-
works). The correct input values of the context cells in an SRN are unknown during
training (context cell input = hidden layer output in SRNs). However, the hidden layer
activation values may contain an interesting representation of features of the symbols
and the task in which they are used (Elman 1990). Feeding back these activations can
aid the network in performing well. This last feature is the prime reason for us for

The Simple Recurrent Network (SRN) 75

1

0.30

0.40

0.50

0.60

11 121098765432

Figure 3.5: Average error in the SRN output for the XOR task for 12 consecutive
inputs averaged over 10 trials. The network had to predict the next bit of a bit list of
which each third bit was the XOR of the previous two. The overall average error is
0.45 (dotted line) but the error for the bits 3, 6, 9 and 12 was smaller (0.35 on average)
which indicates that the network has recognized the structure of the bit list.

choosing for the SRN for our experiments. With this choice we join previous connec-
tionist language research like (Elman 1990) and (Cleeremans 1993) which both use
SRNs to model sequential language processing. Jordan networks are not used as of-
ten; an example of a Jordan networks application is the work of (Todd 1989) in music
generation.

2.2 Learning in SRNs
An SRN can be trained by using the same equations and training schedule as was
used for the feed-forward networks in section 1.2. The only differences are that some
weights will not be changed during training (the weights of the backward links) and
a part of the input data will be obtained from the hidden layer output for the previous
pattern (the context cell input values).

Again training the network is a four step process:

1. Present an input pattern to the network and make the network compute an output
pattern. The context cell input values are equal to the output values of the hidden
layer for the previous pattern. If no previous pattern exists then the context cell
input values will be equal to 0.

2. Compare the actual output pattern of the network with the target output values
and use the equations 3.1, 3.4, 3.5 and 3.3 of the backpropagation algorithm
for computing new values of the weights. The backward links should not be
changed.

76 chapter 3

3. Repeat steps 1 and 2 for all patterns.

4. Repeat steps 1, 2 and 3 until the total sum squared error has dropped below a
certain threshold or the number of times that these steps have been performed
has reached some predefined maximum.

2.3 Using SRNs for language experiments
SRNs have been used successfully in different experiments. (Elman 1990) has used an
SRN for analyzing simple sentences. From a small grammar he generated 10,000 two-
and three-word sentences. The sentences were concatenated in a long sequence and
an SRN was trained to predict the next word in the sequence. The network only had
available the current word and a previous hidden layer activation which can be seen
as a representation for the previous words in the sequence. The SRN cannot perform
this task perfectly because the order of the words in the sequence is non-deterministic
and the network is too small to memorize the complete sequence.

However, Elman was not interested in the output of the network. He was interested
in the activation patterns which were formed in the hidden layer. Elman discovered
that the average activation at the hidden layer for a word presented at the input reflected
the way the word was used in the sentences. A cluster analysis of these average hidden
representations divided the words in two groups: the verbs and the nouns. Within these
groups some subgroups could be found: animals, humans, food, breakable objects and
different verb types (Elman 1990). So the network developed internal representations
for words which reflect their syntactic and semantic properties.

In another experiment Axel Cleeremans, David Servan-Schreiber and James Mc-
Clelland (Cleeremans 1993) (Cleeremans et al. 1989) (Servan-Schreiber et al. 1991).
have trained a network to recognize strings which were generated using a small gram-
mar that was originally used in (Reber 1976) (see figure 3.6). Cleeremans et al. trained
an SRN to predict the next character in a sequence of 60,000 strings which were ran-
domly generated by the grammar. Again this task was non-deterministic and the size
of the network was too small to memorize the complete sequence. So the network
could not perform this task without making errors. For Cleeremans et al. it was suffi-
cient that the network indicated in its output what characters are a valid successor of
the sequence. They represented characters using the localist mapping and their aim
was to make the network output at least 0.3 in the cells that correspond to valid suc-
cessors. So when the output of the network is something like shown in figure 3.7,
then valid successors areSandX because these have received an output value higher
than 0.3. The network accepted a string if it considerated all characters of the string
as valid characters in their context.

Cleeremans et al. have tested their network with 20,000 strings generated by the
Reber grammar. For all characters in these strings the network output in the corre-
sponding cells was 0.3 or higher. So the network accepted 100% of the grammatical
strings. After this Cleeremans et al. fed their network 130,000 random strings built
from the same characters. This time the network accepted 0.2% of the strings. It

Experiments with SRNs 77

P
B

T
S

P

T

S

X

V

X

V

E

Figure 3.6: Finite state network representing the Reber grammar. Valid strings pro-
duced by this grammar will always start withB and end withE. Between these char-
acters there will a string containingT’s, S’s, X’s, V’s andP’s. The finite state network
indicates which characters are possible successors of a substring. For example: the
substringBTcan be followed by eitherSor X.

B T S X V P E
0.0 0.0 0.4 0.5 0.0 0.1 0.0

Figure 3.7: Possible network output of an SRN trained on the Reber grammar after
presenting substringBT to the network. A number below a character indicates the
output value of the network output cell corresponding with that character. The SRN
attempts to predict the successor of the string. It considersSandX as valid successors
of BTbecause the output values corresponding to these two characters are larger than
0.3.

turned out that all accepted strings were grammatical strings. All other strings were
invalid according to the grammar. Thus the network separated perfectly the grammat-
ical strings from the non-grammatical strings.

The results obtained by Cleeremans et al. are excellent. Their problem was related
to ours so we hope to obtain results that are similar to theirs when we apply SRNs to
our phonotactic data.

3 Experiments with SRNs

In this section we will describe the experiments we have performed with SRNs. We
will start with a presentation of the general set-up of the experiments. After that we

78 chapter 3

will discuss a small experiment which was used for determining optimal network pa-
rameters. The next two sections will describe the experiments that we have performed
with orthographic data: one with random initialization and one with additional linguis-
tic information. The linguistic information was supplied to the network by supplying
the training data in an order based on the complexity of the training strings.

3.1 General experiment set-up
We will use the experiment of (Cleeremans 1993) with the Reber grammar as an ex-
ample for the set-up of our own experiments involving the acquisition of phonotactic
structure. We will use Simple Recurrent Networks (SRNs) which will process a list
of words. The words will be presented to the networks character by character. The
SRNs have no access to previous or later characters. They will have to use their inter-
nal memory for storing a representation of the previous characters. The SRNs will be
trained to predict the next character of a word.

Like Cleeremans et al. we will use the localist mapping to represent characters.
So in the SRN input and output layers every cell will correspond to one character.
We will be using the localist mapping and this means that input and output patterns
will contain 29 cells for the complete orthographic data. So the number of input and
output cells for networks that process orthographic data will be 29. We will work with
different hidden layer sizes: 3, 4, 10 and 21 cells. The number of cells in the context
layer will be equal to the number of cells in the hidden layer.

We will adopt Cleeremans et al.’s measurement definition, the way the scores of
characters and words are computed. TheWORD SCOREis the value that is assigned
by a network to the word. If the word score is high we will assume that the word is
probable according to the training data. TheCHARACTER SCOREis the value assigned
by a network to the character in a certain context. If the character score in a certain
context is high we will assume that the character is probable in that context. In the
work of Cleeremans et al. these two scores are defined as follows:

Measure 1

The character score of characterc in the context of some preceding sub-
strings is the output value of the output cell corresponding toc of a net-
work after the network has processeds.

The word score of wordw consisting of the charactersc1...cn is equal to
the lowest value assigned by a network to any of these characters at their
specific positions during the processing ofw.

Note that these scores can only be interpreted in a reasonable way if they are computed
by the same network. It makes no sense to compare scores of words that are computed
by different networks. Because of the random initialization of SRNs before learning,
two SRNs trained on the same problem with the same data may well assign different

Experiments with SRNs 79

scores to the same word. We are only interested in the relation between scores of
words computed by the same network.

We will compare the performance of measure 1 with two other measures. In our
second measure the character scores will be computed in the same way as in measure
1 but the word scores will be equal to the product of the character scores:

Measure 2

The character score is computed in the same way as in measure 1.

The word score of wordw consisting of the charactersc1...cn is equal to
the product of the scores assigned by the network to these characters at
their specific positions during the processing ofw.

In our third measure we will also multiply the character scores to get the word score
but this time we will use the Euclidean distance between actual network output and
target output as character score. This means that we compute character scores by
comparing all network output values with the target values instead of only looking at
one cell:

Measure 3

The character score of characterc in the context of some preceding sub-
strings is 1 minus the normalized Euclidean distance between the target
output pattern of a network after processingsand the actual output pattern
of the network after processings:

scorec = 1�
q

1
n

Pn
i=1 (targeti(s)� outputi(s))2

in which targeti(s) is the target output pattern of celli andoutputi(s) is
the actual output pattern.

The word score is computed in the same way as in measure 2.

Since the patterns consist of values between 0 and 1, the largest difference sum be-
tween these two vectors isn so we divide the sum of products byn in order to obtain
a value between 0 and 1.4 This value is equal to 0 for a perfect match and equal to
1 for a non-match so we subtract it from 1 to obtain similar values as in the previous
measures.

We have explained in the description of our work with Hidden Markov Models that
it is necessary to append an end-of-word character to the words in our training corpus.
We will also add an end-of-word character to the words we are processing in our
SRN experiments. The end-of-word character is necessary to enable the network to
recognize the start of a new word. We will present the words to the network character
by character in one long list. If the network is unable to detect the start of a new

4Actually this maximum difference is smaller thann because the target vector has length one and we
have observed that the output vectors of the network after training have about unit length. The Euclidean
distance between two positive vectors of unit length has a maximal value of

p
2.

80 chapter 3

word then the scores of the characters of a word will be influenced by the characters
of previous words.

We want the scores of the characters of a word to be influenced only by the charac-
ters of the same word. Therefore we have put the end-of-word characters as separators
between words and made the networks reset their internal memory, the context cells,
after processing such an end-of-word character. We have used the name end-of-word
character rather than start-of-word character or word-separator to keep a consistent
usage of terminology with the Hidden Markov Model chapter. Adding these charac-
ters to the data means adapting that task to the learning algorithm. We are not favoring
that approach but in this particular case adding end-of-word characters is the best way
to enable the networks to interpret the data in a reasonable way.

Our goal will be to obtain a Simple Recurrent Network which predicts the next
character of a word given the previous characters. Because this task is nondetermin-
istic and the network is too small to memorize all words, it cannot perform this task
perfectly. We will be satisfied if, by using our measures, we can determine that the net-
work has discovered the difference between words which are valid and words which
are invalid in a certain language. The network will assign scores to all words. We will
accept words which have a score above a certain threshold and reject all other words.
The threshold value will be equal to the smallest word score occurring in the training
set.

The parameters of the network will be initialized with the values mentioned in
(Cleeremans 1993) (page 209): learning rate� between 0.01 and 0.02 and momentum
� between 0.5 and 0.9. The number of cells used in the hidden layer influences the
performance of the network. However, it is hard to find out the best size of the hidden
layer. Cleeremans et al. have chosen a hidden layer size of three because the grammar
they have trained their network with can be represented with a finite state network with
a minimal number of six states. These six states correspond with the vectors which
can appear at the hidden layer. If we assume that these vectors are binary, we need 3
cells to be able to represent 6 patterns (23 > 6 > 22). In our HMM experiments we
have used HMMs with eight internal states. Therefore we will also start with a hidden
layer of three cells.

3.2 Finding network parameters with restricted data
In our first experiment we will try to find out if our network set-up is correct.

We are not interested in a network covering all data yet, so we start with training the
SRN with part of the data: 184 words in orthographic representation starting with
the charactert. We trained the network 10,000 rounds with�=0.02 and� = 0:5
and examined its performance every 1000 rounds. The network was tested with two
word lists: one list consisting of 11 invalid t-words and one list of 16 valid Dutch t-
words that were not present in the training corpus. All words receive a score. A word
is rejected if it receives a score smaller than the smallest score that occurred in the
training set. The target of the network is to reject all 11 negative words and accept all

Experiments with SRNs 81

2 3 1 2 31 2 31 2 31

rejected random words

2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1

9

8

7

6

5

3

2

1

4

number of training rounds

rejected test wordsrejected words

number of

2000 40001000 50003000 6000 7000 8000 9000 10.000

measure1 2 3

Figure 3.8: The performance of an SRN with three hidden cells for orthographically
represented words starting witht using measures 1, 2 and 3. The target of the net-
work was to reject 11 invalid t-words and accept all positive test words. The network
reached the best performance after 1000 rounds of training. From 2000 rounds on-
wards the performance stabilized at a lower level.

16 test words. The behavior of the network is shown in figure 3.8.
The best results were achieved by measure 1 after 1000 rounds. At that point this

measure rejected seven of the 11 negative words and accepted all positive words. The
other two measures also performed best after 1000 rounds. At that point measure 2
rejected six negative words and one positive word and measure 3, which reached the
same performance for all test points, rejected two negative words and one positive
word. The performances of measure 1 and 2 were worse for all other test points: they
accepted equally many positive words while rejecting fewer negative words.

Two observations can be made from the results shown in figure 2. First of all,
the fact that the performance of measure 1 and 2 decreases after longer training is
an example ofOVERTRAINING. This is common behavior for SRNs: when they are
trained too long they adapt themselves better to the training data and their generaliza-
tion capabilities decrease. This will result in a poorer performance on patterns they
have never seen.

We will attempt to avoid the overtraining problem by using a smaller learning rate
� in our future experiments: 0.01 instead of 0.02. By decreasing the learning rate
we will decrease the speed with which the network will approach the optimal set of
weights. Another modification we will make in our future SRN experiments is that

82 chapter 3

number average average
word of scores for factors for scores for factors for
length words measure 2 measure 2 measure 3 measure 3

2 1 4.432*10�4 - 6.460*10�1 -
3 26 7.401*10�4 5.988*10�1 5.532*10�1 1.168
4 81 4.054*10�4 1.826 4.903*10�1 1.128
5 61 1.941*10�4 2.089 4.219*10�1 1.162
6 13 7.663*10�5 2.532 3.537*10�1 1.193
7 2 2.737*10�7 2.800*102 2.694*10�1 1.313

Figure 3.9: The average scores for the orthographically represented training t-words
of similar length (excluding the end-of-word character). The factors indicate average
score for length divided by the average score for length n-1. Apart for the unique two
character word the average score for words with length n+1 is always smaller than the
average for words of length n.

we will test the performance of the network more frequently: every 50 rounds instead
of every 1000 rounds. According to the results we have achieved here the network
performed best after 1000 rounds but it might have been performing better after 550
rounds. By testing the performance of the network more often, we hope to determine
the best performance point more precisely.

The question, of course, is when the training process of the SRN should be stopped.
We will follow the solution the general literature has proposed for this and stop train-
ing when the total sum squared error (see section 1.2 of this chapter) stabilizes. We
will stop training when the total sum squared error at a test point remains within a 1%
distance of the error at the previous test point.

The second observation we can make from figure 3.8 is that measures 2 and 3
perform worse than measure 1. A possible explanation for this fact is that measure
2 and 3 compute word scores by multiplying character scores with each other. The
character scores are values between 0 and 1. Almost all multiplications will make the
word score smaller and this causes long words to have a smaller average score than
short words.

The average word scores are shown in figure 3.9: in almost all cases words with
lengthn receive a smaller average score than words with lengthn+1. This is also the
fact for the negative and the positive test set. The result of this is that a short negative
word might receive a higher score than a long positive word which can result in the
negative word being accepted and the positive word being rejected. We want to avoid
this.

A possible solution to this problem is multiplying the scores with a value that de-
pends on the length of the score. The longer the words are the larger the multiplication
factor should be. The aim of this extra computation is making the word scores less
dependent on the length of the words. We call this computationSCORE CORRECTION

FOR LENGTH.

Experiments with SRNs 83

The question now is what the size of the multiplication factor should be. We chose
as factor the quotient of the word average of length 4 and the word average of length
5 to the power of word length:

new word score = old word score � factorword length (3.7)

length correction factor =
average score word length 4
average score word length 5

(3.8)

It seems reasonable to choose a value connected with the word lengths 4 and 5 because
these are the two most frequently occurring lengths in this set of words. The quotients
of the averages for word lengthn and word lengthn-1 are more or less the same,
so introducing a power function here seems reasonable as well. In this particular
experiment we would have multiplied words with 2:089word length for measure 2 and
with 1:162word length when we are using measure 3. No score correction for length
is necessary for measure 1 because in this measure the word score dependents on one
character score only.

We have repeated this experiment with words starting witht with the improved
set-up:� is 0.01, network performance is tested after every 50 training rounds and
score correction for length. After 350 rounds the error of the network stabilized. After
training the network performed best with measure 3 rejecting seven of the eleven
negative words and accepting all positive words. Measure 2 performed only slightly
worse (rejecting six negative words and one positive word). Measure 1 performed
poorly. It accepted all negative and all positive test words.

The performance of the network is not perfect. However, it seems reasonable to
attempt to apply an SRN with this setup to the complete training data set.

3.3 Orthographic data with random initialization
We have trained SRNs to model the orthographic structure of the set of 5577 Dutch
monosyllabic words described in section 2.2 of chapter 1. The networks have been
trained with the setup which has been used in the previous section: learning rate�

is 0.01, momentum� is 0.5, network performance is tested after every 50 training
rounds and score correction for length. The length correction factors were equal to the
average value of the words with length 4 divided by the average value of the words
with length 5. These were the two most common lengths of the words in the training
data. We have continued training until the change of the total sum squared error of
the network resulting from a 50 rounds training period was smaller than 1%. We
have explained that using an SRN for this experiment requires a separation character
between the words but in order to make the comparison between these experiments
and the bigram experiments of chapter 2 more fair we have provided all words with
both a word start token and a word end token.

The model we are going to derive for the 5577 training words will be larger than
the one for the 184 words starting with t. The size of the hidden layer in an SRN is

84 chapter 3

training total sum accepted rejected
hidden rounds squared measure positive negative
cells needed error strings strings

1 600 (100%) 0 (0%)
4 250 26134 2 599 (99.8%) 33 (5.5%)

3 600 (100%) 50 (8.3%)
1 600 (100%) 6 (1.0%)

10 200 25711 2 600 (100%) 3 (0.5%)
3 600 (100%) 31 (5.2%)
1 600 (100%) 0 (0%)

21 250 24772 2 600 (100%) 5 (0.8%)
3 600 (100%) 6 (1.0%)

Figure 3.10: The performance of three different network configurations for the com-
plete orthographic data set of monosyllabic Dutch words (5577 training words, 600
positive words and 600 negative words). The networks perform well with regards to
accepting the words of the positive test set. However they reject far too few words of
the negative test set.

closely related to the size of the model it can acquire. Therefore we expect that the
number of hidden cells that was sufficient for the 184 words may be insufficient for
the larger data set. But what would be the best size of the hidden layer? One can
argue that thet-word SRN already contained a model for the words except for the first
character (which always was a t), so adding one or two cells to the hidden layer should
be enough to capture a complete model for monosyllabic words. At the other hand,
someone might say that the training data increased with a factor 5577/184=30.3 so the
number of weights should increase with a large factor. We tested both approaches and
an intermediate one and performed additional experiments with SRNs with hidden
layer size of 4, 10 and 21.5

We have noticed that the random initialization of the networks has some influence
on their performance. In order to get a network performance that is reliable and stable,
we performed five parallel experiments with each network configuration. Of these five
experiments we chose the one with the lowest total sum squared error for the training
data and tested its performance on the data set. Our motivation for choosing the per-
formance of the network with the smallest error rather than the average performance
of the networks is that we are interested in the best achievable performance of the
network.

The network with 4 hidden cells in combination with measure 3 performed best,

5The number of four was derived by adding one to three (the number of hidden cells in the previous
experiment). With 21 hidden cells we obtain a network that has approximately 30.3 times as many links as
the t-words network. The value 10 lies somewhere between the other two numbers.

Experiments with SRNs 85

set 1: V + , C V + 152 words
set 2: V + , C V + , V + C , C V + C 1397 words
set 3: the complete training set 5577 words

Figure 3.11: Increasingly complex training data sets. V is a vowel, C is a consonant
and a character type followed by a plus means a sequence of 1 or more occurrences
of that character type. The network will be trained with the first set first. When the
network error stabilizes training will be resumed with the second data set. The training
process will continue with the third set when the training process for the second set
has stabilized.

rejecting 50 of 600 negative words (8.3%) while accepting all 600 positive words (see
figure 3.10). The network tends to accept all words and this is not what we were
aiming at. The performance even becomes worse when the number of hidden cells
is increased. The total sum squared error decreases for a larger number of hidden
cells which indicates that the network performs better on the training set. So a larger
number of hidden cells makes it easier for the network to memorize features of the
training set but it also degrades the network’s generalization capabilities. This fact has
already been recognized in other research using feed-forward networks.

If the SRNs are not able to learn the structure of our orthographic data with random
initialization, we will have to rely on a linguistic initialization for a better performance.

3.4 Orthographic data with linguistic initialization
In the previous chapter we described how a Hidden Markov Model can start learning
from some basic initial linguistic knowledge. Adding initialization knowledge to a
neural network is more difficult. The most obvious way to influence the network
training phase is by forcing network weights to start with values that encode certain
knowledge. However, for a network of reasonable size it is hard to discover the exact
influence of a specific weight on the performance of the network. Therefore it is
difficult to find a reasonable set of initialization weights for a network.

Instead of trying to come up with a set of initialization weights, one can make the
network discover such a set of weights. The idea would be to train the network on
some basic problem and use the weights that are the result of that training phase as
starting weights for a network that attempts to learn a complex problem. This approach
to network learning was first suggested in (Elman 1991). In this work Jeffrey Elman
described how a network that was not able to learn a complex problem was trained
on increasingly more complex parts of the data. This approach was successful: after
training the network was able to reach a satisfactory performance on the task.

We will describe an approach to our problem that is similar to the approach chosen
by Elman. We divide our orthographically represented monosyllabic data in three sets

86 chapter 3

of increasing complexity. The first set contains words without consonants and words
containing one initial consonant and one or more vowels. The second set contains all
words of the first set plus the words that consist of vowels and a one consonant suffix
and consonant prefix that is either empty or contains one consonant. The third set
contains all words (see figure 3.11).

This approach seems implausible from a cognitive point of view since children do
not receive language input with simple words first and complex words later. However
if we look at the language production of children we see that the complexity of the
structure of their utterances increases when they grow up. Young children start with
producing V and CV syllables (V: vowel and C: consonant) before they produce CVC
syllables and progress to more complex syllables. While their language input is not
ordered according to syllable complexity, their language production model seems to
develop from simple syllable output to output of more complex syllables. With the
incremental approach we attempt to make our networks go through the same develop-
ment process.

Our definition of vowels containeda, e, i, o, u, y and the diphthongij . All other
characters including thej without a precedingi were regarded as consonants. We
have considered thech sequence as one consonant because the pronunciation of this
consonant sequence in Dutch is equal to that of theg.

We have trained the network with orthographic data using an SRN with 4 hidden
cells because that one has performed best in the previous experiments. We have used
the same experiment set up as described in the previous section: learning rate� is 0.01,
momentum� is 0.5, network performance is tested after every 50 training rounds and
score correction for length. Training data was of increasing complexity but as test
data we have used the complete positive and negative test data sets for all experiments.
We have used the performance of the network on the different training data sets for
determining the threshold value and the score correction for length values for measure
2 and 3.

We have performed 5 experiments for all data sets. When the performance of an
SRN for data set 1 stabilized, we continued training with data set 2. When the perfor-
mance of that SRN stabilized we continued training with data set 3. The network with
the lowest error rate after training with data set 3 was chosen for the final performance
tests. Its two predecessors were used for the two intermediate performance tests.

This learning procedure was not been successful. The network performed even
worse on the data than the SRNs with random initialization (see 3.12). Measure 3
performs best by accepting all positive words and rejecting 29 negative words (4.8%,
while the SRN with random initialization was able to reject 8.3%). Aiding the network
by structuring the training data does not improve the final performance of the network.
The results that the SRNs have achieved for orthographic data are disappointing. For
the time being we will refrain from testing the performance of the SRNs on phonetic
data. Instead we will try to find out why SRNs are performing much worse on our task
than we had expected.

Discovering the problem 87

training training total sum accepted rejected
data set rounds squared measure positive negative

size needed error strings strings
1 548 (91.3%) 121 (20.2%)

152 300 452 2 104 (17.3%) 489 (81.5%)
3 392 (65.3%) 209 (34.8%)
1 560 (93.3%) 150 (25.0%)

1397 100 4529 2 481 (80.2%) 224 (37.3%)
3 398 (66.3%) 269 (44.8%)
1 599 (99.8%) 0 (0%)

5577 100 25334 2 600 (100%) 27 (4.5%)
3 600 (100%) 29 (4.8%)

Figure 3.12: The performance of the network when trained with orthographic data
of increasing complexity. Network weights were initialized by values obtained from
the experiment with less complexity. The network was tested with the complete pos-
itive test set and the complete negative test set. The errors of the network have been
computed for the training sets which has different sizes for the three parts of the ex-
periment.

4 Discovering the problem

In this section we will explain why the SRNs perform worse on our data than on the
data of Cleeremans et al. First we will explain the major difference between our exper-
iments and the ones of (Cleeremans 1993). Then we will show that complicating the
data used in the experiments by Cleeremans et al. will decrease the performance of the
SRNs. After this we will examine a possible solution for improving the performance
of SRNs on our phonotactic data and present the results of this method.

4.1 The influence of the number of valid successors of a

string
In the experiments described in the previous section the SRNs have been unable to
acquire a good model for the phonotactic structure of Dutch monosyllabic words.
While our target was rejecting all negative test data our SRNs have never been able
to reject more than 8.3%. The performance of the Cleeremans measure was very
disappointing: the measure never rejected more than 1.0% of the negative data. This
performance is a sharp contrast with the performance on grammaticality checking
reported in (Cleeremans 1993) in whichall ungrammatical strings were rejected by
the network. This fact surprised us so we took a closer look at the differences between

88 chapter 3

our experiments and the experiment described in (Cleeremans 1993) chapter 2.
The most obvious difference we were able to find was the maximal number of valid

successors of grammatical substrings.6 In the finite state model for the Reber grammar
used by Cleeremans et al.(figure 3.6), at any point in a string the maximal number of
valid successors is two. This is very important for the format of the network output.
This output consists of a list of values between zero and one which are estimations for
the probability that certain tokens are successors of a specific substring. For example,
if a network trained with Reber grammar data is processing a string, it might present on
its output the pattern [0.0 , 0.53 , 0.00 , 0.38 , 0.01 , 0.02 , 0.00] ((Cleeremans 1993),
page 43). In this list the numbers estimate the probabilities that B, T, S, P, X, V, and
E are the next token in some string. As we can see the two valid successors T (0.53)
and P (0.38) receive an output value that is significantly larger than the output values
of the other tokens. The network does not perfectly predict the correct successor
but it outputs some average pattern that indicates possible successors. This network
behavior was already recognized in (Elman 1990).

In the grammars for Dutch phonotactic structure the maximal number of valid suc-
cessors is much larger than two. For example, according to our training corpus for the
orthographic experiments the number of different tokens which are valid successors
of the strings is 19. Some tokens occur frequently as successors of this character, for
examplec (23%) andt (24%) but others are very infrequent:f, q andw occur less
than 1%. The frequency of the successors will be mirrored by the network output, as
in the example from Cleeremans et al. But the network output contains random noise
and therefore it will be difficult to distinguish between low frequency successors and
invalid successors, likeb andx in this example. For example, figure 3.7 shows net-
work output in whichP receives value 0.1 (ideally this should be 0.0) andS receives
value 0.4 (ideally this should be 0.5). Cleeremans et al. have detected in the output
of their network values of 0.3 where 0.5 was expected. One can understand that in an
environment where signals have an absolute variation of 0.2 the difference between a
signals 0.01 and 0.00 are in practice impossible to detect.

An alternative approach to choosing a threshold value is to take a larger threshold
value in advance in order to reject more non-grammatical strings. This will not bring
us closer to a solution because a larger threshold value will immediately reject the
element with the smallest value of the training set. It might even cause the rejection of
other grammatical elements from the test set and the training set. This is not acceptable
to use: we want our models to accept all training data.

4.2 Can we scale up the Cleeremans et al. experiment?
We decided to test the influence of the number of valid successors by repeating the
experiment described in (Cleeremans 1993) chapter 2. Apart from training an SRN
to decide on the grammatically of strings according to the Reber grammar shown

6The standard term for theaveragenumber of valid successors isPERPLEXITY: PP(W) = 2H(W) where
W is some data set and H(W) is the entropy of this data set (Rosenfeld 1996).

Discovering the problem 89

P
B

T
S

P

T

S

V

X

V

E

T

S

P

VX

X

V
T

S

P

X
B

T
S

P

T

S

X

V

X

V

E

X

T

S

P

V

P

Figure 3.13: Finite state networks representing a Reber grammar with three valid suc-
cessors for every valid substring (left) and one with four valid successors (right). The
valid successors of, for example, substringBT areS, X andV for the three-successor
grammar andS, X, V andT for the four-successor grammar.

in figure 3.6, we trained SRNs with strings from two alternative grammars. The first
alternative grammar was an extension of the Reber grammar such that valid substrings
have three possible successors (see figure 3.13). The second alternative grammar was
an extension of the first and here valid substrings have four possible successors (see
figure 3.13). For all grammars we have generated 3000 training words, 300 positive
test words and 300 random words. Of the 300 random words for the Reber grammar
1 was grammatical and for the other two grammars 5 and 8 strings were valid.

We have trained the SRNs in steps of 50 training rounds using learning rate�=0.01,
momentum�=0.5 and a network configuration that was similar to the one of Cleere-
mans et al. (7 input cells, 3 hidden cells, 3 context cells and 7 output cells). After each
step we checked if the total sum squared error of the network had changed more than
1%. If this was the fact we continued training otherwise training was stopped. Only
one experiment was performed for each grammar. As in the previous experiments we
will reject words when their score is below the lowest score of the training data.

As we can see in figure 3.14 the performance of the SRN decreases when the
complexity of the grammar increases. The SRN accepted all valid words for all gram-
mars but the rejection rate of the random data decreased when the number of valid
successors increased: for the grammar with two valid successors (one valid string in
the random data) 100% of the invalid random strings were rejected, for three valid
successors (5 valid strings) this dropped to 92.2% and for four valid successors (8

90 chapter 3

maximum training total sum accepted rejected
number of rounds squared measure positive random
successors needed error strings strings

1 300 (100%) 299 (99.7%)
2 150 9079 2 300 (100%) 296 (98.7%)

3 300 (100%) 299 (99.7%)
1 300 (100%) 272 (90.7%)

3 250 12665 2 300 (100%) 254 (84.7%)
3 300 (100%) 241 (80.3%)
1 300 (100%) 240 (80.0%)

4 100 13944 2 298 (99.3%) 172 (57.3%)
3 299 (99.7%) 119 (39.7%)

Figure 3.14: The performance of the SRN for Reber grammars of increasing complex-
ity. Some random strings are valid: 1 for the first grammar, 5 for the second grammar
and 8 for the most complex grammar. The actual rejection percentages for measure 1
for the invalid data are 100.0% for the first grammar, 92.2% for the second grammar
and 82.2% for the third grammar. The performance of the network deteriorates when
the number of valid successors increases.

valid strings) the rejection rate was 82.1%. We can conclude that the number of
valid successors influences the difficulty of the problem. (Cleeremans et al. 1989),
(Servan-Schreiber et al. 1991) and (Cleeremans 1993), showed that SRNs are capable
of acquiring finite state grammars in which a grammatical substring has two valid suc-
cessors. We have showed that the performance of the SRNs will deteriorate rapidly
when the maximal number of successors increases.

4.3 A possible solution: IT-SRNs
The output patterns of the SRNs after training shown in (Cleeremans 1993) page 43
show that the sum of the output signals is approximately equal to 1. One of the patterns
shown is the output pattern for inputB in an SRN modeling the Reber grammar: [0.0,
0.53, 0.00, 0.38, 0.01, 0.02, 0.00] (sum is 0.94). We have observed the same behavior
from our SRNs. This behavior can be explained by the fact that the patterns we use as
required output patterns during training consist of a single 1 and zeroes for the other
values. For every input pattern there are usually different required output patterns in
the training data and the output pattern of a network after training will be an average
of all possible output patterns for that particular input. The values of each pattern sum
up to one and therefore the values of an exact average will also sum up to one.

In an earlier section we have argued that it is difficult to distinguish a small output
value (caused by an infrequent successor) from network output noise. This is the

Discovering the problem 91

cause of poor performance of the SRNs in the previous experiments. We would like
to increase the difference between the output values for infrequent successors and the
network noise. We cannot do much about the network noise but we can try to increase
the output values for the successors.

We will change the required SRN output patterns during training in such a way
that they will satisfy the following requirement:

INCREASEDTHRESHOLDREQUIREMENT

If SRN training data that has been encoded by using the localist mapping
allows token Y as the successor of token X then the required value of the
output cell which is 1 for token Y should be equal to or larger than some
threshold value during training whenever X is presented as input.

We will call SRNs which satisfy this requirement INCREASEDTHRESHOLDSRNS or
in short IT-SRNs. Let us look at how this requirement influences the training process.
We will examine a network trained to model the standard Reber grammar with two
valid successors (figure 3.6) and look at the valid successors for the start characterB.

B can be followed byT or P. In the output pattern of the networkT is represented
by the second value andP is represented by the sixth value. Therefore aB at the input
of a standard SRN should require [0.0 , 1.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0] on the output
when its successor isT and [0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 1.0 , 0.0] when its successor
is P. However, in a IT-SRN the output values corresponding with all valid successors
of a pattern should at least be equal to some threshold value. If we choose 0.5 as
threshold value and presentB as input the IT-SRN should require [0.0 , 1.0 , 0.0 , 0.0
, 0.0 , 0.5 , 0.0] as output when the successor isT and [0.0 , 0.5 , 0.0 , 0.0 , 0.0 , 1.0 ,
0.0] when the successor isP.

By making a network satisfy this increased threshold requirement it should be-
come easier to recognize the difference between low frequency output values and
noise. All valid successors of a character will be represented in every output pat-
tern of this character during training. The average output values of the network will
increase and so will the values assigned by the network to the training and the test data.
We assume that IT-SRNs will be able to reject more negative test data than standard
SRNs. In the next section we will test this assumption.

4.4 Experiments with IT-SRNs
We have trained the IT-SRNs to model the orthographic data first with random initial-
ization and after that with linguistic initialization. Data and experiment set up were
equal to the experiments described in section 3.3 and 3.4: learning rate� is 0.01,
momentum� is 0.5, network performance is tested after every 50 training rounds
and score correction for length. We have chosen threshold value 0.5 for valid suc-
cessors and used IT-SRNs with four hidden cells because SRNs with 4 hidden cells
have achieved the best result in the experiments described in section 3.3. The training
data consisted of 5577 monosyllabic Dutch words and tests were performed with 600

92 chapter 3

training total sum accepted rejected
initialization rounds squared measure test random

needed error strings strings
1 600 (100%) 15 (2.5%)

random 200 163496 2 600 (100%) 26 (4.3%)
3 600 (100%) 20 (3.3%)

linguistic: 1 11 (1.8%) 593 (98.8%)
157 training 800 1631 2 11 (1.8%) 594 (99.0%)

strings 3 242 (40.3%) 410 (68.3%)
linguistic: 1 468 (78.0%) 247 (41.2%)

1397 training 300 26587 2 434 (72.3%) 409 (68.2%)
strings 3 600 (100%) 6 (1.0%)

linguistic: 1 600 (100%) 0 (0%)
5577 training 250 164042 2 600 (100%) 2 (0.3%)

strings 3 600 (100%) 21 (3.5%)

Figure 3.15: The performance of the 4 hidden cell IT-SRN with random initialization
and IT-SRNs with linguistic initialization for the orthographic data. The total sum
squared errors are smaller for the first two linguistic experiments because they were
computed for the small training sets. The IT-SRNs performed best with random ini-
tialization for measure 2 but it only rejected 4.3% of the negative test data. Neither
randomly initialized nor linguistically initialized IT-SRNs were able to reject more
negative words than randomly initialized SRNs.

test words which were not present in the training data and 600 ungrammatical strings.
In the experiments with linguistic initialization the training data was divided in three
groups of increasing complexity just like in section 3.4. In both experiment groups 5
parallel experiments were performed and the IT-SRN which achieved the lowest error
for the training data was used for the tests.

The results of the two experiments can be found in figure 3.15. The error of the
network has become much larger than in the SRN experiments because the IT-SRN
output patterns during training are different from the output patterns during testing.
IT-SRNs do not perform better on this data than SRNs. The randomly initialized IT-
SRN has achieved the best performance with measure 2 accepting all positive test data
but rejecting only 26 negative strings (4.3% while the randomly initialized SRNs have
achieved 8.3%). The linguistically initialized IT-SRN has achieved the best perfor-
mance with measure 3 accepting all positive test data but rejecting only 21 negative
strings (3.5% while the linguistically initialized SRNs have achieved 4.8%).

The performance difference between IT-SRNs and SRN can only be made visible
if we change the threshold used for deciding if a string is grammatical or not. We have
defined this threshold value as being equal to the lowest score assigned to a word in

Concluding remarks 93

100% 99% 95% 90%
network measure positive negative pos. neg. pos. neg. pos. neg.

1 0 0 5 14 28 105 61 208
SRN 2 1 33 12 207 31 325 53 395

3 0 50 7 270 25 399 65 469
1 0 15 12 306 35 371 52 438

IT-SRN 2 0 26 11 316 32 405 58 449
3 0 20 3 56 24 110 53 156

Figure 3.16: Number of words that were rejected in the orthographic positive and
negative test data in the randomly initialized SRN and IT-SRN when the acceptance
threshold is increased and only part on the training data will be accepted. The per-
centage indicates the amount of training data that will be accepted. Now the network
is able to reject 78.2% of the negative words (SRN, measure 3, 90% column) but the
price is high: 10.8% of the positive test data and 10.0% of the training data will be
rejected as well.

the training data. In that way we have made sure that all words in the training data
will be accepted. If we allow some words of the training data to be rejected then we
can raise the value of the threshold. The result of this has been made visible in figure
3.16.

When we allow 1% of the training data being rejected, the IT-SRN will reject at
best 316 words of the negative test data (52.7%, measure 2). The SRN will reject
at best 270 words of the training data (45.0%, measure 3) when we apply the same
constraint. Increasing the acceptance threshold seems to be the only way to improve
the performance of the SRNs and the IT-SRNs on the negative data. However, it is
not a good solution. The best performance that we have achieved by increasing the
acceptance threshold was rejection of 469 words of the negative test data (78.2%, SRN
with measure 3) but then we also had to reject 10% of the training data and 10.8% of
the positive test data.

Our conclusion is that neither IT-SRNs nor an increasement of the acceptance
threshold will produce acceptable behavior of the networks on our learning task.

5 Concluding remarks

In this chapter we have described our attempts to solve the central problem in this the-
sis, automatic acquisition of the phonotactic structure of Dutch monosyllabic words,
by using connectionist techniques, in particular the Simple Recurrent Network (SRN)
developed in (Elman 1990). We compared two of our word evaluation measures with
a word evaluation measure used in (Cleeremans 1993), (Cleeremans et al. 1989) and

94 chapter 3

(Servan-Schreiber et al. 1991). In the experiments of Cleeremans et al. the latter mea-
sure reached a 100% performance in a grammaticality checking task using a small
artificial grammar (the Reber grammar, see figure 3.6). Our experiments resulted in
SRNs which performed well with respect to accepting the positive orthographic test
data. However, they performed poorly in rejecting negative orthographic data: they
never rejected more than 8.3% of our 600 negative strings. In these experiments the
measure used by Cleeremans et al. came out as the worst of the three measures used.
It never rejected more than 1.0% of the negative data.

We have shown that the reason for the difference in performance lies in the com-
plexity of the grammars that we are teaching the networks. Cleeremans et al. have
used a grammar in which for every grammatical substring the maximal number of
valid successors never is larger than two. In the grammars we use this number is
about 10 times as large. Therefore the relevant output values of the network become
smaller and it is more difficult to distinguish them from random network noise. We
have shown that even a small increase of the complexity of the grammar that models
the training data will lead to a deterioration of the behavior of SRN models trained on
this data. Increasing the maximal number of valid successors in the Reber grammar
to three resulted in the SRN being unable to reach perfect performance in a grammat-
icality checking task.

We have attempted to solve this problem by changing the required output patterns
during training. We have forced the network to use information about all valid suc-
cessors of a character instead of just learning the relation between two characters at
each training step. However the resulting modified SRN, Increased Threshold SRN
(IT-SRN), did not perform better than the standard SRN. At best it rejected only 4.3%
of the negative test data.

It seems that the only way to make the SRNs and the IT-SRNs reject more invalid
data is increasing the acceptance threshold value and thus allowing that a part of the
training data will be rejected. But even when we allow 10% of the training data to be
rejected we cannot make the networks reject more than 78.2% of the invalid data This
is a low percentage compared with the performance of the HMMs. Furthermore this
solution is not acceptable to us: we want our models to accept all training data.

We conclude from the experiments described in this chapter that Simple Recurrent
Networks do not seem to be able to reach a good performance on our learning task.7

7Some alternative approaches with SRNs to this learning task will be discussed in section 2 of chapter
5.

Chapter 4

Rule-based Learning

Theories in theoretical linguistics usually consist of sets of discrete non-statistical
rules. However, the models that we have developed in the previous chapters have a
different format. It would be interesting to obtain phonotactic models that consist of
rules. We could obtain such models by converting our HMMs and our SRN mod-
els to sets of rules. However, there are also rule-based learning methods available
which generate rule models. Given linguists’s preference for rule-based description,
we might expect these methods to perform better than the other learning methods we
have applied to our problem, learning the structure of monosyllabic words. Therefore
we would like to apply rule-based learning methods to this problem and compare their
performance with the performances we have obtained in the previous chapters.

In this chapter we will describe a rule-based approach to learning the phonotactic
structure of monosyllabic words. In the first section we will sketch the fundamentals
of rule-based learning and point out some of its problems. The second section will
outline the learning method we have chosen: Inductive Logic Programming (ILP).
The learning experiments that we have performed with ILP will be presented in the
third section. In the fourth section we will describe our work with more elaborate
rule-based models which might perform better than the models used in section three.
The final section contains some concluding remarks.

1 Introduction to Rule-based Learning

In this section we will present some basic learning theory and evaluate a few rule-
based learning algorithms. We will start with the influence of positive and negative
examples on the learning process. After this we will explain what kind of output we

95

96 chapter 4

expect from the learning method. We will conclude the section by presenting some
rule-based learning methods and discussing their problems.

1.1 Positive versus negative examples
We want to use a symbolic or rule-based learning technique for acquiring a rule model
for the phonotactic structure of monosyllabic words. This means that we are looking
for a learning method that can produce a rule-based model that can accept or reject
strings for a certain language. The model should accept a string when it is a possible
word in the language and it should reject it when it is a sequence of characters that
cannot occur as a word in the language.

Theory about learning methods that can produce language models like described
above is already available. One of the main papers in learning theory was written
by E. Mark Gold in the sixties (Gold 1967). In the paper Gold uses a division of
languages in different mathematical classes to characterize the type of information
that a hypothetical learner requires to learn them. He proves that no infinite language
can be learned by using positive examples only. This means that learners cannot be
guaranteed to acquire a perfect model of an infinite language without being presented
with examples of strings or sentences that do not appear in the language.

The research result of Gold is important for the work we will present in this chap-
ter. In our earlier experiments we have presented the learning algorithms only with
positive examples. We want to be able to compare the results of this chapter with the
results of the previous chapters in a fair way. This prevents us from using negative
examples in the remaining experiments. We want our language models to generate as
few errors as possible and therefore it is important to find out if the language we are
trying to learn is finite.

In chapter one we have restricted our dataset to monosyllabic words. The longest
word in the Dutch orthographic data set contains nine characters. We can imagine that
it is possible to construct a word of ten or eleven characters that could qualify to be a
monosyllabic Dutch word. However we cannot imagine that it is possible to construct
monosyllabic Dutch word of twenty characters or longer.1 The class of monosyllabic
words will be finite for all human languages. Thus it should be possible to acquire
a good monosyllabic structure model by using positive examples only. This would
not have worked for multisyllabic words since in languages like Dutch and German
there does not seem to be a maximum length for words, particularly not for compound
words.

1In some unusual contexts strings with an arbitrary number of repetitions of the same character, like
aaaahandbrrrr , may qualify as a monosyllabic word. The models which we will use will be able to learn
these by adopting the following strategy: a sequence of two or more repeated characters indicates that the
repetition in that context is allowed for any number of characters.

Introduction to Rule-based Learning 97

1.2 The expected output of the learning method
In his landmark paper Gold introduces the conceptlearning in the limit. Learners
are presented with positive and/or negative examples of a certain domain. They have
a partial model of this domain and adjusts this model for every example that they
receive. At some moment they will have constructed a perfect model of the domain
and future examples will not cause a change of the model. If the learners manage to
construct such a perfect model at some point of time then they are said to have learned
the training data in the limit.

The learner model put forward by Gold makes no assumptions about the format
of the domain model that has to be learned. In case of a finite domain the model may
well consist of rules which state that some X is in the domain if and only if X was
presented as a positive example. This is the most simple domain model structure. A
model structure like that will not perform well in the experiments we are planning to
do because it is unable to generalize. In the previous chapters we have presented the
learning methods with only a part of the positive data. After this we have tested the
domain models with the remaining unseen positive data and some negative data. A
simple domain model like described above would reject all the unseen positive test
data. This is unacceptable.

In order to avoid this problem the domain model must be able to generalize. Based
on positive data only it must be able to decide that the unseen positive test data is cor-
rect. In order for the model to be able to do that, we will have to put generalization
knowledge in the learning model. The question is what kind of generalization knowl-
edge the model needs to contain. If the knowledge is too restrictive the domain model
will reject too much positive test data and if it is too extensive the domain model will
accept negative data as well. We will return to this question in section 2.

In the previous two chapters we have worked with Hidden Markov Models and
neural network models that represent the structure of monosyllabic words. A disad-
vantage of these two groups of models is that they hide knowledge in sets of numbers.
It is hard to explain the behavior of these models in a way that makes much sense to
humans. We believe that the behavior of the models generated by the symbolic learn-
ing method should be comprehensible to humans - at least to linguists - in a sensible
way. An advantage of this is that explainable models allow finding the cause of possi-
ble errors in the model more easily so we will be able to correct them. The behavior of
a model consisting of rules can be explained in a sensible way and therefore we want
the models generated by the symbolic learning method to consist of rules.

1.3 Available symbolic learning methods
There are many symbolic or rule-based learning methods available (Winston 1992). In
this chapter we will concentrate on two groups of symbolic learning methods which
are currently the most popular ones: lazy learning and decision trees. Learning meth-
ods that fall in these classes are generally used for classification tasks (Van den Bosch
et al. 1996b).

98 chapter 4

��
��
��
��

��
��
��
��

��
��
��
��

����
has_hair?

stings?

mammal is_small?

can_fly?

reptilebirdbug bird

yes

yes

yes yes

no

no

nono

Figure 4.1: An example decision tree for animal classification. A number of questions
have to be answered in order to come to a classification. This tree would classify a
mosquito as a bug because it does not have hair, is small and stings.

Lazy learning methods or memory-based methods learn the structure of a domain
by storing learning examples with their classification (Van den Bosch et al. 1996b).
The domain model that results from a lazy learning process is able to generalize by
using a predefined distance function. When the domain model is required to give the
classification for an unseen domain element then it will use the distance function for
finding the stored example that is closest to this unseen example.

The following is a simple application of a lazy learning method to animal classi-
fication. Suppose we know the classification of the two animals lion and mosquito.
A lion has been classified as a mammal and a mosquito has been classified as a bug.
This information is presented as information to the learning algorithm together with
features representing the two animals, for example [big, hashair , eatsanimals] for
lion and [small, canfly , stings] for mosquito. The algorithm will compare the fea-
tures for new animals and classify them either as mammal or bug depending on how
many features the new animals have in common with the stored animals. For example,
a bat with the features [small , canfly , hashair] would have been classified as a bug
because it has two features in common with mosquito and only one with lion.2

Decision tree methods like, for example, C4.5 build a tree describing the structure
of the domain (Quinlan 1993). The nodes of the tree consist of questions regarding
the values of the elements of the domain. When one wants to know the classification
of a certain domain example one will start at the root of the tree and answer the first
question with regard to the example. The answer to the question will lead to another
node with another question. In this way one will traverse the tree until a leaf node is
reached. This leaf node contains the classification of the example.

A decision tree method applied to our animal classification example could result
in a tree which contained only one question. There are several alternative questions
possible and the method has too few learning examples to make a good choice. A

2In our example the classification algorithm assign the same weight to all features but this does not
necessarily have to be so.

Inductive Logic Programming 99

possible question discriminating the two learning examples could have beenDoes it
have hair?. The answeryeswould result in a mammal classification because a lion
has hair and the answerno would result in a bug classification. This question would
classify bat as a mammal because it has hair.

Both decision tree methods and lazy learning methods have some problems when
applied to our learning problem with the constraints we have put on the output from
the learning method. First of all these learning methods require learning examples
of all possible qualification classes. Our research problem contains two qualification
classes: valid strings and invalid strings. However we want to use the same learning
input as used in our previous experiments and this means that we want to train the
symbolic learning method by using positive examples only. Neither decision tree
methods nor lazy learning were designed for training with positive examples only.3

A second disadvantage of these two symbolic learning methods is that they do not
generate rules. Instead they hide knowledge in a big database of examples combined
with a distance function (lazy learning) or a tree with decision nodes (decision trees).
There are ways of converting the behavior of decision tree models to comprehensible
rules but for the behavior of lazy learning models this will be very difficult. Still we
would like to keep our constraint of generating a model that consists of rules and use
that to mark these two model structures as a disadvantage.

These two disadvantages make the use of either lazy learning or decision tree
learning unacceptable to us. Other rule-based methods suffer from similar prob-
lems. Version Spaces require negative examples in order to derive reasonable models
((Winston 1992), chapter 20). C4.5 is a decision tree method and thus it requires neg-
ative examples as well (Quinlan 1993). Explanation-Based Learning is able to learn
from positive data only by relying on background knowledge (Mitchell et al. 1986).
The learning method that we have chosen uses the same approach. We will describe
this learning strategy in the next section.

2 Inductive Logic Programming

In this section we will describe the symbolic learning method Inductive Logic Pro-
gramming (ILP). The description has been divided in four parts: a general outline,
a part about the background knowledge concept, a part on how ILP can be used in
language experiments and a part which relates our models to grammar theory.

2.1 Introduction to Inductive Logic Programming
Inductive Logic Programming (ILP) is a logic programming approach to machine
learning (Muggleton 1992). The term induction in the name is a reasoning technique

3See the section 1.1 of this chapter and section 1.3 of chapter 1 for a motivation about using only positive
examples

100 chapter 4

which can be seen as the reverse of deduction. To explain inductive reasoning we first
look at a famous example of deduction:

P1 All men are mortal.
P2 Socrates is a man.
DC Socrates is mortal.

This example contains two premises P1 and P2. By using these two premises we can
derive by deduction that DC must be true. Thus deduction is used to draw conclusions
from a theory.

In inductive reasoning we start with facts and attempt to derive a theory from facts.
An example of this is the following derivation:

P1 All men are mortal.
P2 Socrates is mortal.
IC Socrates is a man.

Again we have two premises P1 and P2. By using these two we can derive by induc-
tion that IC could be true. An inductive derivation like this one can only be made if
the inductive conclusion (IC) and one premise (here P1) can be used for deductively
deriving the other premise (here P2). The inductive derivation is not logically sound:
that is, the result of the derivation might be wrong. Yet inferences like these are made
by humans in everyday life all the time and they are exactly what we are looking for.
Inferences like these give us a method for deriving a theory from a set of facts.

ILP theory makes a distinction between three types of knowledge namely back-
ground knowledge, observations and hypotheses (Muggleton 1992). Background knowl-
edge is initial knowledge that learners have before they start learning. Observations
are the input patterns for the learning method with their classifications. The hypothe-
ses are the rules that ILP derives from the training data. The relation between these
three knowledge types can be described with two rules:

DR:B ^H ` O Example: B All men are mortal.
H Socrates is a man.
O Socrates is mortal.

IR: B ^O ; H Example: B All men are mortal.
O Socrates is mortal.
H Socrates is a man.

These rules contain three symbols:^ stands forand, ` stands forleads deductively to
and; stands forleads inductively to. DR represents the deductive rule which states
that the observations (O) are derivable from the background knowledge (B) and the
hypotheses (H) (Muggleton 1992). The inductive rule IR represents the inductive step
that we want to make: derive hypotheses from the background knowledge and the
observations.

Inductive Logic Programming 101

S S5 6

S7

clan...

7

s

aa

b7,s

7,6

a5,6

a5,

Figure 4.2: A schematic representation of the addition of a character after a valid word
in an HMM. The characters is appended to wordclan and as a result of this the path
from states5 via states7 to s6 will be used during processing. The score assigned by
the HMM to the wordclanswill be equal to the score assigned toclanmultiplied with
the factor(a5;7 � b7;s � a7;6)=a5;6.

The inductive rule IR can be used for deriving many different hypotheses sets and
the most difficult problem in ILP is to constrain the number of hypotheses sets. Ini-
tially only one restriction will be placed on the hypotheses sets: they must satisfy the
deductive rule. In our inductive Socrates example the factAll men are mortalwould
be background knowledge andSocrates is mortalwould be the observation. Then
Socrates is a manwould be a valid hypothesis because we can derive the observation
from this hypothesis and the background knowledge. The factSocrates is a philoso-
pher cannot be used in combination with the background knowledge to derive the
observation and therefore this fact is not a valid hypothesis.

In our Socrates example we could also have generated the hypothesisAll things
named Socrates are man. This is an example of an alternative valid hypothesis. The
facts in the background knowledge and the observations are usually larger in number
than in this toy example. The number of valid hypotheses will grow rapidly with any
fact we add to the background knowledge and the observations. (Muggleton 1992)
suggests four ways for reducing the number of hypotheses: restricting the observa-
tions to ground literals,4 limiting the number of the hypotheses to one, restricting the
hypotheses to the most general hypotheses relative to the background knowledge and
choosing the hypotheses which can compress the observations as much as possible. In
section 2.3 we will discuss these reduction ways and outline which one we will use.

If we want to apply ILP to the problem of acquiring the structure of monosyllabic
words then we will have to make two decisions. First we have to decide what we
should use as background knowledge. Second we should decide how we are going to
use the induction rule for generating monosyllabic word models in practice. We will
deal with these two topics in the next two sections.

4A ground literal is a logical term without variables. For example the termman(Socrates)is a ground
literal butman(x)!mortal(x) is not because it contains a variable (x).

102 chapter 4

2.2 The background knowledge and the hypotheses
Before we are going to deal with the format and contents of the background knowl-
edge and the hypotheses that are appropriate for our problem we first have to note
that there is an important constraint on these bodies of knowledge. We will compare
the results of ILP with the results of the previous chapters in which Hidden Markov
Models (HMMs) and Simple Recurrent Networks (SRNs) were used. If we want this
comparison to be fair then we should take care that no learning method receives more
learning input than another. This imposes a constraint on ILP’s background knowl-
edge and the format of the hypotheses. There is a danger that we use background
knowledge that give ILP an advantage over the other two algorithms. This should be
avoided.

In our application of ILP to the acquisition of monosyllabic word models the back-
ground knowledge and the hypotheses will contain explicit and implicit knowledge
about the structure of syllables. In order to make sure that this knowledge does not
give ILP an advantage over the other two learning algorithms we will show how this
knowledge is implicitly used in HMMs. This explanation will require some basic
HMM knowledge of the reader. You can look back at chapter 2.1 if necessary.

In our ILP models we want to use rules which add a character to a valid word and
thus produce another valid word. An example of such a rule is:When ans is added
behind a valid word that ends inn the resulting word will be valid as well. Rules of
this format are implicitly used in HMMs:

Suppose an HMM is able to process the wordsclan andclansand accepts both
words. If we ignore all but the most probable path, processingclan involves using
six states because it contains four visible characters, a begin-of-word character and an
end-of-word character. We can label the states in this path with the numbers one to
six. The wordclanscan be processed with the same path with one extra state inserted
between state five and state six. This extra state will take care of producing the suffix
sand we will call it state seven (see figure 4.2).

The HMM will assign a different probability to the two words. We can encode the
difference with the formula:

P (clans) = P (clan) � (a5;7 � b7;s � a7;6)=a5;6

in which P(W) is the score assigned by the HMM to the word W,ai;j is the probabil-
ity of moving from statei to statej, andbi;c is the probability that statei produces
characterc. The link from state five to six (a5;6) has been replaced by the links from
state five to seven (a5;7) and state seven to six (a7;6). Furthermore the probability of
producing characters in state seven has to be taken into account (b7;s). Figure 4.2
contains a schematic representation of the change in the HMM processing phase. The
probabilities of the words may be different but the HMM accepts both words. This
could have been explained if we knew that the factor(a5;7 � b7;s � a7;6)=a5;6 is equal
to one. We don’t know if that is true but we will assume that it is true.5

5Here we have assumed that we have a perfect HMM; one that assigns the score one to all valid strings

Inductive Logic Programming 103

1w2 wn-1 wn...w1w2 wn-1 wn...

w

w

1 ...w2 wn-1 w2 wn-1 wnwn w1...

Figure 4.3: A tree representation of the background knowledge suffix rule (left tree)
and the background knowledge prefix rule (right tree). Word W=w1w2:::wn�1wn is a
valid word if its final characterwn is a valid suffix for words ending in its penultimate
characterwn�1 and if w1w2:::wn�1 is a valid word. Word W is a valid word if its
initial characterw1 is a valid prefix for words starting with its second characterw2

and ifw2:::wn�1wnis a valid word.

If we assume that the factor is equal to one then we can add s7 to any path for
words that end inn and create new words that end inns. So we can translate the
assumption to a rule that states that from every valid word which ends inn one can
make another valid word by adding a suffixs to the word. Our motivation for choosing
a context string of length one is that we have used context strings of the same length
in the HMM chapter. The final version of the assumption is exactly the rule which we
started with:When ans is added behind a valid word that ends inn the resulting word
will be valid as well.

Now we have derived a rule which is being used implicitly in the bigrams HMMs
we have worked with in chapter 2. This means that we can use the rule in the ILP
model. The rule could be used as a hypothesis. However we want our hypotheses to
be as simple as possible and therefore we will split the rule in a background knowledge
part and a hypothesis part. The background knowledge part has the following format:

BACKGROUND KNOWLEDGE SUFFIX RULE

Suppose there exists a word W=w1:::wn�1wn (w1...wn aren characters)
and a suffix hypothesis SH(wn�1,wn).
In that case the fact that W is a valid word will imply thatw1:::wn�1 is a
valid word and vice versa.

Now the SUFFIX HYPOTHESIS for this specific case would be defined as SH(n,s)
which states that ans is a valid suffix for words ending inn. This hypothesis format
regards a character in a context containing one neighboring character. This implies
that we are working with character bigrams just like in our HMM experiments.

The convention in the ILP literature is to represent knowledge in Prolog-like rules.
These rules have the format A B,C which means that A is true when both B and
C are true. The capital characters can be replaced by predicates like abcd(X) which

and the score zero to all invalid strings. In practice there will be some deviation in the string score. The
factor (a5;7 � b7;s � a7;6)=a5;6 will nearly always be smaller than one but this problem was fixed in our
HMMs by score correction for length (section 3.4 of chapter 2) so that it does not affect our assumption.

104 chapter 4

stands for the propositionX has property abcd. We will include a similar notation in
our definitions of background knowledge. The background knowledge suffix rule can
be represented with two rules: valid(w1:::wn�1) valid(w1:::wn�1wn),SH(wn�1,wn)
and valid(w1:::wn�1wn) valid(w1:::wn�1),SH(wn�1,wn).

Now that we have derived one background rule we can build other background
rules in a similar way. We need a rule which adds a character to the front of a word,
for example: a valid word that starts withp can be converted into another valid word if
we put ans in front of it. Again we will split this rule into a general part for the back-
ground knowledge and a specific part which will be a hypothesis. The background
part of this prefix rule has the following format:

BACKGROUND KNOWLEDGE PREFIX RULE

Suppose there exists a word W=w1w2:::wn and a prefix hypothesis PH(w1,w2).
In that case the fact that W is a valid word implies thatw2:::wn is a valid
word and vice versa.
Rule notation: valid(w2:::wn) valid(w1w2:::wn),PH(w1,w2)

valid(w1w2:::wn) valid(w2:::wn),PH(w1,w2)

And the PREFIX HYPOTHESISfor this specific case can be specified as PH(s,p) which
states that ans is a valid prefix for words starting withp.

The two rules can be used for explaining why complex words are valid based on
the fact that basic words are valid. We need a rule that specifies what specific basic
words will be valid. This rule will be very simple: a word will be valid when it has
been defined as a valid basic word. Again we will divide this rule in two parts: a
background knowledge part and a hypothesis part. The definition of the background
part is:

BACKGROUND KNOWLEDGE BASIC WORD RULE

The existence of a basic word hypothesis BWH(W) implies that word W
is a valid word.
Rule notation: valid(W) BWH(W).

And an example of a BASIC WORD HYPOTHESIS is BWH(lynx) which states that
lynx is a valid word.

This concludes the derivation of the background knowledge and the format of the
hypotheses. By starting from an HMM that processed a word we have derived the
format of three hypotheses and three background knowledge rules. In the background
knowledge we have defined that words can be regarded as a nucleus to which prefix
characters and suffix characters can be appended. This knowledge is implicitly avail-
able in HMMs so by using it in or ILP rules we have not supplied the ILP algorithm
with knowledge that was not available to the learning algorithms used in the previous
chapters.

Inductive Logic Programming 105

2.3 Deriving hypotheses
Now that we have defined the background knowledge and the format of the hypotheses
we should explain how an ILP algorithm can derive the hypotheses from the learning
input. This means that we must make explicit how the inductive rule IR defined in
section 2.1 will be realized in practice. As we have explained there are many sets
of hypotheses that can be derived by this rule. The most important problem in using
this inductive rule is cutting down the number of acceptable hypothesis sets without
removing the interesting ones.

We will derive three inference rules based on the background knowledge format
we have described in the previous section. This derivation will be based on an exam-
ple. We will try to use ILP for generating a model which describes the three words
clan, clansand lans. These will be our observations and the background knowledge
will be as described in section 2.2. Our task is to derive suffix hypotheses, prefix
hypotheses and basic word hypotheses for these observations.

In this particular example the words can be explained by each other in combination
with appropriate suffix hypotheses and prefix hypotheses. If this had not been the case
we would have been forced to define the validity of the three words with three basic
word hypotheses without being able to add any other hypotheses. We will consider
the recognition of basic word hypotheses as the initial step of the ILP algorithm. This
initial step can be made explicit with the following inference rule:

BASIC WORD INFERENCE RULE

If word W is a valid word then we will derive the basic word hypothesis
BWH(W). All observed words are valid words.
Rule notation: valid(W)

BWH(W)

In our example this inference rule will produce the hypotheses BWH(clan), BWH(clans)
and BWH(lans). These hypotheses can be used in combination with the background
knowledge basic word rule to prove that the three words are valid. By using the basic
word inference rule we have derived a model that explains the learning input data.
This model is an example of the simple domain model we have discussed in section
1.2. The problem of that model was that it will reject all unseen data because it is
unable to generalize. This means that we should restructure the model to enable to
generalize. Two other inference rules will take care of that.

We can prove thatclans is a valid word by using the basic word hypothesis
BWH(clans) and the background knowledge basic word rule. The fact that this word
is valid could also be explained by the fact thatlans is valid in combination with the
background prefix rule and a prefix hypothesis PH(c,l). The latter hypothesis does not
exist in our present model and we want to be able to derive it. The hypothesis is not
necessary for explaining the valid word but it will add generalization possibilities to
the model. It is very important that the final model is able to generalize and therefore
we will include in it all prefix hypotheses and all suffix hypotheses which can be used
for explaining valid words.

106 chapter 4

Prefix hypotheses can be derived with the following inference rule:

PREFIX HYPOTHESIS INFERENCE RULE

If W=w1w2:::wn is a valid word andw2:::wn is a valid word as well then
we will derive the prefix hypothesis PH(w1,w2).
Rule notation: valid(w1w2:::wn),valid(w2:::wn)

PH(w1,w2),valid(w2:::wn)

Since bothclansandlansare valid words we can use this inference rule to derive the
prefix hypothesis PH(c,l). This hypothesis can in turn be used in combination with
the background knowledge prefix rule and the fact thatclan is valid to prove thatlan
is valid. The latter word was not among the observations so this is an example of
the generalization capabilities of an extra prefix hypothesis. Note that the background
knowledge prefix rule can be used in two directions: with PH(c,l) and BWH(lan) we
can prove thatclan is valid and with PH(c,l) and BWH(clan) we can prove thatlan is
valid.

The suffix hypothesis inference rule has a similar format as the prefix hypothesis
inference rule:

SUFFIX HYPOTHESIS INFERENCE RULE

If W=w1:::wn�1wn is a valid word andw1:::wn�1 is a valid word as well
then we will derive the suffix hypothesis SH(wn�1,wn).
Rule notation: valid(w1:::wn�1wn),valid(w1:::wn�1)

SH(wn�1,wn),valid(w1:::wn�1)

In our example model we can use this suffix hypothesis inference rule with either
of the valid word pairsclan and clans or lan and lans for deriving the suffix hy-
pothesis SH(n,s). After having removed redundant basic word hypotheses, our final
model for the observationsclan, clansandlanswill consist of the background knowl-
edge defined in the previous section in combination with one basic word hypothesis
BWH(lan), one prefix hypothesis PH(c,l) and one suffix hypothesis SH(n,s).

Now we have defined a method for deriving hypotheses for a specific format of
background knowledge and observations. The derivation method uses only one of the
four hypotheses space reduction methods mentioned in (Muggleton 1995): the obser-
vations are ground literals. We did not limit the number of derivable hypotheses to
one. On the contrary we want to derive as many valid hypotheses as possible because
they will improve the generalization capabilities of the final model. The derived hy-
potheses were neither restricted to the most general hypotheses nor to the ones that
compressed the observations as much as possible. Instead of that we have limited the
inference rules in such a way that one rule can only derive one particular hypotheses
as the explanation of a single item of data or a pair of data. The inference process is
deterministic and we will accept all the hypotheses it derives.

We will not use the two general purpose ILP software packages available: Golem
and Progol (Muggleton 1995). These impose restrictions on either the background
knowledge or the observations which we cannot impose on our problem. Golem tries

Inductive Logic Programming 107

to limit the number of acceptable hypotheses by restricting the background knowledge
to ground knowledge. This means that there are no variables allowed in the Golem
background knowledge. In order to be able to process background knowledge that has
been derived using clauses containing variables, Golem provides a method for con-
verting parts of that knowledge to variable-free clauses. Our background knowledge
contains clauses with variables. Since we are working with finite strings the back-
ground knowledge can in principle be converted to variable free rules. However this
will make it so large that it will be unwieldy to work with in practice. The background
knowledge cannot be converted to a usable format that is acceptable for Golem and
this makes Golem unusable for our data.

Progol does not have the background knowledge restriction of allowing only vari-
able-free clauses. However the Progol version that we have evaluated required both
positive and negative examples in order to generate reasonable output. Muggleton
has described a theoretical extension to enable Progol to learn from positive data only
(Muggleton 1995). As far as we know this extension has not been added to the soft-
ware yet.6 Because we only want to supply positive examples to our learning problem
Progol was inadequate for tackling this problem.

2.4 The hypothesis models and grammar theory
The models that we will derive for our data consist of three types of rules: basic word
hypotheses, prefix hypotheses and suffix hypotheses. It is theoretically interesting to
find out to which grammar class these models belong. In this section we will show that
the behavior of our learning models can be modeled with regular grammars. These
grammars generate exactly the same class of languages as finite state automata.

Regular grammars consist of rules that have the formatS! xAor A! y (Hopcroft
et al. 1979). HereA andS are non-terminal character whilex andy is a terminal
character. The grammars generate strings by applying a sequence of rules usually
starting with a start non-terminalS. For example, with the two rules presented here we
could change the start tokenS in xA with the first rule and successively inxy with the
second rule. The result is a string of terminal symbol and our grammar has generated
this string.

Words in our rule-based model are built by starting from a nucleus and subse-
quently adding prefix characters and suffix characters. We will derive an equivalent
regular grammar which builds words by starting with the first character and subse-
quently adding extra characters or character strings until the word is complete. The
regular grammar will make use of non-terminal symbols to simulate context depen-
dencies within the word. Each characterxi will have two corresponding non-terminal
symbols: a prefix symbol Pxi

and a suffix symbol Sxi
.

In our earlier examples we have used the wordclans. This word will be build
in our rule-based model as follows: start with the basic wordlan, add the character
c before it to obtainclan and add the characters behind it to obtainclans. In the

6A new version of Progol which allowed learning with positive training data only was released in 1997.

108 chapter 4

equivalent regular grammar we will start withcPl, replacePl with lanSn to obtain
clanSn, replaceSn with sSs to obtainclansSs and replaceSs with the empty string to
obtainclans.

There are a number of constraints on the intermediate strings that the regular gram-
mar produces in derivations. First, the intermediate strings will always consist of a
sequence of terminal symbols (a, b, c etc.) followed by one optional non-terminal
symbol (Pxi

or Sxi
). Second, the symbol Pxi

can only be replaced with an intermedi-
ate string that starts withxi. Third, when an intermediate string ends inxiSxj

thenxi
andxj will always be the same character. Fourth, the symbol Sxi

can only be replaced
with a string of the formatxjSxj

or with the empty string.
In the previous section we have derived a small rule-based model containing three

hypotheses: BWH(lan), PH(c,l) and SH(n,s). We will define conversion rules which
can be used for converting this model to a regular grammar containing the rules:

BWH(lan) S! lanSn (1)
Pl ! lanSn (2)
Sn ! e (3)

PH(c,l) S! cPl (4)
SH(n,s) Sn ! sSs (5)

Ss ! e (6)

(estands for the empty string) This grammar produces exactly the same strings as the
original rule based model:lan, clan, lansandclans. For example, we can generate
the stringclansby applying rule (4) to the start symbolS (resultcPl) after which we
successively apply rules (2) (clanSn), (5) (clansSs) and (6) to obtain the target string
clans.

Now that we have seen an example for the regular grammar at work we can define
the necessary rules for converting the hypotheses to regular grammar rules. We will
start with a conversion rule for suffix hypotheses:

SUFFIX HYPOTHESISCONVERSIONRULE

A suffix hypothesis SH(xi,xj) is equivalent to the set of regular grammar
rulesf Sxi

! xjSxj
, Sxj

! eg.

The suffix hypothesis SH(xi,xj) allows appendingxj to a word that has final character
xi. In the regular grammar model an intermediate string of which the final terminal
symbol isxi will initially be followed by the non-terminalSxi

. Thus we can simulate
the suffix hypothesis by creating a rule which replaces this non-terminal symbol with
xjSxj

. TheSxj
non-terminal symbol in the added string makes possible the addition

of extra characters. However, if we want to create proper words that end inxj we need
to be able to remove the non-terminal symbol from the intermediate string. Therefore
we have included the second rule which replacesSxj

with the empty string.
The following conversion rule can be used for prefix hypotheses:

PREFIX HYPOTHESISCONVERSION RULE

A prefix hypothesis PH(xi,xj) is equivalent to the set of regular grammar
rulesf S! xiPxj

, Pxi
! xiPxj

g

Inductive Logic Programming 109

The prefix hypothesis PH(xi,xj) will allow placing characterxi before a word that
starts with the characterxj . The regular grammar works the other way around: it
will append the characterxj to a prefix string which ends inxi.7 We can tell that an
intermediate string is a prefix string by examining the final token. If that token is a
prefix non-terminal symbol then the string is a prefix string and otherwise it is not.

While converting the prefix hypothesis to the regular grammar we have to distin-
guish two cases. First, the added characterxi can be the first character of the word.
This case has been taken care of by the first rule which replaces the starting symbol S
by xiPxj

. The symbolPxj
makes sure that the next character of the string will be the

characterxj . Note that according to our second intermediate string format constraint
we can only replacePxj

that starts with the characterxj .
The second possible case is that the added characterxi is a non-initial character of

the word. In that case we will add this character to a prefix string which contains final
symbolPxi

. The second rule will replace this symbol byxiPxj
. Again we add Pxj

to
make sure that the next character will bexj .

The third conversion rule can be used for basic word hypotheses:

BASIC WORD HYPOTHESISCONVERSION RULE

A basic word hypothesis BWH(xi...xj) is equivalent to the set of regular
grammar rulesf S! xi...xjSxj

, Pxi
! xi...xjSxj

, Sxj
! eg

The basic word hypothesis BWH(xi...xj) defines that the stringxi...xj is valid. It is
not trivial to add this hypothesis to the regular grammar because of the differences in
processing between the grammar and the rule-based models. In the grammar the basic
word will be added to a prefix string. An extra suffix non-terminal needs to be added
to the string as well.

Just as with the prefix hypothesis conversion we need to distinguish between two
cases of basic word hypothesis processing when we want to convert the hypothesis to
regular grammar rules. First the basic word can be the initial part of the word we are
building. In that case no prefix rules will be used for building the word. The first rule
takes care of this case. It replaces the starting symbol S with the stringxi...xjSxj

. The
suffix non-terminalSxj

has been included in this string to allow that other characters
can be added to the string by using suffix rules. It belongs to the previous terminal
symbolxj and this is in accordance with the third constraint on the format of the
intermediate strings. Since the basic word on its own is valid as well we need the
possibility to remove the non-terminal symbolSxj

from the word. That is why the
third rule has been included here. It can be used for replacing the non-terminal symbol
with the empty string.

If the basic word is not the initial part of the word then we will add the basic word
to a prefix string. This string will contain a final prefix non-terminal symbol which
specifies that the next character needs to bexi. The second rule takes care of replacing

7Actually things are a little bit more complex than this. In the regular grammar the prefix hypothesis
PH(xi,xj) will be modeled by rules that add the characterxi in anxi context and allow the next character
of the intermediate string to bexj .

110 chapter 4

this symbolPxi
by xi...xjSxj

. Again we include the non-terminal suffix symbolSxj

to have the possibility for adding extra suffix characters to the word. If no suffix
characters are necessary then third rule can be used for removing the symbol again.

We have presented an algorithmic method for converting a model expressed in
hypotheses to a regular grammar. The existence of such a method proves that the
behavior of our models can be simulated with regular grammars and finite state au-
tomata.

3 Experiments with Inductive Logic Programming

In this section we will describe our initial experiments with Inductive Logic Program-
ming (ILP). First we will outline the general setup of these experiments. After that we
will present the results of applying ILP to our orthographic and phonetic data. That
presentation will be followed by a description of the application of ILP to the same
data but while starting the learning process from basic phonotactic knowledge. The
section will be concluded with a discussion of the results of the experiments.

3.1 General experiment setup
We have used the three inference rules described in section 2.3 for deriving a rule-
based model for our orthographic data and a model for our phonetic data. The input
data for the learning algorithm consisted of the background knowledge rules described
in section 2.2 and observation strings which were the words in the training corpus. The
background knowledge rules contain information about the structure of words. How-
ever we have shown in section 2.2 that this information is implicitly present in HMMs
so encoding it in the background knowledge rules does not give ILP an advantage over
HMMs.

The format of the training corpora in these experiments is slightly different from
the previous two chapters. In HMMs it was necessary to add an end-of-word token
and a start-of-word token to each word. In these experiments both word boundary
tokens have been omitted. Processing the data with these tokens would also have been
possible but it would have required more complex background suffix rules and more
complex inference rules. We have chosen to keep our rules as simple as possible. Pro-
cessing data with word boundary tokens and more complex rules will lead to models
with the same explanatory power as processing data without end-of-word tokens and
simple suffix rules. The choice of dropping the word boundary tokens here has no
influence on our goal to make the three learning model experiments as comparable as
possible.

Experiments with Inductive Logic Programming 111

The ILP hypotheses inference algorithm will process the data in the following
way:

1. Convert all observations to basic word hypotheses.

2. Process all basic words, one at a time. We will use the symbol W for the
word being processed and assume that W is equal to the character sequence
w1w2:::wn�1wn. We will perform the following actions:

(a) Ifw2:::wn�1wn is a valid word then derive the prefix hypothesis PH(w1,w2)
and remove the basic word hypothesis for W.

(b) If w1w2:::wn�1 is a valid word then derive the suffix hypothesis SH(wn�1,wn)
and remove the basic word hypothesis for W.

(c) If the prefix hypothesis PH(w1,w2) exists then derive the basic word hy-
pothesis BWH(w2:::wn�1wn) and remove the basic word hypothesis for
W.

(d) If the suffix hypothesis SH(wn�1,wn) exists then derive the basic word
hypothesis BWH(w1w2:::wn�1) and remove the basic word hypothesis for
W.

3. Repeat step 2 until no new hypotheses can be derived.

Steps 1, 2(a) and 2(b) are straightforward applications of the inference rules for basic
words, prefix hypotheses and suffix hypotheses which were defined in section 2.3. The
steps 2(c) and 2(d) are less intuitive applications of the background knowledge rules
for prefixes and suffixes (see section refsec-ch4-background) in combination with the
basic word inference rule. In the background knowledge suffix rule we have defined
thatw1:::wn�1 will be a valid word wheneverw1:::wn�1wn is a valid word and a suffix
hypothesis SH(wn�1,wn) exists. This is exactly the case handled by step 2(d) and
because of the fact thatw1:::wn�1 is a valid word we may derive BWH(w1:::wn�1)
by using the basic word inference rule. Step 2(c) can be explained in a similar way.

The steps 2(c) and 2(d) will be used to make the basic words as short as possible.
This is necessary to enable the algorithm to derive all possible prefix and suffix hy-
potheses. Consider for example the following intermediate configuration hypotheses
set:

BWH(yz)
BWH(yx)
SH(y,z)

By applying step 2(d) we can use SH(y,z) and BWH(yz) to add the basic word hy-
pothesis BWH(y) and remove BWH(yz). On its turn this new basic word hypothesis
in combination with BWH(yx) can be used for deriving the suffix hypothesis SH(y,x).
In this example shortening a basic word has helped to derive an extra suffix hypothe-
sis. We cannot guarantee that the new hypothesis will be correct. However, since we

112 chapter 4

number of hypotheses accepted rejected
basic positive negative

data type rounds word prefix suffix strings strings
orthographic 4 30 347 327 593 (98.8%) 379 (63.2%)

phonetic 3 54 383 259 593 (98.8%) 517 (86.2%)

Figure 4.4: The performance of the ILP algorithm and the models generated by this
algorithm. The ILP algorithm converts the training strings in models that contain
approximately 700 rules. The models perform well on the positive data (more than
98% was accepted) but poorly on the negative data (rejection rates of 63% and 86%).

do not have negative data available which can be used for rejecting new hypotheses
we cannot do anything else than accept all proposed hypotheses.

The ILP hypotheses inference algorithm will repeat step 2 until no more new hy-
potheses can be derived. We will call each repetition of step 2 a training round and list
the number of required training rounds in the experiment results.

3.2 Handling orthographic and phonetic data
We have used ILP to derive a rule-based model for our training data of 5577 ortho-
graphic strings. We used the hypothesis inference algorithm of the previous section
which was based on the inference rules defined in section 2.3. The background knowl-
edge consisted of the three background knowledge rules defined in section 2.2 and the
training words were used as observations. The algorithm required four training rounds
before the hypothesis set stabilized. The final model consisted of 30 basic word hy-
potheses, 347 prefix hypotheses and 327 suffix hypotheses (see figure 4.4).

The final rule-based model was submitted to the same tests as the models which
were generated in the previous chapters. It was tested by making it evaluate 600
positive test strings which were not present in the training data and 600 negative test
strings. The model performed well on the positive test data. It accepted 593 words
(98.8%) and rejected only 7:d, fjord, f ’s, q’s, schwung, t’s andz. The rule-based
model achieved a lower score on the negative test data. It was only able to reject
379 of the 600 strings (63.2%) Some examples of accepted invalid strings arebswsk,
kwrpn, ntesllt, rdtskiseandttrpl.

After having applied the ILP algorithm for orthographically encoded words we
have used it for deriving a rule-based model for our phonetic data. The algorithm
started with 5084 observations and required three training rounds before the hypothe-
sis set stabilized. The final model consisted of 54 basic word hypotheses, 383 prefix
hypotheses and 259 suffix hypotheses (see table 4.4). It performed equally well on the
correct test words as the orthographic model accepting 593 words (98.8%) and reject-
ing only 7 words:fjord [fj =rt] , fuut [fyt], square [skw":r] , squares [skw":rs] , schmink

Experiments with Inductive Logic Programming 113

S

S S S S3 4 5 6 7SS1 2S

S S8 9P B

Figure 4.5: An adapted version of the initial HMM model for orthographic data, based
on the Cairns and Feinstein model. The original model was presented in figure 2.18
of chapter 2. The model has been divided in three parts: a part P in which the prefix
rules operate, a part B generated by the basic word hypotheses and a part S in which
the suffix hypotheses work. The new states s8 and s9 are copies of s1 and s2 and take
care of the production of words that do not contain vowels.

[Mmi8k], schminkt [Mmi8kt] and schwung [Mwu8] . The phonetic model performed
worse on the negative test strings but its performance was better than the performance
of the orthographic model on the negative strings. It was able to reject 517 of 600
strings (86.2%).8

3.3 Adding extra linguistic constraints
In the previous chapters we have used the phonetic model by (Cairns and Feinstein
1982) as a model for possible innate linguistic knowledge. We will use this model in
our ILP experiments as well. One problem we have to solve is the conversion of the
Cairns and Feinstein model to the ILP rule structure. For this purpose we will use our
the modified bigram HMM initialization model shown in figure 2.18 of chapter 2. This
model consists of a set of states with a limited number of links and with restrictions
on the characters that can be produced by each state. We will restructure this model
and derive some usable constraints from it.

We want to divide the model in three parts: one part in which only prefix hy-
potheses operate, one part in which only suffix hypotheses work and one part that is
generated by basic word hypotheses. This division is shown in figure 4.5: part P is
the part for the prefix hypotheses, part B is for the basic word hypotheses and part S

8When we take into account that 26 of the negative strings are reasonable (see section 4.4 in chapter 2)
then the phonetic model rejects 514 of 574 negative strings (89.5%).

114 chapter 4

is for the suffix hypotheses. Each character production by states in the parts P and S
corresponds to a set of prefix or suffix hypotheses. The states s5 and s6 have been put
in the basic word hypothesis part because s6 is able to produce vowels and we want to
produce all vowels in the basic word hypotheses.

The division of the model caused one problem. The original model contained
an exit link from state s2. This link would make it impossible to include state s2

in the prefix hypothesis part. States with exit links must be part of either the basic
word hypothesis part or the suffix hypothesis part. State s2 in figure 2.18 is on its
own capable of producing a word liket which is present in the orthographic data.
However, in our ILP rule models the use of a basic word hypothesis is obligatory
in the production of a valid word. Having an exit link in state s2 would allow word
productions that do not include the use of a basic word hypothesis.

We have solved this problem by splitting the model in two parallel finite state
automata (figure 4.5). The states s1 and s2 and their links have been copied to two new
states s8 and s9. These new states will take care of the production of words that were
produced by using the exit link from state s2. This made it possible to remove this exit
link from state s2. Since s9 has been put in the basic word hypothesis part, the words
produced by s8 and s9 will also require the application of a basic word hypothesis. The
larger automaton will produce all words that used the exit links from states other than
s2. Therefore there is no necessity for links from s9 to s3 or s4.

Dividing the model in two parts has solved the problem we had with state s2. We
can put the states s1, s2, s3 and s8 in the prefix hypothesis part because all exit links
from this group of states go to states in the basic word hypothesis part. That part will
include states s4, s5, s6 and s9. The suffix part contains only one state: s7.

The finite state automaton of figure 4.5 is equivalent to the finite state automaton
of figure 2.18 in chapter 2. However, for learning purposes there are differences be-
tween the two. Each character production in the P and the S parts can be modeled with
one prefix or one suffix hypothesis. But we cannot produce every single character in
the B part with one basic word hypothesis because basic words consists of character
sequences and we do not have the opportunity for combining basic word hypotheses
in the ILP rule model. Therefore we will use one basic word for modeling the pro-
duction of a character sequence by a group of cells. This may cause problems when
there are internal parts which repeat themselves an arbitrary number of times. The be-
havior invoked by the self-links from the states s4, s6 and s9 cannot be modeled with
the basic word hypotheses. The ILP learning process cannot generate models with
extendible basic word hypotheses and this means that the generalization capabilities
of the resulting rule models will be weaker than those of the previously used HMMs.

Now that we have changed the Cairns and Feinstein initialization model to the
structure that we are using in the chapter, we can attempt to derive usable constraints
from this model. The Cairns and Feinstein model imposes constraints on the char-
acters that can be generated by a particular state. We have defined these constraints
explicitly for our orthographic data in the B matrix in figure 2.17 of chapter 2: the
vowelsa, e, i, o, u and the quote character’ can only be generated by the states s4

and s6, the ambiguous vowel/consonanty can be generated by any state and all other

Experiments with Inductive Logic Programming 115

characters are consonants which can be generated by any state except s4. The new
states s8 and s9 are consonant states: they can generate any character except the six
charactersa, e, i, o, u and ’ (in this chapter we will regard the quote character as a
vowel).

When we inspect the model with these character production constraints in mind
we can make two interesting observations. First, the prefix hypothesis states cannot
produce the charactersa, e, i, o, u and’ . We will call these charactersPURE VOWELS.
Since the characters produced by these states are put before a word by a prefix hy-
potheses, this means that prefix hypotheses cannot add a pure vowel prefix to a word.
Second, the suffix hypothesis state cannot produce a pure vowel. A character produced
by this state is a character appended to a word by a suffix hypothesis. This means that
suffix hypotheses cannot append a pure vowel to a word. We can summarize these two
observations in the following two rules:

PREFIX HYPOTHESISCONSTRAINT

In a prefix hypothesis PH(I,S) the character I that is appended to a word
cannot be a pure vowel.

SUFFIX HYPOTHESISCONSTRAINT

In a suffix hypothesis SH(P,F) the character F that is appended to a word
cannot be a pure vowel.

It is not possible to derive a similar constraint for the basic word hypotheses because
these can contain both vowels and consonants. The derivation presented here applies
only to orthographic data. In a similar fashion one can take the initial phonetic model
from figure 2.22 in chapter 2, generate an adapted model like presented in figure 4.5
and derive similar constraints for prefix and suffix hypotheses.9 Our phonetic data
contains 18 vowels.

We have repeated our ILP experiments for deriving rule-based models for our
orthographic and our phonetic data by using the prefix and the suffix hypothesis con-
straints presented in this section. Apart from these extra constraints the experiment
setups were the same as described in the previous section The resulting models were
submitted to our standard test sets of 600 correct words and 600 incorrect strings. The
results of these tests can be found in figure 4.6.

The models needed approximately the same number of training rounds to stabi-
lize as in our previous experiments. Because of the constraints on the format of the
prefix and the suffix hypotheses, the initialized models contain fewer prefix hypothe-
ses and fewer suffix hypotheses. This means that fewer words have been divided in
smaller parts and as a result of that the models contain more basic word hypotheses.
The size differences between these models and the previous ones are largest for the
orthographic data.

9An additional constraint can be derived for phonetic data: the basic word hypotheses cannot consist of
a mixture of vowels and consonants. We did not use this constraint because we expected it would cause
practical problems in the learning phase.

116 chapter 4

number of hypotheses accepted rejected
basic positive negative

data type rounds word prefix suffix strings strings
orthographic 4 128 166 178 586 (97.7%) 564 (94.0%)

phonetic 2 64 324 207 593 (98.8%) 565 (94.2%)

Figure 4.6: The performance of the ILP algorithm with the prefix and the suffix hy-
pothesis constraints and the models generated by this algorithm. The ILP algorithm
converts the training strings in models that contain fewer rules than the previous mod-
els (472 and 595 compared with approximately 700). The models perform well on the
positive test data (best rejection rate 2.3%) and a little worse on the negative test data
(rejection rates of about 6%).

The added constraints during learning make the ILP process generate better mod-
els. The orthographic model performs worse in accepting positive test data (97.7%
compared with the earlier 98.8%) but remarkedly better in rejecting negative data
(94.0% versus 63.2%). The phonetic model performs exactly as well in accepting
positive test data (98.8%) and a lot better in rejecting negative data (94.2% versus
86.2%).10

3.4 Discussion
The orthographic model derived by the ILP algorithm without constraints for ortho-
graphic data performs quite poorly in rejecting negative test strings. It has become
too weak. The fact that this model consist of a set of rules gives us the opportunity to
inspect it and find out why exactly it is making errors. This is an advantage of rule-
based models over statistical and connectionist models. In the experiments described
in the previous section we did not have the opportunity to correct models by changing
their internal structure.

The orthographic model accepts the incorrect consonant stringkwrpn. The model
can use only one set of rules for proving this string: the four prefix rules PH(k,w),
PH(w,r), PH(r,p) and PH(p,n) and the basic word rule BWH(n). The first two prefix
rules are correct as we can see from the two correct Dutch wordskwartsandwrakst.
The third prefix rule is wrong11 and the fourth one is a rare one for Dutch but correct.
The basic word hypothesis is strange. Like in English it is possible to say thatn is the
14th character in the alphabet. However with consonants as basic words we cannot

10When we take into account that 26 of the negative strings are reasonable (see section 4.4 in chapter 2)
then the phonetic model rejects 562 of 574 negative strings (97.9%).

11Incorrect hypotheses are caused by the presence of single consonants in the training data. For example,
in combination with the wordin the single consonant wordn would cause the incorrect prefix hypothesis
PH(i,n) to be derived.

Experiments with Inductive Logic Programming 117

expect to be able to create a good model.
Unfortunately all single characters are present in the orthographic data: 21 in the

training corpus and 5 in the test corpus. We had expected the final basic word hypoth-
esis set to include the six Dutch vowels and a few rare vowel sequences which could
not be made smaller by the learning algorithm. This was indeed the case but apart
from that the basic word hypotheses contained 17 single consonants. Most of them
were present in the training data as complete words. We supposed that the latter fact
caused the consonants to appear in the basic hypothesis set. In order to test this we
have removed the single consonant words from the training words and performed an
extra training session. However all consonants returned as basic words in this extra
orthographic model.

We have inspected the training data to find out which words did not fit in the
simplest word model we could think of. This model assumes that every word contains
a vowel with possibly adjacent vowels and an arbitrary number of consonants in front
or behind the vowels. The following word types did not fit in this model:

1. Single character consonant words (16 items). All characters except fora, e, i,
o, u, y and’ have been regarded as consonants. Examples of words in this class
aren andt.

2. Words with two or more vowel groups (111 items). Nearly all these words were
loan words. Examples of this class aretoqueen leagues

3. Multiple character words without vowels (3 items). These were the three inter-
jections which were present in our training corpus:st, sstandpst.

When we remove all three data types from the training corpus and apply the ILP learn-
ing algorithm we obtain an orthographic model with only 19 basic word hypotheses,
188 prefix rules and 198 suffix rules. This model accepts 97.6% of the complete train-
ing data, accepts 97.0% of the positive test strings and rejects 96.7% of the negative
test data. This is an improvement with respect to our orthographic experiments with-
out extra constraints. However we are looking for models which accept all training
data and thus this model is unacceptable.

The problems in the phonetic model that was generated without using constraints
are not that obvious. The model contains five single consonant basic word hypothe-
ses, 55 prefix hypotheses which append a vowel and 51 suffix hypotheses which add
a vowel to a word. The data contains the two interjections st and pst, one single con-
sonant wordsbut no words with more than one vowel group. When we remove these
three words from the training data and run the ILP algorithm one more time then we
obtain a model which accepts 99.9% of the training data, accepts 98.8% of the positive
test data and rejects 94.7% of the negative test data. The model contains 324 prefix
rules, 207 suffix rules and 62 base rules. Performance and model size are almost
exactly the same as for the phonetic model with linguistic initialization.

We may conclude that application of ILP to our learning task leads to a reason-
able performance. The models that are generated by the ILP algorithm without the

118 chapter 4

constraints derived from the model of Cairns and Feinstein perform worse than the
models generated while using these constraints. The problems of the earlier models
can be explained by a few problematic words. Application of ILP with the extra lin-
guistic constraints is more robust with respect to these words and thus generates better
models.

4 Alternative rule-based models

In the previous section we have described how ILP can be used for deriving rule-
based orthographic and phonetic models. In this section we will modify the internal
structure of these models. First we will create more elaborate models, that is models
which have a richer internal structure. We will show how these models can be build
by using ILP and perform some learning experiments with them. After that we will
decrease the size of the models by making the rules process character sets rather than
single characters.

4.1 Extending the model
In the previous section we have used the Cairns and Feinstein model for initializing a
rule-based model. We have seen that our ILP models do not have an internal structure
that is as rich as the Cairns and Feinstein model. The latter model divides the word
production process in seven different stages which correspond with the seven states
in the initial model. Our rule-based models only contain three different stages: one
for prefix hypotheses, one for suffix hypotheses and one for basic word hypotheses.
We have mentioned in section 3.3 that this restriction has a negative influence on the
generalization capabilities of the models.

We want to test a more elaborate rule-based model to see if it performs better
than our current three-state model. We will aim for a similar structure as the Cairns
and Feinstein model with seven states but we want to keep our concepts of prefix
hypotheses, suffix hypotheses and basic word hypotheses. Therefore we have defined
the following extended hypotheses concepts:

EXTENDED BASIC WORD HYPOTHESIS

An extended basic word hypothesis BWH(w1:::wn,si) defines that the
stringw1:::wn can be produced in state si.
Rule notation: producible(w1:::wn,si) BWH(w1:::wn,si).
EXTENDED SUFFIX HYPOTHESIS

An extended suffix hypothesis SH(wn�1,wn,si) defines that when a string
w1:::wn�1 can be produced in a predecessor state of statesi then the
stringw1:::wn�1wn can be produced in statesi.
Rule notation: producible(w1:::wn�1wn,si) SH(wn�1,wn,si),

producible(w1:::wn�1,sj),
predecessor(sj,si).

Alternative rule-based models 119

S4 S9

S81

B

S

P SS 2S

S SS 65 7

3

Figure 4.7: An adapted version of the initial HMM model for phonetic data, based on
the Cairns and Feinstein model. The original model was presented in figure 2.22 of
chapter 2. The model has been divided in three parts: a part P in which the extended
prefix hypotheses operate, a part S in which the extended suffix hypotheses work and
a part B generated by the extended basic word hypotheses. States s8 and s9 are copies
of s1 and s2 that take care of the production of words that do not contain vowels. All
states except state s3 and state s5 are final states. The connections from s4 to s3 and s2
have not been included in this diagram.

EXTENDED PREFIX HYPOTHESIS

An extended prefix hypothesis PH(w1,w2,si) defines that when a string
w2:::wn can be produced in a predecessor state of statesi then the string
w1w2:::wn can be produced in statesi.
Rule notation: producible(w1w2:::wn,si) PH(w1,w2,si),

producible(w2:::wn,sj),
predecessor(sj,si).

Furthermore, final state hypotheses are necessary for defining which states can be
final states since only a few states will be allowed to act as a final state. Final state
hypothesis FS(si) defines that processing may end in state si. There is no equivalent
definition necessary for the concept of initial state because these will implicitly be
defined by the basic word hypotheses. Nothing can be produced before a basic word
and processing a word can only start with processing a basic word. Therefore any state
present in an extended basic word hypothesis will automatically be an initial state.

Figure 4.7 shows an initial model that uses extended hypotheses. Like the model
shown in figure 4.5 it has been divided in three parts for the three types of hypotheses.
Note that the processing order has been changed slightly. The model will start pro-
cessing basic words, continue with working on suffix characters and finally deal with

120 chapter 4

the prefix characters. This unusual processing order was caused by our wish to ob-
tain a model that was closely related to the three hypothesis types. The more intuitive
processing order prefix characters - basic word - suffix characters was not possible
because basic words impose restrictions on prefix characters. In a string generation
model processing must start with the basic word.

Example: suppose that we want the model to produce the wordbAstand we know
that the hypotheses BWH(A,s4), PH(b,A,s2), SH(A,s,s6) and SH(s,t,s7) are available.
The model would start in state s4 and produceA. After this it would continue with state
s6 (As) and state s7 (Ast). Processing would end in state s2 (bAst). The word is valid
since processing has ended in a final state and the complete word has been produced.

4.2 Deriving extended hypotheses
Deriving extended hypotheses is more difficult than deriving standard hypotheses. For
example, we cannot use the suffix inference rule of section 2.3 for deriving a suffix
hypothesis from basic word hypotheses BWH(clans) and BWH(lans) because we need
to define the state which produces thec. The basic words do not provide a clue to
which state would be correct.

We will design a method for deriving the rules based on the assumption that we
have some general initial model to start with. The task of the ILP learning process will
be to fill in the details of the model. The initial model will be a quadruple consisting of
a set of states, a set of predecessor state definitions, a set of final state definitions and a
set of character classes that can be produced by the states. An example of such a model
is shown in figure 4.7. The states and the links have been shown in the figure. The
characters that can be produced by the states are vowels for state s4 and consonants
for all other states (see also the B matrix in figure 2.21 in chapter 2).

These constraints on the production of characters leave some processing freedom.
For example, the suffix characters of our example wordbAstcan be produced by two
different state combinations. Thes can be produced by state s5 and thet by s6. Alter-
natively thes can be produced by state s6 and thet by s7. In the Cairns and Feinstein
model for Dutch the second option is the only one that is permitted. In order to enable
the ILP algorithm to find this solution we need to supply it with extra information. An
example of such extra information could be dividing the consonants in subclasses and
putting more restrictions on the characters that the states can produce. However, we
do not want to make an extra partition in the character sets because we have not done
something like that in the experiments with HMMs and SRNs. Using a finer division
here would provide the ILP algorithm information the other two algorithms did not
have and this would make a performance comparison unfair.

We have chosen to accept both suffix generation possibilities. This means that for
generating the wordbAstwe would derive the following set of hypotheses:

BWH(A,s4)
PH(b,A,s2)

Alternative rule-based models 121

SH(A,s,s5)
SH(s,t,s6)
SH(A,s,s6)
SH(s,t,s7)

The derivation process of the extended hypotheses will contain the following steps:

1. Take some initial model of states, predecessor state definitions, final state defi-
nitions and producible character classes. The set of hypotheses starts empty.

2. Take a word from the training data and derive all hypotheses which can be used
for explaining the word with the initial model. Add these hypotheses to the set
of hypotheses

3. Repeat step 2 until all words in the training data have been processed.

4. The result of this ILP process is the initial model combined with the set of
hypotheses.

In this derivation process we will use modified versions of the background knowledge
rules we have defined in section 2.2 for prefix hypotheses, suffix hypotheses and basic
words. We also need final state definitions, predecessor state definitions and a validity
definition. Furthermore we will apply an extended hypothesis inference rule which
will replace the three inference rules we have defined in section 2.3.

EXTENDED BACKGROUND KNOWLEDGE BASIC WORD RULE

The existence of a basic word hypothesis BWH(w1:::wn,si) implies that
stringw1:::wn can be produced by state si.
Rule notation: producible(w1:::wn,si) BWH(w1:::wn,si)
EXTENDED BACKGROUND KNOWLEDGE SUFFIX RULE

Suppose there exists a suffix hypothesis SH(wn�1,wn,si).
In that case the fact that stringw1:::wn�1 can be produced in a predeces-
sor of state si implies thatw1:::wn�1wi can be produced in si.
Rule notation: producible(w1:::wn�1wn,si) SH(wn�1,wn,si),

producible(w1:::wn�1,sj),
predecessor(sj,si)

EXTENDED BACKGROUND KNOWLEDGE PREFIX RULE

Suppose there exists a prefix hypothesis PH(w1,w2,si).
In that case the fact thatw2:::wn can be produced in a predecessor of state
si implies thatw1w2:::wn can be produced in state si.12

Rule notation: producible(w1w2:::wn,si) PH(w1,w2,si),
producible(w2:::wn,sj),
predecessor(sj,si)

12Because of the processing order shown in figure 4.7 prefix character states can have predecessor states.

122 chapter 4

FINAL STATE DEFINITION

The existence of a final state definition finalState(si) implies that state si
is a final state and vice versa.
PREDECESSORSTATE DEFINITION

The existence of a predecessor definition predecessor(si,sj) implies that
state si is a predecessor of state sj and vice versa.
VALIDITY DEFINITION

A string is valid according to a model consisting of a set of states, a set of
predecessor state definitions, a set of final state definitions, a set of char-
acter classes produced by the states and a set of hypotheses if and only if
the string can be produced in one of the final states of the model.
EXTENDED HYPOTHESIS INFERENCE RULE

Any ground prefix hypothesis, suffix hypothesis and basic word hypoth-
esis that can be used for proving that a string in the training data is valid
according to the initial model should be derived.

The extended hypothesis inference rule derives sets of hypotheses when they can be
used for producing a string in the model. It is difficult to capture this in the rule
notation and therefore no rules have been included in the definition of this inference
rule.

4.3 Experiments with the extended model
We have used ILP for deriving models for our orthographic data and our phonetic
data. For each data type we have performed two experiments: one that started from
a random model and one that started from a linguistic model derived from the Cairns
and Feinstein model. The linguistic model for phonetic data can be found in figure
4.7. The linguistic model for orthographic data is similar to the model shown in figure
4.5 but this model has the same processing order as the phonetic model: first prefix
hypothesis states, then suffix hypotheses states and finally the basic word hypothesis
states. In the initial orthographic model the states s4, s5 and s6 have been combined
into one state which is capable of producing multicharacter strings.

Just like in the previous experiments we wanted to compare initialized extended
models with non-initialized extended models in order to be able to measure the influ-
ence of the initialization. Constructing the initial models for the two non-initialized
experiments was a non-trivial task. We wanted the models to contain some random ini-
tialization like the random initialization models we have used for HMMs and SRNs.
However, our extended rule-based models do not contain numeric values which we
can initialize with arbitrary values. We have decided to use open models as starting
models. Open models are models without the restrictions imposed on the linguisti-
cally initialized model. In these models the prefix hypotheses, suffix hypotheses and
basic word hypotheses may use any state, states may produce any character and all
states are connected with each other.

Alternative rule-based models 123

number of hypotheses accepted rejected
basic positive negative

data type initialization word prefix suffix strings strings
orthographic random 27 376 376 595 (99.2%) 360 (60.0%)

phonetic random 41 577 577 595 (99.2%) 408 (68.0%)
orthographic linguistic 116 273 190 587 (97.8%) 586 (97.7%)

phonetic linguistic 20 528 450 595 (99.2%) 567 (94.5%)

Figure 4.8: The performance of the ILP algorithm for the extended models described
in this section. The models with a random initialization perform worse than the stan-
dard models when it comes to rejecting negative data (average rejection score 64%
compared with 75%). The extended initialized models perform slightly better than the
standard initialized models (compare with figure 4.5).

In our ILP experiments we want to derive any hypothesis that can be used for
explaining a string. In a fully connected open model there will be many different
possible explanations for words. All the processing paths found by the ILP algorithm
will be equivalent. It does not matter if a path contains the state sequence s1-s2-s3-s4

or s1-s1-s1-s1 because all states will be linked to the same states and produce the same
characters and after training and there will be a duplicate of every hypothesis for every
state. For that reason an open model with one state will have the same explanatory
power as an open model with more states. We want our initial model to be as simple as
possible and therefore we have limited the number of states in the open initial models
to one.

The 5577 orthographic training words and the 5084 phonetic words have been sup-
plied to the ILP algorithm. From this data the algorithm derived extended hypotheses
defined in section 4.1 by using as background knowledge three background hypothesis
rules, three definitions and the extended hypothesis inference rule which were defined
in section 4.2. One training round was sufficient in each experiment because all possi-
ble hypotheses for one word could be derived by considering the word independently
of other words or other hypotheses. The results of the experiments can be found in
figure 4.8.

The models which were built by starting from an open initialized model performed
poorly with respect to rejecting negative strings. The extended orthographic model
rejected only 360 negative test strings (60.0%). This performance is even worse than
that of the standard non-initialized orthographic model (63.2%). The phonetic model
performs slightly better by rejecting 408 negative strings (68.0%).13 However this is
a lot worse than our standard phonetic model which rejected 517 negative test strings
(86.2%).

13When we remove the 26 plausible strings from the negative phonetic data (see section 4.4 of chapter 2)
then the extended random model has rejected 405 of 574 strings (70.6%).

124 chapter 4

The poor performance of these models can be explained by the fact that the current
learning experiments are lacking an important implicit constraint that was present in
the previous experiments. In our earlier experiments we have only derived a prefix
hypothesis when it could be used for explaining one existing word with another one.
In these experiments we derive any prefix hypothesis that can be used for explaining a
word regardless of the other words. The same is true for suffix hypotheses. When we
use an open model as initial model then this derivation strategy will result in models
that accept all possible substrings of the training words. For example, the wordbak
will not only lead to the correct derivation of PH(b,a,s1), BWH(a,s1) and SH(a,k,s1)
but also to the incorrect cluster PH(b,a,s1), PH(a,k,s1) and BWH(k,s1) and the incor-
rect cluster BWH(b,s1), SH(b,a,s1) and SH(a,k,s1). Thus each single token will be a
basic word and there will be many prefix hypotheses and many suffix hypotheses. The
resulting models are too weak. They accept too many strings.

The models that were built starting from the linguistically initialized model per-
form much better when it comes to rejecting strings of the negative test data. The
orthographic model rejects 586 strings (97.7%) while the phonetic model rejects 567
strings (94.5%). The latter model performs as well as the previous initialized pho-
netic model (94.2%)14 and the orthographic model achieves a higher score than before
(94.0%, see figure 4.6). The current models perform slightly better when it comes
to accepting positive test data. The orthographic model accepts 587 correct words
(97.8%) compared with the earlier 586 words (97.7%). The phonetic model accepts
595 words (99.2%) while the earlier figure was 593 words (98.8%).

In this section we have applied the ILP algorithm to our learning problems with
as a goal deriving more elaborate target models. However, the linguistically initial-
ized models after training achieve approximately the same performance as the earlier
models. Extending the models does not seem to have achieved much.

4.4 Compressing the models
The models built by ILP while starting from a linguistically initialized model per-
form reasonably well. However, the models are quite large. The number of rules per
model varies from 472 for the standard orthographic model (figure 4.6) to 998 for the
extended phonetic model (figure 4.8). We would like to decrease the size of these
models because smaller models are easier to understand and easier to work with.

One of the main reasons for the models being this big is that they contain separate
rules for every character. For example, the orthographic models contain seven separate
rules for defining that the seven vowel characters can appear in a basic word hypothesis
on their own. We would like to encode information like this in one rule.

The number of rules can be decreased by dividing the characters into character
classes. The character class boundaries could have been determined by the phonetic
features of the characters. We do not want to use these features because we did not

14Without the 26 plausible strings from the negative phonetic data the extended initialized model would
have rejected 564 of 574 strings (98.3%).

Alternative rule-based models 125

48.0 a e
46.0 a e o
44.0 a e i o
42.0 a e i o u
42.0 l r
41.0 s t
38.4 c k l m n p r s t

Figure 4.9: The result of the clustering process for orthographic data: the top 25% of
the token groups that frequently appear in the same context. The scores indicate how
often the tokens occurred in the same context: a score of 40.0 means that on average
the tokens occurred together in 40 rules with the same context. In total there were 140
rule contexts and 26 clusters.

use them in our earlier experiments with statistical learning and connectionist learn-
ing. Instead we will use data-unspecific clustering algorithms for dividing tokens into
token clusters (Finch 1993). Our modified rules will specify that a character class is
possible in a character class context rather than specifying that a single character is
possible in some context. Working with character classes will create the possibility to
cover gaps that are present in the rule set and create models that generalize better.

We have applied a clustering algorithm to the rules we have obtained in the previ-
ous section. The clustering algorithm computed the frequencies of the occurrences of
tokens in similar rule contexts. For example, the orthographic prefix rule PH(?,h,s1)
states which characters can be placed before anh in state s1. According to our ex-
tended orthographic model, the question mark in the rule can be replaced by one of
five possible tokens:c, k, s, t andw. We will assume that the fact that these charac-
ters can occur in the same context means that they are somehow related to each other.
The clustering process will count the number of times that tokens occur in the same
context and output lists of tokens which frequently appear in similar contexts.

Example: Among the extended prefix hypotheses for the orthographic data pro-
duced by our ILP algorithm with linguistic initialization we have the two hypotheses
PH(v,l,s2) and PH(v,r,s2). They state that we can put av before anl and anr in state
s2. So thel and ther occur in the same context: behind av that is added in state s2.
This means that we can put the two characters in one cluster.

We cannot use all clusters that the algorithm produces. One cluster that is not very
useful is the largest possible cluster which contains all tokens. We have chosen to work
only with the top 25% of the clusters (a motivation for the size of the chosen cluster
group will be given later). The clustering algorithm assigned scores to the clusters
which indicate how close together the elements of the clusters are. These scores have
been used to define which clusters are best.

The top 25% of the clusters for the orthographic data can be found in figure 4.9.
The clustering process grouped the vowels together and created three probable con-

126 chapter 4

82.0 l r
75.0 p t
75.0 n l r
73.0 k p t
70.4 y/ i: o: u: E A O I a: e: U
69.7 k p t x
69.3 i: o: u: E A O I
68.0 n l r m
64.5 k p t x n l r m
60.0 s k p t x n l r m

Figure 4.10: The result of the clustering process for phonetic data: the top 25% of
the token groups that frequently appear in the same context. The scores indicate how
often the tokens occurred in the same context: a score of 60.0 means that on average
the tokens occurred together in 60 rules with the same context. In total there were 220
rule contexts and 40 clusters.

sonant groups. The seven character groups presented here were used to decrease the
number of rules for the orthographic data. All rules which contained 75% of more of
the characters of a cluster were modified. The original characters were removed from
the rules and replaced with a special token which represented the complete cluster.

Example: With a cluster that contains the charactersl andr we can replace the
two prefix hypotheses PH(v,l,s1) and PH(v,r,s1) by one hypothesis: PH(v,clusterlr,s1).
Here clusterlr is the name for the cluster containingl andr. This replacement will
only be made if there is no larger cluster available. For example, would it have
been possible to have the characters of the clustercklmnprstin place of the ques-
tion mark in PH(v,?,1) then we would have replaced the nine prefix hypotheses with
PH(v,clustercklmnprst,s1). The presence of 75% cluster tokens in a rule context is
enough for replacement. This means that even if only seven characters of the cluster
are possible in the example context, the seven hypotheses will be replaced. By putting
the threshold at 75% rather than 100% we were able to deploy the clustering algorithm
to cover gaps in the rule set that resulted from the training data.

We have applied the clustering algorithm to the models with extended hypotheses
produced by the ILP algorithm that started with linguistic information. The derivation
of these models was discussed in section 4.3 and the performance data for the models
can be found in figure 4.8. We did not apply the clustering algorithm to the non-
initialized models. These models performed poorly and modifying them by dividing
the tokens in groups would make performance even worse. Clustering will implicitly
add rules and thus make the models accept more strings. Non-initialized models al-
ready accepted to many negative test strings and we are not interested in models that
accept even more strings.

The results of the clustering process can be found in figure 4.11. The number

Alternative rule-based models 127

number of hypotheses accepted rejected
basic positive negative

data type initialization word prefix suffix strings strings
orthographic linguistic 106 103 83 590 (98.3%) 585 (97.5%)

phonetic linguistic 10 143 131 595 (99.2%) 560 (93.3%)

Figure 4.11: The performance of the ILP algorithm for the extended models with lin-
guistic initialization after clustering. By grouping the characters in character classes
the number of rules in the orthographic model has decreased with 50% and the num-
ber of rules in the phonetic model has decreased with 70%. The performance of the
models is approximately the same as the original models presented in figure 4.7.

of rules in the orthographic model decreased by approximately 50% compared with
the model presented in figure 4.8 from 579 to 292 hypotheses (excluding 5 cluster
definitions).15 Compared with the original model the model accepted three extra
strings of the positive test data and one more string of the negative test data. Clus-
tering had a greater influence on the phonetic model (the applied phonetic clusters can
be found in figure 4.10). The number of hypotheses decreased by more than 70% from
998 to 284 (excluding 7 cluster definitions). This model accepted seven more negative
test strings than the original model.16 The size of accepted positive test data was the
same.

The clustering process contains two parameters for which we have chosen rather
arbitrary values. The first parameter is the percentage of used clusters. We chose to
use the best 25% of the clusters. By increasing this percentage we would obtain more
clusters and generate models with fewer hypotheses. However, the chance that the set
of clusters includes nonsensical clusters will increase. Models which use nonsensical
clusters might accept too many negative strings.

The second parameter is the acceptance threshold. Whenever 75% or more tokens
of a cluster are allowed in a certain context then we will assume that all tokens of
that cluster are allowed in that context. By increasing this value we can apply the
clusters at more places and thus decrease the number of hypotheses. However, the
extra generalizations that will be generated as a result of this might be wrong. We
can also increase the acceptance threshold but that will result in fewer application
possibilities and larger models.

We would have liked to decrease the phonotactic models with another 50% to
models of approximately 150 hypotheses. However, we feel that modification the

15We have used seven clusters but we only needed five cluster rules because some clusters contained 75%
of the characters of larger clusters. These subset clusters were automatically replaced by the larger clusters.
They did not need to be defined because it was impossible for them to appear in the final models.

16When we remove the 26 plausible strings from the negative phonetic data then this model has rejected
558 of 574 strings (97.2%).

128 chapter 4

two clustering process parameters will decrease the performances of the models that
will be generated. Therefore we have tried something else. We have added two extra
clusters to the models: one containing the vowels as defined in the initial linguistic
model and one containing the consonants of the same model. These two clusters were
already part of our original linguistic initialization.

With the two extra clusters the orthographic model decreased to 241 hypotheses
excluding 6 cluster definitions (-17%). Now the model accepted 594 positive test
strings (99.0%) and rejected 580 negative strings (96.7%). The size of the new pho-
netic model was 220 hypotheses excluding 9 cluster definitions (-23%). It accepted
596 strings of the positive data (99.3%) and rejected 560 strings of the negative data
(93.3%).17 The performance of the phonetic model is almost the same as the perfor-
mance of the previous phonetic model. The new orthographic model accepts more
positive test strings but it also accepts more negative strings.

In this section we have used a clustering method for decreasing the size of the
rule-based models we have obtained in the previous section. The clustering method
was successful: the number of rules decreased at best with 58% for the orthographic
model and 78% for the phonetic model. However, the number of rules in these models,
241 orthographic rules and 220 phonetic rules, is still quite large.

5 Concluding Remarks

We have started this chapter with an introduction to rule-based learning. We have ex-
plained that neither lazy learning nor decision trees are useful for our learning problem
because we want to work with positive examples only. These two learning methods
require both positive and negative learning input. We have chosen the learning method
Inductive Logic Programming (ILP) for our experiments. An important constraint on
ILP is that it should not contain information that was not available in our previous
learning experiments. A violation of this constraint would make a comparison of the
ILP results with the results we have obtained in the previous chapters unfair.

We have designed an ILP process which was capable of handling our orthographic
and phonetic data. We performed two variants of the learning experiments: one that
started without knowledge and one that was supplied with initial knowledge which
was extracted from the syllable model by Cairns and Feinstein (Cairns and Feinstein
1982). The non-initialized process produced models which performed well in recog-
nizing correct words but they performed poorly in rejecting negative test strings (see
figure 4.4). The linguistically initialized process generated models that performed
well in both cases (see figure 4.6).

After these experiments we have developed rule-based models with a richer inter-
nal structure. We wanted to know whether these extended models would be able to
perform better than our previous rule-based models. However, we found only a small

17Again a removal of the 26 plausible strings from the negative phonetic data led to a rejection rate of
97.2% for this data set.

Concluding Remarks 129

performance increase. The best-performing extended models, the initialized extended
models, achieved results that were only a little better than the ones of the previous
initialized models (see figure 4.8).

We have tried to decrease the size of the extended model in an attempt to obtain
models which would be easier to work with for humans. By applying a clustering
algorithm we were able to decrease the model size with more than 50% with almost
no performance decrease (see figure 4.11). However with rule sets containing between
200 and 250 rules, these models are still quite large.

From the results of the experiments described in this chapter we may conclude that
Inductive Logic Programming (ILP) is a good learning method for building monosyl-
labic phonotactic models. ILP with linguistic initialization generates models that per-
form much better than the models that were generated without initial knowledge. The
results of section 4.3 show that the number of processing stages in the models (equal
to the number of states) does not seem to have a large influence on their performance.
There is room for optimization in the models generated by ILP since the number of
rules that they contain could be decreased with more than 50% without a performance
degradation. A clear advantage of the models produced by ILP is that their internal
structure can be inspected and improved if necessary.

Chapter 5

Concluding remarks

This chapter will start with a section that summarizes and compares the results of
the experiments described in the earlier chapters of this thesis. After that we will
describe studies performed by others that were inspired by our work. The chapter will
be concluded with a section that presents the research tasks that we see as a possible
follow-up on this thesis.

1 Experiment results

In this thesis we have described the application of machine learning techniques to the
problem of discovering a phonotactic model for Dutch monosyllabic words. We have
performed experiments with three learning algorithms, two data representation meth-
ods and two initialization schemes. The learning algorithms have only been provided
with positive training data. Our goals were to find out which of the learning methods
would perform best and to find out what data representation and what initialization
scheme would enable the learning process to generate the most optimal model. The
results of the experiments have been summarized in figure 5.1.

The first learning method we have examined was the statistical learning method
Hidden Markov Model (HMM). We have used bigram HMMs which consider two
characters at a time during the string evaluation process because regarding a context
of one character is necessary for building a good phonotactic model. This learning
method has produced good phonotactic models: after training the HMMs would ac-
cept around 99% of unseen positive test data and reject between 91 and 99% of the
negative test data. There was only a small difference between training with random
and initialized models but the models performed better with phonetic than with ortho-
graphic data. One observed difference was that the training process of linguistically

131

132 chapter 5

orthographic data random initialization linguistic initialization
learning % accepted % rejected % accepted % rejected
algorithm positive data negative data positive data negative data
HMM 98.9 91.0 98.9 94.5
SRN 100 8.3 100 4.8
ILP 99.2 60.0 97.8 97.7

phonetic data random initialization linguistic initialization
learning % accepted % rejected % accepted % rejected
algorithm positive data negative data positive data negative data
HMM 99.1 98.3 99.1 99.1
ILP 99.2 70.6 99.2 98.3

Figure 5.1: The results of our experiments with generating phonotactic models for
Dutch monosyllabic words. The experiments included three learning algorithms, two
initialization configurations and two data representations. No experiments have been
performed with SRNs for the phonetic data representation because of the discour-
aging SRN results for the orthographic data representation. The HMM results for
orthographic data with linguistic initialization come from the modified initialization
(figure 2.19). The ILP results have been obtained with extended models (figure 4.8).
The rejection scores for the negative phonetic data have been computed for the set of
574 incorrect phonetic strings.

initialized HMMs required significantly less time than that of the ones with a random
initialization.

The connectionist method Simple Recurrent Network (SRN) was the second me-
thod that we have tested. This method performed surprisingly worse than the perfect
results reported in (Cleeremans 1993). SRNs produced phonotactic models that ac-
cepted all unseen positive test data. However, none of the SRN models has been able
to reject more than 8.3% of the negative test data. We have been able to show that the
poor performance was caused by the large complexity of our training data. Characters
in the data of Cleeremans et al. could be followed by at most two different characters
while characters in our data can be followed by up to twenty characters. For the pho-
netic data this difference is even larger. Therefore we have refrained from performing
SRN experiments with phonetic data.

The third learning method that we have looked at was the rule-based learning
algorithm Inductive Logic Programming (ILP). This algorithm has generated good
phonotactic models with linguistic initialization but the models generated with ran-
dom initialization had problems with rejecting negative test strings. The large score
difference for rejecting negative strings (on average 98% versus 65%) indicates that
training with linguistic initialization enables this learning method to produce better

Experiment results 133

models than training without this basic knowledge. We have performed two extra ex-
periment groups with more elaborate rule formats and with rule set compression but
these have not led to large performance differences.

It is easier to determine which of the learning methods has generated the worst
phonotactic models than to point at a single method that has done best. The perfor-
mance of the SRN models was much worse than the models generated by the other
two methods because they failed to reject many negative test strings. HMMs generated
better models than ILP in training processes without linguistic initialization. However
when the algorithms were equipped with basic linguistic knowledge they would gen-
erate models which performed equally well. When it comes to choosing one of the
learning methods for future studies, we would recommend using ILP for three reasons.
First because ILP is capable of generating good phonotactic models when equipped
with initial linguistic knowledge. Second because it, unlike HMMs, generates models
that consist of rules which can be inspected and understood by humans. And third
because the algorithm trained faster than its closest rival HMMs.

An inspection of figure 5.1 will reveal the answer to the question which data rep-
resentation format, orthographic or phonetic, has suited the learning processes best.
When we compare the results of the experiments with HMMs and ILP we see that in
all cases the scores for the phonetic experiments are as least as good or better than the
scores for the corresponding orthographic experiments. Although this is not a proof,
it is an indication that it has been easier for the learning algorithms to discover regu-
larities in the phonetic data than in the orthographic data. This result has surprised us.
The larger number of different characters in the phonetic data and the larger entropy
of this data had led us to the expectation that it would be more difficult to build a good
model for the phonetic data than for the orthographic data.

The answer to the question whether starting the learning process from an initial
linguistic model would enable the generation of better phonotactic models can also be
found by inspecting figure 5.1. In the HMM and ILP results the scores of the initialized
experiments are as least as good as the noninitialized experiments in all but one case
(ILP: accepted positive orthographic test data).1 The difference is largest for the ILP
rejection rate of negative test data. This is an indication that initial basic linguistic
knowledge will help learning algorithms to generate better phonotactic models. In
the HMM experiments initial linguistic knowledge also sped up the training process.
These results have been in accordance with what we had expected.

So HMMs and ILP have generated good phonotactic models but the SRN models
performed poorly We favor ILP over HMMs because ILP trains faster and generates
models which are understandable for humans. The results of our experiments indicate
that representing the data in phonetic format and having access to basic linguistic
information ables the learning processes to generate better phonotactic models.

1This exception may have been caused by a less suitable initial orthographic model.

134 chapter 5

2 Recent related work

The publication in (Tjong Kim Sang 1995) of the research results mentioned in chap-
ter three of this thesis has led to follow-up research by others. In this section we will
discuss work by Stoianov and Nerbonne with Simple Recurrent Networks (SRNs),
work by Bouma with SRNs and Synchronous-Network Acceptors and work by Klun-
gel with genetic algorithms.

(Stoianov et al. 1998) discusses a series of experiments in which SRNs were trained
and tested on building phonotactic models for orthographically represented monosyl-
labic and multisyllabic Dutch words. With a different data set than ours, the authors
have achieved an SRN performance that is better than any of the learning methods
tested in this thesis: a total error of 1.1% on accepting positive monosyllabic test data
and rejecting negative data. The results were obtained in a sequence of three experi-
ment set-ups in which each set-up improved the performance of the previous one.

In the third experiment set-up the authors changed their word evaluation routine
from a function similar to the Cleeremans measure (our measure 1 from section 3.1
of chapter 3) to an evaluation routine in which the word score was equal to the prod-
uct of the character scores. This decreased the error rate of the SRN from approx-
imately 3.5% to 1.1%. In our experiments the word evaluation measure used by
(Cleeremans 1993) performed worst. We have suspected that the Cleeremans mea-
sure can be improved and this new result provides more empirical support for that
suspicion.

In the second experiment group the authors switched from a stand-alone SRN
training process to a parallel competitive training process. In this training process
the networks are tested at different time points and networks that perform poorly are
replaced. This technique is borrowed from the genetics algorithms field and was sug-
gested by Marc Lankhorst (Lankhorst 1996). It helps the training process to get out
of local minima and increases the possibility of finding an SRN that performs well. A
disadvantage of this approach is that it requires supplying the network with negative
information during the training process. This method was explicitly excluded in our
learning experiments.

Using the competitive training process enabled the SRNs to go down from a total
error rate of 7.5% to 3.5% on monosyllabic data. The set-up of experiments in the first
group, which reached the 7.5% error rate, comes closest to our own experiment set-up.
However there are three important differences between this first group and our own
experiments. The first difference is that (Stoianov et al. 1998) have implicitly dropped
our constraint that all training data has to be accepted. The error rate was obtained
by choosing a word acceptance threshold which accepted as many positive data as
possible while rejecting as many negative data as possible. We have experimented
with this approach and reached an error rate of 16.3% at best (chapter 3, figure 3.16,
SRNs, measure 3, 90%). Again the consequence of this approach is that to obtain the
best threshold one has to make the network evaluate negative data.

The second difference between this group of experiments and our experiments
was that the training data was weighted by frequency. Frequent words occurred more

Recent related work 135

often in the training data. The number of times that a word appeared in the train-
ing data was equal to the logarithm of its frequency observed in a big text corpus.
(Bouma 1997) has shown that incorporating frequency information in the training data
will help SRNs to generate better phonotactic models.

The third difference was that negative data that was close to positive data was
removed from the test data set. For the data evaluation the authors used the string
distance function Levenshtein distance. The only strings that were allowed in the
negative data set were strings that differed in two or more characters from any word
in the positive data set. This restriction will simplify the task of the networks but we
do not know how large the influence will be on the performance.

Stoianov and Nerbonne have provided empirical evidence for the fact that SRNs
can be used as phonotactic models for Dutch. This is not something which we want to
dispute. We have taken the same position as (Cleeremans 1993): we were interested
in finding out whether SRNs canlearna good representation for the phonotactic data.
The authors have shown that this question should be answered with yes. However, the
question whether SRNs are able to build good phonotactic models from positive data
only, remains unanswered.

(Bouma 1997) presents a study in which SRNs and Synchronous-Network Accep-
tors (Drossaers 1995) have been used for generating phonotactic models for Dutch
monosyllabic words. In the SRN experiments he used similar techniques as Stoianov
and Nerbonne in their initial group of experiments: including frequency information
and dropping the constraint that all training data must be accepted. No limitations
were put on the negative data but the positive data was restricted to the top 67% of a
frequency ordered word list. With this approach Bouma’s SRN obtained a combined
error of 10.2% at best.2 In his experiments SRNs that worked with data in which fre-
quency information was incorporated performed better (at best an error rate of 10.2%)
than SRNs that were trained with data without such information (at best 15.3%).

A Synchronous-Network Acceptor (SNA) is a biologically-plausible self-organi-
zing neural network developed by Marc Drossaers (Drossaers 1995). It can be con-
sidered as a two-layer feed-forward network with links between the cells in the output
layer. SNAs use two different variants of Hebbian learning during the training pro-
cess. Bouma has performed three experiments with SNAs: one with orthographic data
and two with phonetic data. This data did not contained frequency information. The
experiment with orthographic data was a success: the SNA achieved a combined er-
ror rate of 2.1%. The experiments with phonetic data generated results which were
worse: an error rate of 3.8% for locally encoded data and 28.1% for data encoded with
phonetic features.

The results of the experiments of Bouma show that there are neural networks
which can acquire good phonotactic models for Dutch monosyllabic words with pos-
itive training data only. It came as a surprise to us that in these experiments phonetic

2The best result was obtained with a threshold value which was determined by examining the perfor-
mance of the SRNs on the test data. We feel that the test data should not be taken in consideration when
determining the evaluation measure.

136 chapter 5

training data resulted in a worse performance than orthographic data. The 28.1% can
probably be improved by using a different phonetic feature encoding. Bouma’s re-
sults for his orthographic data set, which differs from ours, are better than the results
obtained in any of our orthographic experiments.

(Klungel 1997) describes a series of experiments with genetic algorithms which
generate models for the phonotactic structure of Dutch monosyllabic words. These
experiments have been inspired by work on generating finite state automatons with
genetic algorithms by Pierre Dupont (Dupont 1994). Klungel has used finite state
models as phonotactic models which he has represented as so-called chromosomes in
the genetic algorithms. In each experiment 30 models were submitted to a continuous
modification process in an environment in which the best ones had the largest chance
to survive. The genetic algorithm had access to positive and negative phonotactic data.

Klungel has performed experiments with two evolution methods and three fitness
functions. The evolution method Individual Replacement performed best. Of the three
fitness functions the lowest error rate was obtained with the one that used the average
of the accepted positive data and rejected negative data as a model evaluation score
(combined error rate of 8.5%). However this function did not generate models which
performed consistently in the later phase of the training process.

The experiments performed by Klungel show that it possible to generate reason-
able phonotactic models with genetic algorithms. We believe that even better results
are possible with different genetic operators and a different initialization phase. How-
ever improving the operators and the initialization phase for this learning problem is a
nontrivial task. One can imagine that they would benefit from having access to basic
linguistic knowledge. A disadvantage of genetic algorithms is that it seems necessary
to supply this learning method with negative data during training.

3 Future work

The work presented in this thesis and the studies discussed in the previous section
have left some questions unanswered. These can be dealt with by performing follow-
up research. This section will discuss possible directions for such research.

In section 2.3 of chapter 1 we have attempted to compute the complexity of our
data set in order to predict the difficulty of our learning problems. We have taken
a look at data entropy and the Chomsky grammar hierarchy in order to achieve that
goal. Neither of the two methods was able to give an unambiguous answer to the
question whether the orthographic data set or the phonetic data set was more complex.
We would be interested in finding data complexity measures which are better suited
for predicting the difficulty of learning problems. One of the measures that could be
suitable is the Kolmogorov complexity used in (Adriaans 1992).

The work of Mark Ellison (Ellison 1992) has been discussed in section 3.1 of
chapter 1. Ellison has put five constraints on his learning algorithms. Of our learning
methods Inductive Logic Programming (ILP) comes closest to Ellison’s goal: it satis-
fies four of the five constraints. The first constraint, learning algorithms should work

Future work 137

in isolation, is not satisfied because we have trained ILP with monosyllabic data. This
can be fixed by using multisyllable words as training and test data for ILP.

The experiments in this thesis have been performed with monosyllabic words
rather than multisyllabic data in order to keep down the complexity of the learning
problem. Now that we have shown that machine learning techniques can generate
good phonotactic models for monosyllabic data, the next logical step is to test them on
multisyllabic data. Others have already shown that some machine learning techniques
can generate good phonotactic models for multisyllabic data (Stoianov et al. 1998). It
would be interesting to apply other learning methods to this type of data as well.

Our work with Simple Recurrent Networks (SRNs) has generated a large response.
The poor SRN performance reported by us has inspired many others to suggest and test
modifications of the learning algorithm and the experiment set-up. One of the modi-
fications that was suggested was incorporating information about the frequency of the
words in the training data (Stoianov et al. 1998) (Bouma 1997). The experiments per-
formed with frequency based training data have resulted in better phonotactic models
than our experiments did. These results have been obtained with SRNs. We would be
interested in finding out whether Hidden Markov Models could benefit from frequency
information in the training data as well.

The SRN experiments by Stoianov, Nerbonne and Bouma have used negative data
for determining optimal network acceptance threshold values. We suspect that these
threshold values will also reject part of the training data (see figure 3.16 in chapter
3). This raises two interesting questions. First one could ask if every SRN experiment
would benefit from disregarding part of the training data after the training phase. In
other words: Can we improve the performance of SRNs on the test data by determin-
ing the acceptance threshold values from the bestx% (x < 100) of the training data
after training rather than from all training data? Our own experiments suggest that this
x value would be around 90%. This leads us to the second question: Would such a
cut-off value be the same for all SRN experiments? Finding a universal cut-off value
would enable us to determine SRN acceptance threshold values by using training data
only and relieve us from having to use negative data.

We would like to see other machine learning techniques applied to our data. One
group of techniques which seems useful are the memory-based lazy learning algo-
rithms used in the work of Walter Daelemans and Antal van den Bosch. The re-
sults reported for these learning techniques applied to phonological and morpholog-
ical problems have been better than for decision trees and the connectionist method
backpropagation (Van den Bosch et al. 1996). However, these learning methods re-
quire both positive and negative training examples. Perhaps it is possible to construct
a clever problem representation for getting around this requirement.

In studies that follow-up our work there are two issues that should be taken care
of. In the first section of this chapter we have compared the results of our learning ex-
periments. We have been unable to give exact answers to our three research questions
because the lack of statistical data. Most of our experiments have resulted in single
test scores. It would have been better if they had generated average test scores with
standard deviations. This would have made possible comparison statements which

138 chapter 5

were supported with significance information.
Obtaining statistical data for experiment results requires repeating experiments

several times. This might not always be useful. For example, performing our ILP
experiments one more time with the same data would lead to the same results because
our ILP training method is deterministic and uses a static initialization. Here we need
an experiment set-up called 10-fold cross validation used in the work of Daelemans
and others and originally suggested by (Weiss et al. 1991). In this experiment set-up
the positive data is divided in ten parts and the training and test phase are performed
ten times while each time a different data part is excluded from the training data and
used as test data. We suggest that future experiments with our data be performed in
this way to enable a statistically based comparison of the different experiments.

A second issue that should be taken care of in future experiments is consistent
usage of the same data sets. In our work we have used the same training and test data
for the experiments with the three learning methods. However (Stoianov et al. 1998)
and (Bouma 1997) have used different data sets and this makes comparison of their
results with ours difficult. In order to prevent this from happening in the future we will
make our data sets universally accessible so that future experiments can be performed
with the same data.3

Future work in applying machine learning techniques to natural language will
not be restricted to generating phonotactic models for monosyllabic or multisyllabic
words. One goal of our work has been to show that these techniques can be applied
successfully to a small section of this domain. We hope that this thesis will provide in-
spiration for others to continue with new applications of machine learning techniques
in larger parts of the natural language domain.

3Our data sets can be found on http://stp.ling.uu.se/˜erikt/mlp/

Bibliography

Adriaans, Pieter Willem (1992).Language Learning from a Categorial Perspective.
PhD thesis, University of Amsterdam, The Netherlands. ISBN 90-9005535-5.

Alphen, Paul van (1992).HMM-based continuous-speech recognition. PTT Re-
search, Leidschendam, The Netherlands. PhD thesis University of Amsterdam, ISBN
90-72125-32-0.

Baayen, R.H., R. Piepenbrock and H. van Rijn (1993).The Celex Lexical Database
(CD-ROM). Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA.

Blank, Douglas S., Lisa Meeden and James B. Marshall (1992). ‘Exploring the
Symbolic/Subsymbolic Continuum: A Case Study of RAAM’. In: J. Dinsmore
(ed.), Closing the Gap: Symbolism vs. Connectionism. Lawrence Erlbaum Asso-
ciates, 1992.

Bosch, Antal van den (1997).Learning to pronounce written words – A study in
inductive language learning. Uitgeverij Phidippedes, Cadier en Keer. PhD thesis
Katholieke Universiteit Brabant. ISBN 90-801577-2-4.

Bosch, Antal van den, Walter Daelemans and Ton Weijters (1996). ‘Morphological
Analysis as Classification: an Inductive-Learning Approach’. In: K. Oflazer and
H. Somers (eds.),NeMLaP-2. Proceedings of the Second International Conference
on New Methods in Language Processing, pp 79–89. Ankara, Turkey, 1996.

Bosch, Antal van den, Walter Daelemans and Ton Weijters (1996b). ‘Morphological
Analysis as Classification: an Inductive-Learning Approach’. In:Proceedings of
NeMLaP-2, Bilkent University, Turkey. 1996. Also available as cmp-lg/9607021.

Bosch, Antal van den, Ton Weijters, H. Jaap van den Herik and Walter Daelemans
(1997). ‘When small disjuncts abound, try lazy learning: A case study’. In: P. Flach,
W. Daelemans and A. van den Bosch (eds.),Proceedings of the 7th Belgian-Dutch
Conference on Machine Learning, BENELEARN-97. 1997.

Bouma, H.H.W. (1997).Learning Dutch Phonotactics with Neural Networks. Master
thesis, Alfa-informatica department, University of Groningen.

139

140 BIBLIOGRAPHY

Cairns, Charles E. and Mark H. Feinstein (1982). ‘Markedness and the Theory of
Syllable Structure’. In:Linguistic Inquiry, 13 (2), 1982.

Charniak, Eugene (1993).Statistical Language Learning. MIT Press.

Chomsky, Noam (1965).Aspects of the Theory of Syntax. MIT Press.

Cleeremans, Axel (1993).Mechanisms of Implicit Learning. The MIT Press.

Cleeremans, A., D. Servan-Schreiber and J.L. McClelland (1989). ‘Finite State Au-
tomata and Simple Recurrent Networks’. In:Neural Computation, , pp 372–381,
1989.

Daelemans, Walter and Antal van den Bosch (1996). ‘Language-Independent Data-
Oriented Grapheme-to-Phoneme Conversion’. In: J. van Santen, R. Sproat, J. Olive
and J. Hirschberg (eds.),Progress in Speech Synthesis. Springer Verlag, 1996.

Daelemans, Walter, Peter Berck and Steven Gillis (1995). ‘Linguistics as Data Min-
ing: Dutch Diminutives’. In: Toine Andernach, Mark Moll and Anton Nijholt (eds.),
CLIN V: Papers from the Fifth CLIN Meeting. Neslia Paniculata Taaluitgeverij, 1995.

Daelemans, Walter, Steven Gillis, Gert Durieux and Antal van den Bosch (1993).
‘Learnability and Markedness in Data-Driven Acquisition of Stress’. In: T. Mark El-
lison and James M. Scobbie (eds.),Computational Phonology, volume 8, pp pp157–
158. Edinburgh Working Papers in Cognitive Science, 1993.

Drossaers, Marc (1995).Little Linguistic Creatures – Closed Systems of Solvable
Neural Networks for Integrated Linguistic Analysis. PhD thesis, Twente University.

Dupont, P. (1994). ‘Regular Grammatical Inference from Positive and Negative Sam-
ples by Genetic Search: the GIG method’. In: R.C. Carrasco and J. Onica (eds.),
Grammatical Inference and Applications, Lecture Notes in Artificial Intelligence 82.
Berlin Heidelberg, 1994.

Ellison, T. Mark (1992). The Machine Learning of Phonological Structure. PhD
thesis, University of Western Australia.

Elman, Jeffrey L. (1990). ‘Finding Structure in Time’. In:Cognitive Science, 14,
1990.

Elman, Jeffrey L. (1991). ‘Incremental Learning, or The importance of starting
small’. In: Proceedings Thirteenth Annual Conference of the Cognitive Science So-
ciety. Lawrence Erlbaum Associates, 1991.

Finch, Steven P. (1993).Finding Structure in Language. PhD thesis, University of
Edinburgh.

Freedman, David, Robert Pisani, Roger Purves and Ani Adhikari (1991).Statistics.
W.W. Norton & Company. ISBN 0-393-96043-9.

BIBLIOGRAPHY 141

Fudge, Erik and Linda Shockey (1998). ‘The Reading Database of Syllable Struc-
ture’. In: Linguistic Databases. CSLI Lecture Notes Series.

Geerts, G. and H. Heestermans (1992).Van Dale Groot woordenboek der Neder-
landse taal. Van Dale Lexicografie.

Gilbers, D.G. (1992).Phonological Networks. PhD thesis, University of Groningen.
ISSN 0928-0030.

Gildea, Daniel and Daniel Jurafsky (1996). ‘Learning Bias and Phonological Rule
Induction’. In: Computational Linguistics, 22 (1), pp 497–530, 1996.

Gold, E. Mark (1967). ‘Language Identification in the Limit’. In:Information and
Control, 10, pp 447–474, 1967.

Heemskerk, J. and V.J. van Heuven (1993). ‘MORPA, a lexicon-based morphological
parser’. In: V.J. van Heuven and L.C.W. Pols (eds.),Analysis and synthesis of speech;
strategic research toward high-quality text-to-speech generation. Mouton de Gruyter,
Berlin, 1993.

Hopcroft, J.E. and J.D. Ullman (1979).Introduction to Automata Theory, Languages
and Computation. Addison-Wesley.

Huang, X.D., Y. Ariki and M.A. Jack (1990).Hidden Markov Models for Speech
Recognition. Edinburgh University Press.

Jordan, M.I. (1986). ‘Attractor Dynamics and Paralellism in a Connectionist Se-
quential Machine’. In:Proceedings of the Eight Annual Conference of the Cognitive
Science Society. Erlbaum, 1986.

Klungel, Anton (1997).Leren van Mogelijke Monosyllabische Nederlandse Woorden
– een genetische benadering. Masters thesis, Alfa-informatica department, Univer-
sity of Groningen. (In Dutch).

Lankhorst, Marc M. (1996).Genetic Algorithms in Data Analysis. PhD thesis,
University of Groningen.

Miikkulainen, Risto and Michael G. Dyer (1988). ‘Forming Global Representations
with Extended Backpropagation’. In:IEEE International Conference on Neural
Networks, volume I. IEEE, 1988.

Mitchell, Tom M., Richard M. Keller and Smadar T. Kedar-Cabelli (1986).
‘Explanation-Based Generalization: A Unifying View’. In:Machine Learning, 1,
pp 47–80, 1986.

Muggleton, Stephen (1992). ‘Inductive Logic Programming’. In: Stephen Muggle-
ton (ed.),Inductive Logic Programming, pp 3–27. 1992.

142 BIBLIOGRAPHY

Muggleton, Stephen (1995). ‘Inverse entailment and Progol’. In:New
Generation Computing Journal, 13, pp 245–286, 1995. Also available as
ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Papers/InvEnt.ps.

Partee, B.H., A. ter Meulen and R.E. Wall (1993).Mathematical Methods in Lin-
guistics. Kluwer.

Quinlan, J. Ross (1993).C4.5 : programs for machine learning. Morgan Kaufmann.
ISBN 1-55860-238-0.

Rabiner, L.R. and B.H. Juang (1986). ‘An Intrdiction to Hidden Markov Models’.
In: IEEE Acoustics, Speech and Signal Processing (ASSP) Magazine, 3, pp 4–16,
1986.

Reber, A.S. (1976). ‘Implicit learning of synthetic languages: The role of the instruc-
tional set.’. In:Journal of Experimental Psychology: Human Learning and Memory,
2, 1976.

Rich, Elaine and Kevin Knight (1991).Artificial Intelligence. McGraw-Hill.

Rosenfeld, Ronald (1996). ‘A Maximum Entropy Approach to Adaptive Statistical
Language Modeling’. In:Computer, Speech and Language, 10, pp 187–228, 1996.
Also available at http://www.cs.cmu.edu/˜roni/me-csl-revised.ps.

Rumelhart, D.E., G.E. Hinton and R.J. Williams (1986). ‘Learning Internal Repre-
sentations by Error Propagation’. In:David E. Rumelhart and James A. McClelland,
volume 1. The MIT Press, 1986.

Servan-Schreiber, D., A. Cleeremans and J.L. McClelland (1991). ‘Graded state
machines: The representation of temporal continguincies in SImple Recurrent Net-
works’. In: Machine Learning, , pp 161–193, 1991.

Spellingscommissie, Nederlands-Belgische (1954).Woordenlijst der Neder-
landse Taal. Staatsdrukkerij. (Available by anonymous ftp from ftp://
donau.et.tudelft.nl/pub/words/plattelijst.Z).

Stoianov, Ivelin and John Nerbonne (1998).Connectionist Learning of Natural Lan-
guage Lexical Phonotactics. manuscript.

Tjong Kim Sang, Erik F. (1995). ‘The Limitations of Modeling Finite State Gram-
mars with Simple Recurrent Networks’. In:CLIN V, Papers from the Fifth CLIN
Meeting. Taaluitgeverij, Enschede, The Netherlands, 1995.

Todd, Peter (1989). ‘A Connectionist Approach to Algorithmic Composition’. In:
Computer Music Journal, 13 (4), 1989.

Trommelen, M. (1983).The Syllable in Dutch, with special reference to diminutive
formation. Foris Publications.

Wasserman, Philip D. (1989).Neural Computing: theory and practice. Van Nostrand
Reinhold. ISBN 0-442-20743-3.

Weijters, Ton and Geer Hoppenbrouwers (1990). ‘Netspraak: Een neuraal netwerk
voor grafeem-fonomeen-omzetting (Netspraak: A neural network for converting text
into a phonological representation)’. In:TABU, 20 (1), 1990. (dutch).

Weiss, S. and C. Kulikowski (1991).Computer Systems that Learn. Morgan Kauf-
mann.

Wexler, Kenneth and Peter W. Culicover (1980).Formal Principles of Language
Acquisition. MIT Press.

Winston, Patrik Henry (1992).Artificial Intelligence. Addison-Wesley.

Zeidenberg, Matthew (1990).Neural Network Models in Artificial Intelligence. Hor-
wood, Chichester. ISBN 0-13-612185-3.

Zonneveld, R.M. van (1988). ‘Two Level Phonology: Structural Stability and Seg-
mental Variation in Dutch Child Language’. In: F. van Besien (ed.),First Language
Acquisition. ABLA papers no. 12, University of Antwerpen.

143

Samenvatting

Dit proefschrift bespreekt de toepassing van leertechnieken bij de computationele ver-
werking van natuurlijke taal. We hebben drie verschillende leermethoden gebruikt
voor het genereren van fonotactische modellen. Deze modellen hebben als taak het
beoordelen van reeksen letters. Zij moeten kunnen beslissen of een bepaald woord
wel of niet mogelijk is in een taal. Een goed fonotactisch model voor het Nederlands
zal bijvoorbeeld ’kraag’ goedkeuren en ’grmbl’ afkeuren.

In ons onderzoek hebben we geprobeerd antwoorden te vinden op de volgende
drie vragen:

1. Welke leermethode genereert de beste fonotactische modellen?

2. Heeft de representatiemethode van de leergegevens invloed op de kwaliteit van
de geproduceerde fonotactische modellen?

3. Worden de fonotactische modellen beter als de leermethode taalkundige ba-
siskennis beschikbaar heeft?

We hebben tien groepen leerexperimenten uitgevoerd. In elk van de experiment-
groepen kregen de leermethoden ongeveer vijfduizend eenlettergrepige Nederlandse
woorden aangeboden. Op basis van deze leerdata moesten zij een fonotactisch model
voor eenlettergrepige Nederlandse woorden bouwen. Deze modellen zijn daarna getest
met zeshonderd nieuwe eenlettergrepige Nederlandse woorden en zeshonderd letter-
reeksen die geen Nederlands woord vormen.

De eerste door ons geteste methode heet Hidden Markov Model (HMM). HMMs
gebruiken een statistische leertechniek. De door HMMs geproduceerde fonotacti-
sche modellen presteerden goed. De beste HMMs accepteerden 99% van de cor-
recte testdata en keurden 99% van de incorrecte testdata af. HMMs die startten met
taalkundige basiskennis bouwden sneller een goed fonotactisch model dan HMMs die
geen taalkundige basiskennis kregen aangeboden. De modellen van beide groepen
HMMs presteerden ongeveer even goed.

Als tweede hebben we een neuraal netwerk met de naam Simple Recurrent Net-
work (SRN) onderzocht. Dit netwerk presteerde erg slecht: het accepteerde alle cor-
recte testdata maar keurde nooit meer dan 5% van de incorrecte testdata af. Dit resul-
taat heeft ons verbaasd omdat in vergelijkbare experimenten beschreven in de SRN-

145

literatuur alle correcte testdata wordt goedgekeurd en alle incorrecte testdata wordt
afgekeurd. We konden aantonen dat het prestatieverschil ligt aan de complexiteit van
de leerdata. Onze leergegevens uit het Nederlands zijn veel complexer dan de data die
is gebruikt in de SRN-literatuur.

De derde leermethode die we hebben toegepast is een regelgebaseerde methode
genaamd Inductive Logic Programming (ILP). Deze leertechniek produceerde ook
goede fonotactische modellen. Het beste model gegenereerd door ILP accepteerde
99% van de correcte testdata en keurde 98% van de incorrecte testdata af. Er was een
opvallende prestatieverbetering merkbaar in de ILP-experimenten waar taalkundige
basiskennis beschikbaar was. Het afkeurpercentage voor incorrecte data lag voor mo-
dellen die waren gegenereerd zonder het gebruik van deze kennis tussen 60 en 70%.
ILP met taalkundige basiskennis produceerde modellen die gemiddeld 98% van de
incorrecte testdata afkeurden.

Na het uitvoeren van onze experimenten konden we onze onderzoeksvragen beant-
woorden. Wat betreft de prestatie van de leermethoden: HMMs en ILP genereren
fonotactische modellen die veel beter zijn dan de modellen geproduceerd door SRNs.
Hoewel de ILP-modellen iets slechter presteren dan de HMM-modellen adviseren we
het gebruik van ILP voor vervolgonderzoek. ILP heeft namelijk minder rekentijd
nodig en de gegenereerde modellen bestaan, in tegenstelling tot HMM-modellen, uit
regels die mensen kunnen interpreteren en manipuleren.

Voor het beantwoorden van onze vraag over datarepresentatie hebben we twee
verschillende representatiemethoden vergeleken: de orthografische methode en de fo-
nologische methode. In de eerste methode zijn woorden gerepresenteerd als reeksen
van letters. In de tweede representatiemethode zijn woorden gecodeerd als reeksen
van fonologische symbolen. Zowel HMM-modellen als ILP-modellen presteerden
beter voor fonologische data dan voor orthografische data. SRNs zijn alleen maar
toegepast op orthografische data.

De experimenten met taalkundige basiskennis leverden modellen op die op bijna
alle punten beter presteerden dan de modellen die waren gebouwd zonder deze kennis
te gebruiken. Het verschil was het grootst voor de ILP-modellen in de scores voor het
afkeuren van incorrecte testdata. Het beschikbaar stellen van taalkundige basiskennis
helpt leeralgorithmen dus bij het produceren van betere datamodellen.

We concluderen dat HMMs en ILP goede fonotactische modellen kunnen bouwen
voor eenlettergrepige woorden uit een natuurlijke taal zonder dat incorrecte data hoeft
te worden aangeboden tijdens het leerproces. SRNs genereren slechtere modellen
omdat zij moeite hebben met de complexiteit van de data. De beste fonotactische mo-
dellen kunnen worden verkregen door de data te representeren als reeksen van fono-
logische symbolen en door tijdens de leerfase taalkundige basiskennis ter beschikking
te stellen.

146

