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Frequency Domain Volume Rendering by the Wavelet
X-Ray Transform

Michel A. WestenbergStudent Member, IEEEBNd Jos B. T. M. RoerdinkMember, IEEE

Abstract—We describe a wavelet-based X-ray rendering and perspective projection. However, it turns out to be one
method in the frequency domain with a smaller time complexity of the preferred techniques for medical applications, because
than wavelet splatting. Standard Fourier volume rendering is physicians are well-trained in interpreting X-ray like images

summarized and interpolation and accuracy issues are briefly for di is. Th di th tical tis th
discussed. We review the implementation of the fast wavelet Or diagnosis. The corfesponding matieématcal Concept IS tne

transform in the frequency domain. The wavelet X-ray trans- X-ray transform well-known from computerized tomography
form is derived, and the corresponding Fourier-wavelet volume [4]. An efficient way to compute this transform makes use of
rendering algorithm (FWVR) is introduced. FWVR uses Haar or  frequency domain techniques [5], [6]; in the following, this
B-spline wavelets and linear or cubic spline interpolation. Various - athnq js referred to @urier volume renderingabbreviated
combinations are tested and compared with wavelet splatting - .

(WS). We use medical MR and CT scan data, as well as a 3-D &5 FVR. _Afte_r an _|n|t|al 3-D Fourier transform of the dat_a,
analytical phantom to assess the accuracy, time complexity, and @ View direction@ is chosen and the values of the Fourier

memory cost of both FWVR and WS. The differences between transform in a plane, called ttsfice plane perpendicular t@

both methods are enumerated. are computed. Interpolation in frequency space is necessary to
Index Terms—Fourier volume rendering, Fourier-wavelet Obtain the values of the Fourier transform of the function to be
volume rendering, wavelet splatting, wavelet X-ray transform. visualized at a regular pixel grid in the slice plane. A subsequent

inverse 2-D Fourier transform gives the desired image in the
view plane. The time complexity of FVR is dominated by the
2-D inverse Fourier transform from the slice plane to the view
ISUALIZATION and exploration of large three-dimen-plane, hence i¥)(N? log N) for a volume data set of size
sional (3-D) digital data volumes is becoming increasingliy x N x N. Frequency domain volume rendering algorithms
popular. Volume rendering is prominent among the techniqui&ve to deal with problems related to high interpolation cost
which have been developed for this purpose, using advancgdi high memory cost. However, since processing power has
computer graphics techniques such as illumination, shading anereased and memory costs have dropped significantly, these
color. The desire to exchange volume data through systems spatiblems are less serious on modern hardware.
as the Internet has created a need for fast and efficient methodanother volume rendering method based on the X-ray trans-
of transfer and display. To relieve the demand on the server ¢arm is splatting[7]. This is an object order method which re-
pacity, volume data may be stored on a central server, while (peshstructs a continuous function from discrete data by convolu-
of) the rendering is performed on client systems. Not all of thegien with a reconstruction filter, followed by a mapping to the
clients will have a high-bandwidth network connection, so thithage plane by superposition of building blocks called “splats”
we need a mechanism to visualize data incrementally as it ar-“footprints.” This method supports occlusion, shading, and
rives (“progressive refinement”). For this purpose multiresolyerspective projection, but suffers from color bleeding or “pop-
tion models are developed, allowing systematic decompositipimg” [8] and aliasing [9]. Previouslyyavelet splattingnas been
of the data into versions at different levels of resolution. Arproposed by Lippert and Gross [10] as an extension of the splat-
other benefit of such approaches is local level-of-detail (LODjing method, see also [3], [11]. Wavelet splatting modifies the
i.e., using a lower resolution for small, distant or unimportasfplatting algorithm by using wavelets as reconstruction filters,
parts of the data. Such a mechanism is provided by the wavedetthat data can be visualized at different levels of detail. Just as
technique. the original splatting method, the time complexity of this algo-
This paper is concerned with a direct volume renderingthm is O(N3).
method [1] calledX-ray volume renderingwhich is based  The purpose of this paper is the derivation of a wavelet-based
upon integrating the 3-D data along the line of sight, yielding-ray rendering method with a smaller time complexity than
a two-dimensional (2-D) image in the view plane. The methaglavelet splatting. Since in ordinary volume rendering this goal
supports shading and depth-cueing [2], [3], but no occlusi@an be achieved by frequency domain techniques, a similar ap-
proach is followed in this paper, resulting in an algorithm with
. . o the same time complexity as ordinary FVR, (& N? log N).
Manuscript repe|ved May 6, 1999_, revised vaemberSO, 1999.' The assc_)matel_o achieve this goal, we study theavelet X-ray transform
editor coordinating the review of this manuscript and approving it for publica- ’ )
tion was Prof. Kannan Ramchandran. as introduced in [12], which combines integration along the line
The guthors are \{vith the Institute for Mqthematics and Computing SCien_‘Eﬁ'Sight with a simultaneous 2-D wavelet transform in the plane
University of Groningen, 9700 AV Groningen, The Netherlands (e-mail: . . .
michel@cs.rug.nl; roe@cs.rug.nl). perpendicular to this line. A closely related transform was intro-
Publisher Item Identifier S 1057-7149(00)05316-1. duced in [13], [14], and combines integration over a line with a
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simultaneous 1-D wavelet transform along this line. We derive O
an efficient implementation of the wavelet X-ray transform by :
using a frequency domain implementation of the wavelet trans-
form [15], [16]. This is particularly efficient when the length

of the wavelet decomposition and/or reconstruction filters is
large, as is the case for some of the basic wavelets (e.g. B-spline
wavelets) used in this paper. This results in an algorithm whose
initial step, i.e. computation of the Fourier transform in a slice
plane, is identical to that of ordinary FVR. The additional step is
a wavelet decomposition of the slice plane data in Fourier space
to a given level of detail. Approximation images are then ob-
tained by a partial wavelet reconstruction in Fourier space, fol- Fig. 1. View plane orthogonal to the direction veogor
lowed by a 2-D inverse Fourier transform. Since wavelet detalil

coefficients are available in Fourier space, progressive refi@- FVR Algorithm

ment is straightforward. The Fourier space representation doe

not allow local level-of-detail. ﬁiering. Assume that the volume data are samples on a uniform

The qrgamzaﬂon of th's. Paper 1S as fO"(.)WS' Section .grid of a band-limited functiory, whose highest frequency is
summarizes standard Fourier volume rendering. Interpolatign : . .
. ) X . ) etermined by the sampling rate of the volume data (nonuni-
and accuracy issues are briefly discussed. Section Ill introduces = . ) : . :

: : : . form grids require resampling). The FVR algorithm consists of
some basic wavelet concepts, and reviews implementation, 0 :
: . . the following steps.
the wavelet transform in the frequency domain. Section IV then ' ) )

» PreprocessingCompute the 3-D discrete Fourier trans-

introduces the wavelet X-ray transform and the corresponding
Fourier-wavelet volume rendering (FWVR) algorithm. A com-  [0rm of the volume data by FFT. _
parison of the new method and wavelet splatting with respect * Actual volume rendering-or each directiod, do:

Yhe Fourier slice theorem is the key to Fourier volume ren-

to accuracy, time complexity and memory cost is presented in 1) Interpolate the Fourier transformed data and re-
Section V. Section VI contains a summary and discussion of sample on a regular grid of points in the slice plane
future work. orthogonal taf (“slice extraction”).

2) Compute the 2-D inverse Fourier transform, again
by FFT. This yields a discrete approximation to
Il. FOURIER VOLUME RENDERING Pof.

Fourier domain volume rendering methods [5], [6] provide afihe first step is just preprocessing: the 3-D Fourier transform
implementation of X-ray volume rendering, where the volumie computed only once. The next two steps are repeated for
data are integrated along the line of sight. The mathematieglch viewing direction. The time complexity for computing
basis is the X-ray transform, well-known from computerizedne view depends both on the complexity of the 2-D Fourier

tomography [17]. transform and on the interpolation cost. If the extracted slice is
of size N by N, then the complexity of the Fourier transform
A. X-Ray Transform is O(N? log N). The complexity of 3-D interpolation is

O(K?3N?), whereK is the linear size of the interpolation filter
with K much smaller thaaV. Although the Fourier transform
is asymptotically dominant, in practice most of the running
time is spent on interpolation.

Consider the line integrals of a continuous functf@s), z =
(z,y, ) € R3, along a direction vectd?. Let« andv be two
mutually orthogonal vectors perpendiculatactf. Fig. 1. The
X-ray transformPg f of f is defined by

C. Interpolation

Po f(u, v) = f@)b(x-uv—u)b(x-v—v)de Interpolation is the most critical step in Fourier rendering, and
R? good interpolation functions are needed to avoid artifacts such

= / f(un + vv +10) dt, (1) as aliasing and dishing. Dishing is a hill-shaped weighting ar-

R tifact due to the shape of the Fourier transform of the interpo-

lation function, resulting in reduced intensities away from the

) o . enter of the image. Aliasing is due to insufficient sampling. A
The Fourier projection slice theorem [17] states that the 2- g g ping

Fourier t ; f the X ¢ ‘ Is the 3-D et of discrete samples in the frequency domain corresponds to
ourier transform of the X-ray transforf, f equals the 3- _aninfinitely periodic signal in the spatial domain. If the original

Fourier trans_form off along a slice plane through the origlnSampling step in frequency spacéis one has to resample with
and perpendicular t8 a step size of at leag,/+/3 in order to prevent aliasing [5]. In
practice one usually takes a resampling step sizéygR. A
FoPof(wu, wy) = Faf(wyu + w,v) (2) way to reduce aliasing is to pad the data in the spatial domain
with zeros before the initial 3-D Fourier transform is taken. This
where F,, f denotes the:-dimensional Fourier transform of aseparates the replicas in the spatial domain, and decreases the
function f. sampling distance in the frequency domain. A disadvantage of

where a dot denotes the inner producih
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zero-padding is increased memory usage. In the case of volume
data, zero-padding by a factor of two increases the required
amount of memory by a factor of eight.

Frequency domain interpolation with a filtdr(k) corre-
sponds to multiplication (windowing) of the original image
by the inverse Fourier transform df(k). Since ideally the
window function should be rectangular, the ideal resampling
filter in Fourier space is aincfunction. To reduce the compu- 50 100 150 200 250
tational demands, interpolation functions with smaller support
are used. Linear interpolation is computationally attractive, b€ ? OAgalytical projection image of the 3-D head phantom for
the side lobes of the linear interpolation function in the spatial™ (1,0.0).
domain are the source of severe aliasing, requiring a large
amount of initial zero-padding of the volume data. The cubic
spline function is a better approximation of a rectangle than
the linear interpolation function; it has a higher computational
complexity, but requires less zero-padding [6]. The 2-D filters
needed for FVR are constructed as products of the 1-D filters.
Both interpolation functions have been compared by Napel
et al. [6] for Fourier domain volume rendering. Keys [18]
and Parkeret al. [19] give a more extensive comparison of
interpolation filters in general.

Malzbender [5] introduceslpatial premultiplicatioras a pre- @ (b)
processing operation to reduce dishing. Spatial premultiplica-
tion entails point-wise multiplication of the data in the spatial
domain by the reciprocal of the inverse Fourier transform of
the interpolation function. Although spatial premultiplication
reduces dishing, it increases the aliasing error, because effec
tively all periodic copies of the data in the spatial domain are
premultiplied by the reciprocal function.

D. Accuracy

In order to assess the quality of various volume rendering
algorithms we use a 3-D head phantom, as defined in Kak and
Slan?y [17], consisting of a CO||§CtI0n of ellipsoids of differengig 3. Results of Fourier volume rendering with different interpolation
density values. Because of the linearity of the X-ray transformapctions and amounts of zero-padding. The images are displayed with

a projection of an object consisting of ellipsoids is the sum §jverted grey values. (a) Linear interpolation, 20% zero-padding. (b)
Inear interpolation, 100% zero-padding. (c) Cubic spline interpolation,

the projections of the ind_iVidual ellipsoids. These projectiongy, zero-padding. (d) Cubic spline interpolation, 100% zero-padding.
can be computed analytically. We have slightly adapted the= (1, 0, 0).

phantom, originally devised to test the accuracy of tomographic
reconstruction algorithms, so that the range of grey valuesaiasing. The first replica shows up clearly, and close inspection
better suited for visual inspection (see the Appendix). Besidesveals that the second replica is also visible, though very
analytical projections, we generated a volume data set fafntly, between the image in the center and the first replica
size 1282 from the mathematical description. To reduce highear the edge. For cubic spline interpolation, aliasing is much
frequencies in the phantom volume data, the ellipsoids dess prominent. For 100% zero-padding, no visible aliasing
smoothed by supersampling by a factor of two and by weightirmmgcurs, but memory costs are increased by a factor of eight.
with a fourth-order B-spline filter. This makes the phantom Fig. 4 shows intensity profiles corresponding to the line
more realistic, since data originating from a CT-scanner, f@a22 of the images shown in Fig. 3. Without premultiplication
example, are low-pass filtered as well. Independent of tled 20% zero-padding, dishing is very severe for linear inter-
amount of zero padding, we use a doubling of the originpblation, but almost negligible for cubic spline interpolation.
sampling step in frequency space, so that volume data of sReemultiplication reduces dishing, but amplifies aliasing. This
N2 give rise to rendered images of si¢&V)?2. Fig. 2 shows explains the large values around= 128 for 20% zero-padding
an analytical projection of the phantom. and linear interpolation in Fig. 4(b). For both interpolation func-
Fig. 3 shows images of siz2562 of the phantom data tions, dishing disappears completely with 100% zero-padding.
rendered by FVR without premultiplication, for both linear In conclusion, cubic spline interpolation with 20%
and cubic spline interpolation, and with 20% and 100%ero-padding appears to offer a good compromise for FVR,
zero-padding. The images are displayed with the grey valuesulting in small aliasing error and dishing artifact. Linear
inverted, so that aliasing artifacts show up more clearly. Fotterpolation with 100% zero-padding produces nearly the
20% zero-padding, linear interpolation still suffers from sevesame results as cubic spline interpolation, but memory costs

() )
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—= A s corresponding basis functions arép; .} and {¥; r},
s SR 5k € Z, where ¢ i (x) = 279/2¢(279x — k) and

o, 1| Yya(z) = 279/29(279x — k); the dual basis functions are
defined similarly. The parametersand k£ denote scale and
translation, respectively. From the 1-D basis, one constructs
a 2-D separable wavelet basis (of the so-called nonstandard
type) with four basis functions, i.e. one scaling function
29, ,(x, y) and three wavelet basis functiols ; ,(z, v),

3000

80 100 120 140 1680 180 80 100 120 140 160 180 :
(a) without premultiplication (b) with premultiplication 7 €T = {1, 2, 3}, defined as follows:
—-  reference -_— ;eleiem:a 0 _
B LER R @ ki@, y) = ¢4 k()b ()
1
00 N (@, ) =dy k(2)s,0(y)
2
U5k, 1@ w) =150 (2)¢5,0(y)
2000, 3
Uz, ) =95 k(2)95,1(v)- ©))
1500,
An analogous definition holds for the dual scaling function
80 00 120 140 160 180 30 1?0 120 u.o ] 160' 180 (I)? L l($7 y) and wavelet basis function@:’j’ & l($7 y)
(¢} without premultiplication (d) with premultiplication The M-level wavelet representation of a 2-D functignis
, _ _ _ then given by
Fig. 4. Profiles of FVR renderings of the head phantom along thealire
122. (a) and (b) linear interpolation, (c) and (d) cubic spline interpolation. The - M 30
reference profiles are obtained by analytical computation. f(x, y) - Z Ck, I(I)J\l, k, l(x, ?J)
k1
. . . . . . J\4 .
are m_cre_ased by a factor of eight. Premult_lp_hcat_lon increases + Z Z Z di;q’; k(@ y). ()
the aliasing error, therefore, we do not use it in this paper. s e
E. Reducing Memory Costs Theapproximationcoefficients are!, = (f, ®9, , ;) and the

The 3-D Fourier transform requires complex arithmetic arfétail coefficients arely 7 = (f, ¥7, ), where(., -) denotes
a floating point representation. Since the Fourier transform of3 inner product in the spaéé (R?) of square integrable func-
real signal is hermitian, a factor of two can be saved by dropons onR?.
ping half of the Fourier transformed data. Whereas some authord? Practice one deals with functiorfsof compact support. In
invoke the Hartley transform for this purpose, we accomplisider to apply the wavelet representatigrhas to be extended
this by the use of a real-to-complex/complex-to-real FFT, suép & function on the real line. The simplest approach, and also
as provided by the package FFTW [20]. Values of coefficient§€ one we use in this paper, is to extehy zero values out-
which are not known directly can always be computed by corfilde the support. Note that, in the following, zero-padding is not
plex conjugation of the corresponding coefficients in the knowgPne explicitly, because the input to the wavelet transform has
part of the Fourier transform. The slice extraction process mal@geady been padded with zeros for slice resampling (c.f. Sec-
use of this fact to save a factor of two in the number of comption 1I-D). The amount of zero-padding is usually large enough
tations. to prevent artifacts due to circular convolution, provided that the
Secondly, the original data usually has only 2 bytes per vox8umber of decomposition levels in the wavelet transform is kept
We experimentally found that, instead of using 8 bytes pgfnall,and that the associated filters have a not too large support.
voxel, it is possible to save another factor of two by quantizin/@ use this simple approach, because other methods adapt the
the floating point values to 2-byte shorts, without Seriousr?nalysis and synthesis filters near the boundaries, and are there-
affecting the accuracy. This is done by scaling the floatifgre difficult to use in the frequency domain.
point values linearly to the full range of shorts. During the slice
extraction process, the floating point value is reconstructé%‘, Fast Wavelet Transform

which requires one multiplication and one addition. The fast wavelet transform computes the wavelet decomposi-
tion, i.e., the approximation and detail coefficients, with a sub-
IIl. W AVELETS band filtering scheme called the pyramid algorithm [21]. For

the 1-D case, the basis functiopsand are represented by

In this section some basic facts about wavelet representatiQqfiS.ote filtersh, — (hp)mez andg = (gn)nez, respectively

are introd_uced. Ir_l particulgr,_we discuss Fhe fast wavelet trarﬁ]rthermore, there exist dual filteksandg; for the orthogonal
form and its Fourier domain implementation. case these are defined by = _,, andg, = g (heref de-
) notes the complex conjugate 6f. The filters andg are used
A. Wavelet Representation in the forward wavelet transform, and are therefore called de-
A 1-D biorthogonal wavelet basis can be constructezbmposition or analysis filters; the filtefsand g are used for
from a scaling function ¢ with associated wavelet), the inverse wavelet transform, and are called reconstruction or
and dual scaling functiony with dual wavelets. The synthesis filters.
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The 2-D basis (3) is represented by the four possible ten®w, for a DFT that stores the DC component in the first array po-
products,ih, hg, gh andgg, of the 1-D filtersh andg. [For sition, downsampling is implemented by dividing the 2-D array
example(hh), ¢ = hih] Let ¢/ denote the 2-D sequenceof DFT coefficients ofz into two in both dimensions, and aver-
(c,i Uk, icz, and similarly ford?: 7. The wavelet decomposition aging the resulting four subarrays.
computes the sequences™t andd’t1:7 from ¢/ by convolu- Conversely, upsampling by a factor of two in the spatial do-
tion followed by downsampling, as follows: main means inserting zeros between the samples in both dimen-

- ) — sions. TheZ-transform of the upsampled signal is given by
o, (hh *cﬂ) dLL ||, (hg*cﬂ)

@2 = ||y (ghedd) &=y (Gged) (5)
for j = 0, ---, M — 1. Heres denotes discrete 2-D convolu-S0 if the array of DFT coefficients has dimensia¥s by N,

tion, and| |» denotes downsampling by a factor of two in botth€ DFT of the upsampled signal i2&/; x 2N, array obtained

dimensions. The filterah, kg, gh, andgg are the dual filters. by replicating this array in_ bOth dimensions. o
2) Wavelet Decomposition and Reconstructioffith the
[For example(hh)k L= Py ] _ :
Wavelet reconstruction is performed recursively starting gpove results, it is possible to represent the 2-D wavelet

level M by upsampling (denoted bi/,) followed by convo- transform in the frequency domain. Denote theransforms
lution: of the filters hh, hg, gh andgg by HH, HG, GH and GG,

respectively. For examplé{ H(z1, z2) = H(71)H( 2), where
& =hh* (112 ) + hg+ (172 T4 1) H(z) := Y., h,z™ is the 1-D Z-transform off, etc. In the
+ghx (110 PT52) 4 ggx (172 #H13) . (6) Same way, denote thB-transform ofc? by C7(z1, 22) and
that of ™ by D% 7 (2, #0). Since convolution in the spatial
domain is equivalent to multiplication in the Fourier domain,

X"(21, 22) = X (21, 23) -

C. The Fast Wavelet Transform in the Fourier Domain we can rewrite (5) in terms df-transforms
As motivated in the introduction, we need a way to com- ) down
pute the fast wavelet transform (FWT) in the frequency domain. CIt (2, 2) = oo - oﬂ} (21, 22)
Especially when the decomposition/reconstruction filters have - down
large support, such a Fourier domain implementation using the Dith () ) = HG- CJ} (21, 22)
fast Fourier transform (FFT) is more efficient than a direct com- - down
putation, as shown in [15], [16] for the 1-D case. We now con- DIt (2 7)) = |GH - Cﬂ} (21, 22)
sider the extension of this method to 2-D signals. o down
1) Up- and Down-sampling:Upsampling and downsam- DItL3(zy, ) = GG-C]} (21, 22) 9

pling can be expressed in the frequency domain ugirtgans-
forms. TheZ-transform of a 2-D discrete sign@k(n1, n2) :  where the dot denotes pointwise function multiplication.

ng =0,1,2 - N —1,ny =0,1,2 -, Ny — 1} is The reconstruction (6) becomes
defined by
Ny—1 No—1 CY (21, 22) =HH(z1, )07t (2, 23)
X (21, 22) Z Z xz(ny, no)zy g 7, 21, 72 € C. + HG(z1, z) DIt 1 (zf, zg)
n1=0 ny=0 I
@) + GH(z1, 2) D712 (21, 23)
On the unit circle, theZ-transformX (¢(27)/N1 | o(27il)/Nz) + GG(z1, ) D02 (2, 23) . (10)

coincides with the elemenky ; of the 2-D discrete Fourier

transform (DFT) of the signatl of length N; by N,. We can In practice, we deal with finite 2-D input sequence’, repre-
split this Z-transform into contributions of the samples witrsented by an array of sizé; x N». In the frequency domain, the
even and odd index, a classical technique knowrbighase result of an} -level decomposition then yields an approxima-
decompositiorin filter bank design [15], [16]. Downsampling tion arrayC* of size2=™ N; x 2=M N,, and detail array®?: 7,

corresponds to taking the samples with even index in both di= M, M -1, ---,1,7=1,2,3 of size2 7 Ny x 277 N,. An
mensions, leading to a signal wiffrtransform given by inverse FFT ofC™ and of D’ 7 yields the arrays, d/:™ of

the wavelet decomposition @f in the original domain. How-
XAz, ) = (X ( 2, 1/2)+X ( 1 7;/2) ever, since reconstruction also can be performed in frequency

1/2 1/2 1/2 1/2 space, it is not necessary to carry out these inverse FFT's. In-
+X( )—i—X (—7 —z )) : ; & fi ;
’ 12 *  stead, a reconstruction at a desired le¥elks first computed in
the Fourier domain by (10) and the resulting approximagién

The values\ o', k = , N1 /2—1,1= , Noj2—1 . : . : :
e valuesy; ;™ k =0, v/ [=0, 2/ is then inversely Fourier transformed to give the desired approx-

of the 2-D DFT of the downsampled signal are glven by

imation ¢/t o o
X’Zlolwn — ydown (e(2wik)/(1\’1/2)7 6(2m1)/(N2/2)) The DFT values of the filterdi #, HG, GH, andGG are
' Lo i i computed fromH and G as follows. The length of the signal
=1 (Ak,l + X (viy2), 0T Xk, 1 (v2/2) in the decomposition (9) decreases with increasing scale level

+Xk—(N1/2),l—(N2/2)) . (8) 4. Atlevely, let the signal length in a given spatial direction be
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24 N, larger than the length of the filter 2. Then the required
- A procedure FWD
DFT values ofH at levelj are {Input: N x N matrix X,

containing 2-D FFT of input image
Output: matrix W containing FWD}

75 ik = .
H]=H <exp|:2—jN:|> N Z h,, ¢~ (3mink2’ /N)

=HY,,, k=0,1,---,277N — 1.

{N-point 1-D FFT of decomposition filters}
H =¥rr(h,N); G =FF1(3, N)

{compute 2-D decomposition filters}
H=HHT ;G! = HGT

G2 =GHT ;G =GGT

{pyramid algorithm, M levels}

n=0

The DFT values of7 are obtained in the same way. Clearly, it
is sufficient to compute the DFT filterH° andG°. The filters

for the other scales are obtained by downsampling the filters for for j=1to M do

the finest scalg = 0. The DFT values of the synthesis filters {filter and decimate in frequency space}
are obtained in an analogous way. Again, it suffices to compute C=[HeX]dow ; D1 = (G o X]down

the filters once forj = 0, the filters for the other scales being D2 = [G2 ¢ X]4o" ; D3 = [G3 o X]down
obtained by downsampling. Based on the 1-D filter coefficients, {put detail coefficients in output matrix W}
we define 2-D filter matrice¥l’ andG? 7, 7 = 1, 2, 3, by W(l:N/2;N/2+1: N)= D1

W(N/2+1:N;1:N/2) = D2
. o , o W(N/2+1:N;N/2+1:N) = D3
J — gy’ 71 — iy
(H )k,l =H; Hy, (G )k,l = H;Gy, {set up next iteration}
j,2 — g J: 3 (Vv X=C
(GJ )k i _GkHl’ (GJ )k [ GkGl
’ ’ {downsample filters}
H= dsamp(ﬁig) ;i Gl = dsamp (G1,2)
G2 = dsamp (G2,2) ; G3 = dsamp (G3,2)

{reduce size}

and similarly for the dual filters. Alsa;” is the matrix with el-
ementsC;, , := O (RN CmiD/No) with D77 defined
analogously. Then the wavelet decomposition (9) has the matrix

. N =N/2
representatlon end for
{put lowest approximation coefficients in W}
. o .7 down R . .7 down W(]. :N;1:N)=C
Ot — |:HJ . CJ:| pitL7T — |:GJ7‘F ° CJ:|

(11)
where A o 5 denotes p0|ntvy|se multiplication of matrices Fig. 5. Two-dimensional wavelet decomposition in the Fourier doniaim.
and B, and, for a mat.”XX with an even number of rows andare column vectors of 1-D analysis filter coefficients.
columns,X<evn js defined by [cf. (8)]

D. Time Complexity

XM = 1(Xo + X + X + Xq) whenX = <§Z i((:;) Assume that the input imag€ is square and contain¥?
elements, with’V a power of two. In this case, the maximal

whereX,, X,, X., X, are the four submatrices obtained byiumber of decomposition levelsid = log, N. The first step

dividing X into two along the row and column direction. is a 2-D FFT ofc” yielding an arrayC* of Fourier coefficients.

Wavelet reconstruction (10) has the matrix representation We express the time complexity of the wavelet transform in the
number of complex multiplications in the frequency domain.

' ' ' 3 ' The number of multiplications for the first decomposition level
Ci=H o [CTH]™ 4 Z G e [DITHT]™  (12) s 42, since there are four filters. For the second decomposi-
=1 tion level, both the array size and the filter lengths are reduced
by a factor of two in both dimensions, so thitV/2)? multi-
plications are needed; etc. Altogether, the total number of mul-
tiplications forA decomposition levels is given by

X X
XU — M-1 N 2 1 M=log, N 1
(X %) (Y 2 o ey
j=0

where, for any matrixX of Fourier coefficientsX"? is the ma-
trix twice its size, defined by

3 - 3
We will refer to (11) and (12) abourier-wavelet decomposi-
tion (FWD) andFourier-wavelet reconstructiofFWR), respec- Therefore, the time complexity of the computations in the fre-
tively. quency domain i€ (N?).

For a pseudocode of wavelet decomposition and reconstrucAn approximation image in the spatial domain is obtained
tion in the Fourier domain, the reader is referred to Figs. 5 abg inverse FFT of the corresponding array in the Fourier
6, respectively. In the pseudocodé. denotes the transpose ofdomain. Since the complexity of the initial and final FFT is
A, dsamp(A, k) denotes downsampling of by a factor oft  O(N? log, V), we conclude that the overall complexity of a
in both dimensions, and(p : ¢; : s) is the submatrix ofA Fourier domain implementation of the 2-D wavelet transform
obtained by retaining only those rowand columng for which is O(N? log, N). It can be shown in a similar way that the
p<i<gandr < j < s. reverse transform has the same time complexity.
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procedure FWR Theorem 1: The coefficients in the wavelet representation
{Input: N x N matrix X containing FWD (13) for the X-ray transform of € L?(R®) are
Output: matrix W containing FWR. A 2-D ' '

IFFT of W gives the inverse wavelet ci\ll(o) (]:27’0]0 ]_—2(1)/ )(23 k, 97 l) (14)

transform in the spatial domain}

{set initial blocksize} and

K = N/(2M)

{N-point 1-D FFT of reconstruction filters} g, 1\ (o j

H =rrr(h,N) ; G = Fr1(g, N) 4 7(0) = Fy {(FaPof - F2V'T) (27K, 2°1)  (15)
{full-size 2-D reconstruction filters}

Hy, = HHT st = HGT where

G = GHT ; G}, = GGT - -
: p =5

I{/;/mﬁ“}l‘,‘ze W} & (1, v) =0y 0,0(_“7 —v)
{pyramid algorithm, M levels} \I//;(u, v) = \I/;r’ 0,0(_u7 —v).

for j =1to M do
{downsample by factor dsf}

dsf= N/(2K) Proof:' We only prove (15), the result (14) follows analo-
H = dsamp (Hgs, dsf) ; G' = dsamp (GL, dsf) gously. Using the Plancherel formula, we observe

G? = dsamp (G%, dsf) ; G* = dsamp (GL, dsf) '

A 3O = (Pof, V50,00 = (FPof, Bl 1)

{detail coeflicients} _
Dl=W(1:K;K+1:2K) = / F2Pe f(wu, wo) F2UT , ((wu, wy) dwy dwy.
D2=W(K+1:2K;1:K) »
D3I=W(K+1:2K;K+1:2K) (16)

{undecimate and filter}
W(l:2K,1:2K)=He[C]"P + G! ¢ [D1]"P+

+G2 o [D2]"P 4 G o [D3]"P Now
{set up next iteration: double size}
K =2K FoUT o (ws wi)
end for
= // 2milwyutw, '“)\I/T (u v) du dv
Fig. 6. Two-dimensional wavelet reconstruction in the Fourier doniair. = // rilwiutwo) \If/;(ij —u, 22l —v)dudv
are column vectors of 1-D synthesis filter coefficients.

. _7 vy _7 R _ . . 7 R ’.[ o~
— C27'r7,(2 kw, +2 lu,v)//C 27 i(wyu Fwy )\I//;(U,/,U/) dU,/ dU/

i i -
_ 627\'2(2 kw, +2 lwv)f‘g\lflr(wu, w’”).

IV. WAVELET X-RAY TRANSFORM

In this section thevavelet X-ray transformas introduced
in [12], is studied and an efficient implementation is derive
by computing the wavelet transform in the frequency domain.
This results in an algorithm which starts by computation of the iy 9rei(29 R 427 )
Fourier transformin a slice plane, as in ordinary FVR, followed dk,l(o) = / F2Pof(wu, wo)e

ngmg this in (16), we find

2gi\évavelet decomposition of the slice plane image in Fourier R (wu, wy) duy dey
The wavelet X-ray transfornis defined by expanding the =Fy {(FoPof - FoW'T) (2R, 2°1).
X-ray transformPy f of a function f in a 2-D wavelet series .
cf. (4
[ef. (4] By the Fourier slice theorem (2)F2Psf(wu, we) =
Pof(u, v) Z M (0)Y, o (u, v) Fa f(w.u + wyv). Therefore, the wavelet coefficients at scale

7 in (13) can be computed by multiplying a slice of the 3-D
Fourier transform off by the 2-D Fourier transform of the
g T T scaling or wavelet function at scaje followed by an inverse
+;;;dk’lw)qj”k’l(u’ v (13) 2-D Fourier transform evaluated at the points of the form
(22K, 2°1) in the view plane.
The coefficients:?, anddy; }, 7 € T'= {1, 2, 3}, now depend _
on the viewing directios. A. Algorithm
This transform can be viewed as a close relative of the wavelefThe proposed wavelet extension of FVR requires only a
X-ray transform which combines integration over a line with amall modification of the standard algorithm. The implemen-
simultaneous 1-D wavelet transform along this line [13], [141ation is facilitated by the fact that wavelet decomposition
The difference is, that we perform a 2-D wavelet transform iand reconstruction can be performed in the Fourier domain,
the plane perpendicular to the line. see Section IlI-C. The algorithm, henceforth referred to as
Now we can state the main result, which is an extension Bburier-wavelet volume rendering (FWVR), can be summa-
[12] to the biorthogonal case. rized as follows.
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» PreprocessingCompute the 3-D Fourier transform of the TABLE |
volume data (Sizé\fg). ESTIMATED TIME (IN SECONDY TO SEND FULL SIZED IMAGES (BYTES) OR
. . . APPROXIMATION AND DETAIL COEFFICIENTS(SHORTY OVER AN ISDN
* Actual volume renderind~or each directiof, do the fol- CONNECTION AND A 1 MBIT/S CONNECTION
lowing.
ISDN Internet
1) Interpolate the Fourier transform on a regular grid of (128 kbit) | (1 Mbit)
size(2N)? in the slice plane orthogonal th This : 256 x 256
ields th Ot b d for initializi th full image 4.10 0.52
yields the arrayC™ to be used for initializing the approximation coefficients 0.51 0.07
wavelet transform. detail coefficients level 2 1.54 0.20
2) Perform a 2-D Fourier-wavelet decomposi- detail coeflicients level 1 6.14 0.79
tion (FWD) of depth M, yielding approxima- - 512 x 512 —
tion coefficients C}, and detail coefficients L mAge : 38 2.10
B k1 ) approximation coefficients 0.51 0.07
DY, j=M,M-1,---, 1, respectively. detail coefficients level 3 1.54 0.20
3) Perform a partial Fourier-wavelet reconstruction detail coefficients level 2 6.14 0.79
detail coefficients level 1 24.55 3.15

(FWR) from C™, putting all detail signalsD’:~
equal to zero, followed by a 2-D inverse Fourier

transform to obtain an initial approximatiaft 4t jevelAs—1. The process continues with the detail coefficients
[size (2IV)?] in the spatial domain. of level M — 1 to compute an approximation at level — 2, etc.
4) Refine the approximation by partial FWR using therhat is, all images at level, M — 1, -- -, 0 are successively
detail signalsD”-" with K < j < M, followed by  computed.
a 2-Dinverse Fourier transform to obtain an approx- |t js possible to reduce the number of multiplications and ad-
imation&® ' [size (2IV)?] at a finer scalé inthe  gitions by adopting the so-callebnpyramidalreconstruction
spatial domain. scheme. Write the FWR equation (12) in the following form:
This approach enables us to implemetiant—servewisu-
alization system. The server performs the initial 3-D Fourier
transform, as well as the slicing and FWD at each view angle
(steps 1 and 2), and sends the required approximation and detail
coefficients to the client. The client performs the FWR and inhereHj andGé
verse Fourier transform to obtain an approximation image (steps
3 and 4). Below we describe in detail how to implement thL/sleHl _ Hj.[cj-l—l]u})’ GiTpitt — G_j,‘r.[Dj-I—l,‘r]up.
efficiently. As long as a user is interacting with the data, only
the coarsest Fourier domain approximation coefficié]‘iiﬁ are
used. When interaction ceases, the Fourier domain detail co
cientsD;’ 7 are taken into account, so that the client can obtain

3
O =HICIT! + Zgj,‘rDj+l,-r

7=1

are the operators defined by

e\%y iterating this equation, the full reconstructi@ can be
fitten as follows:

reconstructions at higher levels of detail. It is not necessary to e M
send floating point representations (4 bytes) of the coefficients, CO=Co0M 4 Z DO M—j
but the coefficients can be quantized to shorts (2 bytes). The j=0
quantization error is in the order af—*, which results in no COM 109 ... yM—1oM

visible artifacts. o 3

The progressive refinement inherent in the algorithm can im- DO M~ = HOH! ... gM—I=2 3" gM ==L pM—i.7,
prove interaction with the data significantly, since the response =1
time of the system drops. Table | provides an estimate of thetime
it takes to send full images of si2862 and5122 (in bytes), or Here,C% M is the levelM approximation reconstructed from
approximation and detail coefficients (in shorts) only. Times até" by ignoring all the detail coefficients. By successively
given for an ISDN connection with a bandwidth of 128 kbit/edding full resolution imagesD? -3 reconstructed from
and a 1 Mbit/s connection, which can be considered a fast IB—7:", we obtain approximations on levay — 1, M — 2,
ternet connection. The time for computing the wavelet decoratc.
position is not included; also communication protocol overhead Since pointwise multiplication is associative, successive up-
is ignored. samplings implicit in the product of operatat$’ can be per-

1) Progressive Refinementor ani -level wavelet decom- formed first and combined filtering at full resolution can be done
position, progressive refinement with the pyramid algorithm &fterwards. The advantage of this approach is that the filters
done as follows. First, an approximate reconstruction at levateded for each level can be computed in advance. This avoids
M in Fourier space is made by ignoring all the detail coeffiall multiplications for the levels between the lowest resolution
cients and applying a full wavelet reconstruction to the approand the full resolution, needin? multiplications. For the de-
imation coefficients. Then, a full wavelet reconstruction withail contributions there is an initial filtering step Igy/ /=1 7.
the pyramid algorithm is computed with the detail coefficientSince the 2-D filters are separable, only the 1-D filters for the
of level M only, and the result is added to the approximatiomncremental reconstruction are precomputed, which are then ap-
This refines the approximation at levil to an approximation plied to rows and columns separately. Part of this process for the
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a) () = point-wise muiplication
upsamplin,
[

—{ &
(]

by

‘ C2 upsampting 02 l 02 \reptaceC2 C3 CSIC‘?‘CSHCE'CS Calcsl

v ]

(a) level 3 (b) level 2

Fig. 7. (a) Computation ofC? from C® via upsampling followed by
multiplication. (b) Computation of'* from C* directly. The filtersH? and
H* are combined into a new filter, and® is upsampled twice. Multiplication
yields C't.

TABLE I
COMPUTATIONAL COMPLEXITY OF PROGRESSIVEREFINEMENT IN FOURIER
SPACE (IMAGE SIZE N x N, M-LEVEL RECONSTRUCTION

() level 1 (d) level 0
pyramidal non-pyramidal
mults ANZM N2M + 4N?(1 — 4=y Fig. 8. FWVR rendering by a three-level Haar wavelet decomposition of
phantom volume data.
adds 3N'M NZM + §N?(1 -4~ M)

1-D case is illustrated in Fig. 7 for a three-level wavelet decom-
position.

The time complexity of progressive refinement reconstruc-
tion to full resolution is estimated by counting the number of
additions &dd9 and multiplicationsrulty for an A -level de-
composition, see Table Il (this concerns the part of the compu-
tation in the Fourier domain, i.e. excluding the final inverse 2-D
FFT). From this table, it is easily verified that indeed the non- (a) level 3 (b) level 2
pyramidal reconstruction is more efficient than the pyramidal
algorithm; equal efficiency obtains fav/ = 1. Of course the
pyramidal algorithm is more efficient when onfi® is wanted,

i.e. without the intermediate approximations. Althoughcan

be as large akg, NV, the number of decomposition levels is
usually fixed to a small number, like two or three, in order for
the approximation image to be useful. Therefore, the complexity
of progressive refinement 9( N?).

B. Results

Experiments with phantom data were carried out for two
basic wavelets, the Haar wavelet and a second-order B-Splig 9. FWVR rendering by a three-level second-order B-spline wavelet
wavelet, which gives much smoother results at large compr@scomposition of phantom volume data.
sion ratios. In the latter case, we need a biorthogonal wavelet
basis, defined by filters of unequal length for decompositiche B-spline wavelet is 41, at most three decomposition levels
and reconstruction (length 41 and length 5, respectively; sae possible.
[22, Appendix]). We used 20% zero-padding and cubic spline Table 11l shows rendering times of the Fourier-wavelet ren-
interpolation. dering algorithm with progressive refinement. Linear and cubic
Fig. 8 shows the reconstruction from a three-level Haapline interpolation with 20% zero-padding was applied. A Haar
wavelet decompositiond( = 3), using the approximation wavelet was used as a basic wavelet. Other wavelets give only
coefficientsC? only, cf. Fig. 8(a), and with detail coefficientsmarginally different timing results, in agreement with the com-
added, cf. Fig. 8(b)—(d). Fig. 9 shows the reconstruction fropiexity estimates in Section IlI-D. Three data sets were used:
a three-level second-order B-spline wavelet decomposition mfiantom and CT data of size 28nd an MR data set of size
the same volume data. Since the number of dual coefficients2®6*. Resolution of the slice plane wé8/N)? for a dataset of

(c) level 1 (d) level 0
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TABLE Il data at different levels of detail. First, the algorithm performs

CUMULATIVE RENDERING TIMINGS (IN SECONDS OF FOURIER-WAVELET a 3-D wavelet decomposition of the volume data. The 3-D
VOLUME RENDERING, A HAAR WAVELET WAS USED AS ABASIC WAVELET . . . . . L

separable wavelet basis with 8 basis functions is given by [c.f.

Phantom | CT head | MR head (3)]
1283 128° 2562 o
Linear interpolation (Pj,k,l,nl(x? Y, ) :¢j,k($)¢j,l(y)¢j,nz(z)
slice extraction 0.27 0.27 1.11 1 _ 4 . .
F{NDX g 0.57 0.57 238 \I/é,k,l,m(xa Y, 2) _d)J,k(x)d)J,l(y)z/}L"l(z)
Level 3 approximation 248531 \Ijj, k7l7m(a}, Y, 2) =i w2 ((1)d; m(2)
Level 2 approximation 0.68 0.68 3.6 3
Level 1 approximation 0.86 0.86 4.49 U2k um (@, Yy 2) = @5 k(@)hs 1(9)35, m(2)
i . . . 4
Full reconstruction ' . '1 10 : 1.10 5.56 \Ijj, k. l,m(xv Y, z) = z/;L k(x)(bj, l(y)(/)j, m(z)
Cubic spline interpolation 5
sTice extraction 1.41 147 5.64 Vbt m( Y, 2) =05 (@) b5, 1(y)s, m(2)
FWD 1.71 1.71 6.91 6 o , ,
Level 3 approximation 7.40 \Iji kot U5 2) = 5, 16(2)5,1(Y) 8, m (2)
Level 2 approximation 1.82 1.82 8.18 vl T z) =, (x5 b z
Level 1 approximation 2.00 2.00 9.02 . 17.’“7177"( v Ys ) 1/'17 ( )1/1, (y)i/J,m()
Full reconstruction 2.24 2.24 10.09 Substitution of the expansion gfon this basis in (1) results

in
size N3. Timings were performed on a Silicon Graphics Ony®g f(u, v) = Z C%z,m/ Yy ko1, (v + vv + 10) dt
with a 200 MHz R4400 processor. Results listed for computing k1, m R
approximation images include the time used by the inverse 2-D M '
FFT. The computational complexity is only dependent on the 33N @ m/ U7 4 1 (e + vo +10) dt
size of the rendered image, which explains the identical timings Jj=l7€Tk,l,m R
for phantom and CT data. In fact, results for these volume data a7

are only included to facilitate a comparison with wavelet spleY\iér

i SO hereT = {1, 2, -- -, 7}. This equation express&% f (u, v)
ting below. For the same reason, the decomposition depth a weighted summation of integrals along the line of sight.

the MR data was set to three levels, and for the other data SRR integrals are 2-D functions on the view plane: the footprints.

only two levels were used. Observe that th? timings INCreagRase have to be evaluated only once for a given viewing direc-
approximately by a factor of four when the size of the data S&4n at the coarsest scafe— M and translatior(k, I, m) —

ely b o
Eg;opr;;i?t;'ght times as large, as expected from the theore%%lo’ 0), yielding eight prototype footprints. The footprints for

licati ¢ . G . i other scales and translations can be computed by rescaling and
Application ‘of progressive refinement in a ment—serveghiﬁing_ Prototype footprints can be computed efficiently by

system is only useful if the total time needed for computing ;" their 3-D Fourier transforms. When analytical expres-
approximation coefficients, transmitting them to the client, a ons exist for the Fourier transforms of the scaling function
performing a partial reconstruction, is smaller than the tim.fnd wavelet, as is the case for the Haar and cardinal B-spline
required to send the full fjatg over atransmission line. R.efemﬂ%velets, no interpolation from discrete samples is necessary.
to Table | we see that th'?‘ will be the_ case_for an IS_DN I.|ne, b r the case of B-spline wavelets, the required formulas for the
not for a 1 Mb/s connection (assuming this bandwidth is really,, rier ransforms are somewhatinvolved, cf. [22, ch. 6 and Ap-
available). pendix]. By computing footprints analytically, we do not have
problems with aliasing and dishing as in (wavelet) Fourier ren-
dering. Also, no zero-padding of the data is necessary.

The fractionk of zero-padding of the volume data determines To summarize, the algorithm consists of the following steps.

to a large extent memory usage of Fourier rendering. Volume 1) preprocessingPerform a 3-D discrete wavelet transform
data are stored in a 3-D array of floats of s{2éV)? + (kV)?, (of depthM) of the volume data.

where the volume data have si2& andk is the factor due 2) Splatting For each viewing directiol do:

to zero-padding. The ext(& N )? elements are required by the « Compute prototype footprints at levil in the view
3-D real-to-complex FFT. The FWD uses two temporary 2-D plane orthogonal té.

arrays of floats of siz€2N)2+2N. The precomputed filters for « Compute footprints for lower levels by scaling and
progressive refinement are 1-D. The hierarchy of combiHed downsampling.

filters containsM N complex numbers, whet® is the number « Compute a low resolution image by summation of
of decomposition levels. The hierarchy of filters to reconstruct scaled and translated footprints weighted by the ap-
detail coefficients contain8/N/27 complex numbers for each proximation coefficients}’, . Since, in general,

decomposition levej. the coordinates of the center of the footprint are
not integers, use bilinear interpolation to convert to

C. Memory Usage

V. WAVELET SPLATTING pixel coordinates.
Wavelet splatting (WS) [3], [10], [11] modifies the basic * Refine the image incrementally by adding footprints
splatting algorithm in two ways: i) it uses wavelets as recon- corresponding to7 , ; ,,,, weighted by the detail

struction filters, and ii) it provides a mechanism to visualize coefficientsdy; 7 ...
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—— reference ——  reference
— - wavelet splatting — - wavelet splatting

2500 RN
2000

1500

80 100 120 140 160 180 80 100 120 140 160 180

(a) Haar wavelet (b) B-spline wavelet
sk FWVE ihi WS
Fig. 10. Profiles along the line = 122 of rendering by wavelet splatting of
phantom data. Fig. 11. Level 1 rendering of CT data (si286°) using a Haar wavelet.
TABLE IV

A. Memory Usage

CUMULATIVE RENDERING TIMINGS (IN SECONDS OF WAVELET SPLATTING
After the 3-D wavelet transform, the coefficients for each

Phantom | CT head | MR head

wavelet type and level are stored in 1-D sequences. Zero co- 1283 1283 2563

efﬂu_ents are discarded, wh|(_:h_ makes it necessary to store the Toar wavelet

spatial position of each coefficient as well. This position is en- Tevel 3 approximation 1.71

coded with an integer (4 bytes), which allows volume data of Iieve} % approximation ?-f;g g-ig éégg
. . ; : evel 1 approximation . . .

sizes up to 4 GB._ITarger volumes require a different encoding 111" econstruction 259 12.62 109.81

for the spatial position. Storage of _th_e position doubles memory B-spline wavelet

requirements if there are no coefficients with value zero at all. Tevel 3 approximation 3.49

In practice, a large number of data sets has 20%—40% zero co- Iﬂeve} 2 approximation 1.04 1.07 28.99

s : : _ Level 1 approximation 8.29 8.38 89.03
efficients, which makes memory requirements of WS compa Full reconstruction 95 86 30.24 231.39

rable to those of Fourier rendering. By storing the coefficients
in sequences instead of a 3-D array, the algorithm has a reg-
ular memory access pattern. This increases rendering perféhishing moment. A more sparse decomposition is obtained
mance, since the memory cache is fully exploited. The amou#t using B-spline wavelets which have a larger number of van-
of memory used to store the footprints is dependent on the dghing moments.

composition depttd/ and the suppo# of the 1-D scaling func- ~ Comparison with Table Il makes it clear that WS is indeed
tion and wavelet. The size (i.e., number of pixels) of a footpriomputationally more demanding, and also more data-depen-
at the coarsest scale is the first power of two larger #f&!. dent, than FWVR.

The size of the footprints decreases by a factor of four for each

finer scale. VI. DISCUSSION

In this paper, we have described an extension to Fourier

B. Results volume rendering (FVR) based on a wavelet decomposition,

Fig. 10 shows intensity profiles corresponding to the ine  which allows the data to be visualized at progressively higher
122 of rendered images at full resolution of the phantom datevels of detail, as can be useful for client—server systems.
rendered with WS. We used a Haar wavelet and a second-ordefhe wavelet X-ray transfornwas introduced, which com-
B-spline wavelet. A comparison with the plots in Fig. 4 showlines integration along the line of sight with a simultaneous
that the accuracy of this method is comparable to FVR witD wavelet transform in the plane perpendicular to this line.
cubic spline interpolation. Fig. 11 shows renderings of the CAn efficient implementation was derived by computing the
data, both by FWVR and WS, also with visually very similawvavelet transform in the frequency domain. The initial step
results. of this Fourier-wavelet volume rendering algorithm (FWVR),

The WS algorithm has time complexit9(N?) fora N x i.e., computation of the Fourier transform in a slice plane, is
N x N data set, as is obvious from the summation dydr, /»  identical to that of ordinary FVR, and requires interpolation.
in (17). Timings are shown in Table IV. Data sets and imagdliasing can be prevented by initial zero-padding of volume
resolution are the same as for FWVR (Table 1ll). The scalingata and the use of accurate interpolation filters. The additional
of the timings for increasing data size is in agreement with tisep is a wavelet decomposition of the slice plane data in Fourier
theoretical complexity. Due to its larger support, the B-splirgpace to a given level of detail. Approximation images are then
wavelet is computationally much more expensive than the Hazbtained by partial wavelet reconstruction in Fourier space,
wavelet. Furthermore, the rendering speed is very data depfatlowed by a 2-D inverse Fourier transform. We compared the
dent. In case of the Haar wavelet, rendering the phantom datw method with wavelet splatting (WS), which modifies the
takes almost four times as long as rendering the CT data. Thesic splatting algorithm by using wavelets as reconstruction
reason is that the CT data are smoother than the phantom dfitars.
For the Haar wavelet, this results in a larger number of nonzercA 3-D head phantom consisting of a collection of ellipsoids
wavelet coefficients and slower rendering, since it has only onédifferent density values was defined, for which analytical pro-
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TABLE V
PARAMETERS OF THE3-D HEAD PHANTOM

jections, as well as a volume data set of si28%, were com-
puted. In the experiments, three data sets were used: phantom
and CT data of siz&28%, and an MR data set of si286>. For a

Center Axis lengths £ Density

dataset of siz&v?, the resolution of the slice plane was taken as (0, 0, 0) (0.69, 0.92, 0.9) 0 151.00
(2V)2. For interpolation in frequency space, we used linear an go(,) 59 2) gg'iiﬂ%’ 3582210)'88) 108 7550
cub@c spline interpolation. Experiments were carried out for twc (0.'22”0”_0_'25) (0:31: 0:11: 0:22) 79 95,60
basic wavelets, the Haar wavelet and a second order B-splir (0, 0.1, -0.25) (0.046, 0.046, 0.046) 0 25.60
wavelet. Timings were performed on a Silicon Graphics Onyy (-0.08, -0.605,-0.25)  (0.046, 0.023, 0.02) 0 1280
ith (0.06, -0.605, -0.25)  (0.046, 0.023, 0.02) 90 12.80
with a 200 MHz R4400 processor. (0.06, -0.105, 0.625)  (0.056, 0.04, 0.1) 90  25.60
(0, 0.1, 0.625) (0.056, 0.056, 0.1) 0 -25.60

{0, 0.35, -0.25) (0.25, 0.21, 0.41) 90 25.60

A. Differences Between FWVR and WS

In the following we enumerate the main differences betwedh Final Remarks

Fourier-wavelet volume rendering and wavelet splatting, andthe FWVR method can be straightforwardly extended to
summarize the conclusions of the experimental investigationg,q|,de gradient-based shading and depth cueing [2], [3].

1) FWVR works in the frequency domain, and is initial-/Also, we would like to point out that the comparison of
ized by a 3-D Fourier transform. WS works in the spalVS and FWVR made in this paper concerns nonoptimized
tial domain (only the prototype footprints are obtained bijnplementations. For example, by compression of wavelet co-
Fourier domain computation), and is initialized by a 3-fficients, through thresholding or more advanced techniques,
wavelet transform. wavelet splatting can be substantially accelerated. Among

2) In FWVR, a 2-D wavelet transform is computed for eacBuch techniques we mention the embedded zerotree wavelet
view p|ane, therefore, the wavelet coefficients depend @lgorithm [23], and the conversion of wavelet transformed data
the view direction. In WS, the 3-D wavelet coefficientdnto a sequential bitstream [3]. However, both methods require
are computed only once, and are independent of view ddvanced spatial data structures, which are not necessary in
rection. FWVR.

3) The time complexity of FWVR is the same as for or- Adisadvantage of FWVR inits current formis that it requires
dinary FVR, i.e.O(N? log N), whereas WS has com-the interpolation of a slice in Fourier space at full resolution in
plexity O(N?), just as the original splatting method. ~ order to perform a 2-D wavelet decomposition. In contrast, in

4) To prevent aliasing, FWVR requires zero-padding of th&/S progressive refinement is immediate, since the initial data
input data. In contrast, no zero-padding is necessaryifhsubjected to a 3-D wavelet transform. Therefore, we plan to
WS: footprints are computed analytically in the Fourieinvestigate the possibility of combining both methods to take
domain. advantage of the strengths of each of them.

5) The rendering accuracy was assessed by using phantom

data and comparing intensity profiles of the rendered im-

ages with analytically computed projections. Using cubic

spline interpolation with 20% zero-padding we found that

FWVR results in accurate renderings with quality very The 3-D phantom used in this paper consists of a number

similar to that of WS. of ellipsoids of various densities. Initially, each ellipsoid is as-

Timings for FWVR were found to depend only on the siz8umed to have its three axes aligned with the axes of the coor-

of the input data. In contrast, the computation time of weinate system. Subsequently, a rotation of the ellipsoid around

is dependent on the basic wavelet used; e.g. the B-splﬂ’i@ z-axis is performed. Table V gives, for each ellipsoid, the
wavelet is computationally much more expensive than ti§€nter, lengths of the three axes of the ellipsoid, rotation angle

Haar wavelet. Furthermore, the rendering speed of W#around thez-axis, and the density.

is very data dependent, because the number of nonzero

wavelet coefficients depends on the smoothness of basic

wavelet and volume data.

Memory requirements of FWVR are comparable to those

of WS. FVWR needs a 3-D array of floats of siZzeV)>+

(kN)? (k is the zero-padding factor), and uses two tem-

porary 2-D arrays of floats of siz&N)? + 2N to com-

APPENDIX
DEFINITION OF THE HEAD PHANTOM
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