

 University of Groningen

Assessing optimal software architecture maintainability
Bosch, Jan; Bengtsson, P.O.; Smedinga, Rein

Published in:
FIFTH EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING,
PROCEEDINGS

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bosch, J., Bengtsson, P. O., & Smedinga, R. (2000). Assessing optimal software architecture
maintainability. In P. Sousa, & J. Ebert (Eds.), FIFTH EUROPEAN CONFERENCE ON SOFTWARE
MAINTENANCE AND REENGINEERING, PROCEEDINGS (pp. 168-175). LOS ALAMITOS.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232382045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/assessing-optimal-software-architecture-maintainability(1e6c5a74-d4a8-4384-811d-b83dc4b9d347).html

1

Assessing Optimal Software Architecture Maintainability

Abstract
Over the last decade, several authors have studied the maintainability of software architecture. In particular, the
assessment of maintainability has received attention. However, even when one has a quantitative assessment of the
maintainability of a software architecture, one still does not have any indication of the optimality of the software
architecture with respect to this quality attribute. Typically, the software architect is supposed to judge the assess-
ment result based on his or her personal experience. In this paper, we propose a technique for analysing the optimal
maintainability of a software architecture based on a specified scenario profile. This technique allows software
architects to analyse the maintainability of their software architecture with respect to the optimal maintainability.
The technique is illustrated and evaluated using industrial cases.

1 Introduction
Over the last decade, we have come to the understanding that the challenging task of the development of software sys-
tems no longer is to provide the required functionality, but rather to fulfil the quality requirements of the system.
Quality requirements, e.g. performance and maintainability, typically require explicit attention during development in
order to achieve the required levels. Traditionally, software engineers have performed their designs based on assumed
relations between design solutions and quality requirements. Based on these relations, software design is often per-
formed as an implicit, relatively ad-hoc process. Unfortunately, in our experience the assumptions of software engi-
neers are not always correct, e.g. [Häggander et al. 99] Daniel Häggander and Per-Olof Bengtsson, Jan Bosch and
Lars Lundberg, Maintainability Myth Causes Performance Problems in Parallel Applications, Proceedings of
IASTED 3rd International Conference on Software Engineering and Applications, pp. 288-294, October 1999..

A second trend one can identify over the last decade is the increasing appreciation of the importance of the architec-
ture of a software system. The software architecture defines the most fundamental design decisions and the conse-
quent decomposition of the system into its main components and relations between these components. Within the
community, we have become to understand the fact that the quality attributes of a software system are, to a large
extent, constrained by its architecture. Consequently, the quality requirements most central to the success of the soft-
ware system should drive the design of the software architecture. Unfortunately, the design of software architectures
is often performed in a similar fashion as software design as a whole, i.e. as an experience-driven, implicit activity.

One of the main causes for the aforementioned problems is the fact that software engineers have few techniques avail-
able for predicting the quality attributes of a software system before the system itself is available. Typically, we meas-
ure the quality attributes, once the system has been put in operation. The difficulty to predict quality attributes is
particularly problematic at the software architecture design level. During this phase, the first design decisions are
taken that are fundamental to the system, but we have little means of evaluating these decisions until much later in the
development process.

Of course, this problem has not been ignored within the software architecture community and several examples of
software architecture analysis techniques exist. Typically, we can categorize these techniques into architecture ori-
ented and quality attribute oriented techniques. Architecture oriented analysis techniques can be further decomposed
into architect-based evaluation, such as architecture assessment teams [Bass et al. 98], and stakeholder-based assess-
ment, e.g. SAAM [Kazman et al. 94]. Quality attribute oriented techniques can be decomposed into qualitative, typi-
cally comparing two architectures for a quality attribute, and quantitative analysis techniques, e.g. predicting real-time
behaviour [Alonso et al. 98] or our work on maintainability assessment [Bengtsson & Bosch 99]. Typically, architec-

Jan Bosch
University of Groningen
Department of Computing Science
PO Box 800,
NL9700AV Groningen, Netherlands
e-mail: Jan.Bosch@cs.rug.nl
www: http://www.cs.rug.nl/~bosch

PO Bengtsson
University of Karlskrona/Ronneby
Department of Software Engineer-
ing and Computer Science
S-372 25 Ronneby, Sweden
e-mail: PO.Bengtsson@ipd.hk-r.se
www: http://www.ipd.hk-r.se/pob

Rein Smedinga
University of Groningen
Department of Computing Science
PO Box 800,
NL9700AV Groningen, Netherlands
e-mail: rein@cs.rug.nl
www: http://www.cs.rug.nl/~rein

2

ture-oriented assessment is performed once the software architecture phase is finished, whereas quality attribute
assessment is often performed as part of the iterative architecture design process.

Assuming the availability of quantitative assessments of the driving quality attributes of a software architecture, the
software architect will typically wonder “how good is this?”. In the case of maintainability, the quality attribute we
focus on in this paper, this is often one of the core questions during design. For instance, assume the result of the soft-
ware architecture maintainability assessment being that the maintenance effort will be equivalent to 10 full-time main-
tenance engineers per year, one would like to know whether an alternative architecture would allow for a substantially
lower maintenance cost.

The contribution of this paper is a solution to the problem outlined above. We present a technique that, based on a
maintenance scenario profile and an impact analysis of this profile on an architecture, calculates what the theoretically
minimal maintenance effort would be for a software system based on the available maintenance scenario profile.

The remainder of this paper is organized as follows. In the next section, assessment and design of software architec-
tures is discussed. Section 3 discusses the quantitative assessment of maintainability using change scenarios and
impact analysis. The technique for the assessment of the optimal maintainability of a software system is presented in
section 4, whereas the subsequent section exemplifies the technique using an industrial case. Finally, related work is
discussed in section 6 and the paper is concluded in section 7.

2 Software Architecture Assessment and Design
When discussing software architecture assessment and design, one has to start with defining software architecture.
One frequently used definition is “The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible properties of those components
and the relationships among them.” [Bass et al. 98]. Some authors, e.g. [Perry & Wolf 92], consider the software
architecture to consist of the structure, in terms of components and their relations, but also the design constraints and
rules, as well their rationale.

The architecture of a software system constrains its quality attributes, as discussed in the introduction. This, in combi-
nation with the fact that the earliest design decisions are the hardest to revoke, indicates the importance of an explicit
and objective software architecture design process. In [Bosch 00], we present a method for software architecture
design that employs explicit assessment of and design for the quality requirements of a software system. Although this
method is one instance, we believe that this method is rather prototypical for general software architecture design.
Therefore, we describe the method briefly in this section to understand the role of quantitative maintainability assess-
ment in the context of software architecture design.

Figure 1. Software architecture design method

The architecture design process, as shown in figure 1, can be viewed as a function taking a requirement specification
that is taken as an input to the method and an architectural design that is generated as output. However, this function is
not an automated process and considerable effort and creativity from the involved software architects is required. The
software architecture is used for the subsequent phases, i.e. detailed design, implementation and evolution. The design
process starts with a design of the software architectural based on the functional requirements specified in the require-

requirement
specification

functionality-based
architectural design

application
architecture

estimate
quality

attributes

architecture
transformation

QA-optimizing
solutions

not OK

OK

3

ment specification. Although software engineers generally will not design a system less reliable or maintanable, the
quality requirements are not explicitly addressed at this stage. The result is a first version of the application architec-
ture design. This design is evaluated with respect to the quality requirements. Each quality attribute is given an esti-
mate in using a qualitative or quantitative assessment technique. The estimated quality attribute values are compared
to the values in the requirements specification. If all estimations are as good or better than required, the architectural
design process is finished. Otherwise, the third stage is entered: architecture transformation. During this stage, the
architecture is improved by selecting appropriate quality attribute-optimizing transformations. Each set of transforma-
tions (one or more) results in a new version of the architectural design. This design is again evaluated and the same
process is repeated, if necessary, until all quality requirements are fulfilled or until the software engineer decides that
no feasible solution exists. In the latter case, the software architect needs to renegotiate the requirements with the cus-
tomer. The transformations, i.e. quality attribute optimizing solutions, generally improve one or some quality
attributes while they affect others negatively.

In order to be able to determine whether the software architecture design process is finished and, if not, to be able to
select transformations, assessment techniques are required provide quantitative data concerning the relevant quality
attributes of the system. In the next section, we discuss a technique for assessing maintainability of software architec-
tures.

3 Assessing Maintainability
Quality requirements such as performance and maintainability are, in our experience, generally specified rather
weakly in industrial requirement specifications. In some of our cooperation projects with industry, the initial require-
ment specification contained statements such as “The maintainability of the system should be as good as possible” and
“The performance should be satisfactory for an average user”. Such subjective statements, although well intended, are
useless for the evaluation of software architectures.

When one intends to treat the architecture of a software system explicit in order to be able to predict the quality
attributes of the system early in the design process, one is required to specify quality requirements in sufficient detail.
One common characteristic for quality requirements is that stating a required level without an associated context is
meaningless. For instance, the statement “Performance = 20 transaction per second” or “The system should be easy to
maintain” are meaningless for architecture evaluation.

One common denominator of most quality attribute specification techniques is that some form of scenario profile is
used as part of the specification. A scenario profile is a set of scenarios, generally with some relative importance asso-
ciated with each scenario. The profile used most often in object-oriented software development is the usage profile,
i.e. a set of usage scenarios that describe typical uses for the system. The usage profile can be used as the basis for
specifying a number of, primarily operational, quality requirements, such as performance and reliability. However, for
other quality attributes, other profiles can be used. For example, for specifying safety we have used hazard scenarios
and for maintainability we have used change scenarios.

3.1 Scenario Profiles

There are two ways of specifying profiles for quality attributes, i.e. the complete and selected profiles.When defining
a complete profile for a quality attribute, the software engineer defines all relevant scenarios as part of the profile. For
example, a usage profile for a relatively small system may include all possible scenarios for using the system. Based
on this complete scenario set, the software engineer is able to perform an analysis of the architecture for the studied
quality attribute that, in a way, is complete since all possible cases are included.

The alternative to complete profiles are selected profiles. Selected profiles are analogous to the random selection of
sample sets from populations in statistical experiments. Assuming a large population of possible scenarios, e.g.
change scenarios, one selects individual scenarios that are made part of the sample set. A complete sample set is what
we, so far, have referred to as a scenario profile. Assuming the selection of scenarios has been done carefully, one can
assume that the profile represents an accurate representation of the scenario population. Consequently, results from
architecture analysis based on the profile, will provide accurate results for the system as a whole and not just for the
profile. Obviously, the actual selection of scenarios is not random because these are created by a software architect.
Therefore, we have to spend explicit effort on making sure that the scenario profile is as representative as possible. In

4

[Bengtsson & Bosch 00], we present three approaches to defining profiles, evaluate these using an experiment and
identify one of the three as the preferred technique for scenario profile specification.

3.2 Maintainability assessment

A software system is developed according to a requirement specification, i.e. where
is an atomic functional requirement or a quality requirement. Based on this requirement specification, the software
architect or architecture team designs a software architecture consisting of a set of components and relations between
these components, i.e. . The set of components is and each

component has an interface, a code size, and a requirement trace. The set
of relations is , where each relation is . Thus, relations are

directed and one-to-one.

To assess the maintainability of a software architecture, we make use of a maintenance profile consisting of a set of
change scenarios, , where each change scenario defines a set of changed and

added requirements, . To perform the maintainability assessment, we assume three

types of maintenance activities, i.e. adding new components, adding new plug-ins to existing components and chang-
ing existing component code. Each of these activities have associated productivity measures, for example lines of
code per manmonth, i.e. PnewComp, Pplugins and PcompCode, respectively. Based on earlier research, e.g. [Henry & Cain
97] and [Maxwell et al. 96], our experience is that the productivity when deeling new components for an existing sys-
tem is at least an order of magnitude higher than changing the code of existing components.

Once the maintenance profile is available, we can perform impact analysis, i.e. analyse the changes to the software
architecture and its components required to incorporate the change scenarios. The result of the impact analysis process
is a set of impact analyses for each change scenario, i.e. , where impactAnali is
defined as . Here, CCi is the, possibly empty, set of components that need

to be changed for incorporating the change scenario, including a size estimate for the required change in lines of

code: . NPi and NCi contain similar information for new plug-ins and new

components, respectively. Relsi contains the new, changed and removed relations required for incorporating the
change scenario.

As a final step, once the impact analysis has been performed, it is possible to determine the maintenance effort
required for the maintenance profile. This can be calculated by summing up the efforts required for each change sce-
nario. Below, the equation is presented:

 (Equation 1)

4 Assessing Optimal Maintainability
Once an assessment of maintainability has been performed, the next question a software architect typically will ask is:
“Does this mean that the maintainability of my architecture is good, reasonable or bad?”. Therefore, it is important to
be able to compare this to the optimal maintainability for the scenario profile and the domain. We have developed a
technique that allows us to obtain this information.

To assess optimal maintainability, we make use of the maintenance profile, MP, and the results of the impact analysis,
IA. The technique is based on two assumptions. First, each change scenario is relatively constant in size, independent
of the software architecture. Second, the main difference in maintenance effort is due to the difference in productivity
between different maintenance activities, i.e. . For example, productivity being (>6x) higher when writ-
ing new code (> 250 LOC/Man-month in C [Maxwell et al. 96]) compared to modifying legacy code (1.7 LOC/Man-

ReqSpec req1 …, reqp{ , }= reqi

SoftArch Comps Rels{ , }= Comps comp1 …, compq{ , }=

compi Interfacei codeSizei, reqTracei{ , }=

Rels rel1 …, relr{ , }= reli compisource
compidest

, typei{ , }=

MP chanceScen1 …, chanceScens{ , }=

chanceSceni reqi1
…, reqit

{ , }=

IA impactAnal1 …, impactAnalu{ , }=

impactAnali CCi NPi NCi, , Relsi{ , }= compij

sizeij

CCi compi1
sizei1

,() … compij
sizeij

,(),,{ }=

MaintenanceEffort sizeij

CCi

∑ 
 
 

Pcc⋅ sizeij

NPi

∑ 
 
 

Pp⋅ sizeij

NCi

∑ 
 
 

Pnc⋅+ +
 
 
 

IA

∑=

Pnc Pp< Pcc«

5

day which is < 40 LOC/Man-month [Henry & Cain 97]). Note that these productivity metrics include more than sim-
ply writing source statements.

Based on these assumptions, it is clear that an optimal software architecture would allow for the incorporation of all
change scenarios by adding new components or, in the case of smaller change scenarios, by adding new plug-ins for
existing components.

Thus, a straightforward approach is to calculate the required effort assuming that all necessary changes can be imple-
mented as part of a new component. Below, the formula calculating this is presented:

 (Equation 2)

Although this indeed calculates a lower boundary for the required maintenance effort, two issues remain unresolved.
First, especially for change scenarios requiring a relatively small change in terms of code size, it may not be reasona-
ble to assume that these are mapped to components. Such change scenarios should be mapped to new plug-ins and the
associated productivity metrics should be used. The second issue is a more subtle one. The straightforward model
assumes that it is possible that for a maintenance profile, all change scenarios can be mapped to either a new compo-
nent or a new plug-in. The question is, however, whether it is possible to define a software architecture that supports
this. Especially in the case where different change scenarios address the same requirements, it is unreasonable to
assume that these change scenarios can be implemented independently, i.e. we experience interaction of change sce-
narios.

Based on the discussion above, we refine our technique for the assessment of optimal maintainability as follows. First,
we categorize change scenarios as independent or interacting. A change scenario is independent if it affects existing
requirements in the requirement specification that are not affected by another change scenario that has a lower index
number in the maintenance profile than the current scenario. This results in the situation that one change scenario can
affect an existing requirement by factoring it out as a separate component or plug-in, but all subsequent change sce-
narios affecting the same requirement are considered to be interacting.

An interacting change scenario affects one or more requirements in the requirement specification that are also affected
by change scenarios with a lower index number. The effort required for this type of change scenarios is calculated
based on the ratio of interacting and independent requirements in the set affected by the change scenario. Thus, if, for
instance, two of five existing requirements for a change scenario are interacting, then 40% of the total change size (in,
e.g., lines of code) is calculated using the Pcc productivity metric. The remainder is calculated by either using the Pnc
or the Pp productivity metric.

If the total change size of the independent part of the change scenario is less than the code size of the smallest archi-
tectural component and/or less than half of the average code size of architectural components, then the Pp productivity
metric will be used to calculate the effort. Otherwise, the Pnc productivity metric is used.

Thus, for each type of change scenario, the required effort can now be calculated. Below, the alternatives are pre-
sented. The term ‘ratio’ refers to the ratio between interacting and independent scenarios. The total maintenance effort
can be calculated by summing up the required effort for each change scenario.

 (Equation 3)

Optimal Maintenance Effort sizeij

CCi

∑ 
 
 

sizeij

NPi

∑ 
 
 

sizeij

NCi

∑ 
 
 

+ +
 
 
 

Pnc⋅
IA

∑=

Opt·imalMaintainanceEffort

sizeij

CCi

∑ 
 
 





sizeij

NPi

∑ 
 
 

sizeij

NCi

∑ 
 
 

+ +




Pcn if independent & large scenario

Pp if independent & small scenario

Pcc ratio⋅ Pnc 1 ratio–()⋅+() if interacting & large scenario

Pcc ratio⋅ Pp 1 ratio–()⋅+() if interacting & small scenario 







⋅









IA

∑

=

6

5 Illustrating the Technique
The system that we will use to illustrate this technique is a cellular telecom fraud detection and management system
called FCC that has been developed by Ericsson Software Technology AB, Sweden. Usually, cellular telecom opera-
tors introduce cellular telephony into an area with a primary concern with establishing network capacity, geographic
coverage and signing up customers. However, as subscriber and network growth level cost margins and other finan-
cial issues become more important, e.g. lost revenues due to fraud.

Fraud in cellular telecom can be divided into two main categories; subscriber fraud and cloning fraud. Subscriber
fraud is when subscribers use the services but do not pay their bills. The two main means to prevent this is to perform
subscriber background and credit history checks. Cloning fraud means that a caller uses a false or stolen subscriber
identification in order to make calls without paying, or to be anonymous. There are a large number of different
approaches to identify and stop cloning. The FCC system is a part of an anti-fraud system that counter-checks cloning
fraud using real-time analysis of network traffic.

The FCC system is a commercial system and because of this we cannot disclose the actual requirements posed on it.
For the purpose of illustrating the method we will denote the requirements as R1, R2, etc. We are aware that this is a
limitation of the illustration, but argue that the problem is inherent to using a contemporary commercial system. The
alternative would be to use a artificial example, or a retired system, but it too has its limitations. In addition, because
of size restrictions we are not able to present all details in this illustration, e.g. the complete set of scenarios used, or an
elaborate description of the impact analysis itself.

5.1 System Overview

Software in the switching network centres provides real-time surveillance of suspicious activities associated with a
call. The idea is to identify potential fraud calls and have them terminated. However, one single indication is not
enough for call termination.

The FCC system allows the cellular operator to specify certain criteria for terminating a suspicious call. The criteria
that can be defined are the number of indications that have to be detected within a certain period of time before any
action is taken. It is possible to define special handling of certain subscribers and indication types. For the rest of this
paper we will use the term ‘event’ to denote a fraud indication from the switching network.

The events are continuously stored in files in the cellular network. With certain time intervals or when the files contain
a certain number of events these files are sent to the FCC. The FCC system stores the events and matches them against
pre-defined rules. When an event match a rule, the FCC system sends a message to terminate to the switching network
and the call is terminated. It is possible to define alternative actions, e.g. to send a notification to an operator console.

5.2 The Architecture

The FCC application consists of seven software components, all executing on the same computer (see Figure 2).
TMOS is an Ericsson property off the shelf component that handles the interaction with the switching network. In this
application it is used for collecting event files from switches and other utility services. The Listener (a) collect events
from switches via the TMOS component. The TMOS component is a third party component and is considered only as
is, i.e. we cannot make changes to this component. The events are then propagated to one of the executing Parser (b)
threads. The parser extracts the event data from the event files and store them in the EventQueue (c). Using predefined
rules the DBClient (d) checks the events in the Event Queue and stores the event data in the database. If an event trig-
gers a rule, the Action (f) component notified, who in turn executes the actions associated with the rule, e.g. a call ter-
mination. Standard Unix scripts are used to send terminating messages to the switching network. The components

7

marked g-j are components that were judged as potential new components during the assessment, and have been
added to this figure to illustrate how these fit in the rest of the architecture.

Figure 2. The Main software architecture

5.3 The Scenario List

For the purpose of this study we asked a person related to the FCC project to prepare a list of the most likely changes
to the FCC for the future. No other restrictions or instructions were given. We present a selection of the scenarios from
the list we received and used in the assessment below.

S1 New version of the switch software. Could lead to new event types and changed attributes of events.

S2 Port to Windows NT.

S5 Change of data base supplier.

S6 Port of graphical user interfaces to Java.

S8 Interactive termination. An operator must acknowledge call termination.

5.4 The Results of Scenario-Based Assessment

The original architecture (figure 2) was assessed with the assessment method described in section 3. The components
are marked in the figure 2. The results from the scenario impact analyses are presented in the table below (Table 1).
For this illustration we choose to set productivity for changing (Pcc) to 40 LOC/Man-month [Henry & Cain 97], and
based on our assumption that writing plug-in code is somewhat easier to do than modifying existing code, we choose
to set Pp at 60 LOC/Man-Month. Based on the productivity for writing new code we choose to set Pnc at 250 LOC/
Man-Month [Maxwell et al. 96].

Table 1: The Assessment Results of the Architecture

SCENARIO

COMPONENT NEW COMPONENTS
AFFECTED

REQUIREMENTSa b c d e f g h i j

1 kLOC 4 kLOC 1 kLOC 3 kLOC 5 kLOC 1 kLOC 2 kLOC 5 kLOC 2 kLOC .5 kLOC
1 .2 .5 .1 .1 .2 r2, r10
2 .3 .1 .2 r3

3 .5 .5 .8 .5
4 .2 .3 1 r4
5 .4 .5

6 .5 .5 .3 .3 1 r1,r11,r12
7 .1 .1 .1 .8 r5,r13,r14,r15
8 .2 .2 .4 .4 .1 .5 1 r1, r5, r16

9 .3 .4 .5 .2 .3 .3 r2, r17, r18

TM
O

S
A

ct
io

n
Listener

Splitter

Logger

LoadSplitter D
at

a
B

as
e

Event Queue

Parser

DBClient
GUI

a

b

c

d

e

f

g

h

i

j

8

The maintainability effort on average per scenario of this architecture according to the calculation in Equation 1 and
based on the changes scenarios defined in section 5.3 is 63 man-months. The optimal maintenance effort according to
the first equation (Equation 2) is 16 Man-Months on average per scenario. The refined equation renders these results
instead (Equation 3) and is 27 Man-Months on average per scenario.

Concluding, the technique we present in this paper allows the software architect to compare the assessed value (63
man-months per change scenario) with the optimal value (27 man-months per change scenario). Based on the differ-
ence between these figures, the architect may decide whether this is acceptable or that additional effort has to be spent
on improving on the software architecture for maintainability. Since software architecture design requires trade-offs
between different quality attributes, the presented technique provides the software architect with more and better
information in order to take well-founded decisions.

6 Related Work
The software architecture analysis method (SAAM) [Kazman et al. 94] was among the first to address the assessment
of software architectures. SAAM employs stakeholder-based assessment to determine the suitability of the software
architecture for the system at hand. The stakeholders define scenarios that are used to evaluate the software architec-
ture.

An example of quality attribute oriented analysis technique is the architecture trade-off analysis method (ATAM)
[Kazman et al. 98]. ATAM is the successor of SAAM. The method defines attribute models that are used to identify
trade-off points in the architecture. These points are potentially problematic areas in the architecture that, for instance
through redesign, can be neutralized.

In [Duenas et al. 98], the authors present a software architecture evaluation model that performs quality attribute eval-
uation based on the ISO/IEC 9126 draft standard. The approach employs metrics to determine internal and external
metrics of the system that can be used to evaluate the quality requirements.

Some specific quality attribute assessment techniques have been developed. [Alonso et al. 98] discuss an approach to
assess the timing properties of software architectures using a global rate-monotonic analysis (RMA) model that is
composed from component RMA models. This allows the architect to early obtain information about the real-time
behaviour of the architecture. In [Bengtsson & Bosch 99], we propose a technique for the assessment of the maintain-
ability of software architectures. This technique was discussed in section 3.2. This assessment technique is part of a
software architecture design method [Bosch 00].

None of the discussed work proposes techniques for the assessment of optimal quality attribute levels, which is the
topic and contribution of this paper.

7 Conclusions
The work presented in this paper is motivated by the increasing realization in the software engineering community of
the importance of software architecture for fulfilling quality requirements. Traditionally, the software architecture
design process is rather implicit and experience driven without a clear and explicit method. One main reason for this is
the lack of architecture assessment techniques that quantify quality attributes of the software architecture.

In earlier work [Bengtsson & Bosch 99], we presented a scenario-based technique for assessing the maintainability of
a software architecture. The technique employs a scenario profile, used for performing impact analysis and calculates

10 .3 1 r2

11 .2 .2 r5
12 .2 1 r8
13 .3 .5 .2 .3 r9

Table 1: The Assessment Results of the Architecture

SCENARIO

COMPONENT NEW COMPONENTS
AFFECTED

REQUIREMENTSa b c d e f g h i j
1 kLOC 4 kLOC 1 kLOC 3 kLOC 5 kLOC 1 kLOC 2 kLOC 5 kLOC 2 kLOC .5 kLOC

9

maintainability based on this. Although very useful, the software architect is typically interested in the optimal main-
tainability level in order to understand how close the actual level is to the optimal level. In this paper, we presented a
technique for assessing the optimal maintainability for the software system, based on the scenario profile and impact
analysis. The technique determines the required maintenance effort assuming that all new and changed requirements
can be implemented by adding new components or plug-ins to the system.

We have illustrated and exemplified the technique by using an industrial case from the telecom domain and found
that, according to the method proposed in this paper, the optimal average effort per scenario is about half of the same
average effort per scenario of the current architecture. In addition, the most optimistic calculation (Equation 2) sug-
gested only a quarter of the average effort compared to the current architecture. This, however, seem unrealistically
optimistic.

In the future we intend to continue with the validation and refinement of the technique by applying it to additional
industrial cases. In addition, we are interested in investigating whether the technique can be applied to other quality
attributes as well.

Acknowledgements
We thank Ericsson Software Technology for providing us with the FCC case and allowing us to publish these results.

References
[Alonso et al. 98]. A. Alonso, M. Garcia-Valls, J.A. de la Puente, “Assessment of Timing Properties of Family Prod-

ucts,” Proceedings of the Second International ESPRIT ARES Workshop on Development and Evolution of
Software Architectures for Product Families, F. vd. Linden (editor), LNCS 1429, pp. 161-169, 1998.

[Bass et al. 98]. L. Bass, P. Clements, R. Kazman, ‘Software Architecture In Practise’, Addison Wesley, 1998.

[Bengtsson & Bosch 99]. PO Bentsson, J. Bosch, ‘Architecture Level Prediction of Software Maintenance’, The 3rd
European Conference on Software Maintenance and Reengineering (CSMR'99), pp. 139-147, 1999.

[Bengtsson & Bosch 00]. PerOlof Bengtsson and Jan Bosch, “An Experiment on Creating Scenario Profiles for Soft-
ware Change”, Annals of Software Engineering, Vol. 9, May 2000.

[Bosch 00]. J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product Line Approach,
Pearson Education (Addison-Wesley & ACM Press), ISBN 0-201-67494-7, May 2000.

[Duenas et al. 98]. J.C. Duenas, W.L. de Oliveira, J.A. de la Puente, “A Software Architecture Evaluation Model,”
Proceedings of the Second International ESPRIT ARES Workshop on Development and Evolution of Software
Architectures for Product Families, F. vd. Linden (editor), LNCS 1429, pp. 148-157, 1998.

[Henry & Cain 97]. J.E. Henry, J.P. Cain, “A Quantitative Comparison of Perfective and Corrective Software Mainte-
nance”, Journal of Software Maintenance: Research and Practice, John Wiley & Sons, Vol 9, pp. 281-297,
1997

[Häggander et al. 99] Daniel Häggander and Per-Olof Bengtsson, Jan Bosch and Lars Lundberg, Maintainability Myth
Causes Performance Problems in Parallel Applications, Proceedings of IASTED 3rd International Conference
on Software Engineering and Applications, pp. 288-294, October 1999.

[Kazman et al. 94]. R. Kazman, L. Bass, G. Abowd, M. Webb, ‘SAAM: A Method for Analyzing the Properties of
Software Architectures,’ Proceedings of the 16th International Conference on Software Engineering, pp. 81-
90, 1994.

[Kazman et al. 98]. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, ‘The Architecture Trade-
off Analysis Method,’ Proceedings of ICECCS’98, (Monterey, CA), August 1998.

[Maxwell et al. 96]. K.D. Maxwell, L. Van Wassenhove, S.Dutta, “Software Development Productivity of European
Space, Military, and Industrial Applications”, IEEE Transactions on Software Engineering, Vol 22, No 10:
October 1996, pp. 706-718.

[Perry & Wolf 92]. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”, ACM SIGSOFT
Software Engineering Notes, pp. 40-52, 1992.

