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A temporal model for early vision that explains detection
thresholds for light pulses on flickering backgrounds
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Abstract

A model is presented for the early (retinal) stages of temporal processing of light inputs in the visual system. The
model consists of a sequence of three adaptation processes, with two instantaneous nonlinearities in between. The
three adaptation processes are, in order of processing of the light input: a divisive light adaptation, a subtractive
light adaptation, and a contrast gain control. Divisive light adaptation is modeled by two gain controls. The first
of these is a fast feedback loop with square-root behavior, the second a slow feedback loop with logarithm-like
behavior. This can explain several aspects of the temporal behavior of photoreceptor outputs. Subtractive light
adaptation is modeled by a high-pass filter equivalent to a fractional differentiation, and it can explain the
attenuation of low frequencies observed in ganglion cell responses. Contrast gain control in the model is fast
(Victor, 1987), and can explain the decreased detectability of test signals that are superimposed on dynamic
backgrounds. We determine psychophysical detection thresholds for brief test pulses that are presented on flickering
backgrounds, for a wide range of temporal modulation frequencies of these backgrounds. The model can explain the
psychophysical data for the full range of modulation frequencies tested, as well as detection thresholds obtained for
test pulses on backgrounds with increment and decrement steps in intensity.
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Introduction

The visual system functions at a wide range of light levels, from
starlight to bright sunlight. To cope with this range, various pro-
cesses of light adaptation have evolved. For instance, night vision
is handled by rod photoreceptors, whereas during daylight the
visual system uses cone vision. At photopic light levels, cone
vision itself incorporates several processes for light adaptation
(Valeton & van Norren, 1983).

Traditionally, psychophysicists have studied light adaptation
using steps of light: the visual system adapts to a certain light
level, and after full adaptation has been obtained the light is stepped
to a new level. The dynamics of the adaptation process is gauged
by measuring detection thresholds for a brief test probe presented
at various times after the adaptation step (e.g. Crawford, 1947;
Baker et al., 1959; Hayhoe et al., 1992; Poot et al., 1997). From the
results of such experiments, models have been developed which
combine a multiplicative light adaptation (in which the input is
multiplied by a gain signal), a subtractive light adaptation (in
which a signal is subtracted from the input), and a compressive (or
saturating) instantaneous nonlinearity (e.g. Adelson, 1982; Kortum
& Geisler, 1995; von Wiegand et al., 1995).

Recently, an alternative paradigm to study the dynamics of light
adaptation has attracted considerable interest (Boynton et al., 1961;
Shickman 1970; Maruyama & Takahashi, 1977; Hood et al., 1997;
Wu et al., 1997). In this paradigm the observer adapts to a back-
ground that is modulated (instead of stepped), and detection thresh-
olds for brief test probes are measured for various phases of test
presentation in the background modulation cycle. Conventional
models for light adaptation have severe problems explaining re-
sults from this paradigm (see Hood et al., 1997 and Wu et al., 1997
for discussion). First, these models fail to describe the precise
dynamics of test thresholds during the modulation cycle. Second,
they do not describe the experimental result that, compared to the
test threshold on a steady background, test thresholds are high
throughout the background modulation cycle.

The goal of the present paper is twofold. First, we present new
data for modulated backgrounds that have modulation frequencies
which span the complete range of visual sensitivity from well
below 1 Hz to well above flicker fusion. Second, we present a
model that describes these data, as well as previous data obtained
with steps in the light level (Poot et al., 1997).

A recent model for light adaptation (Wilson, 1997) can also
explain detection data for test probes presented both on stepped
and modulated backgrounds (see Hood & Graham, 1998). In the
Wilson model, high detection thresholds on modulated back-
grounds arise from push–pull connections through which ON and
OFF ganglion cells inhibit each other (Hood & Graham, 1998).
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This is a problematical aspect of the Wilson model, since push–
pull connections have not been observed in the retina (review:
Hood, 1998). In our model, the high thresholds for tests on mod-
ulated backgrounds are explained by a process of contrast gain
control that scales sensitivity to the current contrast of the back-
ground dynamics (see Shah & Levine, 1996; Ahumada et al., 1998;
Eisner et al., 1998 for other models of early vision that include a
contrast gain control). Such an explanation is plausible since a
retinal stage of contrast gain control is well established physiolog-
ically (e.g. Werblin & Copenhagen, 1974; Shapley & Victor, 1978;
Lee et al., 1994; Benardete & Kaplan, 1999). Nevertheless, con-
trast gain control is lacking in most current models of early visual
processing (e.g. Gaudiano, 1994; Dahari & Spitzer, 1996; Donner
& Hemilä, 1996; Wilson, 1997; Gazères et al., 1998). On the other
hand, models for contrast gain control (e.g. Victor, 1987; Wilson &
Humanski, 1993; Foley, 1994; Lu & Sperling, 1996; Watson &
Solomon, 1997; Carandini et al., 1997) have at best an impover-
ished description of the processes of light adaptation that precede
the contrast gain control. The model presented here seeks to stim-
ulate work that remedies this situation.

Psychophysical methods

A description of the methods used to obtain the psychophysical
data has been published (Poot et al., 1997). Briefly, these methods
were as follows.

Apparatus

Stimuli were presented monocularly through a two-channel Max-
wellian-view system, thus excluding the influence of pupil size
on the measurements. Two green (563 nm) Toshiba TLGD 190P
light-emitting diodes (LEDs) were used as light sources. One LED
provided a spatially homogeneous circular adaptation field of di-
ameter 17 deg. The other LED was used for foveal presentation of
a concentric, sharp-edged test stimulus with a diameter of 46 arcmin.

A Pentium PC controlled the LED intensities at a rate of 400 Hz,
through a 12-bit digital-to-analog converter. Contrary to the de-
scription in Poot et al. (1997), the LED outputs were now linear-
ized on-line using the photodiode-feedback design of Watanabe
et al. (1992).

Stimuli

The retinal illuminanceI ~t! of the adaptation field was harmoni-
cally modulated:

I ~t! 5 I0~11 C sin 2pft!. (1)

The mean illuminanceI0 was 7500 Trolands (Td), and the tempo-
ral contrastC of the modulation was 0.8. Modulation frequencies
f ranged from 0.39 Hz to 100 Hz; consecutive frequencies differed
by a factor two (0.3 log unit). Results of the experiments at fre-
quenciesf 5 25 Hz andf 5 50 Hz were very different; therefore we
studied one additional frequency:f 5 33.3 Hz.

Test pulses (with duration 7.5 ms) were presented at moments
that correspond to various phasesf of the modulation of the ad-
aptation illuminance. Phasef 5 0 deg is defined such that the
middle of the test pulse coincides with the positive zero-crossing
of the sine function in eqn. (1). Phasef 5 90 deg corresponds to
a test pulse presented when the adaptation field attains its maxi-

mum illuminance. For all background frequencies, test detection
thresholds were determined at four phases in the modulation cycle:
f 5 0, 90, 180, and 270 deg. In addition, observer HS also mea-
sured detection thresholds at intermediate phase angles for a subset
of modulation frequencies.

Interspersed between the experiments with modulated back-
grounds, the detection threshold for the test pulse presented on a
steady background of 7500 Td was measured. We refer to this
threshold as the Weber value, since for steady backgrounds in the
intensity range of the modulated backgrounds (1500–13,500 Td),
it is directly proportional to the adaptation level, within experi-
mental error (Poot et al., 1997).

Psychophysical procedure

Data were collected using a modified yes0no method (Poot et al.,
1997), in sessions of duration 10–30 min. Each measurement ses-
sion consisted of a number of runs. In each run, the modulation
frequencyf of the adaptation background and the phasef of the
presentation of the test pulse in the modulation cycle were kept
fixed, as was the intensity of the test pulse. During a run, the
modulated adaptation signal, eqn. (1), was on continuously. During
the first 30 s of a run, no test pulses were presented; the observer
adapted to the modulated adaptation signal. After this adaptation
period test presentations began. Runs consisted of 20–50 trials. On
each trial there was a 50% probability that the test pulse was
actually presented, and after each trial the observer indicated, using
a switch on a response box, whether the test pulse had or had not
been presented (guessing if necessary). Detection thresholds for
the test pulse were determined using the method of Poot et al.
(1997), and correspond to 84% correct responses for an unbiased
observer with identical proportions of false alarms and misses.
Thresholds are based on 50–150 stimulus presentations per data
point, and have an estimated uncertainty (standard deviation) of
7–10% (0.03–0.04 log unit).

Observers

The authors (age 25–39 years) were subjects in the experiments.
Two observers use their spectacles to obtain good acuity; the third
observer is emmetropic. Observer HS performed the most exten-
sive measurements; the results for the two other observers support
these data.

Psychophysical results

Detection thresholds as a function of the phase of the test presen-
tation in the modulation cycle are shown in Fig. 1 for a range of
modulation frequencies of the adaptation field. For most modula-
tion frequencies the thresholds are elevated above the levels for
steady backgrounds: the dashed lines show the threshold for a
steady background at the time-averaged illuminance, and the curve
at 0 Hz indicates the threshold for a background modulated very
slowly. Further, thresholds as a function of phasef deviate from
harmonic functions, and there is a substantial range of frequencies
(1.56–6.25 Hz) for which the thresholds peak during the upswing
of the background illuminance, rather than at the moment that the
background attains its maximum. The curves in Fig. 1 are calcu-
lated with the model described below.

Model

In this section, a model is presented that can explain these data.
The model aims to describe the early stages of temporal processing
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of light inputs in the visual system; spatial and chromatic structure
are left unspecified here. Although eventually it would be desirable
to include spatial and chromatic effects in a model for early vision,
for the present experiments a purely temporal model suffices.

As can be seen in Fig. 2A, the model is a sequence of three
adaptation modules, with two instantaneous nonlinearities sand-
wiched in between. The nonlinearities are saturating, and describe
the finite dynamic range at various levels in the visual system.

The three adaptation modules are, in order of processing of the
input:

• a divisive light adaptation

• a subtractive light adaptation

• a contrast gain control

From psychophysical experiments on light adaptation (mainly
using background steps), it has been concluded that light adap-
tation contains both divisive (also referred to as multiplicative)
and subtractive components (e.g. Hayhoe et al., 1992; Graham
& Hood, 1992b). Our model follows this tradition. It has been
suggested previously that the elevation of test thresholds on
modulated backgrounds above the test detection level for a steady
background could arise from a contrast gain control process
(Hood et al., 1997; Wu et al., 1997). This gain control would be
activated by the temporal contrast of the background modula-
tion, which would decrease the transmission gain for the test
pulse, and hence its detectability. The third module in our model,
contrast gain control, is a quantitative implementation of this
suggestion.

We now discuss the detailed implementation of the three adap-
tation modules.

Fig. 1. Detection thresholds for test pulses as a function of the phasef in
the background modulation at which the test pulse is presented. Modulation
frequenciesf of the background range from 0.39–100 Hz. Psychophysical
data are shown for three observers (symbols as in Fig. 4). To stress the
similar dependence on phasef for the different observers, the data plotted
for observers LP and JH are their raw data multiplied by 0.69 and 0.61,
respectively. This scaling equalizes their thresholds on a steady background
of 7500 Td to the threshold (900 Td) obtained for observer HS on this
background. The curves are predictions of the model described in Fig. 2.
The lowermost curve, labeled;0 Hz, equals the background modulation
multiplied by the Weber fraction 0.12 obtained for observer HS on steady
backgrounds. For the sake of clarity, two cycles of the background mod-
ulations are shown, with the same data points. Note the different scalings
of the ordinates. In each of the graphs, the dashed line indicates the thresh-
old (900 Td) on a steady background of 7500 Td. For the model calcula-
tions the parameters weret1 510 ms,k 5 2.6,t3 5 3 ms,n3 512,q 5 0.6,
k1 5 1.3, k2 5 0.8, a 5 0.35,g 5 0.4, b 5 3.3, andl 5 3.2 s21.

Fig. 2. Model structure. A: Model outline. The model consists of three
consecutive adaptation modules, with two saturating nonlinearities (NL1

and NL2) sandwiched in between. The direction of the signal flow is
indicated by arrows. Model input is a dynamic illuminanceI ~t!, measured
in Trolands. Model output is a dynamic responseR~t!, from which a
detection threshold for a test pulse is derived. This test pulse is super-
imposed on the input during test trials. B: The feedback structure of the
divisive light adaptation. InputI ~t! is divided by a constant of 1 Td, which
yields a dimensionless inputDI ~t!. LP 5 linear low-pass filtering. The
graph in the second feedback loop represents an exponential nonlinearity.
C: Subtractive light adaptation and contrast gain control. Subtractive light
adaptation is generated by subtracting from the output of the divisive light
adaptation module a low-pass filtered version of itself. Contrast gain con-
trol operates through a divisive feedforward loop.
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Divisive light adaptation

As is shown in Fig. 2B, divisive light adaptation is implemented as
a sequence of two feedback processes. It has been argued (e.g.
Sperling & Sondhi, 1968; Wilson, 1997) that divisive light adap-
tation consists of feedback gain controls, that is, that the control
signal is generated from the output of the adaptation process rather
than from the input. The advantage of feedback gain control is that
the dynamic range necessary for the control signal is much smaller
than in a feedforward structure. Also, the biophysics of photo-
transduction indicates feedback control processes for divisive
light adaptation (e.g. Bownds & Arshavsky, 1995; Detwiler &
Gray-Keller, 1996; Koutalos & Yau, 1996).

In the first gain control loop of the model, the input is divided
by a low-pass filtered version of the output. This control loop is
fast; the time constantt1 of the first-order low-pass filter is set at
10 ms. For input signals of low frequency (e.g.f 5 1 Hz), the
filtering in the control path has no consequence. For these input
frequencies, the control loop behaves as an instantaneous square-
root compression device. This square-root behavior follows from
the steady-state solution of the feedback loop. The input (“x”)
divided by the output (“y”) equals the output:x0y5 y, thusy5 !x.
For high frequencies (roughlyf $ 10 Hz), the temporal processing
in the feedback path does play a role and the output is no longer
simply the square root of the input. At these frequencies, the output
signal is phase advanced relative to the input. Also, the output is
not time symmetric: in each cycle the upstroke (increasing output)
is sharper (and hence briefer) than the downstroke (Foerster et al.,
1977). The temporal low-pass filtering in the feedback loop also
results in transient overshoots and undershoots at steps (instead of
sinusoidal variations) in the light level.

The second feedback gain control in Fig. 2B differs from the
first in two important respects. First, there is now a rapidly ex-
panding nonlinearity in the feedback path. Such a feedback struc-
ture has been used previously to describe retinal responses to
flickering inputs (Tranchina & Peskin, 1988; Crevier & Meister,
1998). It is also a standard component in devices for automatic
gain control (e.g. Ohlson, 1974). Here, the nonlinearity in the
feedback path is modeled as an exponential function, with a multi-
plicative constantk 5 2.6 in the exponent. For the complete loop,
this feedback nonlinearity leads to a steady-state behavior that, at
sufficiently high illuminances, is nearly logarithmic, instead of
square root as in the first gain control. This is because in steady
state the output (“z”) of this loop equals the inputy divided by the
exponential of the output:z 5 y0expkz. Taking the logarithm of
this expression yields

kz1 ln z 5 ln y. (2)

For high inputs, the first term in the left-hand-side of eqn. (2)
dominates the second term, which leads to a logarithmic steady-
state behaviorkz5 ln y. At very low light levels (much lower than
those used in the present experiments), the second term in the
left-hand-side of eqn. (2) dominates the first term, which leads to
the relation lnz 5 ln y, thusz 5 y. Therefore, at these low light
levels the second gain control does not operate, leaving only the
first, square-root gain control.

A second important difference between the first and the second
control loop in Fig. 2B concerns the time constants of the filtering
in the feedback. Whereas the first control loop is fast, the second
control loop is assumed to be slow. In fact, we do not specify the
exact value of the time constantt2 of the low-pass filtering in this

feedback loop. We assume that this control loop remains virtually
unmodulated even at the lowest frequency~ f 5 0.4 Hz) of the
background modulation used in the experiments. Thus, the time
constant in the second control loop must be considerably larger
than 1 s. Adaptation processes at such long time scales are known
to occur in actual photoreceptors (Baylor & Hodgkin, 1974; Laugh-
lin & Hardie, 1978; Normann & Perlman, 1979; Valeton & van
Norren, 1983).

The resultI1~t! of the divisive light adaptation passes through
an instantaneous, saturating nonlinearity (NL1 in Fig. 2A), which
yields the signalO1~t! on which the subtractive light adaptation
operates:

O1~t! 5
2
p arctanI1~t!. (3)

The nonlinearity in eqn. (3) is mathematically similar to the non-
linearity observed in the output of photoreceptors (e.g. Baylor &
Hodgkin, 1974; Schnapf et al., 1990).

The nonlinearity NL1 is preceded by a linear low-pass filtering
(LP3 in Fig. 2B), consisting of a cascade of 12 first-order filters
with time constantt3 5 3 ms each. It was necessary to choose a
relatively high order for the low-pass filtering to explain the rapid
decline of test thresholds for background modulations with fre-
quencies above 25 Hz. It is well known that the time scale of
filtering in the retina depends on the background light (e.g. Donner
et al., 1995). However, in the present model, it was possible to
ignore this dependence since the adaptation backgrounds were
restricted to a relatively narrow photopic range in our experiments.

Subtractive light adaptation

As is shown in Fig. 2C, subtractive light adaptation consists of a
feedforward self-inhibition scheme in which a low-pass filtered
version of the outputO1~t! of the divisive light adaptation is sub-
tracted fromO1~t! itself. Thus, the subtractive light adaptation
consists of a linear high-pass filtering ofO1~t!. This high-pass
filter suppresses the response to a constant input completely: after
the subtractive light adaptation the steady-state response of the
model to a constant adaptation field equals zero.

In the present implementation, the high-pass filtering multiplies
the amplitude of its harmonic inputs of angular frequencyv with
a factorvq. We found that a noninteger valueq5 0.6 for the power
exponentq yields the best model results. Physiologically, such
power-law behavior can result from diffusion processes (Kelly,
1969), cable properties (Oldham & Spanier, 1974), or a superposi-
tion of exponential functions with a range of time scales (Thorson
& Biederman-Thorson, 1974). Mathematically, it is well known
that, for a causal system, this power-law behavior corresponds to
a fractional differentiation (Oldham & Spanier, 1974). We explain
the concept of fractional differentiation in the Appendix.

The resultI2~t! of the high-pass filter passes through a satu-
rating nonlinearity (NL2 in Fig. 2A). Contrary to the first nonlin-
earity NL1 in the model, where inputs are always$0, inputs to
NL2 can be negative. The nonlinearity NL2 saturates for both pos-
itive and negative inputs, but the saturation is assumed to be
asymmetric:

O2~t! 5
2

pk1

arctan~k1 I2~t!! if I2~t! $ 0,

O2~t! 5
2

pk2

arctan~k2 I2~t!! if I2~t! , 0, (4)
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with k1 5 1.3 andk2 5 0.8. Both branches of eqn. (4) connect
smoothly forI2 5 0. However, sincek1 . k2, saturation is more
severe for positive signals. This saturation is crucial to explain the
high detection thresholds observed at many background modula-
tion frequencies in Fig. 1 during the upswing of the background
illuminance. Due to the phase advance generated by the high-pass
filter (as described in the Appendix and illustrated in Fig. 3), the
output at this stage of the model attains its maximum well before
the input illuminance for a wide range of frequencies. This leads to

compression in NL2, and hence to high detection thresholds when
the test pulse is presented in the upswing of the background.

Contrast gain control

Although compression in NL2, as described above, can yield ele-
vations of the test threshold, these elevations occur only at specific
moments in the background modulation cycle (when the back-
ground response reaches an extremum). An instantaneous com-
pressive nonlinearity (such as NL2) cannot describe the consistent
elevation of thresholds above the level obtained with steady back-
grounds that is observed experimentally for tests presented at all
phases in the background cycle. Such an elevation can be seen in
Fig. 1 by comparing the thresholds with the dashed lines that
indicate the threshold for a test presented on a steady background.
This elevation of thresholds is generally observed in detection
experiments with modulated backgrounds; it is known as the “dc-
component” of the threshold function (Hood et al., 1997; Wu et al.,
1997). In the present model, this component of threshold elevation
is largely due to a divisive contrast gain control that is activated by
the temporal contrast of the background. When background con-
trast is high, the contrast gain control signal is high, hence the test
response is divided (attenuated) by a large number, leading to
elevated thresholds for tests on modulated backgrounds. For flick-
ering backgrounds, contrast gain control accounts for about 70% of
the threshold dc-component in the present model; most of the
remaining 30% of threshold elevation arises from compression
in NL2.

For the specific implementation of contrast gain control, a num-
ber of constraints have to be satisfied. First, for modulated back-
grounds a positive contrast signal throughout the modulation cycle
is desired. Second, threshold levels tend to increase with modula-
tion frequency (up tof 5 12.5 Hz; see Fig. 1), hence at equal
physical contrast the contrast signal has to increase with increasing
modulation frequency. Finally, contrast gain control can be fast.
This is indicated both by psychophysics (e.g. Foley & Boynton,
1993; Poot et al., 1997; Wu et al., 1997; Wilson & Kim, 1998), and
by retinal physiology (Victor, 1987; Shapley, 1997). A model for
contrast gain control that satisfies these demands is presented in
the Appendix.

As is shown in Fig. 2C, the outputR~t! of the model equals the
outputO2~t! of NL2 divided by the contrast gain signalC~t!:

R~t! 5
O2~t!

C~t!
. (5)

To illustrate the behavior of the model, Fig. 3 presents exam-
ples of signals produced by the model for two background mod-
ulation frequencies: 0.39 Hz (left) and 3.13 Hz (right). Input
illuminancesI ~t! consist of the superposition of the background
modulation and a series of test pulses of duration 8 ms and with
strengths equal to the detection thresholds calculated by the model.
For the 0.39-Hz background, test pulses at the input are all virtu-
ally proportional to the background illuminance, indicating that
Weber’s law applies at this low background frequency. This is
not the case for 3.13 Hz. The second row shows responsesO1~t!
(see Fig. 2B) of the model after the divisive light adaptation and
the first nonlinearity NL1. The dashed horizontal line indicates the
steady-state response to a constant background of 7500 Td (the
time-averaged background illuminance). Note the compression of
the background signal. For the 0.39-Hz background, the responses

Fig. 3. Responses of the model at two frequencies of the background
modulation. Input illuminance consists of a modulated background with
superimposed test pulses. The amplitudes of the test pulses were adjusted
such that they yield equal detectability. Intermediate responsesO1 and I2,
and final responseR correspond to those designated in Fig. 2. For com-
parison, the thin dashed curves for 3.13 Hz show the response of the model
to the background modulation without test pulses. See the text for further
explanation.
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to the test pulses are all virtually identical, indicating that the part
of the model shown in Fig. 2B produces the Weber behavior. The
third row shows model responsesI2~t! (see Fig. 2C) after the
subtractive light adaptation. Note that the response to the back-
ground modulation is smaller at 0.39 Hz than at 3.13 Hz. Further-
more, the subtractive light adaptation induces a phase advance of
the response to the background: the response to the test pulse
presented in the upswing (positive zero crossing) of the back-
ground is now sitting on the maximum of the background re-
sponse. Also note the biphasic nature of the response to the test
pulses. The last row shows the model outputR~t! (see Fig. 2C).
The difference in response to the background modulation at the
two frequencies has been reduced relative to the stageI2 (third
row). This is due both to the compression in NL2 (see Fig. 2C) and
to the contrast gain control which is activated more strongly by the
higher background frequency. These operations also result in equal
detectability of all test pulses.

Detection of the test pulse

Detectability of a test pulsep~t! superimposed on a background
I ~t! was determined as follows. First, the model was run with
solely the background signalI ~t! as input; this yields a model
outputR~t!. Next, the model was run using as input the sumI ~t! 1
p~t! of the background and a test pulse, yielding a model output
Rp~t!. In calculating the responseRp~t!, we allowed the effects of
the test pulse to enter the (feedback) gain paths of the luminance
adaptation, butnot to enter the contrast gain control path. The logic
of this is that luminance adaptation is strongly localized in phot-
opic vision (Burr et al., 1985; MacLeod et al., 1992; He & MacLeod,
1998; though see Tyler & Liu, 1996, for some counterevidence),
while contrast gain control has a much larger spread, extending
over several degrees (Shapley & Victor, 1979; Benardete & Kaplan,
1999). Thus, it is expected that the contrast gain that affects the
test pulse (diameter 46 arcmin) mostly originates from adjacent
parts of the retina where the test pulse is not present. We also
performed simulations in which 10% of the contrast gain signal
originates from the test area and 90% from the background field
(this corresponds to assuming an area of the contrast gain with
diameter about 2–3 deg). Results of these simulations correspond
closely to the situation when the contrast gain signal originates
completely from the background signal; we used the latter situa-
tion for simplicity.

From the model responsesRp~t! andR~t! the detectabilityd ' of
the test pulse is calculated as (Graham & Hood, 1992a; Watson &
Solomon, 1997)

d ' 5 lE
2`

1`

6Rp~t! 2 R~t!6b dt. (6)

The exponentb 5 3.3 was chosen identical to the steepness of the
psychometric function in these experiments (Poot et al., 1997).
Intensity of the test pulse for a given pulse-background condition
was varied to find the pulse detection threshold, corresponding to
d ' 5 2. The proportionality constantl in eqn. (6) was determined
by the detection threshold obtained for a test pulse presented on a
constant background of 7500 Td. For observer HS this detection
threshold was 900 Td for the 7.5 ms, 46 arcmin test pulse.

Implementation and fitting

The model was initially implemented as a MathCad program run-
ning on a PC, using Fourier methods for the calculations. To speed

up the calculations, the model was subsequently implemented as a
Fortran program running on a Hewlett Packard workstation. The
latter implementation uses exclusively recursive filtering at a sam-
pling frequency of 1000 Hz, and gives the same results as the
MathCad program.

Parameter values used for the model results reported below are
listed in the caption of Fig. 1. This set of parameter values was
used for all the calculations presented in this article. The param-
eters were obtained by fitting simultaneously to the psychophysi-
cal results obtained with flickering (Fig. 1) and stepped (Figs. 5
and 6) backgrounds, and judging the quality of the fits by eye. We
did not perform an exhaustive search through the parameter space
of the model. Thus, it is likely that small differences between the
data and the model could be reduced by a further optimization of
the parameter settings in the model.

Model results

Steady backgrounds

A basic psychophysical result obtained for detection thresholds of
test pulses presented on steady backgrounds of photopic intensity
(e.g. Reeves et al., 1998) is Weber’s law: test thresholds are pro-
portional to the background illuminance. Thus, the ratio of test
threshold (in Td) and the background illuminance is a constant, the
Weber fraction. The present model complies with this result: for
backgrounds in the range 10–100,000 Td, Weber fractions are
constant to within 10%. For backgrounds above 100,000 Td, the
model Weber fraction increases due to saturation at the nonlinear-
ity NL1. This saturation, however, could be prevented in a realistic
way by including in the model the effects of photopigment deple-
tion at these high illuminances (Burkhardt, 1994). For back-
grounds below 10 Td, the Weber fraction steadily rises. Below
about 0.1 Td, the model reverts to a de Vries-Rose behavior: thresh-
olds are proportional to the square root of the background illu-
minance. This square-root behavior of the model at these low
illuminances is entirely deterministic and caused by the first feed-
back loop of the divisive light adaptation in Fig. 2B.

Modulated backgrounds

Threshold predictions for test pulses on modulated backgrounds
are indicated by the lines in Fig. 1. Although there certainly are
differences with the psychophysical results, the model does cor-
rectly predict many of the features of the data:

• For modulation frequenciesf # 12.5 Hz, threshold predictions
during the upswing of the background modulation (e.g. at its
positive zero crossing;f 5 0 deg) are elevated with respect to
predictions during the downswing (e.g. atf 5 180 deg).

• Because of the threshold elevation during the upswing of the
background, thresholds can reach their maximum well before the
background modulation reaches its maximum. The model pre-
dicts both the maximum phase lead of the threshold maximum
relative to the background (60–70 deg), and the modulation
frequencies~ f 5 3–6 Hz) at which this maximum lead occurs.

• The phase lead of the threshold maxima disappears at high fre-
quencies (e.g. at 25 Hz), but the threshold curve remains non-
harmonic at this frequency: threshold maxima are sharper than
threshold minima.
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• Contrary to the behavior of the threshold maxima, thresholds
attain their minimum when the background is minimal through-
out the whole frequency range of background modulations.

• For the highest modulation frequency tested (100 Hz), thresh-
olds for all test phases are virtually identical to the threshold on
an unmodulated background of 7500 Td, as would be expected
from the Talbot–Plateau law (Stockman & Plummer, 1998).

• The level of thresholds averaged over a modulation cycle (i.e.
the dc-component of the threshold curve) gradually increases up
to frequencies 15–20 Hz, and (on a log-frequency scale) rapidly
drops at higher frequencies. This is shown more clearly in Fig. 4.

One feature that is present in the model predictions in Fig. 1,
but not in the data, is a threshold peak nearf 5 90 deg for a
modulation frequency of 12.5 Hz. However, this mismatch be-
tween the model and the psychophysical data may be less serious
than it appears. Model predictions (not shown here) for a modu-
lation frequencyf 510 Hz show a broad plateau that extends from
f 5 0 deg tof 5 120 deg without an additional peak atf 5
90 deg, which is very similar to the psychophysical data at 12.5 Hz.
Further, the peak atf 5 90 deg predicted by the model may also
occur in the psychophysics, but at frequencies somewhat higher
than 12.5 Hz. Such a peak is well developed in our data at 25 Hz.
Also, Boynton et al. (1961) report (in their Fig. 2) a similar sharp
threshold peak for a background frequency of 15 Hz.

Background steps

In this subsection, we show that the present model can explain not
only test thresholds on modulated backgrounds, but also data ob-
tained with steps in the background light. In Fig. 5, test thresholds
are shown as a function of test timingt with respect to 16-fold
decrement (Fig. 5A) and increment (Fig. 5B) steps of the illumi-
nance of the background field. The duration of the test pulse in this
experiment is 10 ms; for this test duration the Weber fraction on a
steady background equals 0.09 for observer HS. The data shown
(not previously reported in this form) were obtained during data
collection for a previous study (Poot et al., 1997). The timing

convention used for the test pulse in Fig. 5 differs slightly from the
convention used in this previous study. In Fig. 5, test timing is
defined relative to the middle of the test pulse (which is identical
to the timing convention in Fig. 1), whereas previously we timed
the presentation of the test pulse with respect to its onset (a 5-ms
timing difference for the 10-ms test pulse). Threshold predictions
of the present model are indicated by the continuous lines. As can
be seen in Fig. 5, the model predicts the major features of the data.
First, for the decrement step the model correctly predicts an initial
elevation of the test threshold at the moment of the decrement step
of the background (although the size of the overshoot is slightly
underestimated by the model). In the model, the threshold over-
shoot is due to the contrast gain control, which is activated by the
temporal contrast of the background step. Second, for the incre-
ment step the model correctly describes a rapid initial increase of
the test threshold to a high level at the moment of the background
step, and a subsequent recovery of the threshold. The high thresh-
old level at the moment of the background increment step is partly
due to the temporal contrast of the background step, but the main
contribution to the threshold peak is due to the saturation in the
nonlinearity NL2, since the preceding high-pass filter is strongly
excited by the background step. The recovery of the threshold is

Fig. 4. Test thresholds averaged over a full modulation cycle of the back-
ground, in units of the threshold obtained for a steady background of 7500
Td (which equals the time-averaged illuminance of the modulated back-
grounds) as a function of the background modulation frequency. Symbols
are psychophysical data for three observers; the curve is the model prediction.

Fig. 5. Test thresholds as a function of the delay of test presentation with
respect to a 16-fold decrement step (A) and a 16-fold increment step (B) of
the background illuminance. Symbols are psychophysical data for two
observers; the continuous curves are model predictions. As in Fig. 1, the
data plotted for observer LP are the raw data multiplied by a factor 0.69,
which equalizes her thresholds on steady backgrounds to those obtained for
observer HS. The dashed curve is the background illuminance, scaled with
the steady-state Weber fraction of observer HS (0.09 for the 10-ms test
pulse).
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somewhat faster for the model as compared to the data; a deficit in
the model that also occurs after the background decrements in
Fig. 5A. However, the model does correctly predict a flattening out
of the thresholds to a level which is higher than the steady-state
Weber threshold corresponding to the final background light level
(this Weber threshold is indicated by the dashed curves in Fig. 5).

In our previous study, we showed that these long-term thresh-
old elevations are not identical after increment and decrement
steps in the adaptation level (Poot et al., 1997; see Yeh et al., 1996
for similar physiological results). After moderate (e.g. fourfold)
increments in the background intensity, thresholds in our study
were still substantially elevated above the new Weber level for
tests presented 250–800 ms after the background step. However, at
100–200 ms after a similar (fourfold) decrement in the background
intensity, test thresholds were nearly identical to the steady-state
Weber level corresponding to the new (decremented) background
illuminance. Only for the largest (16-fold) decrement steps studied
was a reliable long-term threshold elevation observed. Fig. 6 shows
that the present model can explain these results.

According to the model, the long-term threshold elevations
after steps of background illuminance are due to a combination of
the slow adaptation of the second feedback loop in the divisive
light adaptation (Fig. 2B) and the subsequent nonlinearity NL1.
Consider the situation a few hundred milliseconds after an incre-
ment step of the adaptation background. Because adaptation in the
second feedback loop is slow (many seconds), the feedback signal
in this loop still corresponds to the old level of the adaptation
illuminance, that is, it is too low. This has two consequences for
the detectability of a test pulse. First, the test pulse is divided by an
adaptation signal that is small (relative to the final steady state for
the incremented background), which would normally lead to an
improved detectability of the test pulse. However, because the
response to the newbackgroundis also divided by the old (low)
adaptation signal, the test response sits on a background response
that has moved into the saturating part of the nonlinearity NL1.

This produces a compression and hence a lowered detectability of
the test pulse. For the relatively intense (photopic) backgrounds
used in the experiments, the second effect dominates after incre-
ment steps. This leads to threshold elevations compared to the
(Weber) thresholds obtained when the second adaptation loop has
finally reached its new steady-state adaptation level. For moderate
decrement steps of the background the two effects very nearly
balance: the decreased saturation due to the (temporary) leftward
shift of the operating point in NL1 almost precisely compensates
for the divisive adaptation signal that is still too high. For large
decrement steps this compensation is insufficient, and thresholds
after the step are elevated compared to the final (new) steady state.
In the quantitative implementation of these ideas, two aspects of
the nonlinearity NL1 were found to be important. First, its math-
ematical form. An arctangent produces good results (Fig. 6), better
than other plausible saturating nonlinearities. For instance, a Naka–
Rushton function would produce a threshold prediction in Fig. 6
with insufficient curvature, while the curvature for an exponential
saturation would be too large. Second, the steady-state operating
point of the nonlinearity NL1 is critical. The location along the
horizontal axis of the minimum of the model threshold function in
Fig. 6 depends strongly on this set-point. Parameters in the model
were chosen such that at high photopic adaptation illuminances (e.g.
2800 Td) the steady-state output of NL1 is at 60% of its maximum.
Steady-state outputs that are either lower (e.g. 50%), or higher (70%)
produce thresholds that are inconsistent with the data in Fig. 6.

Discussion

Previous detection experiments on flickering backgrounds

The experiments with flickering backgrounds reported in the present
paper are performed for flicker frequencies which span most of the
range of frequency sensitivity of the visual system. Previous re-
ports studied different subsets of this frequency range (Boynton
et al., 1961; Shickman, 1970; Maruyama & Takahashi, 1977; Hood
et al., 1997; Wu et al., 1997).

Boynton et al. (1961) used two flicker frequencies: 15 Hz and
30 Hz. At both frequencies, test thresholds were nearly in phase
with the background, as we observed at 25 Hz (see Fig. 1). Shick-
man (1970) studied the frequency range of 3.1–10 Hz. At 100%
background modulation contrast, thresholds were highest for test
presentations in the upswing of the background, whereas minimum
thresholds were obtained for tests that coincide with the back-
ground minimum. This is exactly the pattern of results that we
obtained at comparable background frequencies (3.125 and 6.25 Hz;
see Fig. 1). Further, as in our study, the “dc-component” of the
threshold function increases with frequency in this range.

Recently, pulse-detection studies on modulated backgrounds
were performed which were specifically designed to test current
models for light adaptation (Hood et al., 1997; Wu et al., 1997).
Wu et al. (1997) studied high modulation frequencies (20–70 Hz).
In the frequency range 20–40 Hz, clear modulations in the thresh-
old functions were observed. Thresholds were nearly in phase with
the background at these frequencies, with a tendency toward an
increasing phase of the threshold peaks with increasing frequency,
precisely the pattern that we find at similar frequencies (12.5–
33.3 Hz; see Fig. 1). At these frequencies, the dc-component of the
thresholds observed by Wu et al. was still much elevated above the
level for a steady background, as in our study. At still higher
frequencies ($50 Hz), both the threshold modulation and the thresh-
old elevation rapidly disappear, in complete agreement with our

Fig. 6. Test thresholds obtained at 450–825 ms after a step in the back-
ground illuminance, as a function of the step size of the background. Step
size is defined as the ratio of the background illuminance after the step and
the background illuminance before the step. Hence, ratios larger than 1 are
increment steps, and ratios smaller than 1 are decrement steps. Test thresh-
olds are scaled with the steady-state (Weber) levels measured when the
visual system is fully adapted to the background illuminance after the step.
Symbols are psychophysical data for three observers; the curve is the
model prediction.
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study. Wu et al. took the precaution to present their background
modulation in brief (Gaussian windowed) pulses, to avoid long-
term effects of contrast adaptation (e.g. Magnussen & Greenlee,
1985). The similarity of their results and ours indicates that this
precaution is unnecessary. Detection thresholds for brief tests pre-
sented on modulated backgrounds are very similar when the back-
ground contrast is either pulsed or present continuously.

Hood et al. (1997) used modulation frequencies 1–16 Hz. At
the low frequencies (1–4 Hz), the pattern of their results is very
similar to ours: threshold maxima occur during the upswing of the
background illuminance and thresholds are minimal near the min-
imum of the background illuminance. Also, they observe a dc-
component of the thresholds which steadily grows with increasing
frequency, as we find as well (Fig. 4). At frequencies above 4 Hz,
the results of their study and ours do not agree. Most dramatically,
at frequencies 8–12 Hz, Hood et al. find threshold maxima during
the decreasingpart of the background modulation, a result not
indicated by our thresholds at 6.25 and 12.5 Hz. Also the dc-
component of the thresholds peaks at lower frequencies (about
8 Hz) in the Hood et al. study, compared to our results (12.5–
25 Hz; see Fig. 4). There are at least three differences between our
experiments and those of Hood et al. that could cause the different
experimental results. First, the color of test and background used
by Hood et al. was red,versusyellow–green in the present study.
They performed a control experiment with green light (their Fig. 3)
which produced results similar to those with red light, but only at
a low background frequency (1 Hz) where there is no discrepancy
with our results. Second, they used a spatially soft-edged test probe,
whereas our test disc has hard (sharp) edges. Finally, the experi-
ments of Hood et al. were done at adaptation levels (100–250 Td)
that were much lower than our adaptation illuminance of 7500 Td.
Which of these differences, if any, can explain the differences in
experimental results is unclear at present and remains to be inves-
tigated in future experiments.

Detection thresholds after background steps

As described in the Model results, the present model can describe
the dynamics of test thresholds obtained with steps in the adapta-
tion background. Further, the model yields a realistic description
of a long-term elevation (duration at least 1 s) of detection thresh-
olds after increment and large decrement steps of the background
(Poot et al., 1997). Similar threshold elevations after the offset of
photopic backgrounds were reported by Reeves et al. (1998). At a
delay of 0.2–1.6 s after the offset of the adaptation field, test
thresholds in their experiments were virtually independent of the
delay, and proportional to the square root of the adaptation illu-
minance over a range of several decades (from about 10 Td to
10,000 Td).

The present model can explain many aspects of these experi-
mental results. First, Reeves et al. (1998) observed a Weber be-
havior of thresholds when the visual system was light adaptated
(i.e. before offset of the adaptation field), as predicted by our
model. Second, the model correctly predicts a time-independent
threshold after large decrement steps of the background for the
delay range used by Reeves et al. (see Fig. 5A). Finally, the model
can explain the relatively shallow dependence of thresholds on the
background illuminance which Reeves et al. observed after the
offset of the background. The explanation is as follows. When
light-adapted to a non-bleaching illuminance levelI, both the out-
put and the divisive feedback signal of the first feedback loop of
the luminance gain module (Fig. 2B) are proportional to#I. Hence

the second feedback loop receives an input proportional to#I. The
input–output relation of this second feedback loop is shallow (due
to the exponential function in the feedback path of this loop). Thus,
this loop divides out most of its steady-state input, that is, the
divisive feedback signal of this loop is also nearly proportional
to #I. When the adaptation background drops to zero (dark) in the
Reeves et al. experiment, the first feedback loop rapidly adapts
(time constant 10 ms) to a small history-independent dark level.
We did not include this level explicitly in the model, but this
could easily be done by including a small additive constant in the
feedback path of this loop (Lankheet et al., 1993). The second
feedback loop in the model, however, is slow (time constant many
seconds). Therefore, after the offset of the adaptation field the
divisive signal in this feedback will initially remain at its light
adapted level, thus dividing the response to the test signal with a
factor that is nearly proportional to the square root of the adapta-
tion illuminance. Reeves et al. (1998) present an alternative ex-
planation of their results which includes a contribution from photon
noise. The explanation of their results provided by our model,
however, is entirely deterministic.

Noise

The present model does not explicitly contain any noise sources,
but implicitly an additive source of noise is assumed in the deci-
sion process (i.e. a source of postsensory noise: Sperling, 1989).
The strength of this noise source determines the value of the pa-
rameterl in eqn. (6). Noise sources that occur before the final
decision process could change the dependence of detection thresh-
olds on stimulus parameters. Such noise sources could be either in
the stimulus (e.g. photon noise), or they could arise during pro-
cessing in the retina (sensory noise: Sperling, 1989). The present
model assumes that the decision noise dominates these other noise
sources. It remains for future work to determine the limits of this
assumption.

A possible concern is whether the model is robust against in-
ternal noise, because the various derivative operations present in
the subtractive light adaptation and the contrast gain control would
amplify such noise. This problem, however, is checked by the
low-pass filtering in the model. In an effort to minimize the num-
ber of free parameters in the model, we concentrated the low-pass
filtering in the forward path into a single filter (LP3 in Fig. 2B). In
reality, this low-pass filtering is more distributed throughout the
system. Thus, each of the derivative operations would be accom-
panied by some low-pass filtering; they would effectively be band-
pass filters (Koenderink & van Doorn, 1987) without extreme
sensitivity to high-frequency noise.

Relation with retinal physiology

The present model does not have, nor was it intended to have, a
full one-to-one correspondence with retinal physiology. For in-
stance, the outputR~t! of the model consists of an analog signal,
not of spike trains as in the retina. To obtain good predictions for
the psychophysical data, it was not necessary to include all that we
know about retinal processing. However, despite this incomplete-
ness of the model as a description of retinal processing, it is pos-
sible to point out certain relations with retinal physiology that the
model does include. Although the physiological data below are
obtained from a wide range of different animal species, this does
not invalidate the comparison: it appears that the model relates to

Pulse detection on flickering backgrounds 457



physiological results that remain consistent for the retinas of a
wide range of species.

The structure of the divisive light adaptation in the model is
partly based on characteristics of the responses of cone photo-
receptors. When fully adapted, cones have a steady-state voltage
output that increases very slowly (about logarithmic) with the ad-
aptation level: over a range of about four decades of illuminance,
each tenfold increase of adaptation illuminance increases the cone
steady-state output by about 10% of its dynamic range (turtles:
Normann & Perlman, 1979; Burkhardt, 1994; monkeys: Valeton &
van Norren, 1983). Our module for divisive light adaptation
(Fig. 2B) implements this behavior, mainly through the exponen-
tial nonlinearity in the second feedback loop which leads to a
roughly logarithmic input–output relation in the steady state.

Abrupt variations in input such as steps and pulses of light are
transmitted with a gain that is much higher than the gain of the
steady-state curve (Normann & Perlman, 1979; Valeton & van
Norren, 1983). In the model, this increased gain is due to the
low-pass filtering in the feedback loops, which cannot immediately
follow abrupt variations in input, leading to overshoots relative to
the steady-state behavior.

The first (rapid) feedback loop in the divisive light adaptation
(Fig. 2B) implements a square-root transformation for most input
frequencies. Evidence for a square-root transformation has been
observed in turtle cones (Pluvinage & Green, 1990), as well as in
horizontal cells in the cat (Lankheet et al., 1993; van de Grind
et al., 1996). Lankheet and co-workers were able to quantitatively
model their data using a feedback loop that is virtually identical to
our first feedback loop (albeit with a longer time constant: 250 ms
vs.10 ms in our model). We have unsuccessfully tried to model the
present results using a feedback time constant of 250 ms; a faster
adaptation appears necessary to explain our results.

Further evidence for an early square-root transformation in
cone vision can be observed in the responses of macaque cones.
Schnapf et al. (1990) studied responses of dark-adapted cones to
light pulses and steps. They deduced an output nonlinearity from
the initial reaction of the cones to light pulses (their Fig. 2A).
Schnapf et al. fit this nonlinearity with a weighted sum of a
Naka–Rushton relation and an exponential saturation, but our
nonlinearity NL1 (an arctangent) fits their data also. After a step
input, Schnapf et al. observed that 1 s after the step the initial cone
response had dropped to a new level (their Fig. 7A). This new
response level had a rather shallow dependence on the illuminance
level I after the step (the triangles in their Fig. 7B). We find that
these data can be fitted with good precision by a function of the
form arctan@%I # , as would be predicted from our model when the
rapid first (square-root) feedback module has already attained ad-
aptation after 1 s, but the second (slow) feedback module is still at
its old (dark-adapted) level. Thus, at this time after the step the
cone output nonlinearity receives a signal proportional to%I, lead-
ing to a rather shallow dependence of cone output on illuminance
input I. Data reported by Baylor and Hodgkin (1974) in turtle cones
(their Fig. 1) can be similarly explained by the present model.

As explained in the Model section, subtractive light adaptation
was implemented through a feedforward self-inhibition scheme
with an amplitude transmission that depends on angular frequency
v asvq. The power coefficientq equals the low-frequency slope
on a log–log plot of transmissionversusfrequency. Measurements
of this slope for ganglion cells in the cat were reported by Frish-
man et al. (1987) in their Table I. For spatially diffuse stimulation,
which is the relevant comparison for our spatially homogeneous
backgrounds, Frishman et al. report slope values at low frequen-

cies of 0.43–0.70, depending on cell type (X or Y) and adaptation
level, which is in good accord with the valueq 5 0.6 used in the
present model.

Contrast gain control is a well-established feature of ganglion
cells in the magnocellular pathway of the monkey (Lee et al.,
1994; Benardete & Kaplan, 1999). Although, to our knowledge,
for the monkey retina no experiments have been performed con-
cerning the speed of this gain control, results from X-cells in the
cat indicate that the control of retinal contrast gain is very fast,
with a time constant of at most 15 ms (Victor, 1985, 1987). Con-
trast gain control in the present model was designed to be similarly
fast. We cannot exclude the possibility that part of the threshold
elevations observed with flickering backgrounds is due to a cor-
tical contrast gain control (e.g. Carandini et al., 1997; Sengpiel
et al., 1998). However, the flickering backgrounds used in the
present experiments were spatially homogeneous, and therefore
may have produced relatively little cortical activity. Thus, it is
conceivable that the contrast gain control in the present model
should be identified with a purely retinal process.

Which pathways does the model describe?

Early in retinal processing, neural signals are divided into an ON
and an OFF pathway (Schiller, 1992). For the psychophysical pre-
dictions of the model, it was not necessary to introduce this divi-
sion explicitly. However, model outputs with positive sign are
most likely related to activity in the ON pathway, and negative
outputs to activity in the OFF pathway (Watson & Solomon, 1997).

Another division in retinal processing is that into parvocellular
and magnocellular pathways (Lee, 1996). Again, the present model
does not include this distinction explicitly. The strong presence of
a contrast gain control in the model, however, indicates that it is
probably best to consider it a model of temporal processing by the
magnocellular pathway (Benardete & Kaplan, 1999), since a ret-
inal contrast gain control appears to be absent in the parvocellular
pathway (Lee et al., 1994; Benardete & Kaplan, 1997). Possible
reasons that detection in our experiments would be mediated through
the magnocellular pathway include the relatively large size (46
arcmin) and the brief duration (7.5–10 ms) of the test pulse. At the
moment, it must remain an open question whether detection in our
experiments takes place through the magnocellular pathway at all
times, however. For instance, the model responds strongly imme-
diately after large increment steps in the adaptation field. At these
moments, the saturating nonlinearities in the model compress the
response to the test pulse, which yields high thresholds (Fig. 5B),
consistent with the psychophysics. However, at present it cannot
be excluded that immediately after large steps in the adaptation
field psychophysical detection takes place in the parvocellular path-
way, which has a smaller contrast gain (Lee, 1996) and thus would
be saturated less than the magnocellular pathway. To settle this
issue, it would be of interest to choose the characteristics of the test
pulse such that its detection in these experiments would be medi-
ated through the parvocellular pathway at all times. Preliminary
results in our laboratory indicate that this may indeed be feasible.

Speed of divisive light adaptation

Divisive light adaptation in the present model consists of a se-
quence of three processes (see Fig. 2B): two feedback operations
and a static nonlinearity. Two of these processes are fast: the non-
linearity NL1 is instantaneous, and the first feedback loop contains
a low-pass filter with a time constantt1 of only 10 ms.
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Recent studies indicate processes of light adaptation that are
similarly fast. Lee et al. (1997) measured light adaptation in hor-
izontal cells of primates, by superimposing a (20 Hz) test signal on
a high-contrast, 0.61-Hz background modulation (with a mean
illuminance of 1000 Td). From the modulation of the responsivity
of the horizontal cells that is induced by the background, Lee et al.
conclude that “adaptation was complete withinca.25 ms,” in good
accord with our estimatet1 5 10 ms for the time constant of the
fast feedback control. Psychophysical experiments by He and
MacLeod (1998) using laser interferometry also indicate a fast
process of light adaptation (7 ms full width at half-height, which
corresponds to a time constant of 10 ms). Fast adaptation in the
retina is also indicated by ERG measurements (Wu et al., 1995).

Relationship with natural stimuli

Subtractive light adaptation in the model is implemented through
a high-pass filtering with an amplitude transmissionvq. Here we
show that this is consistent with optimal processing for the dy-
namic inputs encountered by the visual system when moving about
in a natural environment.

For typical natural environments, the temporal power spectrum
of a spatially localized input to the visual system (e.g. on the scale
of foveal receptive fields in the retina) depends on the temporal
frequencyv of the input as 10vg, with g close to 1 (van Hateren,
1997). Thus, low frequencies dominate the input. To prevent these
low frequencies from saturating the available dynamic range, they
should be attenuated. The best way to do this, at least at high
signal-to-noise ratios, is to whiten (decorrelate) the input (Srini-
vasan et al., 1982; Atick & Redlich, 1990; van Hateren, 1993).
Whitening the input is achieved by a filter that has a power spec-
trum vg and hence an amplitude spectrumvg02, which for g ' 1
has a fractional exponent of about 0.5, close to the valueq 5 0.6
used in the model.

Plausibility of contrast gain control

Thresholds for tests presented on flickering backgrounds tend to be
elevated relative to tests on a steady background; this elevation is
known as the threshold dc-component (Hood et al., 1997; Wu
et al., 1997). In the present model, most of this dc-component of
test thresholds is due to a contrast gain control (some additional
contributions to the dc-threshold component originate from the
saturating nonlinearities in the model). Since a retinal process of
contrast gain control is well established (review: Hood (1998), it is
an a priori likely explanation of this threshold component. How-
ever, in their Fig. 9, Wu et al. (1997) show that for a 30-Hz
background stimulus with a time-varying contrast envelope, test
thresholds follow the background contrast without any noticeable
delay. Wu et al. expect contrast gain control to produce a lag of the
test thresholds behind the contrast envelope of the background,
caused by the time necessary in the visual system to evaluate
background contrast. They therefore conclude that contrast gain
cannot be the explanation of the threshold dc-component. In the
present model, however, we present an implementation (using tem-
poral derivatives) which can yield an arbitrarily fast contrast esti-
mate. Thus, we claim that the result obtained by Wu et al. does not
rule out contrast gain control as an explanation of the dc-component
of pulse-detection thresholds on modulated backgrounds. Rather, it
constrains the gain control of temporal contrast to be fast, as it is
in the present model.

The Wilson (1997) model

To our knowledge, at the moment only two models have been
shown to be able to explain the behavior of test pulses presented on
flickering backgrounds: the present model, and the Wilson (1997)
model, as adapted by Hood and Graham (1998). Here we highlight
two important differences between our model and Wilson’s model.
First, in our model divisive light adaptation precedes subtractive
light adaptation (Fig. 2A), whereas in the Wilson model a subtrac-
tive operation (of the cones and the horizontal cells) precedes a
major divisive adaptation at the level of the bipolar cells. A con-
sequence of that ordering is that there is relatively little divisive
gain control in the cones, which leads to a steady-state cone re-
sponse in the Wilson model that increases rapidly with retinal
illuminance (a2

3
_ power law). In the Appendix of his paper, Wilson

shows how this could be reduced to a1
2
_ power law, but even this

would represent a growth of the steady-state cone output that is
much faster than the log-like increase of the steady-state cone
output observed in physiological experiments (e.g. Normann &
Perlman, 1979; Valeton & van Norren, 1983; Burkhardt, 1994).
The divisive light adaptation in our model, on the other hand, was
designed such that it generates this slow growth of the cone steady-
state output. Second, an important feature of the Wilson model is
a push–pull arrangement of the ON-center and OFF-center bipolar
inputs to the ganglion cells, which is crucial to explain the eleva-
tion of test thresholds on modulated backgrounds (Hood & Graham,
1998), but which appears to be absent in the actual retina (Hood,
1998). On the other hand, our model explains the threshold ele-
vations through a contrast gain control, which is well established
in the magnocellular retinal pathway, but which is absent in the
Wilson model.

Finally, simulations of the Wilson model performed in our lab-
oratory show an unexpected behavior of its bipolar cells. ON-
center bipolar cells in the Wilson model receive antagonistic inputs
from the cones and the horizontal cells with (relative) weights
respectively27 and13 [Wilson, 1997; his eqn. (4)]. OFF-center
bipolar cells receive antagonistic inputs from the cones and the
horizontal cells with weights respectively13 and27 (Dr. H.R.
Wilson; Matlab code and personal communication, 1999). A con-
sequence of this arrangement is that in steady-state ON and OFF
bipolars have an identical response (which increases with the ad-
aptation illuminance). At high modulation frequencies (which can
be followed by the cones, but not by the horizontal cells), ON and
OFF bipolars respond nearly in counterphase. This is the temporal
relation between ON and OFF cells that would normally be ex-
pected. However, for frequencies below about 0.5 Hz, which can
be followed by the horizontal cells, ON and OFF bipolars respond
in phase. This is an unexpected prediction of the Wilson model that
remains to be tested in physiological experiments.
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Appendix

Fractional differentiation

Subtractive light adaptation in the model is implemented such that it is
equivalent to a fractional differentiation. Since the concept of fractional
differentiation may be not very well known within the visual community,
a brief description is provided here. For more extensive discussion and
implementation algorithms, see Oldham and Spanier (1974) and Kasdin
(1995).

Fractional differentiation is most easily explained in the Fourier do-
main. First, consider a simple (first-order) differentiation of a harmonic
function:

d
dt sinvt 5 v cosvt 5 v sinSvt 1

p

2D. (A1)

Relative to the input function, the differentiation multiplies the amplitude
by v and produces a phase advance ofp02 radians. Likewise, a second-
order differentiation d20dt 2 leads to an amplitude factorv2 and a phase
advance 2p02. Fractional differentiation is an extension of these results to
noninteger orderq:

dq

dt q sinvt [ vq sinSvt 1 q
p

2D. (A2)

Fractional differentiation of orderq can thus be described by a linear
operator with a complex transmission function:

Aq~v! 5 6v6qeiq~p02!sgn~v! (A3)

in which sgn~v! represents the sign ofv.
The pulse-response function of this operator is the inverse Fourier

transform of this transmission function. This pulse response consists of a
brief excitatory impulse att 5 0, immediately followed by an inhibition
that is sharp at first and then has a tail which, for nonintegerq, behaves as
a power functiont212q. The power-law tail of the pulse response of a
fractional differentiation differs from the functions usually considered in
linear systems theory which have an exponential taile2t0t that can be
described by a single time scalet. Fractional differentiation is time-scale
invariant, although for a given frequency range in practice it can be de-
scribed using a finite number of time scales (Thorson & Biederman-
Thorson, 1974). This is in fact how it was calculated in the model: a
low-pass filter consisting of the superposition of a range of first-order
low-pass filters (LP4 in Fig. 2C) forms the inhibitory tail of the impulse
response of the fractional differentiation.

Implementation of the contrast gain control

Contrast gain control in the model consists of a divisive feedforward loop
(see Fig. 2C). The calculation that yields the contrast gain control signal is
shown in Fig. 7. Although we do not claim that this implementation nec-

Fig. 7. Calculation procedure for the contrast gain control signalC~t!. See
the text for further explanation.
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essarily reflects the underlying physiology, the predictions of the model are
consistent with our measurements.

To understand the logic of this method to calculate a contrast signal,
imagine that the inputi ~t! of the contrast calculation consists of a harmonic
signal with frequencyv and contrastc, possibly superimposed on a time-
averaged signaliav:

i ~t! 5 iav1 c sinvt. (A4)

In practice, the time-averaging operation in the contrast calculation of
Fig. 7 would be performed using a low-pass filter in the visual system.
Here we do not specify the precise value of the time constant of this filter,
but we assume that it is sufficiently slow such that it does not transmit the

modulation frequenciesv used in the present experiments. Then the prod-
uct of i 2 iav and2d2i0dt 2 (see Fig. 7) yieldsv2c2 sin2 vt, whereas the
square of di0dt yieldsv2c2 cos2 vt. Hence the sum of these signals,v2c2,
is independent of timet (since sin2 1 cos2 5 1), and increases both with
contrast and with temporal frequency, as is necessary to explain our data.
This method of obtaining a time-invariant contrast signal is similar to
methods that construct quadrature filters by performing a Hilbert transfor-
mation of the input signal (e.g. Adelson & Bergen, 1985; Morrone &
Owens, 1987). However, contrary to a Hilbert transformation, the present
calculation is causal, and fast. The result of this calculation is compressed
with a powera 5 0.35, multiplied by a constantg 5 0.4, and added to 1
(the default setting when no contrast is present), which yields the divisive
contrast gain control signalC~t! in Fig. 2C.
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