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A temporal model for early vision that explains detection
thresholds for light pulses on flickering backgrounds

H.P. SNIPPE, L. POOTAND J.H. vaN HATEREN

Department of Neurobiophysics, University of Groningen, Groningen, The Netherlands
(RECEIVED October 4, 1999AccepTED January 18, 2000)

Abstract

A model is presented for the early (retinal) stages of temporal processing of light inputs in the visual system. The
model consists of a sequence of three adaptation processes, with two instantaneous nonlinearities in between. The
three adaptation processes are, in order of processing of the light input: a divisive light adaptation, a subtractive
light adaptation, and a contrast gain control. Divisive light adaptation is modeled by two gain controls. The first

of these is a fast feedback loop with square-root behavior, the second a slow feedback loop with logarithm-like
behavior. This can explain several aspects of the temporal behavior of photoreceptor outputs. Subtractive light
adaptation is modeled by a high-pass filter equivalent to a fractional differentiation, and it can explain the
attenuation of low frequencies observed in ganglion cell responses. Contrast gain control in the model is fast
(Victor, 1987), and can explain the decreased detectability of test signals that are superimposed on dynamic
backgrounds. We determine psychophysical detection thresholds for brief test pulses that are presented on flickering
backgrounds, for a wide range of temporal modulation frequencies of these backgrounds. The model can explain the
psychophysical data for the full range of modulation frequencies tested, as well as detection thresholds obtained for
test pulses on backgrounds with increment and decrement steps in intensity.

Keywords: Light adaptation, Contrast gain control, Computational model, Psychophysical detection thresholds

Introduction Recently, an alternative paradigm to study the dynamics of light
The visual system functions at a wide range of light levels fromadf;lptation has attracted considerable int.erest (Boynton et al., 1961;
starlight to bright sunlight. To cope with this range various’ pro-Sh'Ckman 1976; Maruyama &'_I'akahashl, 1977, Hood et al,, 1997,

' ’ Wu et al., 1997). In this paradigm the observer adapts to a back-

cesses of light adaptation have evolved. For msta_nce, nlght VISIOnround that is modulated (instead of stepped), and detection thresh-
is handled by rod photoreceptors, whereas during daylight th . .

. L L olds for brief test probes are measured for various phases of test
visual system uses cone vision. At photopic light levels, cone

S . . . r?resentation in the background modulation cycle. Conventional
vision itself incorporates several processes for light adaptatio hodels for light adaptation have severe problems explaining re-
(Valeton & van Norren, 1983). 9 P P P g

Traditionally, psychophysicists have studied light adaptationsuns from this paradigm (see Hood et al., 1997 and Wu et al., 1997

using steos of liaht: the visual svstem adants to a certain li h{or discussion). First, these models fail to describe the precise
9 P gnt. y P 97%ynamics of test thresholds during the modulation cycle. Second,

level, and after full adaptation has been obtained the light is steppet ey do not describe the experimental result that, compared to the

to anew level. The dynamics of the adaptation process is gaugetd st threshold on a steady background, test thresholds are high
by measuring detection thresholds for a brief test probe presentst roughout the background modulation c,ycle

at various times after the adaptation step (e.g. Crawford, 1947, The goal of the present paper is twofold. First, we present new

Baker et al., 1959; Hayhoe et al., 1992; Poot et al., 1997). From th : .
; .%ata for modulated backgrounds that have modulation frequencies
results of such experiments, models have been developed whic

combine a multiplicative light adaptation (in which the input is which span the complete range of visual sensitivity from well

o S . : . ~ below 1 Hz to well above flicker fusion. Second, we present a
multiplied by a gain signal), a subtractive light adaptation (in : . .

) ; . . . model that describes these data, as well as previous data obtained
which a signal is subtracted from the input), and a compressive (or . : -
saturating) instantaneous nonlinearity (e.g. Adelson, 1982; KortumWIth steps in the light level (Poot et al., 1997).

9 v (€.0. ' ' A recent model for light adaptation (Wilson, 1997) can also

& Geisler, 1995; von Wiegand et al., 1995). explain detection data for test probes presented both on stepped
and modulated backgrounds (see Hood & Graham, 1998). In the
Address correspondence and reprint requests to: Herman P. Snipp\é\,/Ilson moldel, high detection thresholds on modulgted back-
Department of Neurobiophysics, University of Groningen, Nijenborgh 4, grounds arise from push—pull connections through which ON and
NL-9747 AG Groningen, The Netherlands. E-mail: h.p.snippe@phys.rug.nOFF ganglion cells inhibit each other (Hood & Graham, 1998).
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This is a problematical aspect of the Wilson model, since push-mum illuminance. For all background frequencies, test detection
pull connections have not been observed in the retina (reviewthresholds were determined at four phases in the modulation cycle:
Hood, 1998). In our model, the high thresholds for tests on mod< = 0, 90, 180, and 270 deg. In addition, observer HS also mea-
ulated backgrounds are explained by a process of contrast gasured detection thresholds at intermediate phase angles for a subset
control that scales sensitivity to the current contrast of the backef modulation frequencies.

ground dynamics (see Shah & Levine, 1996; Ahumada et al., 1998; Interspersed between the experiments with modulated back-
Eisner et al., 1998 for other models of early vision that include agrounds, the detection threshold for the test pulse presented on a
contrast gain control). Such an explanation is plausible since ateady background of 7500 Td was measured. We refer to this
retinal stage of contrast gain control is well established physiologthreshold as the Weber value, since for steady backgrounds in the
ically (e.g. Werblin & Copenhagen, 1974; Shapley & Victor, 1978; intensity range of the modulated backgrounds (1500-13,500 Td),
Lee et al., 1994; Benardete & Kaplan, 1999). Nevertheless, conit is directly proportional to the adaptation level, within experi-
trast gain control is lacking in most current models of early visualmental error (Poot et al., 1997).

processing (e.g. Gaudiano, 1994; Dahari & Spitzer, 1996; Donner

& Hemila, 1996; Wilson, 1997; Gazeéres et al., 1998). On the othePsychophysical procedure

hand, models for contrast gain control (e.g. Victor, 1987; Wilson & . .
Humanski, 1993; Foley, 1994: Lu & Sperling, 1996 Watson & Data were collected using a modified yas method (Poot et al.,
' ’ ; ! ! ' 1997), in sessions of duration 10—-30 min. Each measurement ses-

Solomon, 1997; Carandini et al., 1997) have at best an impover-. . .
; e . : ion consisted of a number of runs. In each run, the modulation
ished description of the processes of light adaptation that prececfe .
. - Trequencyf of the adaptation background and the phasef the
the contrast gain control. The model presented here seeks to stim- . - .
: T presentation of the test pulse in the modulation cycle were kept
ulate work that remedies this situation. . . . ;
fixed, as was the intensity of the test pulse. During a run, the
modulated adaptation signal, eqn. (1), was on continuously. During
Psychophysical methods the first 30 s of a run, no test pulses were presented; the observer
o ) ~ adapted to the modulated adaptation signal. After this adaptation
A description of the methods used to obtain the psychophysicgheriod test presentations began. Runs consisted of 20-50 trials. On
data has been published (Poot et al., 1997). Briefly, these methodsach trial there was a 50% probability that the test pulse was
were as follows. actually presented, and after each trial the observer indicated, using
a switch on a response box, whether the test pulse had or had not
been presented (guessing if necessary). Detection thresholds for
the test pulse were determined using the method of Poot et al.
Stimuli were presented monocularly through a two-channel Max{1997), and correspond to 84% correct responses for an unbiased
wellian-view system, thus excluding the influence of pupil size observer with identical proportions of false alarms and misses.
on the measurements. Two green (563 nm) Toshiba TLGD 190A hresholds are based on 50-150 stimulus presentations per data
light-emitting diodes (LEDs) were used as light sources. One LEDpoint, and have an estimated uncertainty (standard deviation) of
provided a spatially homogeneous circular adaptation field of di-7—10% (0.03—0.04 log unit).
ameter 17 deg. The other LED was used for foveal presentation of
a concentric, sharp-edged test stimulus with a diameter of 46 arcmitDbservers
A Pentium PC controlled the LED intensities at a rate of 400 Hz,
through a 12-bit digital-to-analog converter. Contrary to the de-
scription in Poot et al. (1997), the LED outputs were now linear-
ized on-line using the photodiode-feedback design of Watanab

Apparatus

The authors (age 25-39 years) were subjects in the experiments.
Two observers use their spectacles to obtain good acuity; the third
8bserver is emmetropic. Observer HS performed the most exten-
Sive measurements; the results for the two other observers support

et al. (1992). these data.
Stimuli Psychophysical results
The retinal illuminancd (t) of the adaptation field was harmoni- Detection thresholds as a function of the phase of the test presen-
cally modulated: tation in the modulation cycle are shown in Fig. 1 for a range of
modulation frequencies of the adaptation field. For most modula-
1(t) = lo(1+ Csin 2urft). 1) tion frequencies the thresholds are elevated above the levels for

steady backgrounds: the dashed lines show the threshold for a
steady background at the time-averaged illuminance, and the curve
at 0 Hz indicates the threshold for a background modulated very
lowly. Further, thresholds as a function of phgsdeviate from
armonic functions, and there is a substantial range of frequencies
(1.56-6.25 Hz) for which the thresholds peak during the upswing
studied one additional frequendy= 33.3 Hz. of the background illuminance, rather than at the moment that the

. - background attains its maximum. The curves in Fig. 1 are calcu-
Test pulses (with duration 7.5 ms) were presented at momentls . .
: : ated with the model described below.
that correspond to various phasgof the modulation of the ad-
aptation illuminance. Phas¢ = 0 deg is defined such that the Model
middle of the test pulse coincides with the positive zero-crossing
of the sine function in eqn. (1). Phage= 90 deg corresponds to In this section, a model is presented that can explain these data.
a test pulse presented when the adaptation field attains its maxiFhe model aims to describe the early stages of temporal processing

The mean illuminancé, was 7500 Trolands (Td), and the tempo-
ral contrastC of the modulation was 0.8. Modulation frequencies
f ranged from 0.39 Hz to 100 Hz; consecutive frequencies differeci
by a factor two (0.3 log unit). Results of the experiments at fre-
guencies = 25 Hz and = 50 Hz were very different; therefore we
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As can be seen in Fig. 2A, the model is a sequence of three
adaptation modules, with two instantaneous nonlinearities sand-
wiched in between. The nonlinearities are saturating, and describe
the finite dynamic range at various levels in the visual system.

The three adaptation modules are, in order of processing of the
input:

« a divisive light adaptation
« a subtractive light adaptation
* a contrast gain control

From psychophysical experiments on light adaptation (mainly
using background steps), it has been concluded that light adap-
tation contains both divisive (also referred to as multiplicative)
and subtractive components (e.g. Hayhoe et al., 1992; Graham
& Hood, 199d). Our model follows this tradition. It has been
suggested previously that the elevation of test thresholds on
modulated backgrounds above the test detection level for a steady
background could arise from a contrast gain control process
(Hood et al., 1997; Wu et al., 1997). This gain control would be
activated by the temporal contrast of the background modula-
tion, which would decrease the transmission gain for the test
pulse, and hence its detectability. The third module in our model,
contrast gain control, is a quantitative implementation of this
suggestion.

We now discuss the detailed implementation of the three adap-
tation modules.

test detection threshold (Td)

A B c
divisive subtractive, contrast

; : - L~ r .

input— light /~ light gain [—decision
adaptation - adaptation l/‘—l control

. NL, NL,
0 360 720
phase ¢ (°) B

Fig. 1. Detection thresholds for test pulses as a function of the plase I(t) % % W 1,(t) W O,(t)
the background modulation at which the test pulse is presented. Modulation ’ 3 ’ !
frequencies of the background range from 0.39-100 Hz. Psychophysical {LP,
data are shown for three observers (symbols as in Fig. 4). To stress th€ ’
similar dependence on phageor the different observers, the data plotted
for observers LP and JH are their raw data multiplied by 0.69 and 0.61,01(t) L(t)
respectively. This scaling equalizes their thresholds on a steady background
of 7500 Td to the threshold (900 Td) obtained for observer HS on this
background. The curves are predictions of the model described in Fig. 2.
The lowermost curve, labeled0 Hz, equals the background modulation
multiplied by the Weber fraction 0.12 obtained for observer HS on steady
backgrounds. For the sake of clarity, two cycles of the background modFig. 2. Model structure. A: Model outline. The model consists of three
ulations are shown, with the same data points. Note the different scalinggonsecutive adaptation modules, with two saturating nonlinearitieg (NL
of the ordinates. In each of the graphs, the dashed line indicates the thresAd NLlp) sandwiched in between. The direction of the signal flow is
old (900 Td) on a steady background of 7500 Td. For the model calculaindicated by arrows. Model input is a dynamic illuminari¢g), measured
tions the parameters werg= 10 ms,k = 2.6,73 = 3 ms,n; = 12,q = 0.6, in Trolands. Model output is a dynamic resporiRé), from which a
ky =1.3,k_=0.8,a = 0.35,g = 0.4, = 3.3, and\ = 3.2 s % detection threshold for a test pulse is derived. This test pulse is super-
imposed on the input during test trials. B: The feedback structure of the
divisive light adaptation. Input(t) is divided by a constant of 1 Td, which
yields a dimensionless inpdi(t). LP = linear low-pass filtering. The

. . . . ) . . graph in the second feedback loop represents an exponential nonlinearity.
of lightinputs in the visual system; spatial and chromatic structurec. syptractive light adaptation and contrast gain control. Subtractive light

are left unspec_ified here. A|th0_U9h even.tually it would be des?”_ibleadaptation is generated by subtracting from the output of the divisive light
to include spatial and chromatic effects in a model for early vision,adaptation module a low-pass filtered version of itself. Contrast gain con-
for the present experiments a purely temporal model suffices. trol operates through a divisive feedforward loop.
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Divisive light adaptation feedback loop. We assume that this control loop remains virtually

. - S Lo unmodulated even at the lowest frequeridy= 0.4 Hz) of the
As is shown in Fig. 2B, divisive light adaptation is implemented asbackground modulation used in the experiments. Thus, the time

a sequence of two feedback processes. It has been argued (e(':%'nstant in the second control loop must be considerably larger
Sperling & Sondhi, 1968; Wilson, 1997) that divisive light adap- P y larg

tation consists of feedback gain controls, that is, that the controﬁhan 1 s. Adaptation processes at such long time scales are known

. . ; 0 occur in actual photoreceptors (Baylor & Hodgkin, 1974; Laugh-
signal is generated from the output of the adaptation process rathﬁa & Hardie. 1978 Normann & Perlman. 1979 Valeton & van
than from the input. The advantage of feedback gain control is thaﬁorren 198'3) ’ ’ ’

the dynamic range necessary for the control signal is much smaller The resultl;(t) of the divisive light adaptation passes through

than in a feedforward structure. Also, the biophysics of photo-_ . . ; . - .
LT ...~ an instantaneous, saturating nonlinearity (N Fig. 2A), which

transduction indicates feedback control processes for divisive ields the signals(t) on which the subtractive light adaptation
light adaptation (e.g. Bownds & Arshavsky, 1995; Detwiler & y ; 9 1 9 P
Gray-Keller, 1996; Koutalos & Yau, 1996). operates:

In the first gain control loop of the model, the input is divided 2
by a low-pass filtered version of the output. This control loop is Oy(t) = — arctani(t). (3)
fast; the time constant; of the first-order low-pass filter is set at
10 ms. For input signals of low frequency (efg= 1 Hz), the  The nonlinearity in egn. (3) is mathematically similar to the non-
filtering in the control path has no consequence. For these inpuinearity observed in the output of photoreceptors (e.g. Baylor &
frequencies, the control loop behaves as an instantaneous squakéedgkin, 1974; Schnapf et al., 1990).
root compression device. This square-root behavior follows from  The nonlinearity NL is preceded by a linear low-pass filtering
the steady-state solution of the feedback loop. The inpxt) (* (LPsin Fig. 2B), consisting of a cascade of 12 first-order filters
divided by the output (/") equals the outputx/y =y, thusy = vX. with time constantz; = 3 ms each. It was necessary to choose a
For high frequencies (roughfy= 10 Hz), the temporal processing relatively high order for the low-pass filtering to explain the rapid
in the feedback path does play a role and the output is no longettecline of test thresholds for background modulations with fre-
simply the square root of the input. At these frequencies, the outpuguencies above 25 Hz. It is well known that the time scale of
signal is phase advanced relative to the input. Also, the output i§ltering in the retina depends on the background light (e.g. Donner
not time symmetric: in each cycle the upstroke (increasing outputgt al., 1995). However, in the present model, it was possible to
is sharper (and hence briefer) than the downstroke (Foerster et aignore this dependence since the adaptation backgrounds were
1977). The temporal low-pass filtering in the feedback loop alsorestricted to a relatively narrow photopic range in our experiments.
results in transient overshoots and undershoots at steps (instead of
sinusoidal variations) in the light level. Subtractive light adaptation

The second feedback gain control in Fig. 2B differs from the
first in two important respects. First, there is now a rapidly ex- 2 . . .
panding nonlinearity in the feedback path. Such a feedback strué@ed_forward self-inhibition SChe”?e. n W.h'Ch a Iow-pass_, filtered
ture has been used previously to describe retinal responses &rson of the outp_uOl(t) of the divisive “ght. ada_ptatlon IS su_b-
flickering inputs (Tranchina & Peskin, 1988; Crevier & Meister, tracted fromO,(t) itself. Thus, the subtractive light adaptation

1998). It is also a standard component in devices for automatié{:_lon":"s'ts of a Imeﬁr high-pass filtering al(t).' This h|gr|1-pa|s§ ft
gain control (e.g. Ohlson, 1974). Here, the nonlinearity in the llter suppresses the response to a constant input completely: after

feedback path is modeled as an exponential function, with a multi:[he subtractive light adaptation the steady-state response of the

plicative constank = 2.6 in the exponent. For the complete loop, model to a constant adaptation field equals zero.

this feedback nonlinearity leads to a steady-state behavior that, at In thel_przsenft!mellementgnpn, the k:‘lgh-palss ?Iterlng mqltrllplles
sufficiently high illuminances, is nearly logarithmic, instead oft e amplitude of its harmonic inputs of angular frequencyiit

square root as in the first gain control. This is because in stead factora . We found that a noninteger valge= 0.6forthe power
state the output &) of this loop equals the input divided by the xponentq yields the best model results. Physiologically, such

exponential of the outoutz = v/expkz Taking the looarithm of power-law behavior_can result from diff_usion processes (Kelly,_
thig expression yields P y/exp g g 1969), cable properties (Oldham & Spanier, 1974), or a superposi-

tion of exponential functions with a range of time scales (Thorson
& Biederman-Thorson, 1974). Mathematically, it is well known
kz+Inz=Iny. @) that, for a causal system, this power-law behavior corresponds to
a fractional differentiation (Oldham & Spanier, 1974). We explain
For high inputs, the first term in the left-hand-side of eqn. (2) the concept of fractional differentiation in the Appendix.
dominates the second term, which leads to a logarithmic steady- The resultl,(t) of the high-pass filter passes through a satu-
state behaviokz= Iny. At very low light levels (much lower than  rating nonlinearity (NL in Fig. 2A). Contrary to the first nonlin-
those used in the present experiments), the second term in thearity NL; in the model, where inputs are alwag, inputs to
left-hand-side of egn. (2) dominates the first term, which leads toNL, can be negative. The nonlinearity Miaturates for both pos-
the relation Irz = Iny, thusz = y. Therefore, at these low light itive and negative inputs, but the saturation is assumed to be
levels the second gain control does not operate, leaving only thesymmetric:
first, square-root gain control.
A second important difference between the first and the second

As is shown in Fig. 2C, subtractive light adaptation consists of a

o . o O,(t) = arctan(k, I,(t if 1,(t) =0,
control loop in Fig. 2B concerns the time constants of the filtering 2(1) Ky rlk 12(1) 2t

in the feedback. Whereas the first control loop is fast, the second

control loop is assumed to be slow. In fact, we do not specify the 0,(t) = i arctar(k_ 1,(1)) if 1,(t) < 0, 4)

exact value of the time constary of the low-pass filtering in this k-
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with k; = 1.3 andk_ = 0.8. Both branches of eqn. (4) connect compression in Nk, and hence to high detection thresholds when
smoothly forl, = 0. However, sincé., > k_, saturation is more the test pulse is presented in the upswing of the background.
severe for positive signals. This saturation is crucial to explain the

high detection thresholds observed at many background modula-

tion frequencies in Fig. 1 during the upswing of the backgroundContrast gain control

illuminance. Due to the phase advance generated by the high-pagghough compression in N, as described above, can yield ele-
filter (as described in the Appendix and illustrated in Fig. 3), theations of the test threshold, these elevations occur only at specific
output at this stage of the model attains its maximum well beforg,gments in the background modulation cycle (when the back-
the input illuminance for a wide range of frequencies. This leads tchround response reaches an extremum). An instantaneous com-
pressive nonlinearity (such as P)Lcannot describe the consistent
elevation of thresholds above the level obtained with steady back-
grounds that is observed experimentally for tests presented at all
0.39 Hz 3.13 Hz phases in the background cycle. Such an elevation can be seen in
T T T Fig. 1 by comparing the thresholds with the dashed lines that

15000k 1L | indicate the threshold for a test presented on a steady background.
/}\\ /\\ I This elevation of thresholds is generally observed in detection

experiments with modulated backgrounds; it is known as the “dc-
] 1 component” of the threshold function (Hood et al., 1997; Wu et al.,

1997). In the present model, this component of threshold elevation
[ 1L is largely due to a divisive contrast gain control that is activated by
the temporal contrast of the background. When background con-

trast is high, the contrast gain control signal is high, hence the test
response is divided (attenuated) by a large number, leading to

10000

illuminance (Td)
3
S

OI_A;I_| R

T ' T T T elevated thresholds for tests on modulated backgrounds. For flick-
0.7 A /\ 1 /\ /\ /\ ] ering backgrounds, contrast gain control accounts for about 70% of
. 4t the threshold dc-component in the present model; most of the
S 0_6/ : / g remaining 30% of threshold elevation arises from compression
< | in NL.
O o5t 11 For the specific implementation of contrast gain control, a num-
ber of constraints have to be satisfied. First, for modulated back-
o4l 11 . | grounds a positive contrast signal throughout the modulation cycle
L l L . is desired. Second, threshold levels tend to increase with modula-
tion frequency (up td = 12.5 Hz; see Fig. 1), hence at equal
wof 7T T ] ] physical contrast the contrast signal has to increase with increasing
0.5 This is indicated both by psychophysics (e.g. Foley & Boynton,

1993; Poot et al., 1997; Wu et al., 1997; Wilson & Kim, 1998), and
by retinal physiology (Victor, 1987; Shapley, 1997). A model for
contrast gain control that satisfies these demands is presented in

/ modulation frequency. Finally, contrast gain control can be fast.

e the Appendix.
1.0F . . As is shown in Fig. 2C, the outp&(t) of the model equals the
L. . L outputO,(t) of NL, divided by the contrast gain sign@l(t):
O()
02 R(t) c) ®)
2NN )
©

To illustrate the behavior of the model, Fig. 3 presents exam-
ples of signals produced by the model for two background mod-
ulation frequencies: 0.39 Hz (left) and 3.13 Hz (right). Input

SRR
T

0.2 ) illuminancesl (t) consist of the superposition of the background
L . . . L modulation and a series of test pulses of duration 8 ms and with
0 10002000 3000 40005000 0 200 400 600 800 strengths equal to the detection thresholds calculated by the model.
time (ms) time (ms) For the 0.39-Hz background, test pulses at the input are all virtu-

] ) ally proportional to the background illuminance, indicating that
Fig. 3. Responses of the model at two frequencies of the backgroun(;{,\/eber,s law applies at this low background frequency. This is

modu!atlon. Input illuminance con3|§ts of a modulated background V.V'thngt the case for 3.13 Hz. The second row shows respddges
superimposed test pulses. The amplitudes of the test pulses were adjust

such that they yield equal detectability. Intermediate respoB®sesd|,, fsee. Fig. ZB,) of the model after the d|V|§|ve l'ght a‘,’apta“o” and
and final respons® correspond to those designated in Fig. 2. For com- the first nonlinearity NL.. The dashed horizontal line indicates the
parison, the thin dashed curves for 3.13 Hz show the response of the mod&feady-state response to a constant background of 7500 Td (the
to the background modulation without test pulses. See the text for furthetime-averaged background illuminance). Note the compression of
explanation. the background signal. For the 0.39-Hz background, the responses
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to the test pulses are all virtually identical, indicating that the partup the calculations, the model was subsequently implemented as a
of the model shown in Fig. 2B produces the Weber behavior. Thd=ortran program running on a Hewlett Packard workstation. The
third row shows model responségt) (see Fig. 2C) after the latter implementation uses exclusively recursive filtering at a sam-
subtractive light adaptation. Note that the response to the backsling frequency of 1000 Hz, and gives the same results as the
ground modulation is smaller at 0.39 Hz than at 3.13 Hz. FurtherMathCad program.
more, the subtractive light adaptation induces a phase advance of Parameter values used for the model results reported below are
the response to the background: the response to the test pulisted in the caption of Fig. 1. This set of parameter values was
presented in the upswing (positive zero crossing) of the backused for all the calculations presented in this article. The param-
ground is now sitting on the maximum of the background re-eters were obtained by fitting simultaneously to the psychophysi-
sponse. Also note the biphasic nature of the response to the tesal results obtained with flickering (Fig. 1) and stepped (Figs. 5
pulses. The last row shows the model outR(t) (see Fig. 2C). and 6) backgrounds, and judging the quality of the fits by eye. We
The difference in response to the background modulation at thelid not perform an exhaustive search through the parameter space
two frequencies has been reduced relative to the stadgthird of the model. Thus, it is likely that small differences between the
row). This is due both to the compression inNkee Fig. 2C) and data and the model could be reduced by a further optimization of
to the contrast gain control which is activated more strongly by thethe parameter settings in the model.
higher background frequency. These operations also result in equal
detectability of all test pulses.

Model results

Detection of the test pulse

. . Steady backgrounds
Detectability of a test pulsp(t) superimposed on a background

I(t) was determined as follows. First, the model was run withA basic psychophysical result obtained for detection thresholds of
solely the background signalt) as input; this yields a model test pulses presented on steady backgrounds of photopic intensity
outputR(t). Next, the model was run using as input the di + (e.g. Reeves et al., 1998) is Weber’s law: test thresholds are pro-
p(t) of the background and a test pulse, yielding a model outpuportional to the background illuminance. Thus, the ratio of test
Ro(1). In calculating the respong®,(t), we allowed the effects of  threshold (in Td) and the background illuminance is a constant, the
the test pulse to enter the (feedback) gain paths of the luminanc@/eber fraction. The present model complies with this result: for
adaptation, bubotto enter the contrast gain control path. The logic backgrounds in the range 10-100,000 Td, Weber fractions are
of this is that luminance adaptation is strongly localized in phot-constant to within 10%. For backgrounds above 100,000 Td, the
opic vision (Burr et al., 1985; MacLeod et al., 1992; He & MacLeod, model Weber fraction increases due to saturation at the nonlinear-
1998; though see Tyler & Liu, 1996, for some counterevidence)jty NL;. This saturation, however, could be prevented in a realistic
while contrast gain control has a much larger spread, extendingvay by including in the model the effects of photopigment deple-
over several degrees (Shapley & Victor, 1979; Benardete & Kaplantion at these high illuminances (Burkhardt, 1994). For back-
1999). Thus, it is expected that the contrast gain that affects thgrounds below 10 Td, the Weber fraction steadily rises. Below
test pulse (diameter 46 arcmin) mostly originates from adjacenabout 0.1 Td, the model reverts to a de Vries-Rose behavior: thresh-
parts of the retina where the test pulse is not present. We alsolds are proportional to the square root of the background illu-
performed simulations in which 10% of the contrast gain signalminance. This square-root behavior of the model at these low
originates from the test area and 90% from the background fieldlluminances is entirely deterministic and caused by the first feed-
(this corresponds to assuming an area of the contrast gain withack loop of the divisive light adaptation in Fig. 2B.
diameter about 2—-3 deg). Results of these simulations correspond
closely to the situation when the contrast gain signal originates
completely from the background signal; we used the latter situaModulated backgrounds
tion for simplicity.

From the model responsBg(t) andR(t) the detectabilityd’ of
the test pulse is calculated as (Graham & Hood, B9%¥atson &
Solomon, 1997)

Threshold predictions for test pulses on modulated backgrounds
are indicated by the lines in Fig. 1. Although there certainly are

differences with the psychophysical results, the model does cor-
rectly predict many of the features of the data:

+oo
d = /\j |Ry(t) — R(D)[# dt. (6)  « For modulation frequencigs= 12.5 Hz, threshold predictions

- during the upswing of the background modulation (e.g. at its
The exponenB = 3.3 was chosen identical to the steepness of the positive zero crossingp = 0 deg) are elevated with respect to
psychometric function in these experiments (Poot et al., 1997). predictions during the downswing (e.g. ét= 180 deg).
Intensity of the test pulse for a given pulse-background condition, gecause of the threshold elevation during the upswing of the
was varied to find the pulse detection threshold, corresponding to background, thresholds can reach their maximum well before the
d’ = 2. The proportionality constantin eqn. (6) was determined  p5ckground modulation reaches its maximum. The model pre-
by the detection threshold obtained for a test pulse presented on agicis both the maximum phase lead of the threshold maximum
constant background of 7500 Td. For observer HS this detection ,q|ative to the background (6070 deg), and the modulation

threshold was 900 Td for the 7.5 ms, 46 arcmin test pulse. frequencies f = 3-6 Hz) at which this maximum lead occurs.

* The phase lead of the threshold maxima disappears at high fre-

quencies (e.g. at 25 Hz), but the threshold curve remains non-
The model was initially implemented as a MathCad program run- harmonic at this frequency: threshold maxima are sharper than
ning on a PC, using Fourier methods for the calculations. To speed threshold minima.

Implementation and fitting
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Contrary to the behavior of the threshold maxima, thresholds
attain their minimum when the background is minimal through-
out the whole frequency range of background modulations.

10000

T T T TT1TT

Lol

.

For the highest modulation frequency tested (100 Hz), thresh-
olds for all test phases are virtually identical to the threshold on
an unmodulated background of 7500 Td, as would be expected
from the Talbot—Plateau law (Stockman & Plummer, 1998).
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The level of thresholds averaged over a modulation cycle (i.e.
the dc-component of the threshold curve) gradually increases up
to frequencies 15-20 Hz, and (on a log-frequency scale) rapidly
drops at higher frequencies. This is shown more clearly in Fig. 4.
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One feature that is present in the model predictions in Fig. 1, test delay < (ms)

but not in the data, is a threshold peak negar= 90 deg for a B
modulation frequency of 12.5 Hz. However, this mismatch be-
tween the model and the psychophysical data may be less serious
than it appears. Model predictions (not shown here) for a modu-
lation frequencyf = 10 Hz show a broad plateau that extends from

¢ = 0 deg to¢ = 120 deg without an additional peak ét=

90 deg, which is very similar to the psychophysical data at 12.5 Hz.
Further, the peak at = 90 deg predicted by the model may also
occur in the psychophysics, but at frequencies somewhat higher
than 12.5 Hz. Such a peak is well developed in our data at 25 Hz.
Also, Boynton et al. (1961) report (in their Fig. 2) a similar sharp
threshold peak for a background frequency of 15 Hz. 100
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In this subsection, we show that the present model can explain ngtig. 5. Test thresholds as a function of the delay of test presentation with
only test thresholds on modulated backgrounds, but also data olespect to a 16-fold decrement step (A) and a 16-fold increment step (B) of
tained with steps in the background light. In Fig. 5, test thresholdshe background illuminance. Symbols are psychophysical data for two
are shown as a function of test timingwith respect to 16-fold  observers; the continuous curves are model predictions. As in Fig. 1, the
decrement (Fig. 5A) and increment (Fig. 5B) steps of the illumi-data plotted for observer LP are the raw data multiplied by a factor 0.69,
nance of the background field. The duration of the test pulse in thigvhich equalizes her thresholds on steady backgrounds to those obtained for
experiment is 10 ms; for this test duration the Weber fraction on 6pbserver HS. The dashed curve is the background illuminance, scaled with
the steady-state Weber fraction of observer HS (0.09 for the 10-ms test
steady background equals 0.09 for observer HS. The data shovxgblse)
(not previously reported in this form) were obtained during data '

collection for a previous study (Poot et al., 1997). The timing

convention used for the test pulse in Fig. 5 differs slightly from the

convention used in this previous study. In Fig. 5, test timing is

T T T T T T T T T defined relative to the middle of the test pulse (which is identical
70 HS 7] to the timing convention in Fig. 1), whereas previously we timed
LP *\ ¢ the presentation of the test pulse with respect to its onset (a 5-ms
o timing difference for the 10-ms test pulse). Threshold predictions
. of the present model are indicated by the continuous lines. As can
be seen in Fig. 5, the model predicts the major features of the data.
First, for the decrement step the model correctly predicts an initial
4 elevation of the test threshold at the moment of the decrement step
of the background (although the size of the overshoot is slightly
underestimated by the model). In the model, the threshold over-
shoot is due to the contrast gain control, which is activated by the
temporal contrast of the background step. Second, for the incre-
L LI e L L L] ment step the model correctly describes a rapid initial increase of
1 10 100 the test threshold to a high level at the moment of the background

frequency (Hz) step, and a subsequent recovery of the threshold. The high thresh-

Fig. 4. Test thresholds averaged over a full modulation cycle of the back-oId level at the moment of the background increment step is partl_y
ground, in units of the threshold obtained for a steady background of 7506/U€ t0 the temporal contrast of the background step, but the main
Td (which equals the time-averaged illuminance of the modulated backEontribution to the threshold peak is due to the saturation in the
grounds) as a function of the background modulation frequency. Symbol&ionlinearity NLy, since the preceding high-pass filter is strongly

are psychophysical data for three observers; the curve is the model predictioaxcited by the background step. The recovery of the threshold is

X0 @
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somewhat faster for the model as compared to the data; a deficit ifthis produces a compression and hence a lowered detectability of
the model that also occurs after the background decrements ithe test pulse. For the relatively intense (photopic) backgrounds
Fig. 5A. However, the model does correctly predict a flattening outused in the experiments, the second effect dominates after incre-
of the thresholds to a level which is higher than the steady-statenent steps. This leads to threshold elevations compared to the
Weber threshold corresponding to the final background light level(Weber) thresholds obtained when the second adaptation loop has
(this Weber threshold is indicated by the dashed curves in Fig. 5¥inally reached its new steady-state adaptation level. For moderate
In our previous study, we showed that these long-term threshdecrement steps of the background the two effects very nearly
old elevations are not identical after increment and decremenbalance: the decreased saturation due to the (temporary) leftward
steps in the adaptation level (Poot et al., 1997; see Yeh et al., 199%hift of the operating point in NLalmost precisely compensates
for similar physiological results). After moderate (e.g. fourfold) for the divisive adaptation signal that is still too high. For large
increments in the background intensity, thresholds in our studydecrement steps this compensation is insufficient, and thresholds
were still substantially elevated above the new Weber level forafter the step are elevated compared to the final (new) steady state.
tests presented 250—800 ms after the background step. However,latthe quantitative implementation of these ideas, two aspects of
100-200 ms after a similar (fourfold) decrement in the backgroundhe nonlinearity N, were found to be important. First, its math-
intensity, test thresholds were nearly identical to the steady-statematical form. An arctangent produces good results (Fig. 6), better
Weber level corresponding to the new (decremented) backgrounthan other plausible saturating nonlinearities. For instance, a Naka—
illuminance. Only for the largest (16-fold) decrement steps studiedrushton function would produce a threshold prediction in Fig. 6
was a reliable long-term threshold elevation observed. Fig. 6 showwith insufficient curvature, while the curvature for an exponential
that the present model can explain these results. saturation would be too large. Second, the steady-state operating
According to the model, the long-term threshold elevationspoint of the nonlinearity Nk is critical. The location along the
after steps of background illuminance are due to a combination ohorizontal axis of the minimum of the model threshold function in
the slow adaptation of the second feedback loop in the divisiveFig. 6 depends strongly on this set-point. Parameters in the model
light adaptation (Fig. 2B) and the subsequent nonlinearity.NL were chosen such that at high photopic adaptation illuminances (e.g.
Consider the situation a few hundred milliseconds after an incre2800 Td) the steady-state output of Nk at 60% of its maximum.
ment step of the adaptation background. Because adaptation in tt&teady-state outputs that are either lower (e.g. 50%), or higher (70%)
second feedback loop is slow (many seconds), the feedback signpfoduce thresholds that are inconsistent with the data in Fig. 6.
in this loop still corresponds to the old level of the adaptation
illuminance, that is, it is too low. This has two consequences forDiscussion
the detectability of a test pulse. First, the test pulse is divided by an
adaptation signal that is small (relative to the final steady state onD
the incremented background), which would normally lead to an
improved detectability of the test pulse. However, because th&he experiments with flickering backgrounds reported in the present
response to the newackgroundis also divided by the old (low) paper are performed for flicker frequencies which span most of the
adaptation signal, the test response sits on a background resporrsage of frequency sensitivity of the visual system. Previous re-
that has moved into the saturating part of the nonlinearity.NL ports studied different subsets of this frequency range (Boynton
etal., 1961; Shickman, 1970; Maruyama & Takahashi, 1977; Hood
et al., 1997; Wu et al., 1997).
Boynton et al. (1961) used two flicker frequencies: 15 Hz and
, . . T T . . . T 30 Hz. At both frequencies, test thresholds were nearly in phase
1 with the background, as we observed at 25 Hz (see Fig. 1). Shick-
man (1970) studied the frequency range of 3.1-10 Hz. At 100%
background modulation contrast, thresholds were highest for test
presentations in the upswing of the background, whereas minimum
thresholds were obtained for tests that coincide with the back-
. ground minimum. This is exactly the pattern of results that we
obtained at comparable background frequencies (3.125 and 6.25 Hz;
see Fig. 1). Further, as in our study, the “dc-component” of the
threshold function increases with frequency in this range.
Recently, pulse-detection studies on modulated backgrounds
i were performed which were specifically designed to test current
s . . . . . s . . models for light adaptation (Hood et al., 1997; Wu et al., 1997).
116 18 1/4 12 1 2 4 8 16 Wu et al. (1997) studied high modulation frequencies (20—70 Hz).
step-size In the frequency range 20—40 Hz, clear modulations in the thresh-
old functions were observed. Thresholds were nearly in phase with
Fig. 6. Test thresholds obtained at 450-825 ms after a step in the backhe background at these frequencies, with a tendency toward an

ground illuminance, as a function of the step size of the background. Steﬂ’lcreasin hase of the threshold peaks with increasing frequenc
size is defined as the ratio of the background illuminance after the step an gp P gireq Y.

I : 'Srecisely the pattern that we find at similar frequencies (12.5—
the background illuminance before the step. Hence, ratios larger than 1 al 3 Hz: Fig. 1). At th f ies. the d tofth
increment steps, and ratios smaller than 1 are decrement steps. Test thre5Sh- z; see Fig. 1). ese irequencies, the dc-component of the

olds are scaled with the steady-state (Weber) levels measured when th8resholds observed by Wu et al. was still much elevated above the
visual system is fully adapted to the background illuminance after the step€Vvel for a steady background, as in our study. At still higher
Symbols are psychophysical data for three observers; the curve is th#equencies£50 Hz), both the threshold modulation and the thresh-
model prediction. old elevation rapidly disappear, in complete agreement with our

revious detection experiments on flickering backgrounds
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study. Wu et al. took the precaution to present their backgroundhe second feedback loop receives an input proportiondl tdhe
modulation in brief (Gaussian windowed) pulses, to avoid long-input—output relation of this second feedback loop is shallow (due
term effects of contrast adaptation (e.g. Magnussen & Greenleap the exponential function in the feedback path of this loop). Thus,
1985). The similarity of their results and ours indicates that thisthis loop divides out most of its steady-state input, that is, the
precaution is unnecessary. Detection thresholds for brief tests prelivisive feedback signal of this loop is also nearly proportional
sented on modulated backgrounds are very similar when the backe +/I. When the adaptation background drops to zero (dark) in the
ground contrast is either pulsed or present continuously. Reeves et al. experiment, the first feedback loop rapidly adapts
Hood et al. (1997) used modulation frequencies 1-16 Hz. At(time constant 10 ms) to a small history-independent dark level.
the low frequencies (1-4 Hz), the pattern of their results is veryWe did not include this level explicitly in the model, but this
similar to ours: threshold maxima occur during the upswing of thecould easily be done by including a small additive constant in the
background illuminance and thresholds are minimal near the minfeedback path of this loop (Lankheet et al., 1993). The second
imum of the background illuminance. Also, they observe a dc-feedback loop in the model, however, is slow (time constant many
component of the thresholds which steadily grows with increasingseconds). Therefore, after the offset of the adaptation field the
frequency, as we find as well (Fig. 4). At frequencies above 4 Hzdivisive signal in this feedback will initially remain at its light
the results of their study and ours do not agree. Most dramaticallyadapted level, thus dividing the response to the test signal with a
at frequencies 8-12 Hz, Hood et al. find threshold maxima duringactor that is nearly proportional to the square root of the adapta-
the decreasingpart of the background modulation, a result not tion illuminance. Reeves et al. (1998) present an alternative ex-
indicated by our thresholds at 6.25 and 12.5 Hz. Also the dcylanation of their results which includes a contribution from photon
component of the thresholds peaks at lower frequencies (aboutoise. The explanation of their results provided by our model,
8 Hz) in the Hood et al. study, compared to our results (12.5-however, is entirely deterministic.
25 Hz; see Fig. 4). There are at least three differences between our
experiments and those of Hood et al. that could cause the different
experimental results. First, the color of test and background useboise

by Hood et al. was redjersusyellow—green in the present study. - . .
. : . T The present model does not explicitly contain any noise sources,

They performed a control experiment with green light (their Fig. 3) S " L . :
but implicitly an additive source of noise is assumed in the deci-

which produced results similar to those with red light, but only at _. . o .
a low background frequency (1 Hz) where there is no discrepancS'on process (i.e. a source of postsensory noise: Sperling, 1989).
The strength of this noise source determines the value of the pa-

with our results. Segond, they used a spatially soft-gdged test prOb%meter)\ in eqn. (6). Noise sources that occur before the final
whereas our test disc has hard (sharp) edges. Finally, the exptzri-

ments of Hood et al. were done at adaptation levels (100-250 T ecision process could change the dependence of detection thresh-

T : Ids on stimulus parameters. Such noise sources could be either in
that were much lower than our adaptation illuminance of 7500 Td, : . . :
. . - . . - the stimulus (e.g. photon noise), or they could arise during pro-
Which of these differences, if any, can explain the differences in L ’ L .
. . . -~ " cessing in the retina (sensory noise: Sperling, 1989). The present
experimental results is unclear at present and remains to be inves- 7. . . .
. . ) model assumes that the decision noise dominates these other noise
tigated in future experiments. . . o .
sources. It remains for future work to determine the limits of this
assumption.
Detection thresholds after background steps A possible concern is whether the model is robust against in-
As described in the Model results, the present model can describternal noise, because the various derivative operations present in

the dynamics of test thresholds obtained with steps in the adaptatl?-'e subtractive light adaptation and the contrast gain control would

tion background. Further, the model yields a realistic descriptio amplify such noise. This problem, however, is checked by the

of a long-term elevation (duration at least 1 s) of detection thresiﬂow_pass filtering in the model. In an effort to minimize the num-

olds after increment and large decrement steps of the backgrou tﬁ?r of free parameters in the model, we concentrated the low-pass

(Poot et al., 1997). Similar threshold elevations after the offset o ering m.the forward path |ntc_) asingle _fllte_r (I Fig. 2B). In
photopic backgrounds were reported by Reeves et al. (1998). At geallty, this low-pass filtering is more dlstrlputed throughout the
delay of 0.2-1.6 s after the offset of the adaptation field testsystem. Thus, each of the derivative operations would be accom-

thresholds in their experiments were virtually independent of thepamed by some low-pass filtering; they would effectively be band-

delay, and proportional to the square root of the adaptation illyPass filters (Koenderink & van Doom, 1987) without extreme

minance over a range of several decades (from about 10 Td tgensmvny to high-frequency noise.
10,000 Td).

The present model can explain many aspects of these eXperﬂielation with retinal physiology
mental results. First, Reeves et al. (1998) observed a Weber be-
havior of thresholds when the visual system was light adaptatedhe present model does not have, nor was it intended to have, a
(i.e. before offset of the adaptation field), as predicted by ourfull one-to-one correspondence with retinal physiology. For in-
model. Second, the model correctly predicts a time-independergtance, the outpuR(t) of the model consists of an analog signal,
threshold after large decrement steps of the background for theot of spike trains as in the retina. To obtain good predictions for
delay range used by Reeves et al. (see Fig. 5A). Finally, the modehe psychophysical data, it was not necessary to include all that we
can explain the relatively shallow dependence of thresholds on thknow about retinal processing. However, despite this incomplete-
background illuminance which Reeves et al. observed after th@ess of the model as a description of retinal processing, it is pos-
offset of the background. The explanation is as follows. Whensible to point out certain relations with retinal physiology that the
light-adapted to a non-bleaching illuminance lekdboth the out-  model does include. Although the physiological data below are
put and the divisive feedback signal of the first feedback loop ofobtained from a wide range of different animal species, this does
the luminance gain module (Fig. 2B) are proportionaltoHence  not invalidate the comparison: it appears that the model relates to
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physiological results that remain consistent for the retinas of aies of 0.43-0.70, depending on cell type (X or Y) and adaptation
wide range of species. level, which is in good accord with the valge= 0.6 used in the

The structure of the divisive light adaptation in the model is present model.
partly based on characteristics of the responses of cone photo- Contrast gain control is a well-established feature of ganglion
receptors. When fully adapted, cones have a steady-state voltagells in the magnocellular pathway of the monkey (Lee et al.,
output that increases very slowly (about logarithmic) with the ad-1994; Benardete & Kaplan, 1999). Although, to our knowledge,
aptation level: over a range of about four decades of illuminancefor the monkey retina no experiments have been performed con-
each tenfold increase of adaptation illuminance increases the coreerning the speed of this gain control, results from X-cells in the
steady-state output by about 10% of its dynamic range (turtlescat indicate that the control of retinal contrast gain is very fast,
Normann & Perlman, 1979; Burkhardt, 1994; monkeys: Valeton &with a time constant of at most 15 ms (Victor, 1985, 1987). Con-
van Norren, 1983). Our module for divisive light adaptation trast gain control in the present model was designed to be similarly
(Fig. 2B) implements this behavior, mainly through the exponen-fast. We cannot exclude the possibility that part of the threshold
tial nonlinearity in the second feedback loop which leads to aelevations observed with flickering backgrounds is due to a cor-
roughly logarithmic input—output relation in the steady state. tical contrast gain control (e.g. Carandini et al., 1997; Sengpiel

Abrupt variations in input such as steps and pulses of light arest al., 1998). However, the flickering backgrounds used in the
transmitted with a gain that is much higher than the gain of thepresent experiments were spatially homogeneous, and therefore
steady-state curve (Normann & Perlman, 1979; Valeton & vanmay have produced relatively little cortical activity. Thus, it is
Norren, 1983). In the model, this increased gain is due to theconceivable that the contrast gain control in the present model
low-pass filtering in the feedback loops, which cannot immediatelyshould be identified with a purely retinal process.
follow abrupt variations in input, leading to overshoots relative to
the steady-state behavior.

The first (rapid) feedback loop in the divisive light adaptation
(Fig. 2B) implements a square-root transformation for most inputEarly in retinal processing, neural signals are divided into an ON
frequencies. Evidence for a square-root transformation has beeand an OFF pathway (Schiller, 1992). For the psychophysical pre-
observed in turtle cones (Pluvinage & Green, 1990), as well as imlictions of the model, it was not necessary to introduce this divi-
horizontal cells in the cat (Lankheet et al., 1993; van de Grindsion explicitly. However, model outputs with positive sign are
et al., 1996). Lankheet and co-workers were able to quantitativelynost likely related to activity in the ON pathway, and negative
model their data using a feedback loop that is virtually identical tooutputs to activity in the OFF pathway (Watson & Solomon, 1997).
our first feedback loop (albeit with a longer time constant: 250 ms  Another division in retinal processing is that into parvocellular
vs.10 ms in our model). We have unsuccessfully tried to model theand magnocellular pathways (Lee, 1996). Again, the present model
present results using a feedback time constant of 250 ms; a fastdpes not include this distinction explicitly. The strong presence of
adaptation appears necessary to explain our results. a contrast gain control in the model, however, indicates that it is

Further evidence for an early square-root transformation inprobably best to consider it a model of temporal processing by the
cone vision can be observed in the responses of macaque conesagnocellular pathway (Benardete & Kaplan, 1999), since a ret-
Schnapf et al. (1990) studied responses of dark-adapted cones itwal contrast gain control appears to be absent in the parvocellular
light pulses and steps. They deduced an output nonlinearity fronpathway (Lee et al., 1994; Benardete & Kaplan, 1997). Possible
the initial reaction of the cones to light pulses (their Fig. 2A). reasons that detection in our experiments would be mediated through
Schnapf et al. fit this nonlinearity with a weighted sum of a the magnocellular pathway include the relatively large size (46
Naka—Rushton relation and an exponential saturation, but ouarcmin) and the brief duration (7.5-10 ms) of the test pulse. At the
nonlinearity NL; (an arctangent) fits their data also. After a step moment, it must remain an open question whether detection in our
input, Schnapf et al. observed tHas after the step the initial cone experiments takes place through the magnocellular pathway at all
response had dropped to a new level (their Fig. 7A). This newtimes, however. For instance, the model responds strongly imme-
response level had a rather shallow dependence on the illuminanciately after large increment steps in the adaptation field. At these
level | after the step (the triangles in their Fig. 7B). We find that moments, the saturating nonlinearities in the model compress the
these data can be fitted with good precision by a function of theresponse to the test pulse, which yields high thresholds (Fig. 5B),
form arctariyI ], as would be predicted from our model when the consistent with the psychophysics. However, at present it cannot
rapid first (square-root) feedback module has already attained ade excluded that immediately after large steps in the adaptation
aptation after 1 s, but the second (slow) feedback module is still afield psychophysical detection takes place in the parvocellular path-
its old (dark-adapted) level. Thus, at this time after the step thevay, which has a smaller contrast gain (Lee, 1996) and thus would
cone output nonlinearity receives a signal proportionalltdead-  be saturated less than the magnocellular pathway. To settle this
ing to a rather shallow dependence of cone output on illuminancéssue, it would be of interest to choose the characteristics of the test
inputl. Data reported by Baylor and Hodgkin (1974) in turtle conespulse such that its detection in these experiments would be medi-
(their Fig. 1) can be similarly explained by the present model. ated through the parvocellular pathway at all times. Preliminary

As explained in the Model section, subtractive light adaptationresults in our laboratory indicate that this may indeed be feasible.
was implemented through a feedforward self-inhibition scheme
with an amplitude transmission that depends on angular frequen
w asw". The power coefficieng equals the low-frequency slope
on a log—log plot of transmissiorersusfrequency. Measurements Divisive light adaptation in the present model consists of a se-
of this slope for ganglion cells in the cat were reported by Frish-quence of three processes (see Fig. 2B): two feedback operations
man et al. (1987) in their Table I. For spatially diffuse stimulation, and a static nonlinearity. Two of these processes are fast: the non-
which is the relevant comparison for our spatially homogeneousinearity NL; is instantaneous, and the first feedback loop contains
backgrounds, Frishman et al. report slope values at low frequera low-pass filter with a time constant of only 10 ms.

Which pathways does the model describe?

Cgpeed of divisive light adaptation
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Recent studies indicate processes of light adaptation that ar€he Wilson (1997) model
;lmllarly fast Leg etal. (1997) mgasurgd light adaptatlon. n hor'To our knowledge, at the moment only two models have been
izontal cells of primates, by superimposing a (20 Hz) test signal %Lhown to be able to explain the behavior of test pulses presented on
a high-contrast, 0.61-Hz background modulation (with a mea P P p

illuminance of 1000 Td). From the modulation of the responsivi'[ynﬂlckerlng backgrounds: the present model, and the Wilson .(1997)
: . model, as adapted by Hood and Graham (1998). Here we highlight
of the horizontal cells that is induced by the background, Lee et al . . . .
M . o " two important differences between our model and Wilson’s model.
conclude that “adaptation was complete witba 25 ms,” in good . . L ) .
accord with our estimate: — 10 ms for the time constant of the First, in our model divisive light adaptation precedes subtractive
1 %ight adaptation (Fig. 2A), whereas in the Wilson model a subtrac-

fast feedback control. Psychophysical experiments by He an . .
. ) S ive operation (of the cones and the horizontal cells) precedes a
MacLeod (1998) using laser interferometry also indicate a fast . L . .
major divisive adaptation at the level of the bipolar cells. A con-

process of light adaptation (7 ms full width at half-height, which L . . . o
corresponds to a time constant of 10 ms). Fast adaptation in thseequence of that ordering is that there is relatively little divisive

retina is also indicated by ERG measurements (Wu et al., 19953aln coqtrol N th.e cones, which Iegds oa stea(.jy-stat.e cone re-
ponse in the Wilson model that increases rapidly with retinal

illuminance (a2 power law). In the Appendix of his paper, Wilson
shows how this could be reduced td @ower law, but even this
would represent a growth of the steady-state cone output that is
Subtractive light adaptation in the model is implemented throughmuch faster than the log-like increase of the steady-state cone
a high-pass filtering with an amplitude transmissiofi Here we  output observed in physiological experiments (e.g. Normann &
show that this is consistent with optimal processing for the dy-Perlman, 1979; Valeton & van Norren, 1983; Burkhardt, 1994).
namic inputs encountered by the visual system when moving abouthe divisive light adaptation in our model, on the other hand, was
in a natural environment. designed such that it generates this slow growth of the cone steady-
For typical natural environments, the temporal power spectrunstate output. Second, an important feature of the Wilson model is
of a spatially localized input to the visual system (e.g. on the scal@ push—pull arrangement of the ON-center and OFF-center bipolar
of foveal receptive fields in the retina) depends on the temporainputs to the ganglion cells, which is crucial to explain the eleva-
frequencyw of the input as lw?, with y close to 1 (van Hateren, tion of test thresholds on modulated backgrounds (Hood & Graham,
1997). Thus, low frequencies dominate the input. To prevent thes&998), but which appears to be absent in the actual retina (Hood,
low frequencies from saturating the available dynamic range, theyt998). On the other hand, our model explains the threshold ele-
should be attenuated. The best way to do this, at least at highations through a contrast gain control, which is well established
signal-to-noise ratios, is to whiten (decorrelate) the input (Srini-in the magnocellular retinal pathway, but which is absent in the
vasan et al., 1982; Atick & Redlich, 1990; van Hateren, 1993).Wilson model.
Whitening the input is achieved by a filter that has a power spec- Finally, simulations of the Wilson model performed in our lab-
trum »” and hence an amplitude spectrarit’?, which fory ~ 1 oratory show an unexpected behavior of its bipolar cells. ON-
has a fractional exponent of about 0.5, close to the vaglee0.6 center bipolar cells in the Wilson model receive antagonistic inputs
used in the model. from the cones and the horizontal cells with (relative) weights
respectively—7 and+3 [Wilson, 1997; his eqgn. (4)]. OFF-center
bipolar cells receive antagonistic inputs from the cones and the
Plausibility of contrast gain control horizontal cells with weights respectively3 and —7 (Dr. H.R.
Thresholds for tests presented on flickering backgrounds tend to b\éVHSOﬂ, Matlab code and personal communication, 1399). A con-

elevated relative to tests on a steady background; this elevation ssequence of this arrangement is that in steady-state ON and OFF

known as the threshold dc-component (Hood et al., 1997; Wu 'pO'?“S _have_ an |dent|cal_response (V.Vh'Ch Increases W'th the ad-
aE)ptatlon illuminance). At high modulation frequencies (which can

Relationship with natural stimuli

etal, 1997). In the present model, most of this dc-component o e followed by the cones, but not by the horizontal cells), ON and

test thresholds is due to a contrast gain control (some addition EF binolars respond nearly in counterohase. This is the temporal
contributions to the dc-threshold component originate from the P P y P ' P

) X . . ) ?elation between ON and OFF cells that would normally be ex-
saturating nonlinearities in the model). Since a retinal process o

contrast gain control is well established (review: Hood (1998), it ispected. However, for f_requenues below about 0'5. Hz, which can
S : . be followed by the horizontal cells, ON and OFF bipolars respond
ana priori likely explanation of this threshold component. How-

ever, in their Fig. 9, Wu et al. (1997) show that for a 30-Hz in phase. This is an unexpected prediction of the Wilson model that

. . . . mains t in physiological experiments.
background stimulus with a time-varying contrast envelope, tes{e ains to be tested in physiological experiments
thresholds follow the background contrast without any noticeable
delay. Wu et al. expect contrast gain control to produce a lag of thé\cknowledgments
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background contrast. They therefore conclude that contrast gaigaLw).

cannot be the explanation of the threshold dc-component. In the

present model, however, we present an implementation (using tenheferences

poral derivatives) which can yield an arbitrarily fast contrast esti-

mate. Thus, we claim that the result obtained by Wu et al. does notpeLson, E.H. (1982). Saturation and adaptation in the rod systéision
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essarily reflects the underlying physiology, the predictions of the model arenodulation frequencies used in the present experiments. Then the prod-
consistent with our measurements. uct of i — iy, and —d?i/dt? (see Fig. 7) yields»?c?sin® wt, whereas the
To understand the logic of this method to calculate a contrast signalsquare of @/dt yields w?c? cos’ wt. Hence the sum of these signalg’c?,
imagine that the inpdit(t) of the contrast calculation consists of a harmonic is independent of time (since sif + cos = 1), and increases both with
signal with frequencyw and contrast, possibly superimposed on a time- contrast and with temporal frequency, as is necessary to explain our data.
averaged signal,: This method of obtaining a time-invariant contrast signal is similar to
methods that construct quadrature filters by performing a Hilbert transfor-
i(t) =i, + csinwt. (A4) mation of the input signal (e.g. Adelson & Bergen, 1985; Morrone &
Owens, 1987). However, contrary to a Hilbert transformation, the present
In practice, the time-averaging operation in the contrast calculation ofcalculation is causal, and fast. The result of this calculation is compressed
Fig. 7 would be performed using a low-pass filter in the visual system.with a powera = 0.35, multiplied by a constamt = 0.4, and added to 1
Here we do not specify the precise value of the time constant of this filter(the default setting when no contrast is present), which yields the divisive
but we assume that it is sufficiently slow such that it does not transmit thecontrast gain control signal(t) in Fig. 2C.



