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Abstract
A robust and efficient method in 2D and 3D for the calculation of skeletons for arbitrary objects is presented. The
method is based on the calculation of the distance function with respect to the object boundary. This is combined,
in a post processing step, with a new indicator to identify the skeleton, which coincides with the singularity set of
the distance map. The indicator is defined as a suitable function of certain local momenta of this distance map
and allows a robust and accurate computation of the distance from the skeleton set. This distance is then extended,
again via the level set method, onto the whole space. Several applications in 2D and 3D are presented.

1. Introduction

Skeletons and medial axes are of significant interest in many
application areas such as object representation, data com-
pression, computer vision, and computer animation. Skele-
tons provide a simple and compact representation of a 2D or
3D shape that preserves many of the topological and size
characteristics of the original. If A is the set to be skele-
tonized and d

�
x � ∂A � the distance from A’s boundary ∂A at

a point x, then the skeleton S is defined via

S ��� x � A �	� y � z � ∂A � y 
� z � dist
�
x � ∂A ���
� x � y ���
� x � z ���

Skeletonization methods based on continuous approaches
have become increasingly interesting for researchers 3 � 9 � 10.
These methods detect the skeleton by looking for the sin-
gularities (i.e. creases or ridges) of the distance transform
(DT) of the object’s boundary. (see example in Figs. 1, 2,3,
and 4). It has been shown 14 � 9 that this definition of the skele-
ton is equivalent with the skeleton definition as the geometric
locus of the centers of maximal discs 2. Moreover, the DT-
based skeleton definition is equivalent with the ’prairie fire
model’ 1, in which the object’s boundary evolves in direction
of its normal, with constant speed. The skeleton is then de-
fined as the ’shock’ points where the moving front collapses
onto itself. These points coincide largely with the singulari-
ties of the DT, as the evolving front coincides with the DT’s
isolines, or level sets 9. Continuous skeletonization methods
have several advantages as compared to e.g. thinning meth-

ods: the produced skeletons are numerically accurate, dis-
tance information to the boundary can be computed to per-
form object reconstruction, arbitrary topologies are handled
by default, and local grid refinement can be easily added to
accelerate computations.

a) b)

Figure 1: Object (a) and distance transform (DT) (b)

The DT, or equivalently the front evolution, can be com-
puted by level set methods, such as the fast marching method
(FMM) introduced by Sethian 11. However, the FMM is
not explicitly detecting the DT singularities or shock points
of the moving front. Direct computation of the singulari-
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a) b)

Figure 2: Evolved boundary under constant speed (a) and
skeleton detector (b)

ties is a numerically unstable and delicate process 4 � 10 � 8 � 3
which usually delivers disconnected points 13 � 5. Other con-
tinuous skeletonization methods, such as 9, use the observa-
tion that skeleton points are generated by compact boundary
segments delimited by curvature extrema along the bound-
ary. The skeleton is then built from the separate DTs of the
boundary segments separated by the curvature extrema and
is restricted to 2D. However, this method relies on accurate
detection of curvature extrema along a possibly noisy bound-
ary. Moreover, shapes with holes are treated in a rather com-
plex manner. Another method for front evolution 8 advances
the front by tracking marker particles. The skeleton is de-
fined as the shock points where an energy conservation prin-
ciple is violated. Although numerically more stable than di-
rect singularity detection, this method is hard to implement
and computationally expensive: particles must be inserted
and removed to preserve a dense and constant particle distri-
bution on the boundary.

a) b)

Figure 3: Skeleton (a) and detail of distance close to skele-
ton (b) for object in Fig. 1

We present a skeletonization technique based on a new

a) b)

Figure 4: DT of skeleton (a) and inflated skeleton (b) for
object in Fig. 1

method for detecting the singularities of the DT. The method
benefits of the full advantages of a continuous formulation.
Moreover, we do not make explicit use of derivative, gradi-
ent, or divergence operations, so our method is more stable
than other continuous methods as cited above. Furthermore,
the new approach comes a long with a useful scale space
property. In detail, our skeleton indicator relies on a cer-
tain filtering of the distance transform, where the filter width
acts as a scale parameter. For increasing filter width, more
and more skeleton details are ignored and only the dominant
parts of the skeleton remain. In Section 2, we introduce the
moment concept, with which we build our singularity de-
tector, as shown in Sec. 3. Section 4 presents the complete
algorithm. Section 5 shows several 2D and 3D applications.

2. Moment Analysis

In this section, we introduce the moments of a d dimensional
scalar function. In what follows, we will show how to use
differently scaled zero moments to localize the singularities
of the boundary’s distance transform DT. The first moment
encodes directional information of the skeleton. However, in
this paper we focus on the zero order moment, the use of the
first order moment being subject of a forthcoming paper.

Let us assume that T : Ω �
�

is a solution of the Eikonal
equation 11 � 3:

� � � T � � � 1 (1)

where Ω �
�

n with n � 2 � 3 has the boundary Γ � ∂Ω, and
Γ � C0 � 1. As mentioned in Sec. 1, T is the signed distance
function to the boundary in the regular case. As a working
example, consider the 2D shape in Fig. 1 a. We now regard
T as a graph in

�
n � 1 over the whole space

�
n � Ω (see

Fig. 1 b). As explained in Sec. 1, the ridges of this graph are
the branches of Γ’s skeleton. From this graph, we calculate
the first moment, which turns out to be a useful indicator for
the graph’s ridges. The zero-order moment M �ε

�
x � and the

c
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first moment M1
ε
�
x � , in the n � 1 dimensional current point

x, are defined as:

M �ε
�
x ��� 1

�GraphBε
�
x � �

�
Bε � x ��� y

T
�
y ���	� 1 � � � T

�
y � � 2dy

M1
ε
�
x ��� 1

�GraphBε
�
x � �

�
Bε � x ��
 � y

T
�
y ��� � M � � x ��
� 
 � y

T
�
y � � � M � � x ��
 � 1 � � � T

�
y � � 2dy

where Bε
�
x � is a small ball of radius ε in the parameter do-

main
�

n, GraphBε is the graph under the distance transform,
and �Bε

�
x � � and �GraphBε

�
x � � are respectively the areas of

the ball and the graph. Figure. 5 shows the above for n � 2,
when the graph is a 2-dimensional surface embedded in 3D.
Using the Eikonal equation (Eqn. 1), we can simplify the

x1

x2

x3

Bε( x)

Graph Bε( x)

Graph
 T( x)

Figure 5: Definition of zero and first order moments of graph
of T � x �
moments’ expressions. For the � n � 1 � th component of the
zero moment – which we denote by T �ε � x � and call from now
on the zero moment of T – we obtain:

T �ε � x � : ��� M �ε � x ��� n � 1 ���Bε � x ����� 1 �
Bε � x  T � y � dy

The first moment M1
ε � x � gives further information on the

normal and tangent space of the skeleton S and allows to
identify singularities on the skeleton, such as branching
points. In this paper we focus on the zero moment only,
which turns out to be a sufficient tool for the calculation of
a robust and reliable distance function from the skeleton in
areas where the skeleton is a smooth submanifold of ! n.

3. Singularity Detection

Let us now study the relation of the singularities of T �#" � and
its zero moments evaluated for different scales ε.

3.1. Unidimensional Case

We start with the case n � 1. Suppose that there is a singu-
larity of the distance map T at a distance d from the current
position x, and that d $ ε (Fig. 6 a). We denote by s � and
s � the absolute values of the slopes of the graph of T on the

left, respectively right side of the singularity. For n � 1 we
deduce from the Eikonal equation (Eqn. 1) that

s � � s � � 1 %
The difference of the actual value of T and its zero moment
is:

T � x �'& T �ε � x �(� 1
2ε
� x � ε

x � ε
T � x �'& T � y � dy � 1

4ε
� s � � s � ��� ε & d � 2

where d � dist � x ) S � is the distance from the current point x
to the skeleton S. Thus we can compute this distance as

d � ε &+* 4ε � T � x �,& T �ε � x ���
s � � s � � ε � 1 &.- 2 � T � x �,& T �ε � x ���

ε
�

(2)

Outside an ε neighborhood of the skeleton T � x �/& T �ε � x �
vanishes, since T is locally a linear function (for n=1). In
conclusion, the quantity T � x ��& T �ε � x � is a good indicator
for singularities in the n � 1 case: if T � x �,& T �ε � x �10� 0 then
x is closer than ε from the skeleton and the distance can be
computed using Eqn 2.

3.2. Higher Dimensional Case

For n 2 1, s � and s � are no longer constant in the considered
neighborhood and T �3" � is, in general, a nonlinear function.
Since ε is small, the graph of T can be approximated by a
linear function on both sides of the singularity up to second
order in ε in areas where the skeleton S is a smooth sub-
manifold. Consequently, both s � and s � are assumed to be
constant quantities up to first order in ε in the considered ε-
neighborhood. On the skeleton and close to a point x the sum
s � � s � is computed as:

s � � s � ��4 5 T � x �," N 6 S � O � ε �7)
where N is the normal to the skeleton and 4 " 6 S the jump op-
erator on S. The error term 0 � ε � compensates the variation
of the slope at the interface. From now on, we denote by s �
and s � respectively the slopes of the distance transform at
the point on the skeleton closest to a given point x.

We compute again our singularity indicator T � x �8& T 0
ε � x � .

Suppose d � d � x � : � dist � x ) S � is the distance from the point
x to the skeleton S. Thus, consider a ball Bε � x � with radius
ε, centered in origin, and a spherical cap C � ε ) d � determined
by slicing the ball at distance d from the origin. With respect
to our smoothness assumption we suppose that inside the
ball Bε � x � the slice is a approximation of the local skeleton
up to first order in position. Denote by h the cap’s height
(Fig. 6 b,c). Hence we obtain for T � x �,& T 0

ε � x � :
T � x �,& T0

ε � x �.�9�Bε � x �:� � 1 ;/�
C � ε < d  � yn & d � dy =	� s � � s � �� O � ε2 �

The second order approximation in ε is due to the symmetry

c
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x3

ball Bε( x)

x

d

ε

spherical cap
    C(ε , d)

h

x1

x2

x2

ball Bε( x)

x

d

ε

spherical cap
    C(ε , d)

h

x1

c)b)

x2

ball Bε( x)

Graph T( x)

x1
x x+d

singularity

x-ε x+ε

slope s+

slope -s-

a)

Figure 6: Singularity detection in 1D (a), singularity detector computation in 2D and 3D (b,c)

of the geometric configuration. If we introduce γ � d
ε , we

have

T
�
x � � T 0

ε
�
x � � ε � B1

�
x � � � 1 � � C � 1 � γ � � yn � γ � dy � � s � � s � �� O

�
ε2 �

To simplify the notation in the following discussion, we de-
fine

g
�
γ � � �B1

�
x � � � 1 � � C � 1 � γ � � yn � γ � dy �

With this notation, we get

T
�
x � � T0

ε
�
x � � ε

�
s � � s � � g � γ � � O

�
ε2 � (3)

where g
�
γ � can be explicitly computed based on the integral

transform

g
�
γ � � � Sn � 2

1 �
2 � B1

�
x � �

� �
1 � γ2

0

���
1 � r2 � γ � 2rn � 2dr �

where Sn � 2
1 is the n � 2 dimensional unit sphere and � Sn � 2

1 �
its n � 2 dimensional volume (see Appendix for the con-
crete expressions). In the following section, we shall use g

��� �
to evaluate the distance to the skeleton in a small skeleton
neighborhood.

3.3. Distance Computation

Consider the singularity detector (Eqn. 3) computed using a
larger ball B2ε

�
x � . This gives

T
�
x � � T0

2ε
�
x � � 2εg � γ

2 � � s � � s � � � O
�
ε2 �

To solve for γ, we define the ratio f of evaluations of g
��� �

with respect to dyadic scales. This coincides up to first order
in ε with the ratio of the singularity detectors computed with
two different balls Bε

�
x � and B2ε

�
x � , that is:

f
�
γ � : � g

�
γ �

2g � γ
2 	 � T

�
x � � T0

ε
�
x �

T
�
x � � T0

2ε
�
x � � O

�
ε �

In the above, f is defined on 
 0 � 1 � ,
f
�
0 � � 1

2
� f

�
1 � � 0 �

and is strictly monotonically decreasing on 
 0 � 1 � with � f � ��

c � 0. Indeed, g

��� � and g � ��� � are both monotonically decreas-
ing and g 
 0, thus

f � � γ ��� 1
2

g � � γ � g � γ
2 	 � 1

2 g
�
γ � g � � γ

2 	
g2 � γ

2 	� 1

2g2 � γ
2 	 � g � � γ � g � γ � � 1

2
g
�
γ � g � � γ � �� g � � γ �

4g
�
γ �

�
0

Hence f is invertible. Since we can numerically compute the

ratio T � x � � T 0
ε � x �

T � x � � T0
2ε � x � , we can compute the distance of x from the

skeleton S up to second order in ε

dist
�
x � S � � εγ

�
x � � ε f � 1 � T

�
x � � T0

ε
�
x �

T
�
x � � T 0

2ε
�
x ��� � O

�
ε2 ��� (4)

Knowing γ, we can also evaluate the jump of � T
�
N at the

closest point on the skeleton S up to an error O
�
ε � :
 � T

�
x � � N � S � s � � s � � T

�
x � � T0

ε
�
x �

εg
�
γ � � O

�
ε2 �

Let us emphasize that the above defined local distance to
the skeleton can be considered as a complete solution of the
skeletonization problem. First of all, it implicitly defines the
skeleton itself as the pre image of the zero distance. Sec-
ondly, if we consider interpolation on a discrete grid where
the grid points are not exactly located on the skeleton, our lo-
cal distance classifies points close to the skeleton precisely
by their distance value. This is obviously the best we can
do without generating a new data structure for the skeleton,
such as a nonuniform grid refinement, which is not our focus
here. Our aim is to stay confined to uniform volumetric re-
spresentations only. Finally, our approach based on moments
is robust with respect to discretization, where we replace the

c
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exact distance transform with respect to the boundary ∂A by
a numerical solution of the fast marching method (FMM).

4. Skeletonization Algorithm

In this section, we put together the various parts described so
far into a complete skeletonization algorithm. The algorithm
consists of 5 steps (cf. Fig. 7):

1. We compute the distance T to the boundary of the object
to be skeletonized, by using the fast marching method
(FMM) to solve Eqn. 1, as in 12 � 11. Concretely, we com-
pute T on a uniform pixel grid in 2D, respectively voxel
grid in 3D, inside the boundary (see example in Fig. 1).

2. We evaluate the singularity detector T � x � � T0
ε � x �

ε (Eqn. 3)
on T , by numerical integration over all points x (see ex-
ample in Color Plate i). For accurate results, we use an
integration ball size of 5 up to 30 grid points and 1 to 100
subsamples per grid cell.

3. Next, the detector 1
ε
�
T � T 0

ε � is thresholded to retain all
points where it is larger than a given value. Since 1

ε
�
T �

T 0
ε � is large close to the skeleton and O

�
ε � elsewhere,

thresholding outputs an approximate ε-neighborhood of
the skeleton S. The threshold must be high enough to
limit the extracted neighborhood to a small ε around the
skeleton, for the assumptions made in Sec. 3 to hold, but
low enough so that all skeleton branches are captured (see
example in Fig. 1).

4. We solve for the distance to the skeleton dist
�
x � S � for all

points x in the extracted neighborhood, as described in
Sec. 3.3. Equation 4 is easily solved by e.g. bisection or
Newton-Raphson methods, since we know that the func-
tion f is invertible.

5. Finally, we propagate dist
�
x � S � computed in the previ-

ous step to all points of the considered 2D or 3D space.
For this, we solve the Eikonal equation starting from an
isosurface of dist

�
x � S � located within the ε-neighborhood

of the skeleton, where dist
�
x � S � was computed in step 4.

This isosurface is now marched outwards by the FMM
algorithm, thus calculating dist

�
x � S � until we reach ∂A.

Now the distance to the skeleton dist
�
x � S � is known ev-

erywhere inside the initial set A (see example in Color
Plate j).

To check the method’s accuracy, we evaluated the differ-
ence between the dist field computed by our method for a 2D
rectangle discretized on a 5122 grid, and the exact distance-
to-skeleton field. For the rectangle, we can exactly evaluate
the latter since we know the exact skeleton. The two dis-
tance fields are approximately identical, except close to the
skeleton’s branching points and tips (Fig. 8), where the error
increases to about 2%. This is due to the fact that our local
distance transform based on the zero moments is valid only
in regions where the skeleton is a smooth submanyfold.

0.0

2.0

1.0

1.5

0.5

Error (%)

skeleton
rectangle

Figure 8: Difference between exact and computed distance
to skeleton fields

5. Applications

5.1. Smoothing and Reconstruction

We have used the presented skeletonization method for ob-
ject smoothing and reconstruction (see the 2D examples in
Figs. 1, 9, as well as the 3D objects, rendered transparent,
together with their skeletons, rendered opaque, in the Color
Plate). Objects can be smoothed by computing their skele-
ton (Fig. 9 b) and then ’inflating’ the skeleton (Fig. 9 c), as
described in Sec. 4. The three processes involved (DT com-
putation, skeleton computation, and skeleton inflation) de-
liver a globally smoothed version of the original boundary.
Figures 9 d,e shows the difference between the smoothed re-
construction (gray area) and original boundary (thick white
line) for the leaf example. The above method can be used
to reconstruct simplified objects out of their skeleton, if
one avails of a skeleton simplification method. As already
sketched in the introduction the parameter ε plays the role
of a multiscale parameter: For increasing values of ε, more
and more details of the skeleton are disregarded and only the
major parts remain. This is a another useful intrinsic feature
of our approach requested by many skeletonization applica-
tions.

5.2. Morphing

The continuous treatment of the skeletons allows us to eas-
ily construct a smooth morphing between an object and its
skeleton. For this, consider the blending function B:

B � min
� T
2D �

1
2

��� 1
2

max
�
1 �

D
T �

0
�

where T is the DT of an object’s boundary and D is the DT of
the object’s skeleton. B achieves a smooth blending between

c
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inwards
FMM

singularity
detection

thresholding
close to 

maximumdistance T
to boundary

field
T-T0

input
boundary

field T-T0 
close to
skeleton 

solving for
distance close

to skeleton
distance 
close to
skeleton

global
distance

field

outwards
FMM

Figure 7: Skeletonization algorithm pipeline

Figure 10: Morphing between object (leftmost image) and skeleton (rightmost image)

a) b)

c) d)

detail

Figure 9: Singularity detector (a), skeleton neighborhood
(b), inflated skeleton and original boundary (c), reconstruc-
tion detail (d)

the boundary and its skeleton. Indeed, for the level set T � 0,
i.e. the object’s boundary, we have B � 0. For the level set
D � 0, i.e. the object’s skeleton, we have B � 1. For the level
set D � T , half way between the boundary and the skeleton,
we have B � 0 � 5. Extracting consecutive level sets of B be-
tween 0 and 1 gives thus a smooth blending of the object

to its skeleton, as shown by the 3D example in Fig. 10 (the
3D dataset is taken from the Visualization Toolkit’s (VTK)
distribution 18).

6. Discussion

We have presented a robust and simple method to extract an
approximate skeleton for a arbitrary 2D or 3D set discretized
on a 2D or 3D regular grid. The proposed method is based on
a continuous approach and effectively discretized in a sec-
ond step using approved numerical methodology, such as the
fast marching method. No differentiation is required, only
integral moments have to be evaluated. This ensures a supe-
rior robustness as compared to similar methods. Finally, 2D
and 3D skeletons are handled in a single framework.

Concerning complexity, the method requires the applica-
tion of the fast marching method (FMM) with its cost of
O
�
N logN � . The FMM runs in less than a second for 5122

2D pixel grids and in a few seconds for 5123 voxel grids on a
Pentium III 800 MHz machine. The moment integration step
(Sec. 2 is the slowest part of the process, which is O

�
N sk3

ε �
for N grid cells, s subsamples per cell, and an integration ball
of radius kε grid cells. Using about 20 samples per grid cell,
this takes a few seconds for the above mentioned 2D config-
uration, respectively around two minutes for the 3D configu-
ration. Here is still a huge potential for further improvements
of the performance of the algorithm. Finally, solving Eqn 4
numerically takes a few seconds in both the 2D and 3D case.

In the future, we plan to use the presented method in med-
ical imaging applications and for object modeling based on
modeling the objects’ skeletons. Moreover, we plan to use
the higher order moments introduced in Sec. 2 for the topo-
logical analysis and simplification of the computed skele-
tons.

c
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7. Appendix

The following details the computation of g for the 2D and
3D cases by integration (Sec. 3.2).

g3D
�
γ � � 2π

2 4
3 π

� �
1 � γ2

0

� �
1 � r2 � γ � 2r dr

� 3
4

� �
1 � γ2

0
r � r3 � γ2r � 2γr

�
1 � r2dr

� 3
4

�
r2 � γ2r2

2
� r4

4
� 2γ

3

�
1 � r2 � 3

2 � �
1 � γ2

0

� 3
4

�
� 1

12
γ4 � γ2

2
� 2

3
γ � 1

4
�

g2D
�
γ � � 2

2π

� �
1 � γ2

0
� � 1 � r2 � γ � 2

dr

� 1
π

�
r
�
1 � γ2 � � r3

3
� γ � r � 1 � r2 � arcsin r � � �

1 � γ2

0

� 1
π

�
�
1 � γ2 � � 1 � γ2 �

�
1 � γ2 � 3

2

3
� �

� 1
π

γ � � 1 � γ2γ � γarcsin � 1 � γ2 �
� 1

3π 
 � 1 � γ2
�
2 � γ2 � � 3γarcsin � 1 � γ2 
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