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ABSTRACT

The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors
(FET) have been investigated as a function of temperature under controlled atmosphere. In a
disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between
localized states, is dependent on the charge carrier density. The transfer characteristics of PTV
FET have been modeled considering the distribution of charge carriers and mobility over the
accumulation channel. Good agreement with the experimental data is obtained.

INTRODUCTION

In less than one decade a great interest in conjugated polymers has developed, as a result
of their potential application in microelectronic devices [1,2]. In order to improve the charge
carrier mobility and the on-off current ratio, which are the most important parameters for field-
effect transistors, the mechanism of charge transport has to be studied. Solution processed thin
films made from conjugated polymer have an amorphous or polycrystalline structure and can be
characterized as disordered systems. Therefore it can be expected that the transport of carriers
within the organic semiconductor is governed by the hopping between localized states [3].

In order to understand the transfer characteristics of disordered organic FET, it is
important to realize that the charge carrier density is not uniformly distributed in the
accumulation channel, but decreases from the semiconductor/insulator interface into the bulk. In
organic FET the mobility is dependent on the charge carrier density, which results from the
hopping model. As a consequence the charge carrier mobility does not take a constant value for a
certain gate voltage (Vg) like in standard metal-oxide-semiconductor FET, but a distribution of
charge carrier mobilities is present in the disordered organic FET. In the present study the
electrical characteristics of PTV FET are modeled with a hopping model by taking into account
the charge carrier dependence of the mobility in the active channel.

RESULTS AND DISCUSSION

Organic field-effect transistors are primarily operating in accumulation mode. A negative
voltage applied to the gate of a p-type FET gives rise to band bending in the semiconductor and
determines an accumulation of holes into the semiconductor next to the interface [4]. At low
drain voltages (the linear regime) the current in the accumulation channel is proportional with the
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electric field (Vd/L), the density of induced charge carriers per unit area (CiVg) and the carrier
mobility µ [5]:

(1)

The field-effect mobility is directly calculated by differentiating the channel current with
respect to the gate voltage at low drain voltage:

(2)

Note that this equation is only valid when the mobility does not depend on the gate
voltage. The transfer characteristic for PTV transistor at room temperature is shown in figure 1,
from which it appears that the field-effect current in the active channel increases stronger than
linear with gate voltage. It should be noted that also for a gate-voltage dependent mobility µ(Vg)
the current in the accumulation channel is given by equation 1. However, in this case the
derivation of source-to-drain current function of gate bias is given by:

(3)

From equation 3 it directly follows that for a gate-voltage dependent mobility, equation 2
is not valid. In fact, in equation 2 the assumption that all the charge carriers in the accumulation
layer have the same mobility is made. But, in amorphous organic films, where the charge carriers
are strongly localized, the charge transport can be described by a variable range hopping model

Figure 1. Source-drain current versus gate voltage for PTV field-effect transistor (Vds=-2V) at
room temperatures. The solid lines show that the source-drain current has a non-linear behavior.
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[3]. The charge carriers move by hopping from a localized state to the next one. By increasing
the gate voltage the induced charge carrier density next to the semiconductor/insulator interface
is increased [6]. The additional charges will jump easier to neighboring sites. As a result the
dependence of the mobility on the gate bias is due to the dependence of mobility on the charge
carrier density.

The device characteristics of an amorphous organic transistor have been modeled
recently by Vissenberg and Matters [3]. Using an exponential distribution for the density of
states and the percolation model of variable range hopping, an expression for the conductivity as
a function of density of carriers p and temperature T has been found:

(4)

Where, σ0 is the prefactor of the conductivity, T0 is a parameter which indicates the width of the
exponential, α-1 is the effective overlap parameter between localized states and Bc=2.8 is the
critical number at the onset of percolation [3]. From equation 4 it can be observed that the
conductivity increases superlinearly with the density of charge carriers ( σ ~ pT

°
 /T ). From the

conductivity an expression for the local mobility as a function of charge carrier distribution can
be derived:

(5)

It can be observed that this equation gives a power law dependence of local mobility with
charge carrier density. In order to calculate the field-effect current which flows in the active
channel the variation of the charge carriers and the variation of the local mobility from the
semiconductor/interface into the bulk is taken into account. Now, the current is calculated over
the accumulation layer from the following relation:

(6)

Where, xm is the thicknnes of the accumulation layer. In the previously given equation the
gradual channel approximation has been used, which means that the potential drop from source
electrode to drain electrode is neglected (Vd=-2V). The device measured has a channel of W=2cm
in width and L=10µm in length. The transport measurements have been done in the temperature
range from 173K to 293K. From temperature dependent measurements on PTV field-effect
transistor the fit parameters have been extracted and the following values have been obtained:
T0=382 K, σ0=5.6×106 S/m and α-1 =1.5×10-10m. Equation 6 is used to model the transfer
characteristics of solution processed PTV as a function of temperature and gate voltage. The
result of the modeling is shown in figure 2. Good agreement with the experimental data is
obtained.
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Figure 2. Source-drain current versus gate voltage for PTV field-effect transistor (Vds=-2V) for
several temperatures. The solid lines represents the modeling using equation 6.

In order to calculate the local mobility from equation 5, the distribution of charge carriers
in the accumulation layer has to be calculated. It is well known that by appling a voltage to the
gate electrode a band bending is induced in the semiconductor in the direction x perpendicular to
the semiconductor/insulator interface [7]. Using an exponential density of states and the Fermi-
Dirac occupation function, the density of holes in the active layer is calculated as a function of
band bending, which is a function of position.

Considering the charge carrier dependence of the mobility the behavior of the local
mobility as a function of position x in the accumulation layer is calculated from equation 5 for a
gate voltage of Vg=-19.5V, as is shown in figure 3. It can be observed that the local mobility
varies with a factor of 6 from 2.1×10-3 at the semiconductor/ insulator interface to 4×10-4 at a

Figure 3. The local charge carrier mobility (stars) and the conventional field-effect mobility
(square) in the accumulation channel for Vg=-19.5V.
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distance of 7nm from the interface. Thus, due to the charge carrier distribution from the
semiconductor/insulator interface into the bulk, the local mobility shows a big variation in the
active channel. The difference between the local mobility and the conventional field-effect
mobility, which is calculated using equation 2 can be observed in figure 1. Using the standard
equation 2 only one value for the field-effect mobility is obtained for a given Vg. The error made
using equation 2 instead of equation 5 for Vg=-19.5V at the semiconductor/insulator interface is
18%.

CONCLUSIONS

In this study the transfer characteristics of a disordered organic field-effect transistor have
been investigated. Using the variable range hopping concept in an exponential density of states,
the charge carrier mobility distribution in the accumulation channel in the direction
perpendicular to the insulator has been calculated. The result of modeling of the transfer
characteristics are in good agreement with the experimental data.
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