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ABSTRACT
We propose a texture analysis method based on Rényi’s general-
ized entropies. The method aims at identifying texels in regular
textures by searching for the smallest window through which the
minimum number of different visual patterns is observed when
moving the window over a given texture. The results show that
any of Ŕenyi’s entropies can be used for texel identification. How-
ever, the second order entropy, due to its robust estimation, is the
most reliable. The main advantages of the proposed method are its
robustness and its flexibility. We illustrate the usefulness and the
effectiveness of the method in a texture synthesis application.

1. INTRODUCTION

Only rarely have real world objects surfaces of uniform intensity;
most of the time they are textured. The word texture is used to
refer to a number of commonly encountered visual patterns in nat-
ural scenes, such as foliage, grass, pebbles, clouds, etc. While
there is no proper definition of texture, it is widely accepted that
the term generally refers to a repetition of certain basic elements,
sometimes calledtexels. The textures exhibiting such a repetition
of basic primitives are commonly referred to as structural textures.
Although the structural approach to texture analysis is an old re-
search direction in the field of texture analysis, it was less produc-
tive than other areas in the same field, due to various difficulties
encountered [1, 2].

Structural texture analysis focuses primarily on identifying pe-
riodicity in texture or on identifying texels and their placement
rules. Such methods are mainly based on Fourier analysis [3],
cooccurrence matrices [4], and autocorrelation functions [1, 2].
While widely used, these methods prove to be fragile when it
comes to natural texture analysis due to the imperfection in the
regularity of these textures [1, 4].

Whether they deal directly with texel identification or they
search for periodicity in texture, the structural texture analysis meth-
ods try to find the basic texture unit - the texel. This step is impor-
tant for texture analysis not only in the context of structural ap-
proaches, it can also be used when other methods are employed
for texture study. Next to being a tool for texture analysis [2, 4],
texel identification is also useful in other fields of image process-
ing, computer vision, and computer graphics such as texture syn-
thesis [4], texture compression [4], image database retrieval [1],
and 3D vision [5].

In this paper, we propose a texel identification method based
on a concept borrowed from information theory - Rényi’s gener-
alized entropies. Ŕenyi’s entropy family is one of the most pop-
ular generalizations of Shannon entropy [6]. Similar to the Shan-
non entropy, it measures the amount of uncertainty in predicting

the output of a probabilistic event [6]: when the uncertainty is re-
duced, the entropy decreases. This property is used in the method
proposed here. More precisely, the texel identification method de-
scribed in the following sections searches for the smallest window
through which the minimum number of different visual patterns –
different in a given sense – is observed when moving the window
over a given texture. Such a window has the property of minimiz-
ing Rényi’s generalized entropies.

2. RÉNYI’S GENERALIZED ENTROPIES

Rényi’s generalized entropies were introduced in [7] as a family of
measures that characterize the distribution of a random variable.
They are defined as follows: if a random variableξ takes the values
[xi]i=1...N with probabilities[pi = P (ξ = xi)]i=1...N , then the
generalized entropy of orderq of ξ is defined as

Hq =



log
N∑
i=1

pqi

1− q for q 6= 1,

lim
q→1

 log
N∑
i=1

pqi

1− q

 = −
N∑
i=1

pi log pi for q = 1,

− log max
i=1...N

(pi) for q →∞.

(1)

The zero order entropy counts the number of valuesxi for
whichpi is nonzero1. The entropy of order one is the Shannon en-
tropy. The entropy of order two, also called thequadratic entropy
[8], gives the probability thatξ takes twice the same value. The
order of the entropy can be seen as a weight of the contribution of
eachxi to the value of the entropy. For the limit caseq →∞, the
entropyH∞, also called themin-entropy[9], depends only on the
probability of occurrence of the most frequentxi.

3. RÉNYI’S GENERALIZED ENTROPIES OF TEXTURE

Let us consider an artificial texture image (Fig. 1) comprising a
checkerboard pattern whose black and white blocks are squares
k × k pixels wide. Such a texture can be described as consisting
of square texels of size2k× 2k. If we observe this texture locally,
through a square shaped window of size2k × 2k, we will see
pieces of the texture that are, in fact, circularly shifted versions
of the same pattern. A similar thing will happen if the size of
the observation window is a multiple of2k × 2k, i.e. 4k × 4k,

1When using the standard convention that00 = 0.
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6k × 6k, etc. However, if the size of the observation window is
not a multiple of2k × 2k, we see a number of distinct patterns,
i.e. patterns that are not merely circularly shifted versions of each
other. In general, the number of observed distinct patterns depends
on the window size and on the complexity of the analyzed texture.

Fig. 1. A synthetic texture.

Let us callvisual eventa certain pattern that is seen through
a square shaped observation window of a given size. When we
observe the same pattern or patterns that are circularly shifted ver-
sions of each other, we say that we encounter identical visual events.
Otherwise, we consider the patterns as different visual events. When
moving such a window over a texture image we encounter a num-
ber of events. The number of different visual events encountered
and their probabilities of occurrence are characteristics of the ana-
lyzed texture and they can be used to identify the texture.

(a)H0(w) (b)H1(w)

(c)H2(w) (d)H∞(w)

Fig. 2. Rényi’s entropies of the texture in Fig. 1, fork = 32.
The values on the abscissa represent the window sizew, while the
values on the ordinate representHq(w).

A concise way of describing these characteristics is through
Rényi’s generalized entropies computed from the probability of
occurrence of each distinct visual event – we call them Rényi’s
entropies of the texture.

For a given texture, the texture entropies depend on the size of
the observation window. We illustrate this property by considering
a simple case, the synthetic texture from Fig. 1. We compute the
distribution of visual events observed in a square window of size
w × w and we plot its correspondingHq(w) as a function ofw.
For deciding whether two patterns represent the same visual event
or not, we compare the histograms of the gray levels in the two
observation windows. We consider two patterns as being the same
event if the histograms associated with the two corresponding ob-
servation windows are identical.

From the family of generalized entropies we choose to study
four representatives to see how the order affects the dependence
of Rényi’s entropy on the observation window size. We selected
H0 because of its counting property.H∞ is interesting because it
shows how likely it is to encounter the most frequent pattern. Fur-
ther, we consider the Shannon entropy,H1, to see how informative
it is compared with the other entropies and the quadratic entropy,
H2, because it can be robustly estimated [6].

The zero order entropyH0(w), Fig. 2a, indicates how many
different visual events are encountered for a given window size.
For example, for a window of size1× 1, there are only two events
that can be observed in the texture shown in Fig. 1 (H0(1) = 0.69)
– a white or a black pixel. Forw = 2, the eight patterns encoun-
tered in the analyzed texture are grouped in three visual events
(Fig. 3) leading toH0(2) = 1.01. When observed through a win-
dow of2× 2, six of the patterns encountered in Fig. 1 are consid-
ered the same visual event because they have the same histogram.

Event 1 Event 2 Event 3

Fig. 3. The three classes of patterns encountered in Fig. 1 when
observed through a window of size2× 2.

While in a general context the classification of the patterns in
the third column of Fig. 3 in the same group could be a mistake, in
the context of texture analysis such a classification is not necessar-
ily wrong since all these patterns could be regarded as translated
or rotated versions of the same pattern. When classifying textures,
assigning rotated or translated version of the same texture to one
class is desirable. However, for segmentation purposes the lack
of discrimination between texture patches that are rotated versions
of each other is undesirable. Nonetheless, in the current context
of texture entropy computation, the rotation and translation invari-
ance can be added or removed by choosing the right type of pattern
comparison method for grouping different patterns in one event.

The zero order entropy reaches its minimum value when the
observation window has a size multiple of2k × 2k. Similarly, the
other entropies plotted in Fig. 2 reach their minima for windows
whose sizes are multiples of2k× 2k. In other words, the window
sizes for which the texture entropies reach their minima depend on
the size of the texels of the texture and do not depend on the en-
tropy’s order. The same thing cannot be said about the maximum.

4. RÉNYI’S ENTROPIES OF NATURAL TEXTURES

The results displayed in Fig. 2 show that Rényi’s entropies of a
texture could be used to find the texel size in a regular texture.
They also show that Ŕenyi’s entropies of any order can be used



for this purpose. The next question is how such entropies behave
for natural textures. Unlike artificial textures, natural textures do
not consist of identical texels, even when they are highly regular.
In order to see how this difference affects Rényi’s entropy behav-
ior, in the following, we present experiments with textures from
Brodatz album [10] and from VisTex texture database [11]. We
selected a number of regular textures containing square texels of
various sizes (Fig. 4). The test images are of size256×256 pixels.

(a)D20 (b)D101

(c)D21 (d) Tile9

Fig. 4. Natural textures consisting of square shaped texels.

To account for the variability of the texels in real textures,
we compare the histograms of the patterns observed in two win-
dows of the same size by means of the two-sample Kolmogorov-
Smirnov statistical test [12]. Applying Kolmogorov-Smirnov test
to histogram comparison is a natural choice if one takes in consid-
eration that histograms are estimates of the probability distribution
functions of the gray levels. In such a case, computing thepi in
(1) is done using the box-counting schemes described in [13].

In Fig. 5, we display the results obtained for the textures in
Fig. 4. For conciseness reasons, we present here only the plots
obtained for the quadratic entropy. Similar plots were obtained
for the other entropies. These results were obtained using the
Kolmogorov-Smirnov test at a significance level 0.01, a signifi-
cance level often used in statistics. Similar results were obtained
at significance levels 0.05 and 0.10. We computed the texture en-
tropies for window sizes between4 × 4 and133 × 133. We used
window sizes greater than4 × 4 pixels in order to have enough
samples when performing the Kolmogorov-Smirnov test. We lim-
ited the size of the windows to133 × 133 because using bigger
windows would reduce the number of observed events in the im-
age making the entropy computation less robust while it would not
make the plots more informative.

In Section 3, we saw that in the case of a simple synthetic
texture, Ŕenyi’s entropies can be used to determine the size of its
texels, when the texels were square shaped. The entropies of such

(a) D20:wo = 33 (b) D101:wo = 37

(c) D21:wo = 6 (d) Tile9:wo = 14

Fig. 5. Rényi’s quadratic entropies of the textures in Fig. 4. The
values on the abscissa represent the window sizew, while the val-
ues on the ordinate represent the entropyH2(w). The caption of
each plot gives the texture name and the size of the texel in the
original texture as computed from that plot.

a texture are minimal around the window size that is equal to the
size of the texel. Moreover, the entropy plots have deep valleys
around such points.

Similar to the synthetic texture case, the generalized entropies
of natural textures have deep valleys around the window size equal
to the size of the texel. However, the texture entropies are not
zero, neither are they minimal at such points. Typically, they do
not reach the zero value at all and they are minimal for the small-
est window size. Nonetheless, the sizes of the texels can be deter-
mined if one looks at the position of the deep valleys in the entropy
plots. More precisely, the texel size is given by the window size
for which the smallest local minimum2 is reached. The captions
of each of the plots in Fig. 5 give the size of the texel as computed
according to this rule.

5. APPLICATION TO TEXTURE SYNTHESIS

In this section, we demonstrate an application of the texel size de-
termination in texture synthesis by tiling. Such a synthesis method
has the advantages of being fast and able to preserve the regularity
of the texture sample. In Fig. 6, we present artificially generated
counterparts of the textures in Fig. 4. Each artificial texture was
generated by tiling with a square window randomly selected from
the sample image. The size of that window was computed accord-
ing to the method presented in Section 4.

2In the current context,Hq(w) is considered to have a local minimum
for window sizew if Hq(w) ≤ Hq(w − 1) andHq(w) ≤ Hq(w + 1).



(a) D20:wo = 33 (b) D101:wo = 37

(c) D21:wo = 6 (d) Tile9:wo = 14

Fig. 6. The synthesized counterparts of the texture in Fig. 4. The
caption of each image gives the size of the texel used in the syn-
thesis of that texture.

6. SUMMARY AND CONCLUSIONS

We study here an application of Rényi’s generalized entropies to
texture analysis. More precisely, we show that these entropies can
be used to identify square shaped texels in regular textures. The
proposed method is based on the property of the generalized en-
tropies of the distribution of a stochastic variable of being small
when the uncertainty in the outcome of that stochastic variable is
small. In the case of texture analysis, the stochastic variable is the
histogram of the pattern observed through a square window of a
given size. We show that, for regular textures with square shaped
texels, Ŕenyi’s entropies depend on the size of the observation win-
dow and that they are small when the size of the observation win-
dow matches the size of the texels in the analyzed texture.

Unlike most of the structural texture analysis methods, the
method proposed here does not use cooccurrence matrices, Fourier
analysis, or autocorrelation functions. These classical methods
exhibit some drawbacks, such as (i) sensitivity to slight distor-
tions and noise and (ii) high computational demands. Our method,
while being computationally tractable, is robust to distortions and
noise in the analyzed texture. Another advantage of the proposed
method is its flexibility. The method can easily incorporate dif-
ferent texture models by simply adapting the way in which two
visual patterns observed through two different windows are com-
pared. For illustration, we compare here the gray level histograms
in the considered windows.

The pattern comparison method used in our experiments is a
statistical approach to texture analysis. It uses the gray level his-
togram of a window as a descriptor. The main reasons for such
a choice are the invariance of the histogram to circular shift and
its computational simplicity, while being a good discriminator be-

tween different textures. We are well aware of the limitations of
such descriptors [14], however, in the current context such limita-
tions are not felt.

The proposed texel identification method is able to identify
only square texels. Texels with different shapes can be identified
if windows with different profiles are used. Our choice of a square
window was inspired by thetime delay embeddingtechnique used
in dynamic systems for time series analysis [6]. Using an exten-
sion of the time delay embedding for texture analysis is a suitable
approach because texture is a neighborhood property. However,
extending 1D techniques to 2D situations proves to be a difficult
problem with no optimal solution. In this paper, we used the sim-
plest way of extending a 1D technique to a 2D problem. Studying
other extension alternatives remains a task for future work.
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