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Ambipolar light-emitting organic field-effect transistor
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We demonstrate a light-emitting organic field-effect transis@iFET) with pronounced ambipolar
current characteristics. The ambipolar transport layer is a coevaporated thin film of
a-quinquethiophene (a-5T) as hole-transport material and N/ itridecylperylene-
3,4,9,10-tetracarboxylic diimidgP13 as electron-transport material. The light intensity is
controlled by both the drain—source voltaggs and the gate voltag€s. Moreover, the latter can

be used to adjust the charge-carrier balance. The device structure serves as a model system for
ambipolar light-emitting OFETs and demonstrates the general concept of adjusting electron and hole
mobilities by coevaporation of two different organic semiconductor0@4 American Institute of
Physics [DOI: 10.1063/1.1785290

Organic materials have been incorporated as active layinto one phase, as was demonstrated with solution-processed
ers in electronic thin-film devices, such as organic light-OFETs in Refs. 18 and 19.
emitting diodes(OLEDs),"? organic solar celld’ electro- Here, we report on field-effect transistors based on a
chemical celld and organic field-effect transistors coevaporated film of-quinque-thiophenéa-5T) and P13.
(OFET9.5° The progress in the field of OLEDs for display The two materials have been selected because of their trans-
applications was recently highlighted by the demonstratiorport and luminescence properties:5T is known as hole-
of a 20-inch full-color active-matrix OLED display driven by transporting materigf, and from pure reference devices we
amorphous Si thin-film transistotfS OFETs are being devel- extracted a hole mobility of 2.8 102 cn?/V s. P13 belongs
oped as switching devices for active-matrix OLED displays to a class of perylene derivatives, which are well-studied
and for low-cost electronics, such as low-end smart cards arglectron-transporting materials. The pure reference device
electronic identification tags. Combining optical and electri-had an electron mobility of &10°° cn?/V's. The electron
cal functionality in a single device, i.e., a light-emitting field- @nd hole mobilities of the pure materials lie within one order
effect transisto(LEFET), would not only increase the num- ©f magnitude, WhICh.IS.a prerequisite for achpvmg ambipo-
ber of potential applications in integrated circuitry for signal l&r current characteristics in a coevaporated film.
processing that involves both optical and electrical signals, ~EXCiton formation, and therefore light emission, strongly
but also present an ideal structure for lifetime studies of ordePend on the relative positions of the energy levels of the
ganic light-emitting materials under different driving condi- highest ocpuplec(HOMO) and the Iowe_st unogcup|ed mo-
tions and charge-carrier balances. Recently, a unipolar ligh{€cular orbital(LUMO) of the two organic semiconductors.

emitting OFET based on tetracene was repoﬁéjd‘. The HOMO level ofa-5T lies at about —5.3 e\(Ref. 21)

However, in unipolar devices, light emission is restricted to aand the LUMO level at about ~2.8 € The values for the

region very close to the contact that injects the charge carrir-QIevant energy levels of P13 were estimated from Ref. 23 as

. . : -5.4 eV and -3.4 eV for HOMO and LUMO, respectively.
ers of the lower mobility. In contrast, an ambipolar light- : . ;
- . The molecular structures and the schematic device architec-
emitting transistor would allow the electron—hole balance a

well as the location of the recombination zone betwee ?ure are shown in Fig. 1. A heavily dopedktype Si wafer

: doping level: 168/ cm®) with an aluminum back contact acts
source and drain electrodes to be tuned by the gate voltage, ping )

hence improving the quantum efficiency. In principle, an am-

bipolar transistor without light emission can be formed by (a) Q YA fo
using either a material capable of transporting both electrons Cyator .Q.Q. Cyathy
\

and holes or a heterostructure consisting of a hole- and an a-T5

electron-transport material. The latter has been demonstrated Q\@/Q\@ /Q P13
for combinations ofa-hexithienylene(a-6T) and G (Ref.

15) as well as of pentacene and N'rNitridecylperylene- (b)

3,4,9,10-tetracarboxylic diimidegPla.16 Ambipolar trans-

port in a wide-band-gap organic material, necessary for light
emission in the visible region, is difficult to achieve because sio.
of impurity-induced traps’ A viable way to circumvent this 2
problem is to mix electron- and hole-transporting moieties

FIG. 1. (a) Molecular structure of--5T and P13(b) Device structure of the
3Electronic mail: cro@zurich.ibm.com LEFET consisting of a coevaporated thin film @5T and P13.
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as gate electrode anql substrate;. The gate insulator consists of 3_0j(a)' " T T T saturating ' oV

a thermally grown Si@ layer with a thickness of 150 nm. _ electron current /]

Prior to processing, the oxidized wafer was cleaned with a < 2.07 V=80V~ 10V,

standard wet-cleaning procedure, comprising ultrasonic — 441 ,,//'/,ALY;/"ZW

cleaning in acetone and isopropanol. The organic thin film -2 : %7 30V

(50 nm used in this study was prepared by coevaporation of & 0.0 1 == ]
. . ] . = hole injection

a-5T and P13 with a ratio of 1:1. The base pressure in the E .04 7/ /saturating from drain contact]

system was X 10" mbar. The deposition rate was 0.3 A/s 8 1.0/ / hole current 3

for the coevaporated film. The Au source and drain contacts '@ '2-0-'2°V/ / o 7

were thermally evaporated and had a thickness of 40 nm. © 341 / / electron injection 3

The lateral dimensions were defined by shadow mask. The o / from drain contact ]

-10v

channel length and width of the coevaporated OFET were 4.0 / V=0V E

40 um and 55 mm, respectively. For reference experiments, 704 (B)' T p—— e ]

single-layer OFETs of these two materials were fabricated e \VG=°V 6

with a c_hannel length and width of 15%@m and 129Q(Lm, ';' 6.0

respectively. Au top contacts were used for both single-layer ® .

transistors. For characterization, the devices were placed in _ 591

an argon glove box<1 ppm G, H,0). The transistor out- = ]

put and transfer characteristics were measured with a probe %’ 4.0

station using an Agilent 4155C semiconductor parameter §

analyzer. Simultaneously, the electroluminesce(ite) in- E 3.0

tensity was measured using a Hamamatsu S1336 photodiode. i

The charge-carrier mobility in ambipolar devices was ex- 2.0

tracted from the transfer characteristics, similar as for unipo- 10 Sk il Sl il

IarI (t:i_ewz(ies, using the saturated drain currbff, vs. Vg "60 <40 20 0 20 40 60

relation;

drain-source voltage Vpg [V

W FIG. 2. (a) Output characteristics arfd) light intensity for the coevaporated
|D,sat: —uC(Vg - VT)Z_ (1) a-5T/P13 thin-film transistor fqr negative and positive gate bias. The inset
L shows the photocurrent vs drain current for various gate voltages.

Here, W is the channel widthl. is the channel lengthy is
the charge-carrier mobilityC is the gate-oxide capacitance the gate current has been measured simultaneously. Even
per unit area)/g is the gate voltage, andy is the threshold though a small gate leakage current was observed, no corre-
voltage. To extract both the electron mobility and the holelation between light emission and gate current could be
mobility, it is necessary to measure the transfer characterigound. The discontinuity in the current-voltage characteris-
tics for the negative as well as for the positive bias regime.tics at 0 V drain—source voltage originates from the gate
Figure 2a) shows the output characteristics of a transis-leakage at large gate bias. The magnitude of the gate leakage
tor with a coevaporated thin film af-5T and P13. The fig- is the same for positive and negative voltages. However, he
ure is composed of two independent measurements applyirgign of the gate leakage changes with the sign of the gate
either negative or positive gate and drain source voltagelias.
Applying a negative gate biaég, typical p-channel charac- The light output from an ambipolar device is propor-
teristics are observed in the third quadrant for negativdional to the recombination rate of electrons and holes be-
drain—source voltages withVpd <|Vg|. With increasing tween source and drain electrode. Assuming Langevin
IVpd, an abrupt, steep increase in the drain curignis  recombinatiorf, the EL intensitylg is
measured, which is a typical characteristic of ambipolar op- .
eration in OFETgsee also Refs. 15, 16, and)1%his current
increase is attributed to the injection of electrons into the EL f
organic thin film at the drain contact. A similar behavior is
observed for positive gate bias in the first quadrant. The mog¥ith &, the dielectric constant of the coevaporated organic
striking feature, however, is the light emission monitored bylayer,n(x) andp(x) the electron and hole densities, gugx)
the photocurrent of the photodiode, as shown in Figp).2 andu,(x) the electron and hole mobilities along the channel,
For negative drain—source and gate voltages, the light outpuiespectively. Whereas the drain currégtis a superposition
is apparently correlated to the nonsaturating drain currenof the electron and the hole current, the light intensity is
The highest brightness is achieved fdg=0V and Vg  determined by then(x)p(x) product. Therefore, no simple
=-50 V. For positive drain—source voltages, only weakcorrelation of drain current and EL intensity seems to exist.
emission is observed. In contrast to the negative-voltagé quantitative description of the ambipolar drain current, the
case, the emission here occurs at high gate voltages. Thwle and electron densities along the channel, and the light
insert of Fig. 2b) shows the light intensity as a function of output will be given elsewher®.
Ip: For negativelp the light output is proportional to the Figure 3 shows the transfer characteristics of the device.
drain current. For positive voltages, on the other hand, th@he figure is composed of two independent measurements
light output is independent of the drain current. To verify thatapplying either negative or positive gate and drain—source
light emission indeed originates in the recombination of elecvoltage. For larggVg|, the current originates either from

trons and holes injected by the drain and source electrodebples for negative values & or from electrons for positive
Downloaded 15 Jan 2007 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
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] hotecur. "1 electron cur.50M. 105 ties can be adjusted, i.e., the resulting ambipolar characteris-
3.5‘-50V / ambipol, U1 ambipol. cur_>,;,‘—‘—-1 oV tics are controlled by the stoichiometry of the two materials.
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