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M. Barnabè1,2, L. Ciotti2, F. Fraternali3 and R. Sancisi1,4

1 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
e-mail: M.Barnabe@astro.rug.nl
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Abstract. We show that fluid stationary models are able to reproduce the observed, negative vertical gradient of
the rotation velocity of the extra-planar gas in spiral galaxies. We have constructed models based on the simple
condition that the pressure of the medium does not depend on density alone (baroclinic instead of barotropic
solutions: isodensity and isothermal surfaces do not coincide). As an illustration, we have successfully applied
our method to reproduce the observed velocity gradient of the lagging gaseous halo of NGC 891. The fluid
stationary models discussed here can describe a hot homogeneous medium as well as a “gas” made of discrete,
cold H i clouds with an isotropic velocity dispersion distribution. Although the method presented here generates
a density and velocity field consistent with observational constraints, the stability of these configurations remains
an open question.

Key words. galaxies: general – galaxies: halos – galaxies: individual: NGC 891 – galaxies: kinematics and dynamics
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1. Introduction

Observations at various wavelengths show that some
spiral galaxies are surrounded by a gaseous halo.
This extra-planar gas is multiphase: it is detected in
H i (e.g., Swaters, Sancisi, & van der Hulst 1997), Hα
(Rand 2000; Rossa et al. 2004), and X-ray observations
(Wang et al. 2001; Strickland et al. 2004). In particular,
high-sensitivity H i observations of edge-on galaxies like
NGC 891 (Swaters et al. 1997; Fraternali et al. 2004a) and
UGC 7321 (Matthews & Wood 2003) reveal neutral gas
emission up to large distances from the plane (e.g. see the
H i map of NGC 891 in Fraternali et al. 2005) and the
presence of a negative vertical gradient in the gas rota-
tional velocity. A similar decrease of the rotational veloc-
ity with distance from the plane has also been observed in
the diffuse ionized gas halo of NGC 891 (Rand 1997) and
of NGC 5775 (Rand 2000).

The two major issues regarding the extra-planar gas
are those of its origin and of its dynamical state. These are
strictly related. For example, the halo gas could be the re-
sult of cosmological accretion (e.g., see Binney 2005), or of
a galactic fountain (Shapiro & Field 1976; Bregman 1980),
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or of both. Different structures and kinematics would be
expected for these cases. Thus, the study of the origin and
dynamics of the extra-planar gas not only is important in
itself, but may also provide a new insight on the forma-
tion and the structure of spiral galaxies. Furthermore, it
may bring new evidence on the vertical distribution of
dark matter. In this paper we focus on the problem of the
dynamical state of the extra-planar gas.

Two “extreme” types of models have been considered
for the extra-planar gas and in particular for its decreasing
rotational velocity: the ballistic and the fluid homogeneous

models.

Ballistic models describe the gas as an inhomoge-
neous collection of clouds, subject only to the grav-
itational potential of the galaxy: for example, in the
galactic fountain model ionized gas is ejected from the
galactic disk due to stellar winds and supernova ex-
plosions, and then cools and falls back ballistically
(Bregman 1980). These models are able to explain ver-
tical motions of the cold (H i) and warm (Hα) gas
components observed in several spiral galaxies (e.g.
Fraternali, Oosterloo, & Sancisi 2004b; Boomsma et al.
2005). However, Collins, Benjamin, & Rand (2002) have
tried a ballistic model to describe the extra-planar ionised
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gas of NGC 891 and found problems in reproducing the
observed kinematics. These authors suggest that the dis-
crepancy could be solved by considering “the presence of
drag between disk and halo, such as through magnetic ten-
sion or viscous interactions between clouds. Alternatively,
an outwardly directed pressure gradient could explain the
gas kinematics”.

We note here that the concept of pressure in the
physics of the interstellar medium is a complex one, as
there are several contributing sources of pressure, e.g.
thermal, kinetic (or turbulent), magnetic, cosmic ray and
radiation (e.g., see Boulares & Cox 1990, and references
therein). For simplicity, in the following we will restrict
our discussion to thermal and kinetic pressure. In fluid ho-
mogeneous models, the extra-planar gas is described as a
stationary rotating fluid without any motion along the ra-
dial and vertical directions, with the galaxy gravitational
field balanced by the pressure gradient and the centrifugal
force. Until now, this approach has not been fully explored
in all its possibilities, and only a few attempts have been
made (e.g., see Benjamin 2002). Here we extend a pre-
liminary analysis of fluid homogeneous stationary models
(Barnabè et al. 2005) to explain the vertical gradient of
rotational velocity observed in the extra-planar gas. In
particular, we show that models in which the gas pressure
does not depend on the density alone (baroclinic configura-
tions) are able to reproduce the observed vertical gradient.
In addition, we show that baroclinic solutions could pro-
vide the drag invoked by Collins et al. (2002). This sug-
gests that a correct description of the extra-planar gas dy-
namics may be found in “hybrid” ballistic-fluid stationary
models. Finally, we address the question of the physical
interpretation of our solutions and suggest, as an alter-
native to the hypothesis of a hot homogeneous medium,
the possibility of a “gas” of cold H i clouds described by
the stationary (fluid) Jeans equations, with the sustaining
pressure given by a globally isotropic velocity dispersion
tensor.

The paper is organized as follows: in Sect. 2 and 3, we
briefly introduce the baroclinic solutions and derive sim-
ple and general rules for their construction. In Sect. 4 we
construct a fluid homogeneous and stationary model for
the galaxy NGC 891, and in Sect. 5 we discuss the results
from an astrophysical point of view. In the Appendices a
simple, fully analytical model of a gas distribution with
low rotation at high z is presented, together with the nu-
merical code adopted for the case of NGC 891.

2. The fluid approach

2.1. The fluid equations

We consider a gaseous axisymmetric system in permanent
rotation, under the influence of an axisymmetric gravita-
tional potential Φtot(R, z): because of the axial symme-
try, all the physical variables depend only on the cylindri-

cal coordinates R and z. The stationary hydrodynamical
equations for the gas are then



















1

ρ

∂P

∂z
= −∂Φtot

∂z
,

1

ρ

∂P

∂R
= −∂Φtot

∂R
+ Ω2R,

(1)

where ρ, P and Ω denote the gas density, pressure and
angular velocity, respectively; the gas rotational velocity
is given by vϕ = ΩR, while vR = vz = 0. Note that Φtot

represents the total gravitational potential, including the
gas contribution. Later on, we will assume the condition
that the gas is not self-gravitating and therefore Φtot = Φ,
where the galaxy gravitational potential Φ is the sum of
the dark halo and the stellar disk potentials.

In standard applications, as for example the setting up
of initial conditions for hydrodynamical simulations, the
above equations are solved adopting a barotropic pressure
distribution and neglecting the gas self-gravity. Thus, one
fixes the gravitational potential Φ and a specific function
P (ρ), and integrates the first of Eqs. (1) with the bound-
ary ρ(R, 0) or imposing ρ(R,∞) = 0. The angular veloc-
ity Ω is obtained from the second of Eqs. (1). This leads
to cylindrical rotation, i.e. Ω = Ω(R). In fact, according
to the Poincaré-Wavre theorem (Lebovitz 1967; Tassoul
1980), cylindrical rotation is equivalent to the fact that
the acceleration field at the r.h.s. of Eqs. (1) can be ob-
tained from an effective potential Φeff (see Eq. [8]), or that
the gas density and pressure are stratified on Φeff , and so
the fluid is barotropic.

Cylindrical rotation is in disagreement with the ob-
served vertical gradient of the extra-planar gas rotation
velocity, and this would seem to argue against the appli-
cability of fluid stationary models. However, in the next
Section we will show that it is possible to construct baro-
clinic equilibrium solutions with a negative velocity gra-
dient along z. Note that baroclinic solutions have been
studied in the past for problems ranging from geophysics
to the theory of sunspots and to galactic dynamics1 (e.g.,
see Rosseland 1926; Tassoul 1980; Waxman 1978, and
references therein).

2.2. Baroclinic solutions

For simplicity we restrict ourselves to non self-gravitating
gas distributions, even though several results hold also
in the self-gravitating case. We fix the total gravitational
potential Φ(R, z) for the galaxy but, at variance with the
standard treatment, we prescribe a density distribution
ρ(R, z) for the gas vanishing at infinity. (We do not ad-
dress here the much more difficult problem of a consistent

1 In particular, isotropic axisymmetric galaxy models can
be interpreted as baroclinic fluid configurations, and show
streaming velocities often decreasing with z (e.g., see
Lanzoni & Ciotti 2003, and Ciotti & Bertin 2005 for simple
examples).
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assignement of non-zero pressure as a boundary condi-
tion.). The first of Eqs. (1) is integrated for the pressure
as

P (R, z) =

∫ ∞

z

ρ
∂Φ

∂z′
dz′, (2)

where we also assume P (R,∞) = 0. In general, the ob-
tained pressure P (and the corresponding temperature
T = µmpP/kρ) can not be expressed as a function of
ρ only, and so the system is baroclinic. Accordingly, the
rotational velocity field

v2
ϕ(R, z) =

R

ρ

∂P

∂R
+ R

∂Φ

∂R
(3)

depends both on R and z. The major problem posed by
the construction of baroclinic solutions is the fact that,
for an arbitrary choice of ρ and Φ, the existence of phys-

ically acceptable solutions (i.e. configurations for which
v2

ϕ ≥ 0 everywhere) is not guaranteed. In fact, due to the
arbitrariness of the chosen density field, a negative radial
pressure gradient in Eq. (3) can be dominant for some val-
ues of R and z. Thus, before addressing the specific case
of the extra-planar gas in NGC 891, in the next Section
we present a few general results of a mathematical nature
that will be used as guidelines in the construction of physi-
cally acceptable baroclinic solutions, while in Appendix A
we present a fully analytical, baroclinic toy-model as an
example of the procedure described above.

3. Simple families of solutions

The starting point of the following analysis is obtained by
combining Eqs. (2) and (3) and integrating by parts with
the assumption that P and ρ∂Φ/∂R vanish for z = ∞,
thus obtaining the exact relation

ρv2
ϕ

R
=

∫ ∞

z

(

∂ρ

∂R

∂Φ

∂z′
− ∂ρ

∂z′
∂Φ

∂R

)

dz′ ≡ C[ρ, Φ]. (4)

This “commutator-like” relation is not new (e.g., see
Rosseland 1926, Waxman 1978 and, in the context of stel-
lar dynamics, Hunter 1977); here we note that the positiv-
ity of the integrand in Eq. (4) is a sufficient (but not nec-
essary) condition to obtain v2

ϕ ≥ 0 everywhere. Therefore,
physically acceptable solutions are obtained if one assume
a potential Φ for which ∂Φ/∂R ≥ 0 and ∂Φ/∂z ≥ 0
(the usual situation) and a density distribution so that
∂ρ/∂z ≤ 0 and ∂ρ/∂R ≥ 0.

In addition, the bilinearity of C[ρ, Φ] can be used to
construct more complicate solutions starting from simple,
physically acceptable “building block” configurations. In
fact, from Eq. (4) it follows that the rotational velocity
associated with ρ = ρ1 + ρ2 is

v2
ϕ =

ρ1v
2
ϕ,1 + ρ2v

2
ϕ,2

ρ1 + ρ2
, (5)

where ρ1v
2
ϕ,1/R ≡ C[ρ1, Φ] and ρ2v

2
ϕ,2/R ≡ C[ρ2, Φ]. Also,

if Φ = Φ1 + Φ2, then

v2
ϕ = v2

ϕ,1 + v2
ϕ,2. (6)

3.1. Gas density distributions with a factor stratified

on the effective potential

We now elaborate in more detail the general results of
Eqs. (4)-(6). Let us consider the factorized gas density
distribution

ρ(R, z) = h(R, z)ρe(Φeff), (7)

where h is a non negative function and

Φeff ≡ Φ −
∫ R

R0

Ω2(R′)R′ dR′ (8)

is the effective potential associated with the total potential
Φ and with a prescribed cylindrical rotation law Ω(R); R0

is an arbitrary but fixed radius. We assume that ρe in
Eq. (7) is a solution of the equation

∇P = −ρ∇Φeff (9)

with assigned P = P (ρ). For Ω = 0 one obtains a hydro-
static (and therefore barotropic) solution in the potential
Φ (that we indicate with ρh), while for Ω(R) 6= 0 one has
a cylindrical rotation (barotropic) solution.

In practice, by adopting factorization (7) one modifies
a gas distribution with a cylindrical velocity field: this
approach is of obvious interest because families of ρe(Φeff)
can be easily constructed (see Appendix B). Substituting
Eq. (7) in Eq. (4) gives

ρv2
ϕ

R
=

∫ ∞

z

(

∂h

∂R

∂Φ

∂z′
− ∂h

∂z′
∂Φ

∂R

)

ρe dz′ −

RΩ2(R)

∫ ∞

z

h
∂ρe

∂z′
dz′. (10)

Equations (5) and (10) prove the existence of phys-
ically acceptable baroclinic solutions. For example, ρ =
ρh(Φ) + ρe(Φeff) leads to

v2
ϕ =

ρeR
2Ω2(R)

ρh + ρe
. (11)

Another case of physically acceptable solutions is ρ =
A(R)ρh(Φ), with A(R) increasing and approaching a con-
stant value for R ≫ 1. In this case v2

ϕ decreases reaching
systemic (zero) velocity at infinity2.

We now apply the method we have just described to
a couple of more specific astrophysically relevant cases: a
homeoidally stratified potential and a razor-thin uniform
disk. For simplicity, we assume in Eq. (7) a hydrostatic
density factor ρh(Φ).

3.1.1. Homeoidal potential

Let Φ(ℓ) be an homeoidally stratified potential with ℓ2 ≡
R2 + z2/q2

Φ and 0 < qΦ ≤ 1; two well-known examples
are the Binney (1981) logarithmic potential, and Evans
(1994) spheroidal potentials. We write Eq. (7) as

ρ(R, z) = A(R)B(m)ρh(Φ), (12)

2 E.g., the function A(R) = R/(1 + R).
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where m2 ≡ R2 + z2/q2
g and 0 < qg ≤ 1; A(R) and B(m)

are positive functions. From Eq. (10) we have

ρv2
ϕ

R
=

(

1

q2
Φ

− 1

q2
g

)

A(R)R

∫ ∞

z

B′(m)

m
ρh(Φ)Φ′(ℓ)

z′

ℓ
dz′ +

A′(R)

q2
Φ

∫ ∞

z

B(m)ρh(Φ)Φ′(ℓ)
z′

ℓ
dz′, (13)

and so v2
ϕ ≥ 0 if

Φ′(ℓ) ≥ 0, A′(R) ≥ 0, B′(m) ≤ 0, qg ≤ qΦ. (14)

Note that ρh does not enter in the sufficient condition
(14). The condition on flattenings (qg ≤ qΦ) requires that
the gas density distribution must be stratified on homeoids
which are flatter than the isopotential surfaces. This is,
therefore, always satisfied for a flat gas distribution in
the spherically symmetric monopole-dominated far field
of any finite mass system (e.g. a stellar disk).

3.1.2. Razor-thin uniform disk

We now discuss the case of a razor-thin uniform disk.
What are the conditions for having physically acceptable
(v2

ϕ > 0) solutions near the disk? We explore this issue by
assuming ρ = A(R)ρh(Φ) in Eq. (7) (or B = 1 in Eq. [12])
and

Φ = 2πGΣ0z. (15)

From Eq. (10) (or Eq. [13])

ρhv2
ϕ

R
= 2πGΣ0

A′(R)

A(R)

∫ ∞

z

ρh(Φ) dz′, (16)

i.e. A′(R) ≥ 0 is the necessary and sufficient condition to
have v2

ϕ ≥ 0 in such a case.
The physical reason for this condition is very simple.

A gas distribution ρ(R, z) not stratified on Φ as given by
Eq. (15) must be rotating and according to Eq. (3) its
pressure must be radially increasing. From Eqs. (15) and
(2) it follows that in the present case the pressure is pro-
portional to the gas column density. This means that, in
a vertical gravitational field, v2

ϕ ≥ 0 whenever the column
density is radially increasing. Note that this trend is con-
sistent with the radial H i density distribution observed in
several spiral galaxies (see Cayatte et al. 1994). Obviously,
the case presented by more realistic disks (as the exponen-
tial disk in Sect. 4) will require the explicit construction of
the whole equilibrium solution to check for the positivity
of v2

ϕ.

4. Application to NGC 891

We now apply the general results of Sect. 3 to the modeling
of the extra-planar gas of NGC 891 in an attempt to repro-
duce its major features and in particular the decline of the
rotational velocity with increasing z. The rotational ve-
locity field resulting from this modeling will be compared
with the H i rotation curves derived by Fraternali et al.
(2005).

4.1. The galaxy model

We consider a very idealized mass model for NGC 891,
consisting of three components: an exponential stellar
disk, a dark matter halo with an asymptotically flat ro-
tation curve, and a centrally peaked density distribution.
This model provides the gravitational potential support-
ing a (non self-gravitating) baroclinic gas distribution. Its
parameters are fixed to reproduce the observed rotation
curve in the galactic plane and to obey other observational
constraints specified in the following.

The surface density of the stellar disk is

Σ(R) =
Md

2πR2
d

e−R/Rd , (17)

where Md and Rd are the disk mass and scale-length, re-
spectively. Its gravitational potential is given by

Φd(R, z) = −GMd

Rd

∫ ∞

0

J0(kR̃) e−k|z̃|

(1 + k2)3/2
dk, (18)

where J0 is the zeroth-order Bessel function of the first
kind, and R̃ ≡ R/Rd, z̃ ≡ z/Rd (e.g. Binney & Tremaine
1987). The observed rotation curve is reproduced by
adding a two-component mass distribution whose poten-
tial is

Φh(R, z) =
v2
0

2
ln

(

R̃2
h + R̃2 +

z̃2

q2
Φ

)

+

GM0

r0
ln

(

r

r0 + r

)

. (19)

The first component represents a Binney (1981) loga-
rithmic dark matter halo with asymptotic velocity v0 and
R̃h ≡ Rh/Rd; the corresponding potential belongs to the
family of homeoidal potentials considered in Sect. 3.1.1.
The second component, needed to reproduce the steep ris-
ing of the rotation curve in the innermost galaxy regions
(see Fig. 1), is a Jaffe (1983) spherically symmetric density
distribution of total mass M0 and scale-length r0.

The adopted values for the disk scale-length and cen-
tral surface brightness (Rd = 4.40 kpc, µ0B =21.4 mag
arcsec−2) were taken from Shaw & Gilmore (1989). We
find that the observed rotation curve of NGC 891 is well re-
produced for v0 = 138 km s−1, Rh = Rd, qΦ = 0.71, M0 =
2.40 × 1010M⊙, r0 = 1.15 kpc, and Md = 7.7 × 1010M⊙.
The resulting disk B-band mass-to-light ratio is ≃ 3.5 (in
solar units).

4.2. The gas distribution and its rotational velocity

field

Having fixed the galaxy potential well, we now turn to
the choice of the gas density distribution. Following the
arguments presented in Sect. 3, we adopt the trial function

ρ(R, z) =
ρ0R̃

β
m

R̃α
0

(R̃0 + R̃)α

(R̃2
m + m2)β/2

e−z̃/hg , (20)

where m2 ≡ R̃2 + z̃2/q2
g , R̃m ≡ Rm/Rd, R̃0 ≡ R0/Rd, ρ0

is the central gas, and β > α+2 so that the total gas mass
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Fig. 1. The adopted mass decomposition for NGC 891.
Solid dots represent the observed H i rotation curve
(Fraternali et al. 2005), and the solid line the model rota-
tion curve. The dashed, dotted, and dot-dashed lines show
the separate contributions of the disk, the dark matter
halo, and of the spherical Jaffe mass component, respec-
tively.

converges. Since the logarithmic halo belongs to the fam-
ily of homeoidal potentials, ρ is a factorized distribution
similar to that of Eq. (12) with an homeoidally stratified
component (flattening qg < qΦ), a cylindrical radially in-
creasing factor (α > 0) and an isothermal distribution
stratified on the gravity field of a razor-thin uniform disk.

We now solve Eqs. (1) for the present model. In par-
ticular, Eq. (2) is integrated numerically with a finite-
difference scheme (Appendix C), obtaining the gas pres-
sure, velocity and temperature values on the numerical
grid.

The first result is that a large number of exploratory
models (but not all of them), in which the value of the pa-
rameters in Eq. (20) is arbitrarily chosen, produce physi-
cally acceptable rotational velocities. This confirms the va-
lidity of the preparatory analysis in Sect. 3. For example,
models without the radially increasing factor (obtained by
setting α = 0 in Eq. [20]), invariably have v2

ϕ < 0 in the
central regions, while models less flat than the halo po-
tential (qg > qΦ) turn out to be non-physical in the far
field. We conclude that the “core” properties of the phys-
ically acceptable models are the gas radial depression in
the central regions and a gas distribution flatter than the
halo potential at large distances. The remaining parame-
ters play only a minor role.

We now present and discuss a specific, physically ac-
ceptable model, which we refer to as the “Reference
Model” (RM). The free parameters of the RM have been
fixed to reproduce the observed H i rotation curve of
NGC 891 at z = 2.6 kpc (Fraternali et al. 2005) and the
resulting rotation curve is shown in Fig. 2 (upper right
panel, dotted line). We have obtained an acceptable curve
by adopting α = 1, β = 3.5, R̃0 = 1, R̃m = 2.25, hg = 1.5
and qg = 0.1. Note that, due to the assumption of a neg-

ligible self-gravity for the gas, from Eqs. (2) and (3) it
follows that vϕ and the temperature are independent of
the specific choice of ρ0. Other arguments will be used to
fix the value of the latter (see Sect. 4.3).

In Fig. 3 we show the radial profiles of the RM gas den-
sity distribution at 5 different heights above the galactic
plane (Fig. 3a) and the meridional sections of its isorota-
tional (Fig. 3b) and isothermal (Fig. 3c) surfaces. ¿From
Fig. 3b it can be clearly seen that the rotation velocity
decreases with z at a fixed R, while Fig. 3c shows that
the gas is warm, with temperatures ranging from ∼ 104

to ∼ 106 K. The hotter gas is near the R = 0 axis, in
correspondence with the density decrease near the galaxy
center, while the lowest gas temperatures are attained near
the galactic plane.

In Fig. 2 we show the observed H i rotation curves at
four different heights above the galactic plane (z = 1.3,
2.6, 3.9, and 5.2 kpc, dots), and the rotation curves from
the RM (dotted lines), corresponding to horizontal sec-
tions of Fig. 3b. The RM gas parameters have been tuned
to obtain a good fit of the observed rotation curve at
z = 2.6 kpc. This choice of parameters produces good fits
for the curves at higher z too. It is remarkable that the
gas density distribution in Eq. (20), mainly built on the-
oretical arguments, should lead to a predicted rotational
velocity decrease for the extra-planar gas which is so close
to the observations. As to the discrepancy between data
and model predictions at z = 1.3 kpc, it could be real (see
Sect. 4.3), but it is possible that the observed data are af-
fected by the limited angular resolution of the observations
(HPBW = 28′′ ≈ 1.3 kpc). Details on the derivation of the
rotation curves from the observations will be presented in
a forthcoming paper (Fraternali, in preparation).

How do the RM properties depend on the specific
choice of the gas density distribution? Among the param-
eters, the largest effect is produced by the oblateness qg

and the vertical scale-height hg. Increasing qg has a ma-
jor effect: isorotation curves would be heavily modified for
z & Rd/2, becoming almost vertical (cylindrical rotation)
when qg ≃ qΦ, which is the limiting flattening accord-
ing to condition (14). We note that a similar behaviour
is also shown by the analytical toy-model presented in
Appendix A, even though this is based on a substantially
simpler gas and galaxy model. A decrease of hg has a
strong effect for z & Rd, producing a cylindrical rotation
pattern extending out to R ≃ 5Rd.

Variations of α, β and R̃0 produce minor effects, at
least in the regions covered by observations (R . 5Rd

and z . 1.3Rd). In particular, vϕ increases for increasing

α and decreasing R̃0, but the same overall structure of the
RM is kept, and the differences are hardly detectable for
z & 1.3Rd. An increase of β has an effect very similar to
increasing α, and again there is a corresponding behaviour
in the analytical toy-model of Appendix A. Finally, an in-
crease of qΦ (i.e., the adoption of a rounder dark matter
halo) at fixed qg has only a very marginal effect on vϕ.
We conclude that baroclinic solutions are sensitive to the
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Fig. 2. Extra-planar H i rotation curves for NGC 891 (dots with error bars) at various heights over the galactic plane
(from Fraternali et al. 2005). The solid curve is the rotation curve in the galactic plane (z = 0) as obtained from the
model (see also Fig. 1). The dotted lines are the predicted baroclinic extra-planar rotation curves of the Reference
Model.

adopted gas distributions, but only marginally to the halo
flattening. It seems, therefore, that according to the fluid
stationary interpretation presented here the kinematics of
the extra-planar gas can not be used as a sensitive di-
agnostic tool to investigate the flattening of dark matter
haloes.

4.3. Astrophysical interpretation

The gas kinematics from the Reference Model is remark-
ably similar to that observed for the extra-planar H i; yet,
the model gas temperature is much higher than that of
H i (Fig. 3c). Does this mean that fluid solutions should
be abandoned as unphysical?

The gas density distribution in Eq. (20) may be inter-
preted not only as that of a smooth, homogeneous fluid
(for which pressure and temperature are the usual ther-
modynamical quantities), but also as the fluid description
of the H i clouds distribution. In this paper we follow the
first interpretation; however, a brief discussion of the sec-
ond interpretation, in which Eqs. (1) are interpreted as
the Jeans equations for a system with isotropic velocity

dispersion, is given in Sect. 4.3.2 with further comments
in Sect. 5.

4.3.1. A homogeneous gas distribution

Equilibrium configurations (baroclinic or not) of a homo-
geneous extra-planar gas are expected to be hotter than
the H i because of the needed vertical pressure support
against the galaxy gravitational field. Therefore, the ob-
served cloudy extra-planar H i gas can not be described di-

rectly with fluid homogeneous models. We note, however,
that baroclinic solutions as presented above are compara-
ble to (or better than) ballistic models at reproducing the
observed vertical gradients in the H i and Hα rotational ve-
locities. Furthermore, there is, in addition to cold H i, also
hot gas in the halo of spiral galaxies as observed in some
edge on systems, including NGC 891 (Bregman & Pildis
1994; Strickland et al. 2004). It is therefore important to
explore the possibility that the observed H i traces the
kinematics of an underlying, homogeneous, hot gas.

The origin and the coexistence of hot and cold gas
phases and their kinematical coupling are central issues
in the discussion of possible realistic models for the extra-
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Fig. 3. Panel a: radial profile of the density distribution
for the Reference Model (RM) at z = 0, 1.3, 2.6, 3.9 and
5.2 kpc (same heights as in Fig. 2). Panels b,c: RM isoro-
tation curves vϕ = const (in km s−1) and isothermal con-
tours (in K) in the meridional plane.

planar gas. An important question in this respect is how
long it would take for the hot gas to cool if not resup-
plied with fresh energy, or to drag H i clouds (accreted or
produced by galactic fountains) in regular motion around
the galaxy axis. Clearly, hydrodynamical numerical simu-
lations are needed to fully address it. Here, we limit our-
selves to a first order analysis of the main astrophysical
aspects and implications of the Reference Model presented
above.

Information on the thermal evolution of the RM is ob-
tained from its local cooling time

tcool(R, z) ≡ E

Ė
∝ 1

ρ0
, (21)

where E = 3ρkT/2µmp and Ė = nenpΛ0(T ) are the gas
internal energy and cooling rate per unit volume; k, µ,
mp, ne and np are the Boltzmann constant, the gas mean
molecular weight, the proton mass, and the number den-

Fig. 4. Panel a: Bolometric surface brightness isophotes
(in erg s−1 cm−2) for the RM. Panel b: meridional sections
of equal cooling time (in yrs) surfaces for the RM with
ρ0 = 2.4 × 10−26 g cm−3. Panel c: contours of equal ξ =
tcool/tdyn (Eq. [27]) in the meridional plane.

sity of electrons and protons, respectively. We also adopt
the cooling function (in erg cm3 s−1)

Λ0(T ) ≃
{

5.36 × 10−27T,
2.18 × 10−18T−0.6826 + 2.71 × 10−47T 2.976,

(22)

where the first equation holds for 104 ≤ T ≤ 1.3 ×
105 K, and the second for 1.3 × 105 ≤ T ≤ 108 K
(Mathews & Bregman 1978, see also Ciotti et al. 1991).
For simplicity we assume ne = np (µ = 1/2) and so

Ė =
ρ2

m2
p

Λ0(T ). (23)

Note that, at variance with vϕ and T , Ė and tcool do
depend on the value of the gas density normalization con-
stant ρ0 in Eq. (20), and so we are now forced to fix its
value. A simple argument can be based on the require-
ment of stationarity: the gas distribution must radiate per
unit time a total amount of energy of the same order of
magnitude as that provided by supernova explosions and
stellar winds in the stellar disks of NGC 891, estimated
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≈ 2.9 × 1042 erg s−1 (Bregman & Houck 1997, and ref-
erences therein). The total (bolometric) luminosity of the
gas distribution is

Ltot = 4π

∫ ∞

0

∫ ∞

0

ĖR dR dz ∝ ρ2
0, (24)

and from numerical integration we find that ρ0 ≈ 2.4 ×
10−26 g cm−3, corresponding to a total gas mass Mgas ≈
1.6 × 109M⊙ (it should be noted that use of ne = 1.2np

to include helium ionization would lead to a density nor-
malization and to a total mass ≈ 10% smaller than the
values obtained here). The hypothesis of a negligible gas
self-gravity on galactic scale is thus satisfied, being the
resulting gas mass only a few percent of the total mass
of the galaxy. Curiously, the mass of the extra-planar gas
distributed according to (20) (≈ 5.5 × 108M⊙ for z & 1.4
kpc), is found to be of the same order of magnitude as
the mass of the observed extra-planar H i (≈ 6 × 108M⊙,
Swaters et al. 1997), while the luminosity of the RM extra-
planar gas is very low, summing up to only ≈ 5% of the
estimated energy injection rate. From this point of view,
the bulk of the supernova and stellar wind heating is ra-
diated by the gas near the galactic disk, in good quantita-
tive agreement with the conclusions of Read & Ponman
(1995). This is confirmed by the surface brightness distri-
bution Σ of the RM, obtained projecting Ė(R, z) along the
line-of-sight. When the galaxy is seen edge-on, the surface
brightness is given by:

Σ(R, z) = 2

∫ ∞

R

Ė R′ dR′

√

R′2 − R2
, (25)

In Fig. 4a we show the RM bolometric surface bright-
ness distribution. We have also computed the RM lumi-
nosity for the gas with T ≥ 5.5 × 105 K (that we iden-
tify with EUV-emitting gas), obtaining LEUV ∼ 10−2Ltot,
with the bulk of the emission confined in a hot bubble
along the galactic axis and matching the temperature dis-
tribution in Fig. 3c.

The conclusion that a major fraction of the galaxy
heating is radiated near the disk is also confirmed by the
fact that cooling times increase from the galactic plane to-
ward regions of higher z and lower gas density, with values
in the range 106 . tcool . 1011 yrs (Fig. 4b). Obviously,
the gas in the regions where tcool is short will not re-
main homogeneous and its natural fate will be to cool and
form clouds and filaments. The energy input from the disk
would be then used mainly to maintain a time-average,
stationary multiphase structure.

Additional insight on this multiphase medium is pro-
vided by the dynamical time

tdyn(R, z) ≡ 2πR

vϕ(R, z)
, (26)

i.e., the orbital period of a gas element in circular orbit
at (R, z). It is natural to introduce here the dimensionless
number

ξ ≡ tcool

tdyn
∝ 1

ρ0
. (27)

From Fig. 4c it appears that ξ & 1 for z & 1 ÷ 2 Rd

and near the galaxy axis. It is expected that where ξ < 1
the gas will cool locally. Note that the regions where ξ < 1
match very closely those in which tcool < 1 Gyr.

In order to address the issue of the interaction of
H i clouds with the hot and homogeneous baroclinic gas
distribution of the RM, we have computed the cloud
drag time tdrag, i.e. the time required for an H i cloud
to corotate with the homogeneous gas halo described by
Eq. (20). This quantity is relevant whatever the origin
of the H i clouds: thermal instabilities of the hot gas,
galactic fountains or cosmological accretion. Following
Klein, McKee, & Colella (1994), we define

tdrag(R, z) ≡ 8

3CD

rc

vrel
χ ∝ 1

ρ0
, (28)

where CD ≃ 1 is a numerical coefficient, rc is the radius
of a typical H i cloud, vrel is the modulus of the relative
velocity between the cloud and the homogeneous extra-
planar component, and χ ≡ ρc/ρ is the ratio between the
cloud and the medium densities.

We estimate tdrag assuming pressure equilibrium be-
tween cold and hot gas components, from which χ =
T/Tc ≈ 3000. A fiducial value of the relative velocity is
obtained by assuming vrel = vϕ ≈ 2 × 107 cm s−1, while

the cloud radius is estimated as 4πr3
cρc/3 = 105M⊙M̃5,

where M̃5 is the cloud mass in units of 105M⊙. We thus
obtain

tdrag ≃ 8

3vϕ

(

3 × 105M⊙M̃5

4πnpmp

)1/3
(

T

Tc

)2/3

≈

2.7 × 108

(

M̃5

np

)1/3

yrs, (29)

where ρ = npmp. From this simple formula it is appar-
ent that massive clouds at high z above the galactic plane
cannot be dragged by the hot and tenuous RM distribu-
tion (see Fig. 3a for characteristic values of np), while

smaller clouds (e.g. M̃5 ∼ 10−3) near the disk (z ≈ 1 ÷ 2
kpc) have drag times significantly shorter than rotational
times. It cannot be excluded, therefore, that extraplanar
H i clouds (or, even better, H i filaments, which have larger
cross-sections) could be the tracers of the underlying fluid.
Of course, if H i clouds originated from cosmological ac-
cretion, then the proper characteristic time to be com-
pared with tdrag is the free-fall time. However, tdyn is of
the same order of magnitude and the above arguments
should still be valid. In any case, only hydrodynamical
simulations will possibly clarify the importance of drag
and related issues, such as the angular momentum redis-
tribution between the homogeneous gas and the H i clouds.
In conclusion, our analysis seems to leave open the pos-
sibility advocated by Collins et al. of the presence of a
non-gravitational forces acting on the extra-planar H i gas.
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4.3.2. A “gas” of H i clouds

As pointed out at the beginning of Sect. 4, from a for-
mal point of view, Eqs. (1) are identical to the fluid
stationary Jeans equations for an axisymmetric system
with a globally isotropic velocity dispersion tensor. Thus,
also for such a system we would obtain rotational ve-
locities decreasing with increasing z. The pressure field,
however, must be interpreted as P = ρσ2, where σ is
the clouds (1-dimensional) velocity dispersion, so that

σ =
√

kT/µmp ≈ 41
√

T̃5 km s−1, where T̃5 ≡ T/105 K.
From Fig. 3c it appears that near the disk the clouds veloc-
ity dispersion would be of the order of 30 km s−1 or even
less, while higher values of σ are expected near the galaxy
center. Such values might not be unreasonable. However, a
further comparison of the hot and homogeneous gas solu-
tion with the present one is not straightforward: while the
RM gas distribution in Eq. (20) was adopted to describe a
hot and homogeneous gas distribution (and thus not very
well constrained by observations), a proper Jeans-based
analysis would require the choice of a cloud distribution
similar to that observed. In principle this should be sim-
ple to do, but we do not explore this any further here.
At any rate, even if the temperature and related problems
addressed in Sect. 4.3.1 were solved, in the Jeans-based
interpretation the question of how the clouds velocity dis-
persion tensor is rendered isotropic would become the new
central question.

5. Discussion and conclusions

We have presented a family of fluid stationary models for
the extra-planar gas in spiral galaxies. As an application,
we have built a model for the extra-planar gas of the spiral
galaxy NGC 891. The main results of our analysis are:

(i) Physically acceptable baroclinic solutions exist for gas
density distributions (isodensity surfaces) more flat-
tened than the isopotential surfaces. For regions near
the disk, the condition is that the gas density distri-
bution is centrally depressed.

(ii) Application of our method to the case of the edge-on
galaxy NGC 891 has shown that with baroclinic solu-
tions it is possible to reproduce the observed vertical
decrease of the gas rotational velocity.

(iii) In homogeneous fluid stationary solutions the gas tem-
perature is in the range 104 . T . 106 K, well above
the H i temperature and the cooling times are short,
of the order of the orbital times.

(iv) In the hot, homogeneous gas configurations with nega-
tive velocity gradients of the present models, the drag
on small H i clouds (∼ 102M⊙) near the disk is impor-
tant and may account for the observed vertical velocity
decrease. It is not certain, however, that this applies
to the case of NGC 891 where the H i structures may
be more massive.

(v) Instead of a hot homogeneous medium, the baroclinic
solution can also provide a good fluid description of

a “gas” of clouds (according to the stationary Jeans
equations) with a globally isotropic velocity dispersion
tensor. All the above considerations about the decrease
of rotational velocity with increasing z would still hold,
while the temperature field would have to be inter-
preted as the velocity dispersion field.

Ballistic models have been tried for the extra-planar
gas. It seems, however, that in order to reproduce the ob-
served rotational velocity gradients, also non-gravitational
effects, such as gas and magnetic pressure, may be neces-
sary (Collins et al. 2002; Fraternali & Binney 2005). Our
analysis seems to suggest that such non gravitational ef-
fects could be due (at least for low mass clouds) to ram
pressure. Note that tdrag depends on the relative velocity
between the H i clouds and the hot baroclinic gas, hence
the effect of the drag would be to regularize the motion of
the clouds to the velocity field of the embedding medium.
For example, if the H i clouds are ejected from the disk by
galactic fountains, they will be, on average, initially faster
with respect to the baroclinic gas and will be slowed down
to its velocity while rising. Incidentally, the drag could
also be effective in regularizing the dynamics of accreted
clouds: from this point of view, a regular H i dynamics (in
particular, the same sense of rotation of the galactic disk)
would not be necessarily an indication of internal origin
for the extra-planar gas.

The problem of stability of the models presented here
is a difficult one and remains open. Numerical hydrody-
namical simulations would be very useful to address it.
In the approach adopted in this paper, where the density
distribution for the extraplanar gas is assigned, pressure,
temperature and rotation cannot be arbitrarily prescribed
but are determined by the galaxy gravitational potential.
The stability of such configurations is not guaranteed.
Additional effects worth studying and needing quantita-
tive estimates are the drag of clouds (both of internal and
external origin), their cooling and evaporation times, and
the overall energy budget, to follow up on the pioneer-
ing work of Cox & Smith (1974) and McKee & Ostriker
(1977). Equally important would be the numerical study
of baroclinic solutions in the context of Jeans equations. In
this case, isotropy of the velocity dispersion tensor could
be provided by cloud-cloud collisions, a physical ingredi-
ent usually neglected in numerical simulations (however,
see Waxman 1978). One could speculate that the prob-
lems encountered by purely ballistic models is due to the
absence of a collision term in the simulations, as already
suggested by Collins et al. (2002).

We conclude remarking that fluid-homogeneous and
Jeans-based baroclinic models do not exclude each other.
Perhaps, they could be integrated and used together for a
better understanding of the dynamics of the extra-planar
gas.
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10 Barnabè et al.: Hydrostatic models for the rotation of extra-planar gas

Annibale D’Ercole for useful comments. M.B. was partially
supported by ASI contract IR/063/02 and by INAF-Bologna
Astronomical Observatory. L.C. and R.S. were supported by
the grant CoFin2004 (MIUR).

Appendix A: A simple analytical toy-model

We present here a simple and fully analytical toy-model of
a baroclinic gas distribution characterized by the vertical
decline of the rotational velocity. The dimensionless gas
density distribution

ρ̃ =
1 − ηgλ

r̃λ
+

ηgλR̃2

r̃2+λ
, (0 < λ < 3), (A.1)

is obtained from a homeoidal expansion of the oblate
power-law distribution ρ0/mλ, where ρ̃ ≡ ρ/ρ0, r =√

R2 + z2, m2 = R̃2 + z̃2/(1− ηg)
2, R̃ ≡ R/Rg, z̃ ≡ z/Rg,

and 0 ≤ ηg ≤ 1/λ is the flattening of the distribution
(Ciotti & Bertin 2005).

The galaxy (stars plus dark matter) density distri-
bution is also described by the homeoidal expansion of
ρ0h/mγ , (where 0 < γ < 3, ρ0h is a normalization den-
sity, m is defined like above but with ηh replacing ηg,
and 0 ≤ ηh ≤ 1/γ). Without loss of generality also the
galaxy scale-length is Rg, and the gravitational potential
for γ 6= 2 (in units of 4πGR2

gρ0h) is given by

Φ̃ = − 5 − γ − ηh(4 − γ)(γ − 1)

(5 − γ)(3 − γ)(γ − 2)r̃γ−2
− ηhR̃2

(5 − γ)r̃γ
(A.2)

(Ciotti & Bertin, Eq. [27]). The pressure (normalized to
4πGR2

gρ0hρ0), and the square of the gas rotational ve-
locity field (normalized to 4πGR2

gρ0h) are obtained from
Eqs. (2)-(3). For simplicity we report here the solutions
up to the linear terms in the flattenings, even though
the derivation of the full solutions (i.e., including also the
terms in ηhηg) presents no difficulty. Accordingly,

P̃ =
r̃2−λ−γ

(5 − γ)(3 − γ)

[

(5 − γ)(1 − ηgλ) − (4 − γ)(γ − 1)ηh

γ + λ − 2

+
(3 − γ)γηh + (5 − γ)ηgλ

γ + λ

R̃2

r̃2

]

, (A.3)

ρ̃ṽ2
ϕ =

2λR̃2

(γ + λ)r̃γ+λ

(

ηg

3 − γ
− ηh

5 − γ

)

. (A.4)

Note that, for ηg < ηh(3 − γ)/(5 − γ) the (linearized)
solution is unphysical. The isorotation curves for a physi-
cally acceptable case (obtained from the full solution) are
shown in Fig A.1, where it is apparent how, even in this ex-
tremely simplified model, the rotational velocity decreases
with increasing z.

Fig.A.1. Meridional section of the isorotation surfaces ṽ2
ϕ

(labels along the curves) for γ = 2.5, ηh = 0.2, λ = 2.3
and ηg = 0.3.

Appendix B: How to construct ρe(Φeff)

A first approach to the construction of the distribution
ρe(Φeff) considered in Sect. 3.1 is the assumption that P =
P (ρ), as for example P ∝ ργ . In this case, from Eq. (9)

ρe(Φeff) = ρ0×























exp

[

−µmp

kT0
(Φeff − Φeff,0)

]

,

[

1 +
γ − 1

γ

µmp

kT0
(Φeff,0 − Φeff)

]
1

γ−1

,

(B.1)

where ρ0 and Φeff,0 are taken at the same arbitrary but
fixed point (R0, z0), and the first expression holds for the
isothermal case. In the second case T/T0 = (ρe/ρ0)

γ−1

and, at variance with the isothermal case, a truncation of
ρe may appear. A different approach to the construction
of ρe is however possible, where the specific density field
is prescribed. This can be done by using the well known
property that solutions of Eq. (9) necessarily are stratified
on Φeff , i.e. ρe = ρe(Φeff) and P = P (Φeff). Thus, if one
fixes Φeff and a prescribed function ρe(Φeff), the pressure
field is obtained by direct integration as

P (Φeff) = P (Φeff,0) −
∫ Φeff

Φeff,0

ρe(t) dt. (B.2)

Of course, this approach can be used only for density
stratifications such that P > 0 everywhere.

Appendix C: The numerical code

We describe here the scheme on which the (double pre-
cision) FORTRAN77 code adopted for the construction
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of models in Sect. 4 is based. From symmetry arguments
we restrict the computation to the region [Rmin, Rmax] ×
[zmin, zmax] in the half-space z ≥ 0, on which we define a
bilogarithmic grid of (nR + 1)× (nz + 1) elements. In the
radial direction the grid is

Ri = R1 × 10(i−1)∆R, (C.1)

where R0 = 0, R1 = Rmin, and

∆R ≡ log Rmax − log Rmin

nR − 1
, (C.2)

so that Rmax = RnR
; the z coordinate is discretized in the

same way.
The gas density and the gravitational field components

at (Ri, zj) are ρi
j , RΦi

j ≡ (∂Φ/∂R)ij and zΦ
i
j ≡ (∂Φ/∂z)ij .

For fixed Ri we integrate the first of Eqs. (1) with linear
interpolation and boundary condition P (Ri, zmax) = 0:

P i
j =

1

2

nz−1
∑

k=j

∆zk × (ρi
kzΦ

i
k + ρi

k+1zΦ
i
k+1), (C.3)

where P i
j ≡ P (Ri, zj) and ∆zk ≡ zk+1 − zk. Accordingly,

from Eq. (3):

ρi
j(v

2
ϕ)i

j = (RP i
j + RΦi

jρ
i
j)Ri, (C.4)

where RP i
j ≡ (P i+1

j − P i
j )/∆Ri and ∆Ri ≡ Ri+1 − Ri.

The gas temperature T , the cooling rate Ė (Eq. [23]), the
cooling time tcool (Eq. [21]) and the ratio ξ between cooling
time and dynamical time (Eq. [27]) are then obtained on
the grid points.

The gas total luminosity is obtained as

Ltot =

nR−1
∑

i=0

nz−1
∑

j=0

Li
j , (C.5)

where

Li
j = 4π

∫ Ri+1

Ri

∫ zj+1

zj

R Ė(R, z) dR dz, (C.6)

and Ė(R, z) is evaluated on the numerical grid from
Eq. (23). The integral in Eq. (C.6) is evaluated analiti-
cally on each region [Ri, Ri+1] × [zj , zj+1] by considering
the bilinear expansion

Ė(R, z) = A0 + A1R + A2z + A3Rz, (C.7)

where

A0 ≡ Ėi
j −

Ėi+1
j − Ėi

j

∆Ri
Ri −

Ėi
j+1 − Ėi

j

∆zj
zj +

Ėi+1
j+1 − Ėi+1

j + Ėi
j − Ėi

j+1

∆Ri∆zj
Rizj

A1 ≡
Ėi+1

j − Ėi
j

∆Ri
−

Ėi+1
j+1 − Ėi+1

j + Ėi
j − Ėi

j+1

∆Ri∆zj
zj

A2 ≡
Ėi

j+1 − Ėi
j

∆zj
−

Ėi+1
j+1 − Ėi+1

j + Ėi
j − Ėi

j+1

∆Ri∆zj
Ri

A3 ≡
Ėi+1

j+1 − Ėi+1
j + Ėi

j − Ėi
j+1

∆Ri∆zj
.

With this formula,

Li
j = π∆Ri∆zj

[

2A0(Ri+1 + Ri) +

4A1

3
(R2

i+1 + Ri+1Ri + R2
i ) +

A2(Ri+1 + Ri)(zj+1 + zj) +

2A3

3
(R2

i+1 + Ri+1Ri + R2
i )(zj+1 + zj)

]

. (C.8)

Finally, the edge-on surface brightness Σ is given by the
discretization of Eq. (25) and so, in our scheme,

Σi
j =

nR−1
∑

k=i

(Ėk+1
j +Ėk

j )

(

√

R2
k+1 − R2

i −
√

R2
k − R2

i

)

.(C.9)
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