-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Groningen

N \“i\‘\i..
R

University Medical Center Groningen

groningen

oY
N

=) / university of

University of Groningen

Monitoring Assertion-Based Business Processes
Aiello, Marco; Lazovik, Alexander

Published in:
International Journal of Cooperative Information Systems

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Aiello, M., & Lazovik, A. (2006). Monitoring Assertion-Based Business Processes. International Journal of
Cooperative Information Systems, 15(3), 359-389.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://core.ac.uk/display/232379375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/monitoring-assertionbased-business-processes(5093cf21-9eeb-44cd-9ab9-d73d236c6631).html

World Scientific

Vol. 15, No. 3 (2006) 359-389
www.worldscientific.com

International Journal of Cooperative Information Systems \\p
© World Scientific Publishing Company

MONITORING ASSERTION-BASED BUSINESS PROCESSES

MARCO AIELLO*T and ALEXANDER LAZOVIKT
*DSG, TUWien, Argentinierstrasse, 8, 1040, Wien, Austria

IDIT, University of Trento, via Sommarive
14, 88050 Povo (TN), Italy
*aiellom@dit.unitn.it
flazovik@dit. unitn.it

Business processes that span organizational borders describe the interaction between
multiple parties working towards a common objective. They also express business rules
that govern the behavior of the process and account for expressing changes reflecting
new business objectives and new market situations.

We developed a service request language and support framework that allow users
to formulate their requests against standard business processes.' In this paper, we
extend the approach by presenting a framework capable of automatically associating
business rules with relevant processes involved in a user request. This framework plans
and monitors the execution of the request and assertions against services underlying
these processes. Definitions and classifications of business rules (named assertions in the
paper) are given together with an assertion language for expressing them. The framework
is able to handle the non-determinism typical for service-oriented computing environ-
ments and it is based on the interleaving of planning and execution. Interestingly, the
language is able to express both functional and non-functional aspects of the assertions.

Keywords: Service-oriented computing; service composition; Al planning; business
process monitoring; business rules.

1. Introduction

Service-oriented computing (SOC) is the computing paradigm that utilizes ser-
vices as fundamental elements for developing applications. Services are autonomous
platform-independent computational elements that can be described, published,
discovered, orchestrated and programed for the purpose of developing distributed
interoperable applications. Basic services, their descriptions, and basic operations
(publication, discovery, selection, and binding) that produce or utilize such descrip-
tions constitute the foundation of the service-oriented architecture (SOA).?

SOA does not only deal with basic properties but needs to address advanced con-
cerns such as service management, service choreography and orchestration, service
transaction management and coordination, security, and other concerns that apply
to all elements in a services-based architecture. These concerns can be seen as layers
separating logically different functionalities. In Papazoglou and Georgakopoulos,?”
among other things a service composition layer which describes the execution logic

359

360 M. Aiello & A. Lazovik

of Web services-based applications by defining their control flows and prescribing
the rules for consistently managing their unobservable business data. In this way
enterprises can describe complex processes that include multiple organizations —
such as order processing, lead management, and claims handling — and execute
the same business processes in systems from other vendors. This layer is representa-
tive of a family of XML-based process definition languages intended for expressing
abstract and executable processes that address all aspects of enterprise business
processes, including in particular those areas important for Web-based services.
Most notable among these languages is the Business Process Execution Language
for Web Services (BPEL4AWS)® which defines different types of composition ele-
ments like sequencing of service invocations, parallel executions, message sending,
and Web Services Choreography Description Language (WS-CDL),'® that allows
to coordinate several business processes from a global point of view.

Web services technologies offer higher-level specifications that provide func-
tionality that supports and leverages Web services and enables specifications for
integrating automated business processes. Currently, there are two largely comple-
mentary initiatives for developing business process definition specifications which
aim to define and manage business process activities and business interaction pro-
tocols comprising collaborating Web services. The terms orchestration and choreog-
raphy have been widely used to describe business interaction protocols comprising
collaborating Web services. Orchestration (as championed by BPEL) describes how
Web services can interact with each other at the message level, including the busi-
ness logic and execution order of the interactions from the perspective and under
control of a single endpoint. Orchestration refers to an executable business process
that may result in a long-lived, transactional, multi-step process model. Choreog-
raphy (as championed by the Web Services Choreography Description Language)
is typically associated with the public (globally visible) message exchanges, rules of
interaction and agreements that occur between multiple business process endpoints,
rather than a specific business process that is executed by a single party. Choreog-
raphy is more collaborative in nature than orchestration. It is described from the
perspectives of all parties (common view), and defines the complementary observ-
able behavior between participants in business process collaboration. Currently,
both orchestration and choreography initiatives are in their infancy and based on
WSDL which is strongly emphasizes XML syntax and human-targeted descriptions.

In the Web services literature there are several approaches dealing with the mon-
itoring of the assertions over service-enabled business processes. The WS-Policy
framework3* provides a general purpose model for describing a broad range of
service requirements, preferences, and capabilities. Typically, it is used when the
provider describes the set of conditions the requester should satisfy before invoking
the service. RuleML!? is a powerful technique for expressing business rules over
semantically annotated service. On the negative side is the lack of any support
for runtime monitoring of the business rules. Casati et al.® developed eFlow, a
system that supports composite services for highly dynamic business environment.

Monitoring Assertion-Based Business Processes 361

However, they concentrated on the migration of the business processes and adap-
tation of process instances to different environments rather than on controling and
monitoring the process execution at runtime.

Using of modal operators for business processes in not new. However, most of

33,29 rather than on

the work was concentrated on verification of business processes,
composition that satisfies given modal operator. Srivastava et al.>? present a review
of Web service composition techniques and it is argued that planning techniques can
be of help in tackling the problem of Web service composition. Temporally extended
goals, i.e. goals expressing not only desired states to achieve but also conditions on
how these are to be reached, are an expressive way of defining complex business
goals.'?2® Various authors have emphasized the importance of planning for web
services.'0:22:23 In particular, Knoblock et al.'® use a form of template planning
based on hierarchical task networks and constraint satisfaction, McDermott??
regression planning, while MclIlraith and Son?? use the Golog planner to automat-
ically compose semantically described services. Various authors use planners over
service description in DAML-S.30:32 Feasibility of HTN planning algorithms was
shown by Wu et al.?® A finite-state machine framework for automatic composition
was introduced by Berardi et al.* Fikouras and Freiter'® present service orchestra-
tion based on object-oriented data models. Orriens et al.?® use service composition
rules for governing the business process construction. Recently, several planning
algorithms that allows preference operators were introduced.”3" However, to the
best of our knowledge our work is the first that allows preference operators for
planning over Web service business processes.

We propose the use of an approach based on interleaving planning and exe-
cution in the context of non-deterministic domains to deal with assertions and
user expressed requests against standard business processes that result in initi-
ating and executing business processes from diverse organizations. The execution
of these business processes in the proposed framework is governed by assertions,

uses

which are business rules applied to processes. The framework we propose deals with
non-deterministic domains, where it tries to satisfy a user request by taking into
account how assertions that appear at different levels, e.g. business process, role,
and provider level, are applied during business process execution. The framework
focuses in particular on the application of business rules that are associated with
choreographies. The application of choreography assertions usually results in acti-
vating only selected business process segments in different organizations. These are
the business process segments that satisfy the choreography constraints and conse-
quently can be involved in the result of a user request. In addition, the execution
path of business processes is monitored to make certain that environmental condi-
tions, i.e. Web service supplied information, conform to the choreography assertions
and user request requirements. The proposed framework deals with three kinds of
assertions depending on their operational context and complexity: simple assertions,
where simple reachability conditions are checked; preservation assertions, where
maintenance of some condition needs to be satisfied throughout a path comprising

362 M. Aiello & A. Lazovik

a set of states traversed by the process during execution time; and business entity
assertions, where the evolution sequence of a particular variable is monitored for
correctness. In this paper, we are not concerned with the effect that choreogra-
phy assertions have on orchestration assertions (assertions that apply in the local
context of an organization). We henceforth use the term assertion to mean choreog-
raphy assertions. As final contribution, we illustrate how the language we propose
for expressing assertions can talk about functional as well as non-functional prop-
erties of services and their compositions.

The remainder of the paper is organized as follows. In Sec. 2, we recall the
notion of service-oriented business process and introduce various kinds of asser-
tions. Section 3 presents an interleaving planning and execution framework for the
monitoring of the execution of user requests and assertions against standardized
business processes. Section 3.1 presents a formal domain definition. Section 3.2
introduces the service assertion language XSAL. A formulation of an example in
terms of the formally defined domain is offered in Sec. 3.3; while Sec. 3.4 provides
algorithms for the working of the framework. Section 4 illustrates how the proposed
framework processes the assertions on a travel marketplace example. In Sec. 5 we
show how to express service-level agreements and quality of service aspects in terms
of the proposed service assertion language XSAL. Conclusion and future work are
discussed in Sec. 6.

2. Business Processes and Assertions

A process is an ordering of activities with a beginning and an end; it has inputs (in
terms of resources, materials and information) and a specified output. We may thus
define a process as any sequence of steps that is initiated by an event, transforms
information, materials, or business commitments, and produces an output.!®> In
this paper, we consider business processes as a means to represent the control flow
of business logic and applications. This is achieved by introducing the notion of
a state and an action. A state represents the state of the process execution. An
action represents a business activity, which is modeled as a transition between
given states. Each action is executed on behalf of a role. A role represents a set
of business operations that relate to the same party, e.g. a travel agency. Each
role has a number of providers associated with it. The providers can be found by
interacting with service registries, e.g. UDDI. A provider is the actual party that
implements a role, e.g. a specific travel agency. It is convenient to also define the
notion of a process variable, which is a variable associated with a process, e.g. travel
packages, hotel reservations, as the process progresses through its execution path
and its states change. The use of process variables guarantees that the execution of
a business process can be monitored during execution as the process traverses a set
of states where constraints may need to be applied to these variables. Constraints
on the variables may represent user request or business rules.

Monitoring Assertion-Based Business Processes 363

2.1. An example in the travel marketplace

Consider a user requesting a trip to Nowhereland and having a number of additional
requirements regarding such a trip, e.g. that the total price of the trip be lower than
300 euro, the prices of the hotel below 200 euro, avoid using the train, and so on.
To be satisfied such a request involves the interaction with various autonomous
service providers, including a travel agency, a hotel company and a flight carrier.
The services reside in the same travel marketplace and must follow a standard
business process for that domain such as the one exemplified in Fig. 1. This process
is modeled as a state transition diagram, that is, every node represents a state
in which the process can be, while labeled arcs indicate how the process changes
state. Actors involved in the process are shown at the top of the diagram. The actors
include the user, a travel agency, a hotel service, an air service, a train service and
a payment service.

The process is initiated by the user contacting a travel agency, hence, (1) is
the initial state. The state is then changed to (2) by requesting a quote from
an hotel (action aj). The dashed arcs represent Web service responses, in par-
ticular arc as brings the system in state (3). The execution continues along
these lines by traversing the paths in the state transition diagram until we reach
state (14). In this state a confirmation of an hotel and of a flight or train is
given by the travel agency and the user is prompted for acceptance of the travel
package (13).

The state transition diagram is non-deterministic. This is illustrated, for
instance, in state (4). In this state the user has accepted the hotel room price how-
ever is faced with two possible outcomes, one that a room is not available (where
the system transits back to state (1)) and the other one where a room reserva-
tion can be made (state (5)). The actual path will be determined at runtime when
appropriate services will provide information regarding the availability for the hotel
providers.

The lower part of the business process models the payment of the travel pack-
age just booked as an atomic action. This means the entire trip is payment
atomic.

Services intervening in the process above may have additional requirements
and business rules that need to be followed. A particular travel carrier may require
advanced payment, a travel agency may want to always have explicit user’s approval
before committing to a package. At a higher level, different marketplaces may imple-
ment the same process but with different rules. For instance, one may additionally
require that all air carriers use a specific communication protocol. There could also
be a set of Quality of Service requirements expressed in the same manner. For
example, one of the involved parties may require additional level of security, the
overall process could assert the participating services to support the transactional
behavior, etc. This sort of additional business rules are called assertions and are
defined next.

364 M. Aiello & A. Lazovik

USER | JRAVEL HOTEL = AR _ TRAIN PAYMENT . MEDICAL
: AGENCY : SERVICE : SERVICE : SERVICE : AGENCY INSURANCE
|i 1 gemieg™ | : : :

oal 5 - ;
goal fi\ a g: ote 0:
XSRL ; EE .
© a3y dprice{?,’a\’z:price :
‘%:l:reéeNeH d
: ,*’aE:reserveéi
L7 ab:getTrainPrice() : : :
a7 .geiFlightPrice() : —~
—(8) — —=f]

-

medical insurance

<"hialdnoflight _ o __
a%:bookFlight():

a12fa13bad prce __38Price

revision is regquired

. allprice
o # ! a11:bookTrain()
Eaf @ E ;
Lo Bk ; H
: .\z-LZU.rEJecied ; aldbooked :

N N

-

Ea18:rEJectFI|ght(}i @ E

aﬂ:acfceptanm()mg_price

o payment;cancelled

Fig. 1. A travel business process.

Monitoring Assertion-Based Business Processes 365

2.2. Assertions

Actions within a business process are usually distributed between different parties
(organization which may play different roles) that can make their changes in differ-
ent portions of the process. A choreography language can guarantee the consistency
of service interfaces, message ordering and message invocations, but it cannot be
used to check process runtime properties. Safe execution of the business process can
only be ensured by a monitoring mechanism that checks the runtime properties of
business process and possibly recovers from assertion violations. The monitoring of
the business process based on the assertions violations is performed in the following
way. First, assertions are published by the party who wants his/her assertions to
be applied to business processes and monitored during execution. When executing
the business process, the framework allows only those executions to proceed where
published assertions are satisfied. If an assertion is violated, then the system tries to
find an alternative execution path in the business process that does not violate the
assertion, if any. Assertions are published on different levels: business process, role
or provider. During execution, assertions defined on the business process level are
always taken into account; assertions defined by roles are checked only if operations
for that role are invoked; provider level assertions are considered if an action of the
particular provider is necessary.

More precisely, monitoring is a mechanism that ensures the execution of a pro-
cess is consistent with respect to choreography business rules and user specified
requests. As a business process spans several organizations, all of them expect that
their business rules are taken into account when executing the process. Business
rules are supplied by service providers and are enforced on business processes that
are associated with such rules during their execution.

Business rules are expressed in the context of a process by assertions. Next, we
provide a definition of assertions.

Definition 2.1. An assertion is a condition that applies to the execution of a
business process.

We use the term assertion and business rule interchangeably. An assertion may
be satisfied or not during the execution of a business process, more formally:

Definition 2.2. Given a business process and one of its states, we say that an
assertion is satisfied if the assertion is true in the specified state and in all future
states visited during process execution.

We classify assertions according to two different dimensions: (i) operational
assertions: on the basis of the operational context and complexity of the asser-
tion; (ii) actor assertions: on the basis of the ownership of the assertion. The first
dimension is technically driven. In other words, given the form of the assertion,
one considers how the monitoring framework handles it. The second dimension is
business driven, that is, the categorization is determined by how the assertions

366 M. Aiello & A. Lazovik

Table 1. Assertion levels.

Assertion Where Satisfied
Simple In a state, where assertion condition is satisfied
Preservation For all states along the process execution
Entity lifecycle Specified entity must preserve evolution specified in assertion

come into play in the execution of the business process. In turn this determines
whether an assertion is provided by a single entity or by all entities falling into
some category.

Operational assertions can be further classified into three categories
(Table 1):

Simple assertion. A simple assertion is a condition to be satisfied in a given state
or a specific set of states in order to reach a state where the condition is satisfied.
Simple assertions are also named reachability assertions. An example of such an
assertion in the context of a travel domain is the requirement of having a medical
insurance if the period of being abroad is more than two weeks. To comply with this
assertion we must ensure that if the client requests a travel package with duration
beyond two weeks then a medical insurance must be subscribed before the business
process progresses successfully.

Preservation assertion. A preservation assertion is a condition to be maintained
throughout all states touched during the execution of a business process. Preserva-
tion assertions are also named maintainability assertions. In the same travel exam-
ple as above, consider a situation in which special offers exist for clients who hold
a frequent flyer loyalty card, e.g. OneWorld. An assertion for the use of such card
would require that all invoked services accept the card to provide discount or points.
To comply with this assertion the execution of the business process will attempt
to maintain the execution on those paths where services adhering to the loyalty
program are available.

Business entity assertion. A business entity assertion is a property that applies
to the evolution sequence of a process variable during process execution. For
instance, a business entity assertion can be associated with the status of a travel
package, as shown in Fig. 2. Initially, the “status” variable assumes the value
“requested” when the travel package operation is started. From this state, the
request can be “rejected”, if the travel agency fails to satisfy it and, eventually,
return in a “requested” status. Alternatively, the status variable can be “accepted
by travel agency” and subsequently be “approved by client” and finally become a
“package completed”. To comply with this assertion the execution of the business
process must ensure that the states of the travel package variable are reached in
the prescribed sequence and only change value according to the valid states of the
business entity assertion described above.

Monitoring Assertion-Based Business Processes 367

requested

accepted by
travel agency

rejected

approved by
client

package
completed

Fig. 2. A travel package business entity assertion.

Table 2. Assertion levels.

Assertion Level Where Stored Usage

Business process ~ Domain description Concatenated with user request

Role Service description Applied if action of the role is invoked
Provider Service registry Applied if provider action is invoked

Assertions are not only classified on the basis of their operational dimension but
also on the basis of ownership. Based on the ownership criterion, we may distinguish
between three types of assertions (Table 2):

Business process-level. The business process-level assertions are applied to the
whole business process. The business process execution environment verifies these
assertions during all executions and for all used services. Assertions of this type
are maintained by the party who defines the choreography message sequences.
These assertions are stored together with the business process itself. The business
entity assertion defined in Fig. 2 is an example of business process-level assertion.
It defines the possible evolutions of the status of travel package for all executions in
the business process. Another example is the following. Usually business processes
have an assertion of always reaching the final state despite of the non-determinism
inherent in dealing with Web service implementations, e.g. purchase a travel
package. This assertion ensures process consistency with organization rules and
policies.

368 M. Aiello € A. Lazovik

Role-level. Role-level assertions are employed for all the providers implementing
a specific role. Typically these assertions represent the constraints defined by the
standardizing organizations, government, etc. For example, due to governmental
laws all travel agencies may require that together with a flight ticket also a medical
insurance is purchased, whenever the final destination is in a particular set of loca-
tions where health risk exist. These assertions are defined together with the service
interfaces and stored together with the service descriptions.

Provider-level. At the lowest granularity level assertions are published by a par-
ticular service provider. These assertions are stored in service registries together
with service implementations. Provider-level assertions are used when a particu-
lar provider wants to enforce consistency of the business process and its business
rules at runtime. For instance, provider role assertions may involve payment service
providers having additional constraints, such as, protocol communication prefer-
ences, organization licensing, authentication, etc.

Assertions are classified on both the operational and the ownership dimension.
The examples provided during the current presentation are summarized in the
matrix in Fig. 3. An example of a simple provider assertion could be a requirement
of user authentication before using the asserted service. A specific bank provider
could require a preservation of a positive amount on the account. This is an exam-
ple of the preservation/provider assertion. For role-based assertions, examples are
the requirement for all travelers to have valid medical insurance or, for travel agen-
cies, that the travel package must be processed with respect to the package entity
assertion. Global business process assertion may include, for example, transactional
consistency requirement. The users of the business process might have a special

A

Authentication ~ Flight medical Transactional
insurance consistency

Simple

Positive o
account balance Fidelity card

Preservation

suoipasse [euoneladQ

Business Entity Travel package

Business

Provider
Process

>

Actor assertions (based on ownership)

Fig. 3. Two-dimensional classification of assertions, with examples.

Monitoring Assertion-Based Business Processes 369

fidelity card, that gives them some advantages along the whole execution of the
business process.

3. Monitoring Framework

One of the biggest challenges that Web service enabled e-marketplaces face is the
lack of support for appropriate service request languages that retrieve and aggre-
gate services that contribute to the solution of a business problem. Users typically
require services from a service-based marketplace on the basis of service character-
istics and functionality as supplied by service providers. A service request language
provides for a formal means of describing desired service attributes and functional-
ity, including temporal and non-temporal constraints between services, and service
scheduling preferences.

Our previous work focused on developing a service request language for Web
services in service-marketplaces that contains a set of appropriate constructs for
expressing requests and constraints over requests as well as scheduling operators.*?
This language, named XSRL for XML Service Request Language,' enables a user
to formulate complex requests against standard business processes. These standard
processes are provided by a market maker (a consortium of organizations) that
brings the suppliers and vendors together. The market maker assumes the respon-
sibility of creating a service-marketplace administration and performs maintenance
tasks to ensure the administration is open for business and, in general, provides
facilities for the design and delivery of business processes that meet specific busi-
ness needs and conforms to industry standards.?” Standard business processes are
described in a choreography language such as Web Services Choreography Descrip-
tion Language (WS-CDL).'> WS-CDL specifies the common observable behavior
of all participants engaged in business collaboration. Each participant could be
implemented by completely different languages such as Web services applications,
whose implementation is based on executable business process languages like BPEL,
XPDL and BPML.

XSRL expresses a request and executes it according to the user preferences.
The framework that takes XSRL request as input returns a product as the result
of the request, e.g. constructs an end-to-end holiday packages (documents) com-
prising a number of flight and accommodation choices. XSRL is equipped with
constructs for expressing quantitative requests, such as, booking of a room for two
nights, spending between 100 and 200 euro, etc., but also qualitative operations for
sequencing goals, such as, booking a room only after having booked a plane, for
stating preferences, e.g. flying rather than taking a train to a destination, for stat-
ing the maintaining of a condition during execution, such as, keeping the budget
below 500 euro. Loosely speaking, the response documents can be perceived as a
series of plans that potentially satisfy a request. In expressing an XSRL request it
is important that a user is enabled to specify the way that the request needs to be
planned and executed.

370 M. Aiello & A. Lazovik

We refer to Lazovik et al.' for XSRL’s syntax, semantics and detailed examples
of its use. Here we recall that XSRL and its supporting framework are a power-
ful tool for enabling a user to formulate requests against business processes but it
currently lacks support for choreography assertions supplied by service providers
and/or market makers that can be associated with the execution of a choreographed
process. Assertions are essential means for the actors delivering the services and
market makers to apply enterprise/marketplace policies and conditions. This lim-
itation of XSRL is addressed by explaining how it is extended by means of an
assertion language, which we name XSAL (XML Service Assertion Language). This
language is defined in Sec. 3.2.

XSRL and XSAL work in tandem during the planning and monitoring of busi-
ness processes in order to satisfy the user requests in conjunction with applying
service provider and marketplace maker supplied assertions. Figure 4 illustrates
marketplace makers and actual service providers involved in the marketplace. These
are seen to provide a set of assertions in XSAL which govern the behavior and exe-
cution of standard business processes. Assertions are associated with the standard
business processes against which requests are specified. In Fig. 4, a user or client
states his/her requests in XSRL. These are combined with the appropriate XSAL
assertions and then forwarded to the planning and monitoring framework presented
in Fig. 5. The planning and monitoring framework interacts with the actual imple-
mentations of the services in the service marketplace.

To deal with assertions and user requests we propose a system based on the
interleaving of planning and execution. The proposed framework, shown in Fig. 5,
consists of four components: monitor, planner, executor and runtime support envi-
ronment and can be seen as an extension of the monitoring framework introduced
by Lazovik et al. to deal with user requests expressed in XSRL.*

The monitor manages the overall process of interleaving planning and execution.
It takes user requests, the business process, the business process level assertions and

Plannin;
e XSAL anning
assertions ' omain
market maker Business process

service provider
Planning and
XSAL and XSRL itori
Joining monitoring
framework

A

client

o (7] XSRL
6{'@?{5\7}% client requests

Fig. 4. Handling of XSAL and XSRL requests.

service implementations

Monitoring Assertion-Based Business Processes 371

business process Business domain Request plan

level assertions MONITOR [+ PLANNER

(XSAL)
Request | /\ Produce plan
execution

Goal (XSRL)

<’:>(EXECUTOR J
User interaction T

Invoke WS
Retrieve
providers Collect new information

WEB SERVICES
IMPLEMENTATIONS

Update domain, goal, current state

provider-level
assertions (XSAL)

Assertions

SERVICE
role-level

assertions REGISTRY
(XSAL) T~

Fig. 5. Planning and monitoring framework.

starts interacting with the planner. The planner synthesizes a plan and returns it to
the monitor. The plan is a sequence of actions to be executed. The planner returns
a failure if there was no possible execution satisfying the user request in the given
domain without violating the assertions. In case of failure, the monitor eliminates
eventual optional goals and assertions or it tries to change service providers. For
example, if the business process fails to satisfy the assertion published by one hotel
service provider, the framework can try to switch to another hotel service provider
whose assertions are less strict. If the planner fails for all possible combinations then
the overall execution of the business process fails. Assume that a correct plan exists
and therefore it is synthesized. Then the monitor passes it to the executor. The
executor is responsible for executing the plan. While executing each action of the
plan, the executor may gather new information from the service registry or from
the service implementations. Whenever new information is obtained, replanning is
potentially needed and the domain updated with the just gathered information is
returned back to the monitor. The framework works iteratively until the request
is satisfied under the given assertions or there is no satisfying execution.

3.1. Planning domain description

Using a framework based on interleaved planning and execution demands a formal
specification of the business process in terms of planning domains. None of the
existing business process definition languages can be straightforwardly used as a
domain description for our framework. For example, WS-CDL lacks monitoring
mechanisms, BPEL lacks choreography protocol support. However, one can devise
extensions and modification to these protocols in order to use them as domain
descriptions. The latter is beyond the scope of the present treatment. The domain
representation that we adopt is a state-transition system. It is able to represent non-
deterministic actions and potentially incomplete knowledge about the environment.
Information that is unknown in advance is gathered at runtime by invocations of

372 M. Aiello & A. Lazovik

Web services and by contacting the service registry (UDDI) to obtain Web service

generated information, e.g. current balances, debt histories, etc. Formally, a domain
D is a tuple (S, A, V, R, P), where:

S is a set of states a business process can be in.

A is a set of actions. An action represents an atomic activity of the business
process. Each action is associated with a role. If an action has only one outcome
it is called deterministic, it is called non-deterministic otherwise. An action is
said to be retractable in a particular state if there exists a sequence of actions that
deterministically brings back to the state where the action was initially applied,
preserving the variables values.

V is a set of process variables. A variable set includes all the message definitions
that are part of the business process. During the execution of the process some
of the variables can be undefined.

R is a set of roles. Roles represent service interfaces that are used in the business
process.

P is a set of providers. A provider gives a service specification and possibly a
service implementation. A provider is associated with one of the process roles.

In addition to a domain definition the following relations between the domain

items are specified:

— :S x A — 2% is a transition relation between states and actions. A tran-
sition represents the application of an action to a state and returns a set of
states resulting from that action. Transitions are used to represent the skeleton
of the business process control flow. An action can be associated with several
transitions.

role : A — R is a relation between actions and roles associating a role to each
action in the domain. If the service interface is defined in terms of WSDL, the
relation is extracted from the port types definition.

providers : R — 2F is a relation between roles and providers associating a
provider to each role. This mapping is defined in the service registry and typically
available to the system only at runtime.

fa,o ©V — V is a semantic function associated with an action a with an out-
come 0. An outcome can be either “normal” or “failure”. For each action, there
can be several exception outcomes (i.e. failures) but there can be only a sin-
gle normal outcome. All action outcomes are defined with the service interface
definition.

3.2. Service assertion language

In Sec. 2.2, we showed that the business rules can be expressed using assertions.

The assertions are defined as statements that are either true or false in any of

the given state. They are classified into simple, preservation, and business entity

Monitoring Assertion-Based Business Processes 373

assertions. The assertions need to be stated in a uniform and unambiguous way
by the parties involved in the business process. XSAL (Xml Service Assertion Lan-
guage) serves this purpose. The syntax of XSAL is defined using BNF notation as
follows:

xsal <- ’<XSAL>’ assertion ’</XSAL>’
assertion <- statement | achieve-all | then | prefer

achieve-all <- ’<ACHIEVE-ALL>’ +assertion ’</ACHIEVE-ALL>’

then <- ’<BEFORE>’ assertion ’</BEFORE>’
’<THEN>’ assertion ’</THEN>’

prefer <- ’<PREFER>’ assertion ’</PREFER>’
’<TO>? assertion ’</T0>’

statement <- entity | vital | optional |

atomic | vital-maint | optional-maint

entity <- ’< ENTITY VARIABLE = ’ var ’>’
start-from
follows*

’</ENTITY>’
start-from <- ’<START-FROM>’ proposition ’</START-FROM>’
follows <- ’<FOLLOWS>’ proposition ’</FOLLOWS>’

’<BY>’ proposition ’</BY>’
vital <- ’<VITAL>’ proposition ’</VITAL>’
optional <- ’<0PTIONAL>’ proposition ’</OPTIONAL>’
atomic <- ’<ATOMIC>’ proposition ’</ATOMIC>’

vital-maint

<- ’<VITAL-MAINT>’ proposition ’</VITAL-MAINT>’
optional-maint

<- ’<0PTIONAL-MAINT>’ proposition ’</0OPTIONAL-MAINT>’

proposition <- ’<CONST ATT="true|false">’ | var |
’<AND>’ +proposition ’</AND>’ |
’<0R>’ +proposition ’</0R>’ |
’<NOT>’ proposition ’</NOT>’ |
’<GREATER>’ var ’</GREATER>’
><THAN>’ rval ’</THAN>’ |
’<LESS>’ var ’</LESS>’
’<THAN>’ rval ’</THAN>’ |
’<EQUAL>’ var rval ’</EQUAL>’
var <- a..zA..Z[rvall
rval <- +a..zA..Z0..9.

One may observe the similarity between XSAL and XSRL. In fact, these two lan-
guages share the same expressive power and interpretation, though their intended
use is quite different as XSAL is used for expressing assertions while XSRL is

374 M. Aiello & A. Lazovik

used for expressing user requests. Before assessing the formal connection among
these two languages we shall first provide the intuitive meaning behind XSAL
expressions.

The atomic objects of XSAL are propositions, that is, boolean combina-
tion of linear inequalities and boolean propositions. These can be either true
or false in any given state. Propositions are further combined by sequencing
operators to form assertions. The sequencing operators are: achieve-all, then,
prefer. achieve-all succeeds when all nested assertions defined inside the tag
<ACHIEVE-ALL> are satisfied, it fails otherwise. The construct then is satisfied when
the first statement is satisfied and, from the state where the first statement is sat-
isfied, the second is also satisfied. It fails otherwise. The construct prefer succeeds
if the first statement is satisfiable, if not then it succeeds if the second statement is
satisfiable, it fails if both statements are unsatisfiable.

The operational assertions can be expressed using the XSAL language. All of
the following operators take propositions as arguments. The simple, or reachability,
assertions are expressed by XSAL reachability constructs. Formally, reachability
constraints require satisfaction of some proposition before execution of the service
that has reachability assertion. But strictness of the satisfaction depends on the par-
ticular operator. There are three corresponding XSAL operators: atomic, vital,
and optional. The atomic operator is used when an assertion is strictly impor-
tant for the party that specifies it and it must be satisfied regardless of any form
of non-determinism. More formally, before executing a service that has this type
of assertion, constrained propositions must be true. If there is no such execution
then the execution fails immediately. The vital operator is used when less strict
assertions need to be applied. It tries to find a successful execution to satisfy the
constrained proposition. It executes until it has a chance to reach the successful
state and fails otherwise. The last operator (optional) is the least strict constraint
and demands the satisfaction of the assertion if possible, if not the assertion is
ignored.

The preservation, or maintainability, assertions are expressed by XSAL main-
tainability constructs. This constructs are used when preservation of some value
is needed not only in a single state but during a whole execution sequence.
When executing a service with such type of assertions only execution that
preserves the constrained value can be followed. Retractable actions must be
handled with care. In fact, if such an action is invoked and later retracted all
associated assertions are ignored. As in the case with simple assertions, main-
tainability assertions can be of different types from the point of their strictness.
We define two types: vital-maint and optional-maint. The first one is used
when the proposition value must be preserved along the whole execution regardless
of the non-determinism. The second (optional-maint) is used when the main-
tenance assertion is optional. The system in this case should always intend to
preserve the asserted proposition but if it fails then other executions are still
acceptable.

Monitoring Assertion-Based Business Processes 375

The entity expression is used to form business entity assertions. This expression
begins by relating to a particular variable. It specifies its starting value in the
start-from statement and it is continued by any number of follows statements
which specify the possible evolutions of the variable. Assertions of this type are
always strict.

The semantics of XSAL can be defined following two trajectories: (i) considering
formal semantic definition based on execution structures over planning domains;'?
(ii) providing translation rules for transforming XSAL expressions into XSRL and
combining them with XSRL expressions. Recalling that the semantics of XSRL has
been defined!® on the basis of the work on EaGLe,'” we purse the second trajectory
as it is more intuitive and better shows the relation occurring between XSAL and
XSRL. As a point of notation, we add a .t postfix to denote the XSAL expres-
sion translated into XSRL, (---) to denote the passing of a parameter to a rule,
e.g. start-from (var) and follows (var) takes var as a parameter. Expressions
where the translation is omitted are propagated unchanged. The symbol “*” in the
reduction rule denotes the usual Kleene star.

xsal <- ’<XSAL>’ statement ’</XSAL>’
xsrl.t = ’<XSRL>’ statement.t ’</XSRL>’
entity <- ’<ENTITY VARIABLE = ’ var ’>’

start-from (var)
follows (var)x*
’</ENTITY >’

entity.t = start-from.t +
’<THEN>’
’<ACHIEVE-ALL>’
follows.tx*
’</ACHIEVE-ALL>’
’</THEN>’

start-from (var) <- ’<START-FROM>’ proposition ’</START-FROM>’
start-from.t = ’<BEFORE>’ var proposition ’</BEFORE>’

follows (var) <- ’<FOLLOWS>’ propositionl ’</FOLLOWS>’

?<BY>”’ proposition2 ’</BY>’
follows.t = ’<BEFORE>’
’<EQUAL>’ var propositionl ’</EQUAL>’
’</BEFORE>’
’<THEN>’
’<EQUAL>’ var proposition2 ’</EQUAL>’
’<THEN>’

From the translation one notes that the constructs on propositions, on sequenc-
ing and preference statements are the same in both languages XSAL and XSRL. The

376 M. Aiello & A. Lazovik

XSAL business entity assertion construct is not present in XSRL and is translated
into the sequencing operators before-then binding the business entity variable to
propositions.

3.3. A domain instance

Let us revisit the example in the travel domain introduced in Fig. 1 to explain the
XSAL use and constructs. Next we present it according to the formal definition of
a domain D presented in Sec. 3.1.

There are 14 states S = {1,2,...,14} in the upper half of Fig. 1. The set of
variables Var is {hotel Reserved, hotel Price, location, trainBooked, trainPrice,
flightBooked, flightPrice, confirmed, money}, among which one distinguishes
the boolean variables (hotel Reserved, trainBooked, flightBooked, confirmed),
from the real variables (hotel Price, trainPrice, flightPrice, money), and a vari-
able representing location names (location). In the set of variables a subset is defined
to be of knowledge variables. In the example, we define hotel Price, trainPrice,
flightPrice to be knowledge variables. There are also nineteen actions that can be
performed in the domain Act = {a1,...,a19}.

Several roles are involved in the travel business process, that is, R = {user,
hotel, air, train, payment, insurance}. The user role represents the requesting
party. Typically it is a human user, but it could also be any application software
utilizing the business process. The set of actual providers for the roles R are stored
in the service registry.

Arrows in Fig. 1 are the process actions. For example, states (3) and (4) are
connected by the action reserveHotel of the hotel role. It has two outcomes:
normal, where the variable hotelReserved is set to true and exception, where the
hotel remains unreserved. This action is an example of a non-deterministic action.
The two arrows from the state (4) represent different outcomes for this action.
Other examples of actions are bookFlight for the air role and getTrainPrice for
train role.

Assertions work in conjunction with the travel business process and are
defined in XSAL. The business process level assertion that ensures that the pro-
cess always reaches the final state is expressed in the following way: atomic
final. Here and in the following we omit XML tags for brevity. An examples
of a role-level assertion is the requirement for insurance in case of prolonged
stay abroad: vital (healthRisk — insuranceTaken), where — represents logi-
cal implication and is expressed using the <NOT> and <OR> XSAL expressions, as
usual.

At the provider level, the hotel provider may prefer, for example, a specific
credit card type for payment: optional cardType = VISA.

The maintenance assertion for customers of loyalty services that was intro-
duced in Sec. 3.1 is encoded as follows: optional(loyaltyCard — (roleType =
accepts LoyaltyCard)).

Monitoring Assertion-Based Business Processes 377

In the following we use XSAL to codify the business entity assertion that was
presented in Fig. 2. The XSAL syntax for this assertion is:

entity travelPackage
start-from requested
follows requested by rejected V accepted by travel agency
follows rejected by requested
follows accepted by travel agency by
rejected \V approved by client
follows approved by client by package completed

Additional details like precise hotel information, seats type, payment numbers, etc.
can be easily integrated in the above example. To do so, one should add corre-
sponding variables and modify the semantic functions of the actions to take into
account the introduced variables. Here we omit such additional details to improve
readability.

3.4. Planning and monitoring algorithms

Having introduced a planning and monitoring framework and the assertion language
XSAL, we present the algorithms which handle XSAL assertions together with
XSRL requests. Referring to Fig. 5, we recall that the framework consists of three
main components, that is, a monitoring, a executor and a planner. We present
algorithms for these components separately.

Algorithm 3.1 monitor(domain d, state s, goal g)

7w = assert-plan(d, s, g)
if 7 = () then
return success
else
if w = failure then
if chooseNewProvider(provider) then
d’ = updateDomain(d)
assertprovider = extractAssertions(provider)
g = updateGoal(g, assertprovider)
return monitor (d', s, g’)
else
g’ = generate-rollback-goal()
monitor(d, s, ¢)
return failure
end if
end if
(d,s',g") = execute(m, d, s, g)
return monitor (d’, s, ¢g’)
end if

378 M. Aiello & A. Lazovik

The monitor takes a domain d, that is built on the basis of the business pro-
cess, an initial state s and a goal g. The initial request of the user to the system
is combined together with business process assertions, thus, the monitoring algo-
rithm is invoked initially with the following goal: achieve-all(request, assertyy),
where request is the user request and asserty, is the set of business process level
assertions.

The monitor (Algorithm 3.1) is the core of the interleaved planning and exe-
cution process. It invokes the planner and the executor in order to satisfy the
user requests and the assertions, and it recovers from failures. The algorithm is an
extension of the monitoring algorithm presented by Lazovik et al.,'® where the most
notable difference is the updating of the goal to take into account the provider-level
assertions. When a new provider is chosen then the goal is modified in the following
way. First, assertions that are associated with the previously assigned provider being
de-assigned are eliminated from the goal. Second, assertions of the new provider
are added to a goal by using the achieve-all operator. The modification of the
goal to take assertions into account is performed by the extractAssertions and
updateGoal functions.

Algorithm 3.2 execute(plan 7, domain d, state s, goal g)

repeat
a = firstAction(7)
T=T—a

if webServiceAction(a) then
if noProviderForRole(role,) then
providersList = contactServiceRegistry(role,)
provider = chooseProvider(providersList)
assertprovider = extractAssertions(provider)
¢ = updateGoal(g, assertprovider)
return (d', s, g")

else
provider = previouslyChosenProvider(role,)
end if
message = invoke(a, provider)
end if

(d',s',g") = update(d, s, g, a,message)
if isKnowledgeGathering(a) then
return (d',s',g")
end if
until 7 = ()
return (d',s',¢’)

Monitoring Assertion-Based Business Processes 379

The ezecutor (Algorithm 3.2) takes a plan and executes it in the marketplace.
It contacts the service registry when a service implementation for a given role
is necessary, it executes actions of the plan and it checks whether replanning is
required. When a new provider is requested from the service registry, its assertions
are added to the goal g in the following way achieve-all(g, assertprovider). This is
achieved via the extractAssertions and updateGoal functions.

Algorithm 3.3 assert-plan(domain d, state s, goal g)

if 7 # failure then

{asserty,,...,assert,, } = extractAssertions(m)
¢ = updateGoal(g, {asserty,,...,assert,, })
if ¢’ = g then
return 7
else
return assert-plan(d, s, g’)
end if
else

g’ = checkViolatedActions(g, d)
if ¢’ = g then
return failure
else
return assert-plan(d, s, g')
end if
end if

The planning algorithm is presented in two parts: one dealing with role-level
assertion and one actually synthesizing a plan. The assert-planner (Algorithm 3.3)
checks validity of role-level assertions. The assert-planner works in the following
way. First, it produces an initial plan by invoking the plan function (Algorithm 3.4).
If the planner succeeds by producing a plan then the assert-planner checks if
the plan contains actions with new assertions. If it does, then all assertions are
added to the goal and replanning is requested. If the planner fails to synthesize
a plan then the assert-planner marks all actions that possibly violate the plan as
optional goals and request replanning. Optional goals are added to the current goal
g in the following way: ¢’ = achieve-all(g, optional—ay, ..., optional—a,), where
optional—a; indicates that the action a; should be avoided, if possible. The assert-
planner returns a plan if the user request and all assertions are satisfied and failure
otherwise.

The planner (Algorithm 3.4) is based on the existing planner based on model
checking® and is an extension of the one we have proposed for dealing with user

380 M. Aiello & A. Lazovik

Algorithm 3.4 plan(domain d, state s, goal g)

domaing,e = booleanize(d)
repeat
goalpo= booleanize(g)
7w = MBPplan(domaingeor,s,g0alpeer)
if 7w # failure then
return 7
else
if there are untraversed combinations of optional goals then
modify g accordingly
else
return failure
end if
end if
until true
return failure

requests.’® The planner is responsible for synthesizing a plan based on a given
domain d, an initial state s and a goal g. The planner returns a plan if it exists and
failure otherwise. The planner checks all possible combinations of optional goals
before returning a failure.

The framework is not required to be used in the interleaving planning and
execution scenario. The planning Algorithm 3.4, if run separately, can be used to
statically detect whether assertions are consistent with the corresponding business
process. Of course, the static analysis is only limited to information available before
execution, it does not take into account information that can be gathered at run-
time and violate some, statically correct, assertions. From this follows, that if busi-
ness process is statically consistent with specified assertions it still may fail during
execution.

4. Monitoring a Sample Business Process

To illustrate the application of the algorithms just presented in the context of the
planning and monitoring framework, we use the example presented in Sec. 2.1 and
formalized in Sec. 3.3. Suppose a user is planning a trip to Nowhereland and is
interested in a number of possibilities in connection with this trip. These include
making a hotel reservation, avoiding to travel by train, if possible, and spending an
overall amount not greater than 300 euro for the whole package. Further, the user
prefers to spend less than 100 euro for a hotel room but, if this is not possible, may
be willing to spend no more than 200 euro for that room. This would be expressed

Monitoring Assertion-Based Business Processes 381

by the following XSRL request:

achieve-all
achieve-all
prefer vital-maint hotel Price < 100
to vital-maint hotel Price < 200
optional-maint —trainBooked
vital confirmed A
location = “Nowhereland” N
hotel Reserved
vital-maint price < 300

In addition, suppose that two XSAL business process level assertion such as
atomic final and the business entity assertion of Fig. 2 were published. The system
starts by combining the user request with the business process assertions in an
achieve-all construct. The monitor invokes the assert-planner which in turn invokes
the planner. The first actions of the initial plan provided by the planner, given the
above goal, the business process assertion and the domain as shown in Fig. 1, is the
following sequence of actions: getHotelPrice, reserveHotel.

The monitor then sends the plan to the executor to start interacting with
Web service implementations. By these invocation a travel agency and a hotel
provider are selected and a room is reserved. Suppose that the government consid-
ers Nowhereland to be a health risky location. Then the role-level assertion vital
(healthRisk — insuranceTaken) coming from the service registry together with
the travel agency role is considered. At this point, the executor returns control
to the monitor which in turn requests a new plan from the assert-planner tak-
ing into account the given role-level assertion. The new plan generated will now
comprise an action bringing the process in the obtained a medical insurance
state.

Suppose further that the selected hotel is “MyHotel” which comes with the
provider-level assertion optional cardType = VISA. Then, when the executor runs
the request payment from the user the cardType is asked to be VISA. If the user
refuses such option, execution nevertheless proceeds. Note that if the assertion was
vital cardType = VISA then the user’s refusal would result in a assertion viola-
tion and thus a plan failure. Note that assertion is taken into account only if the
hotel “MyHotel” is used. It must be satisfied from the state where the “MyHo-
tel” service is used for the first time. The framework does replanning immediately
after the executor binds the service Hotel to “MyHotel” provider if the service
implementation exposes the assertion.

As for a maintainability assertion, suppose that the travel agency is asked by the
client to provide services complying with a given loyalty card. Therefore, the travel
agency publishes the following assertion: optional(loyaltyCard — (roleType =
acceptsLoyaltyCard)). This is taken into account by the assert-planner as soon as
the user has specified the card in his request.

382 M. Aiello & A. Lazovik

As for the business entity assertion requiring a travel package to be assembled
following specific rules (Fig. 2), this assertion is always taken into account by the
assert-planner when providing new plans to the monitor. Finally, the execution
proceeds until the travel package is completed and the user approval is requested.
At this point the business level assertion atomic final is the last to be satisfied.
This is achieved by a plan going to the final state of the business process.

5. Discussion: Expressing QoS Properties

In Sec. 3.2 we introduced the Xml Service Assertion Language and showed how
it can be used to express objectives and preferences of the parties involved in the
execution of a business process. These objectives may be exposed in a service-
level agreement (SLA). But SLAs are not limited to functional requirements, often
service providers want to expose to the users of their services various quality of ser-
vice features. These agreements, often in the form of legal contracts, define what
service the provider offers and define the quality of service or QoS that they offer.
Because of the formal nature of the SLAs, the quality of service needs to be specified
in measurable terms, such as the guaranteed uptime of the service, the guaranteed
maximum and average response times of the service, etc.?* Various non-functional
properties of services are the object of SLAs, most notably: availability, accessi-
bility, performance, reliability, security, transactionality, and regulatory. There are
several specification proposals to address QoS and SLAs, for example, WS-Policy3*
or Web Service Level Agreement.? Cremona?’ is an example of the framework that
uses WS-Agreement to create and monitor agreements.

Interestingly, XSAL is able to capture most of these qualitative and quantitative
QoS properties in its assertions. Next, we show examples of how XSAL expressions
are used to express quality of service constraints and be therefore used as funda-
mental blocks of SLAs. The advantage of using XSAL for this purpose is twofold.
On the one hand, it has the appropriate expressive power to express non-functional
properties during the agreement negotiation, on the other hand, it comes with a
monitoring framework which serves the purpose of checking at runtime that the
SLA terms are not violated.

At runtime, instead of rejecting the violated service, the system tries to satisfy
the failed assertion or, if that fails too, checks if there are any other business process
executions that satisfy the original goal and preferences. For example, let us imagine
that the business process failed to present valid credentials to the bank service. The
framework first tries to check if there are any activities in the business process that
can possibly provide the necessary credentials. If that fails, then the system tries
either to ignore the service or select a different bank provider, if there are more
available.

Let us note, that XSRL/XSAL are languages that are used to specify the goals
and preferences of the client of the constrained services, be it a user or another
provider, but not vice versa. To expose the metric that can be constrained, a service

Monitoring Assertion-Based Business Processes 383

implementation must use another mechanism. It can be one of the available service

d.?3% In the framework, we express this information as

level agreement standar
action effects, with different effect for each possible service implementation that
actually represents the action. For example, when service provider wants to offer
two possible implementation with different availability time, it must express as if
the action effects for these implementation affects the latency time in a different
way, let say, latency = 20 for the first implementation and latency = 100 for the
second. When one wants to use faster service implementation, it must express it in
a XSRL language as follows vital dataFetched A latency < 20ms, where variable
dataFetched represents the corresponding action.

Let us now consider what types of service-level agreements can be captured by
XSAL expressions. The most relevant categories for QoS requirements in the context
of Web services are: availability, accessibility, performance, reliability, regulatory,
security and transactional behavior.?! Let us consider them individually.

5.1. Awailability, accessibility, performance, and reliability

Awailability is the quality of whether a Web service is available and ready to be
invoked. It is defined as a probability of service availability. Sometimes, the time
to recover is also added to availability terms, defining the time it takes to repair a
temporally non-available service. Accessibility is expressed as a probability measure
to define whether the service is able to perform a given operation. The service could
be available but not accessible if, for instance, the hosting server is overloaded. Per-
formance shows how fast the server processes the requests and how many requests
are served in the time unit. Reliability represents the service degree of being capable
of maintaining service quality.

All these properties define the ability of a service to process requests efficiently.
These kind of quality aspects are useful for mission-critical business processes
requiring high levels of availability and excellent performance.

An example of using XSAL to express availability assertion in the banking
domain follows. Suppose one service desires to get the latest financial information in
real time. In this case, the business process contains at least two services: a requester
and a service providing the necessary data. High performance requirements are
expressed in the requester assertion: vital dataFetched A latency < 20ms. Having
this assertion the framework checks all the services that provide the financial data
(that is those services satisfying the variable dataFetched) and selects only the
services with the response time lower than 20 ms. The information about the latency
time is taken from the service-level agreement of the provider service. The same
schema can be applied to check accessibility and reliability quality aspects.

The framework also allows more complicated scenarios, when the provider can
offer the same service implementation with different availability or performance
metrics. In this case, the provider must register the service implementation in the
service registry several times, with different action effects for each implementation

384 M. Aiello & A. Lazovik

depending on the provided availability. At runtime the framework selects the imple-
mentation according to the user goal or assertions from other providers.

5.2. Security

Security is a paramount aspect of service-oriented architectures in its various
facets,®1114 such as message encryption, authentication, and access control. Mes-
sage encryption is usually handled at the platform level, therefore, XSAL’s use
is limited to simple encryption requirement expressions, e.g. vital encryption >
128 bit.

More interesting is the case of authentication. Service-level agreements contain
an XSAL assertion that defines the required security information. For example,
the bank provider asks for a particular credential to be provided, e.g. atomic
login = true A provider = “Visa”. When the framework processes this assertion,
it tries to satisfy it by looking if there is an execution in the business process that
invokes the service operation that satisfies the variable login and sets the security
provider provider to “Visa”. If that fails, then the framework tries to satisfy the
initial request in a different way, not using the bank or, if that is not possible,
tries different bank providers. The key point of using XSAL assertions is that the
framework is delegated to adjusting the execution of the business process according
to the provider assertions.

Access control service-level agreements can also be expressed in XSAL. Imag-
ine a situation in which a bank exposes several service implementations. Then, the
particular implementation is unknown until instantiation of the providers: every
service implementation may contain different requirements, assertions, and prefer-
ences based on user access rights, therefore, the future executions of the business
process strongly depend on the exposed constraints. In other words, the behavior of
the business process depends on the access control rights. For example, say a travel
agency considers two different types of users: normal and loyal. The implementation
for the second might contain the following assertion: optional loyalpartner = true.
This assertion requires the system to prefer providers that are partners of the travel
agency, that might offer special discounts, finally allowing to provide better services
to the agency’s client.

5.3. Transactionality

The loosely coupled and stateless nature of initial Web service proposals has posed
new challenges for the execution of sequences of service operations which needed to
be treated, for instance, atomically. Transactionality of service invocation demands
different solutions from traditional database style transactions (see for instance the
survey by Papazoglou and van den Heuvel?®).

Often sequences of service invocations have to support atomic behavior, when,
if some service fails, all intermediate changes have to be rolled back. The question
such as whether transactions are applicable in the Web service environment or

Monitoring Assertion-Based Business Processes 385

what kind of transactions need to be supported (e.g. atomic or long-lived with
compensation) are out of the scope of the present paper. However, XSAL with its
atomic assertion guarantees some form of transactionality.

Consider the traditional transactional model, using two-phase commit with
satisfaction of all ACID properties. WS-AtomicTransaction® is a standard that
deals with this kind of transactions. In this model, transactions are always con-
sistent and atomic. However, this is only achieved if all of the participants sup-
port the corresponding transactional agreement. Sometimes this is weakened and
services control their desirable transactional behavior by publishing correspond-
ing attributes. For instance, a Java EJB specification may contain the following
attributes: notSupported, supports, required, requiresNew, mandatory, never,
and a bank provider exposing some of its data might ask for all the invoked ser-
vices to support transactionality. An XSAL assertion to achieve such a guarantee
is the following: atomic-maint attr # notSupported. The framework takes the
assertion and allows the publishing service to participate in the transactions with
all participants who support the assertion. In the same way, transaction isolation
levels could be set according with specific service quality requirements.

For the long-lived transactions the situation is different. Special attention has to
be payed to consistency and atomicity, as transactions based on compensation do
not guarantee them. XSAL can express such requirements. First, one could check the
consistency of data lifecycle by using the entity assertion (e.g. Fig. 2). In general,
to ensure consistency and atomicity the following two operators are used: atomic
and atomic-maint. They ensure that execution satisfies the assertion despite any
possible non-deterministic failures. For example, consistent is a variable that is
true in all so-called consistent states and false in all other. The assertion atomic
consistent guarantees that the execution terminates in one of the “consistent” states.
That is, before executing a transaction, the framework checks whether all possible
executions end up in states that do not violate the assertion. This is a different
notion from that of atomicity in ACID transactions as no roll-back is involved,
nevertheless is a form of guarantee which starts a sequence of service invocations
only if it is possible to arrive to a final state despite any form of non-determinism.

5.4. Regulatory

Mani and Nagarayan?!' define the regulatory quality of service aspect which repre-
sents the conformance of services to specified standards. This type of service-level
agreement is usually processed at the level of underlying platform, since it is truly
non-functional property. This kind of non-functional property is beyond the scope
of the presented XSAL framework.

6. Conclusions

We have introduced the assertion language XSAL for expressing business rules
in the form of assertions over business processes. XSAL is deployable using the

386 M. Aiello & A. Lazovik

framework we propose which is capable of automatically associating business rules
with relevant processes involved in a user request. This allows for consistency
and conformance to organizational rules and policies when executing a business
process. Additionally, it offers runtime control over its execution. We have clas-
sified assertions with respect to two process characteristics: operational context
and ownership. With respect to the operational context, we distinguish between
simple, preservation and business entity assertions. Regarding ownership, we dis-
tinguish between business process, role and provider-level assertions. We have then
introduced a framework for planning user requests that comply with assertions
and monitoring their execution to recover from violating conditions. Specialized
algorithms for planning, monitoring and executing requests and assertions have
been proposed for this framework. Finally, we have shown how XSAL has the
expressive power to define both functional and non-functional properties in the
assertions.

From the practical point of view, the presented architecture consider the cou-
pling of one monitor for each user request. On the other hand one planner and one
executor may serve more concurrently running monitors. Optimizations consider-
ing the exchange of information among monitors are possible and likely to provide
performance enhancements. Another improvement to performance is that of using
some form of caching. For instance, the results of partially executed plans could be
saved and later reused. This is useful in the case a user just needs to change one
parameter of his request, such as increasing the limit of the amount s/he is willing
to spend for the trip from 300 euro to 400.

The proposed framework and the XSAL language open interesting research
issues. One involves the performance of the framework, in particular, the way
providers are selected from the service registry is crucial for the efficiency and effec-
tiveness of the architecture. The current proposal does not address this issue, in
other words, providers are chosen randomly. A better solution is to select providers
based on provider-level assertions (for instance by comparing active assertions),
on reputation and history of previous interactions with the provider, or optimiz-
ing some specific QoS parameter (e.g. cost of the service or average latency of the
service).

The proposed framework plans for requests and assertions, then monitoring the
execution of the plans. If there is one possible execution path that can satisfy the
request and comply with its associated assertions, this will be found and executed,
if not, a failure will be returned. In case that a request succeeds no information is
currently provided regarding the quality of the execution. That is, if more possible
execution paths complying with the assertions and the user request exist, then only
one is guaranteed to be taken. An open issue concerns the comparison of poten-
tial solutions (execution trajectories) against optimality metrics, e.g. the shortest
plan, the cheapest, the fastest or any other optimality criteria. Solutions to the lat-
ter concerns could be addressed resorting to different planning techniques to han-
dle assertions. Constraint programming techniques allow for the identification, for

Monitoring Assertion-Based Business Processes 387

instance, of optimal plans. Initial considerations on how to encode service requests
as a constraint programming problem have been proposed.'® Following this con-
straint programming approach we have implemented the framework described in
the paper and are conducting preliminary experimental evaluations of the behavior
of the system.

Acknowledgments

We thank Mike Papazoglou for inspiring discussions. The present work is the con-
tinuation and extension of the joint work with Mike on XSRL, in particular, of
the work presented with Mike at the Int. Conf. on Service-Oriented Computing in
November 2004. We are also grateful to the anonymous reviewers for suggestions
that improved the presentation of this paper. Alexander Lazovik is supported by
Province of Trento project STAMPS.

References

1. M. Aiello, M. Papazoglou, J. Yang, M. Carman, M. Pistore, L. Serafini and
P. Traverso, A request language for web-services based on planning and constraint
satisfaction, in VLDB Workshop on Technologies for E-Services (TES02) (2002).

2. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke and M. Xu, Web services agreement specification (WS-Agreement), Tech-
nical report, Grid Resource allocation Agreement Protocol (GRAAP) WG (2004).

3. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein,
B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam,
H. Prafullchandra, J. Shewchuk and D. Simon, Web Services Security. Microsoft,
IBM, VeriSign, 1.0 edition, April 2002. Available via http://www-128.ibm.com/
developerworks/webservices/library /ws-secure/on25/10,/2005.

4. D. Berardi, D. Calvanese, G. D. Giacomo and M. Mecella, Reasoning about actions
for e-service composition, in Proc. ICAPS’ 038 Workshop on Planning for Web Services
(Trento, Italy, June 2003).

5. P. Bertoli, A. Cimatti, M. Pistore, M. Roveri and P. Traverso, MBP: A model based
planner, in Proc. IJCAI’01 Workshop on Planning under Uncertainty and Incomplete
Information (2001).

6. BPELAWS. Business Process Execution Language for Web Services (May 2003),
http://www-106.ibm.com/developerworks/library /ws-bpel/.

7. R. I. Brafman and Y. Chernyavsky, Planning with goal preferences and constraints,
in ICAPS (2005), pp. 182-191.

8. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy and M.-C. Shan, Adaptive and
dynamic service composition in eFlow, in Conference on Advanced Information
Systems Engineering (2000), pp. 13-31.

9. D. Chappell, Enterprise Service BUS (O’Reilly, 2004).

10. I. Fikouras and E. Freiter, Service discovery and orchestration for distributed service
repositories, in Conf. on Service-Oriented Computing (ICSOC-03), Lecture Notes in
Computer Sciences (Springer 2003), pp. 59-74.

11. D. Geer, Taking steps to secure web services, COMP 36(10) (October 2003) 14-16.

12. B. N. Grosof, Representing e-commerce rules via situated courteous logic programs
in ruleml*1, Electronic Commerce: Research and Applications 3(1) (2004) 2—20.

388 M. Aiello & A. Lazovik

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

P. Harmon, Analyzing activities, Business Process Trends 1(4) (2003).

J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H. Spafford, Security models for
web-based applications, Commun. ACM 44(2) (2001) 38-44.

Kavantzas, Web Services Choreography Description Language 1.0 (April 2004),
http://lists.w3.org/Archives/Public/www-archive/2004Apr/att-0004/cdl_v1-editors-

apr03-2004-pdf.pdf.

C. A. Knoblock, S. Minton, J. L. Ambite, M. Muslea, J. Oh and M. Frank, Mixed-
initiative, multi-source information assistants, in Proc. World Wide Web Conference
(2001).

U. D. Lago, M. Pistore and P. Traverso, Planning with a language for extended goals,
in 18th National Conference on Artificial Intelligence (AAAI-02) (2002).

A. Lazovik, M. Aiello and R. Gennari, Encoding requests to web service compositions
as constraints, in Principles and Practice of Constraint Programming (CP-05) (2005).
A. Lazovik, M. Aiello and M. Papazoglou, Planning and monitoring the execution of
web service requests, Journal on Digital Libraries (2005), to appear.

H. Ludwig, A. Dan and R. Kearney, CREMONA: An architecture and library for
creation and monitoring of ws-agreements, in ICSOC, eds. M. Aiello, M. Aoyama,
F. Curbera and M. Papazoglou (ACM, 2004), pp. 65-74.

A. Mani and A. Nagarayan, Understanding quality of service for web services, http://
www-128.ibm.com/developerworks/webservices/library /ws-quality.html (2002).

D. McDermott, Estimated-regression planning for interactions with web services, in
6th Int. Conf. on AI Planning and Scheduling (AAAT Press, 2002).

S. Mcllraith and T. C. Son, Adapting Golog for composition of semantic web-services,
in Conf. on Principles of Knowledge Representation, eds. D. Fensel, F. Giunchiglia,
D. McGuinness and M. Williams (2002).

M. Mullender and M. Burner, Application architecture: Conceptual
view, http: //msdn.microsoft.com/library/default.asp?url=/library/en-us/dnea/
html/eaappconintro.asp (2002).

B. Orriens, J. Yang and M. Papazoglou, Model driven service composition, in Conf.
on Service-Oriented Computing (ICSOC-03), Lecture Notes in Computer Sciences
(Springer, 2003), pp. 75-90.

M. Papazoglou and W. van den Heuvel, Service oriented architectures, VLDB Journal
(2005), to appear.

M. P. Papazoglou and D. Georgakopoulos, Service-oriented computing, Commun.
ACM 46(10) (2003) 24-28.

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau and P. Traverso, Planning and moni-
toring Web service composition, in ICAPS’04 Workshop on Planning and Scheduling
for Web and Grid Services (June 2004).

W. N. Robinson, Monitoring web service requirements, in Conf. on Requirements
Engineering (RE 2003) (2003), pp. 65-74.

M. Sheshagiri, M. desJardins and T. Finin, A planner for composing services described
in DAML-S, in Proc. ICAPS’03 Workshop on Planning for Web Services (Trento,
Italy, June 2003).

D. E. Smith, Choosing objectives in over-subscription planning, in ICAPS (2004),
pp. 393-401.

B. Srivastava and J. Koehler, Web service composition — Current solutions and open
problems, in Proc. ICAPS’08 Workshop on Planning for Web Services (Trento, Italy,
June 2003).

W. M. P. van der Aalst, H. T. de Beer and B. F. van Dongen, Process mining and
verification of properties: An approach based on temporal logic, in OTM Conferences,
Vol. 1 (2005), pp. 130-147.

34.

35.

36.

Monitoring Assertion-Based Business Processes 389

WS-Policy, Web Services Policy Framework (May 2003), http://www-106.ibm.com/
developerworks/library /ws-polfram/.

WS-Transaction, Web Services Transaction (August 2002), http://www-106.ibm.
com/developerworks/webservices/library /ws-transpec/.

D. Wu, E. Sirin, J. Hendler, D. Nau and B. Parsia, Automatic Web services com-
position using SHOP2, in Proc. ICAPS’03 Workshop on Planning for Web Services
(Trento, Italy, June 2003).

Copyright of International Journal of Cooperative Information Systems is the property of World
Scientific Publishing Company and its content may not be copied or emailed to multiple sites or

posted to a listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.

