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Abstract 

This paper deals with the controllability problem of a class of piecewise linear systems, known as 

linear complementarity systems. It is well-known that checking certain controllability prop-

erties of very simple piecewise linear systems are undecidable problems. In an earlier paper, 

however, a complete characterization of the controllability of the so-called conewise linear 

systems has been achieved. By employing this characterization and exploiting the special 

structure of linear complementarity systems, we present a set of inequality-type conditions 

as necessary and sufficient conditions for their controllability. Our treatment is based on the 

ideas and the techniques from geometric control theory together with mathematical program-

ming. 

Introduction 

Ever since Kalman’s seminal work [10] introduced the notion of controllability in 

the state space framework, it has been one of the central notions in systems and con-

trol theory. In the early 1960s, Kalman [11] himself and many others (see e.g. [9] 

for historical details) studied controllability of finite-dimensional linear systems exten-

sively and established algebraic tests for controllability. Soon after, constrained con-

trollability problems, i.e. problems for which the inputs are constrained to assume 

values from a subset of the entire input space, became popular (see for instance [12]). 

Early work in this direction consider only constraint sets which contain the origin in 

origin in its interior in many interesting cases, for instance, when only nonnegative 

controls are allowed. Saperstone and Yorke [14] were the first to consider constraint 

sets that do not have the origin in their interior. In particular, they considered the 

case for which the inputs are constrained to the set [0,1]. More general constraint 

sets were studied by Brammer [2]. He showed that the usual controllability condition 

their interior [12, Thm. 8, p. 92]. However, the constraint set does not contain the 
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together with a condition on the real eigenvalues of the system matrix is neces-

sary and sufficient for controllability of linear systems with nonnegative in-

puts [2, Thm. 1.4]. 

While the algebraic characterization of controllability of finite dimensional lin-

ear systems is among the classical results of systems theory, global controllability 

results for nonlinear systems have been hard to come by. When it comes to 

hybrid systems, the situation gets even more hopeless. In fact, Blondel and 

Tsitsiklis [1] proved that the reachability problem of a bimodal piecewise linear 

discrete-time system is an undecidable problem. However, our recent work [3–5] 

shows that one can come up with algebraic conditions for controllability of 

conewise linear. In this paper, our aim is to extend the ideas of [3–5] to a 

class of hybrid systems called linear complementarity systems (LCSs). 

The following notational conventions will be in force throughout the pa-

per. The symbol ℜ  denotes the set of real numbers, 
nℜ  n-tuples of real num-

bers, and 
n mℜ n × m real matrices. The set of complex numbers is denoted 

by C. For a matrix A∈ n mℜ , AT stands for its transpose, A–1 for its inverse 

(if exists), im A for its image, i.e. the set {y∈ nℜ | y = Ax for some x∈ mℜ }. 

We write Aij for the (i, j)th element of A. For ⊆α   {1, 2,. . .  , n}, and ⊆β {1, 

2,…, m}, αβA  denotes the submatrix { } .
, βα ∈∈ kjjkA  If =α   {1,2, ...,n} ( β = 

{1,2,... ,m}), we also write )( ∗∗ αβ AA . Inequalities for vectors must be un-

derstood componentwise. Similarly, max operator acts on the vectors com-

ponentwise. We write x ⊥  y if xTy = 0. 

Linear Complementarity Problem/System 

The problem of finding a vector z ∈ mℜ  such that 

z ≥  0, (1a) 

q + Mz≥ 0, (1b) 

zT(q + Mz)=  (1c) 

for a given vector q ∈ mℜ and a matrix M ∈ m mℜ is known as the linear com-

plementarity problem. We denote (1) by LCP(q, M). It is well-known [7, 

Thm. 3.3.7] that the LCP(q, M ) admits a unique solution for each q if, 

and only if, M is a P-matrix. It is also known that z depends on q in a 

Lipschitz continuous way in this case. 

Linear complementarity systems consist of nonsmooth dynamical  

systems that are obtained in the following way. Take a standard linear  

input/output system. Select a number of input/output pairs (ZI,WI), and  

impose for each of these pairs complementarity relation of the type (1) at each  

×

×

×
0
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time t, i.e. both zi(t) and wi(t) must be non-negative, and at least one of them 

should be zero for each time instant t ≥  0. This results in a dynamical sys-

tem of the form 

)(tx = Ax{t) + Bu(t) + Ez{t), (2a) 

w(t) = Cx(t) + Du(t) + Fz(t), (2b) 

0 ≤  z{t) ⊥  w(t) ≥  0, (2c) 

where u ∈ ,mℜ  x ∈ nℜ , and z, w  ∈ kℜ . A wealth of examples and application 

areas of LCSs can be found in [6,8,15,16]. 

A set of standing assumptions throughout this paper are the following. 
 

Assumption 1.   The following conditions are satisfied for the LCS (2) 

1. The matrix F is a P-matrix 

2. k = m 
3. The transfer matrix D + C(sl — A)–1B is invertible as a rational matrix 

These assumptions are technical in nature and most of the subsequent re-

sults can be generalized in cases for which these assumptions do not hold. How-

ever, we focus on LCSs that satisfy Assumption 1 in order not to blur the 

main message of the paper. 

It follows from Assumption 1 that z{t) is a piecewise linear function of 

Cx(t) + Du{t). This means that for each initial state x0 and locally-integrable input 

u there exist a unique absolutely continuous state trajectory xxo,u and locally-

integrable trajectories (zxo,u,wxo,u) such that xxo,u(0)=X0 and the triple  

(xxo,u ,zxo,u,wxo,u) satisfies the relations (2) for almost all t ≥  0. 

We say that the LCS (2) is (completely) controllable if for any pair of states 

(xo,xf) ∈ nn+ℜ  there exists a locally integrable input u such that the trajectory 

xxo,u of (2) satisfies xx ,u(T) = xf for some T > 0. 

In two particular cases, one can employ the available results for the linear sys-

tems to determine whether (2) is controllable. 

Linear systems 

Consider the LCS 

)(tx  = Ax(t) + Bu(t), (3a) 

w(t) = u{t) + z{t), (3b) 

0 ≤  z{t) ⊥  w(t) ≥  0. (3c) 

It can be verified that Assumption 1 holds. Note that this system is controllable if, 

and only if, the linear system (3a) is controllable. In turn, this is equivalent to the 

implication 

00,,, ===∈∈ ∗∗ zzBzAzCzC Tn λλ .                  (4) 

In this case, we say that the pair (A,B) is controllable.  

o
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Linear systems with nonnegative inputs 

Consider the LCS 

)(tx  = Ax(t) + Bu(t)+Bz(t), (5a) 

w(t) = u(t) + z(t), (5b) 

0 ≤  z{t) ⊥  w(t) ≥  0. (5c) 

Note that the solution to the LCP (5b) and (5c) can be given as z(t) = 

u–(t) and w(t) = u+(t) where =+ :ξ  max(ξ , 0) and =− :ξ  max(–ξ , 0)  denote 

the positive and negative part of the real vector 
−+ −= ξξξ respectively. 

Therefore, this LCS is controllable if, and only if, the linear system 

)(tx  = Ax t) + Bv(t) 

with the input constraint v(t) ≥  0 is controllable. It follows from [2, Cor. 3.3] 

that this system is controllable if, and only if, the following two conditions 

hold: 

1. the pair (A,B) is controllable 

2. the implication 

00,,, =≥=ℜ∈ℜ∈ zzBzAzz TTTn λλ                (6) 

holds. 

Main results 

To formulate the main results we need some nomenclature. Consider the linear 

( 

 

x  = Ax + Bu, (7a) 

 y = Cx + Du, (7b) 

where x
nℜ∈  is the state, u 

mℜ∈ is the input, y 
pℜ∈  is the output, and the ma-

trices A, B, C, D are of appropriate sizes. We define the invariant zeros of 

the system (7) to be the zeros of the nonzero polynomials on the diagonal 

of the Smith form of 

 
−

=
DC

BSIA
P s)( .  (8) 

The matrix )(sP is sometimes called the system matrix. It is known, for instance 

from [17, Cor. 8.14], that the transfer matrix D + C(sl – A)–1B is invert-

ible as a rational matrix if, and only if, the system matrix )(λP   is of rank n + m 

(

system A, B, C, D S (
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for all but finitely many C∈λ . In this case, the values of C∈λ  such that rank 

)(λP  < n + m coincide with the invariant zeros. Let Λ  (A, B, C, D) denote the 

set of all invariant zeros of the system (7). 

The following theorem presents algebraic necessary and sufficient conditions 

for the controllability of an LCS. 

 

Theorem 2. Consider an LCS (2) satisfying Assumption 1. It is controllable if, 

and only if, the following two conditions hold: 

1. The pair (A, [B E]) is controllable 

2. For all ∈λ Λ  (A, B, C, D) ℜ , the system of inequalities 

 0≥η , (9a) 

 [ ]TT ηξ 0=
−

DC

BSIA
, (9b) 

 [ ] 0≤
F

E
TT ηξ  (9c) 

admits no nonzero solution ( ηξ , ). 

A quick sketch of the proof 

The main ingredients of the proof are conewise linear systems. A conewise linear 

system (CLS) is a dynamical system of the form 

 x (t) = Ax{t) + Bu{t) + f(Cx(t) + Du{t)) (10) 

where x 
nℜ∈  is the state, u 

mℜ∈ is the input, A n n×∈ℜ , B n m×∈ℜ , C 
p n×∈ℜ , D p m×∈ℜ and the function f is a conewise linear function, i.e., there 

exist an integer r, solid polyhedral cones yi and matrices Mi n p×∈ℜ  for i = 1, 

2,...,r such that i

r

i yU 1=  = 
Pℜ  and f(y) = Miy if y∈  Yi 

Note that the function f is necessarily continuous since the cones yi are 

closed due to polyhedrality. In turn, continuity implies Lipschitz continuity 

in this case. A somewhat more explicit representation for CLSs can be given by 

 x (t) = (A  + M iC)x(t) + (B + M iD)u(t) if Cx(t) + Du(t) ∈  Yi . (11) 

 

By using the fact that the solutions of an LCP with a P-matrix depend on 

the data in a Lipschitz continuous way, we can reformulate the LCS (2) as a CLS. 

This results in a CLS of the form 

,

 x = uQxP αα +  whenever .0≥+ uSxR αα  (12) 

where 

∗
−

∗−= αααα
α CFEAP 1:    ∗

−
∗−= αα

α
αα

DFEBQ 1:   (13a) 

,

 . 

,

,
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I 

At this point, we invoke the following theorem on the controllability of 

LCS. 

Theorem 3. Consider the CLS (10) such that p = m and the transfer 

matrix D + C(sl – A)–1B is invertible as a rational matrix. It is completely 

controllable if, and only if, 

1. the relation 

 

=

ℜ=++
r

i

nii DMBimCMA
1

)(|  (14) 

is satisfied and 

2. the implication 
m

i

n wz ℜ∈ℜ∈ℜ∈ ,,λ  

[ ] 0zr,..,2,1iallforYw,0
DC

DMBICMA
wz ii

ii

T

i

T ==∈=
+λ−+

holds. 

Here the notation |M imN  denotes the so-called controllability subspace as-

sociated to the matrix pair (M, N), i.e. | imM N = imN + MimN +  + 

M P–1 imN where M 
pxpℜ∈  and F* denotes the dual cone associated to the non-

empty set F, i.e., F = {y | xTy ≥  for all x F∈ }. 

By using (12) and Theorem 3, one can show that the two conditions of 

these theorems are equivalent. 

Particular cases 

We can recover the two particular cases that are mentioned earlier from Theorem 

2 as follows. 

Linear systems. If we take C = 0, D = I, E = 0, and F = I as in (3), the two con-

ditions of Theorem 2 boil down to: 

1. The pair (A,B) is controllable 

2. For all λ ∈ Λ  (A, B, 0, I) ℜ⊂ , the system of inequalities 

 0≥η ,  (15a)  
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 [ ]TT ηξ 0=
−

DC

BIA λ
,          (15b) 

 [ ] 0
0

≤
I

TT ηξ ,               (15c) 

admits no nonzero solution ( ηξ , ). 

Note that (15a) and (15c) imply that η  = 0. This means that if (A,B) is 

controllable then (15b) the only solution (15b) is ξ  = 0. Hence, we recover the 

case of linear systems. 

 

Linear systems with nonnegative inputs. If we take C = 0, D = I, E = B, F = I 

as in (5), the two conditions of Theorem 2 boil down to: 

1. The pair (A,B) is controllable. 

2. For all λ ∈ Λ  (A, B, 0, I) ℜ , the system of inequalities 

 ,0≥η  (16a) 

 [ ]TT ηξ 0=
−

DC

BIA λ
, (16b) 

 [ ] 0≤
I

B
TT ηξ ,               (16c) 

admits no nonzero solution ( ηξ , ). 

Note that (16c) is already satisfied for this case. Together with (16a), the equal-

ity (16b) implies that the second condition is equivalent to the second condition 

that is presented in (6). 

Computational issues 

Theorem 2 requires that one needs to check whether a set of inequalities of the 

form (9) admits only the trivial solution. However, it might be sometimes easier to 

check whether a given set of inequalities admits a nontrivial solution. To do 

so, one can employ the following alternative theorem which is originally due 

to Tucker [13, (1.6.10)]. 

Theorem 4. Let W p r×∈ℜ  , X p s×∈ℜ , Y q r×∈ℜ , and Z q s×∈ℜ  be given ma-

trices. Exactly one of the following statements hold: 

1.  There exists a nonzero ),( ςρ  
sr +ℜ∈ such that 
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0≥ρ , 

0=+ ςρ XW , 

0≥+ ςρ ZY . 

2.  There exists a nonzero ( ηξ , )
qp+ℜ∈  such that 

0≥η , 

0≤+ ςξ TT YW , 

0=+ ςξ TT ZX . 

A direct application of the theorem to (9) gives the following alternative formula-

tion of the second condition in Theorem 2: 

2’ For all λ ∈ Λ  (A, B, C, D) ℜ , the system of inequalities 

 0≥ρ ,                 (17a) 

 [ ] 0=−+ ςλρ IBAE , (17b) 

 [ ] 0≥+ ςρ CDF . (17c) 

  

admits a nonzero solution ),( ςρ . 

Conclusions 

In this paper, we studied the controllability problem for the linear complementar-

ity class of hybrid systems. These systems are closely related to the so-called 

conewise linear systems. By exploiting this connection, together with the 

special structure of complementarity systems, we derived algebraic necessary and 

sufficient conditions for the controllability. We also showed that Kalman’s 

and Bramer’s results for linear systems can be recovered from our theorem. Our 

treatment employed a mixture of methods from both mathematical programming 

and geometric control theory. Obvious question is how one can utilize these tech-

niques in order to establish necessary and/or sufficient conditions for the (feed-

back) stabilizability problem. 
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