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Discontinuous stabilization of nonlinear systems: Quantized and
switching controls

Francesca Ceragioli and Claudio De Persis

Abstract— In this paper we consider the classical problem
of stabilizing nonlinear systems in the case the control laws
take values in a discrete set. First, we present a robust control
approach to the problem. Then, we focus on the class of dissi-
pative systems and rephrase classical results available for this
class taking into account the constraint on the control values.
In this setting, feedback laws are necessarily discontinuous and
solutions of the implemented system must be considered in some
generalized sense. The relations with the problems of quantized
and switching control are discussed.

I. INTRODUCTION

Recently, the literature about switched, quantized and
hybrid systems ([21], [11], [20], [29], [28]) has given a
new perspective to the classical problem of stabilization.
In fact, on one hand, since systems considered are more
general, there is a wider choice of control strategies (see,
e.g., [25], [26], [30]). On the other hand, the new models
often take into account some constraints which are important
for applications. In this paper the basic assumption is that
control laws take values only in a discrete set U . Since a
vector field is naturally associated to each admissible control
value, the system can be seen as a family of vector fields with
a rule which governs the switching among them. We consider
switching rules which depend only on the state variable so
that they can also be interpreted as discontinuous feedback
laws. Controlling with a discrete set of input values has been
deeply explored in the literature on quantized control. As in
[11] and [15] for linear systems, our design of the control
values follows a logarithmic law, so that the resulting control
law is simpler to implement than in other approaches ([20],
[22], [10]) and it does not introduce an exceedingly large
number of quantization levels (cf. [9] for a different approach
to stabilization of nonlinear systems using a minimal number
of “quantization levels”). On the other hand, differently from
Ishii-Francis in [15] and Cepeda-Astolfi in [6], we do not
couple our switched controller with a dwell-time logic, the
latter being an approach which turns out useful to avoid
chattering-like phenomena.

One of the aims of the paper is in the spirit of the situation
in which U needs to be chosen appropriately. We study
conditions which guarantee that, given a continuous stabi-
lizing feedback law, the celebrated logarithmic quantization
does not cancel the stabilizing effect. A first proposition
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can be viewed as a discontinuous version of the results
about stability under vanishing perturbations (e.g. [19]). A
second proposition is a nonlinear version of a result in [13]
(see also [11], [15]). Previous results for nonlinear systems
have appeared in [23]. Our contribution differs from the
latter in two ways. First, we put a special emphasis on how
the solution of the closed loop system should be intended.
Second, a connection between the coarseness of the quantizer
and a finite L2-gain problem is obtained in the robust control
setting pointed out by [13]. Further, it is shown how, trading
off global asymptotic stability against semi-global practical
stability, it is possible to overcome the limitation on the
coarseness of the quantizer by appropriate redesign of the
control law. A logarithmic quantizer requires an infinite num-
ber of quantization levels to guarantee asymptotic stability.
Nevertheless, it is possible to cope with a finite number of
quantization levels and obtain semi-global practical stability
without affecting the coarseness of the quantizer. This is
discussed as well.
As clearly pointed out in [13], in problems of stabilization
under logarithmic quantization, the uncertainty introduced
by the quantizer is a sector bounded uncertainty. An ef-
fective way to deal with stability of nonlinear systems in
the presence of sector bounded uncertainties is to rely on
the theory of dissipative systems. This simple observation
motivates the second aim of the paper, namely to show how
some classical results on feedback stabilization of nonlinear
dissipative systems can be restated in this setting. The idea
of extending stabilization results which use dissipativity to
“non-classical” systems is not new, but there is still not a
wide literature on the subject. To the best of the authors’
knowledge, the most complete paper on the subject is [14].
In this paper hybrid systems which generate left continuous
dynamical systems are considered: our approach is quite
different, since we do not assume uniqueness of solutions
of the implemented systems. Relations with the paper [24]
are discussed as well. Despite of what the robust control
approach allows to do, characterizing the coarsest quantizer
in the dissipativity framework is harder. Nevertheless, for a
special class of dissipative systems, namely the passive ones,
we give conditions under which asymptotic stabilizability
can be achieved with a finite and “minimal” number of
quantization levels.

We remark that, once the classical control laws have been
“quantized”, i.e. approximated by new control laws taking
values in U , the new feedbacks are necessarily discontinuous,
and solutions of the implemented systems must be intended
in some generalized sense. A number of different notions of
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generalized solutions have been proposed. Here we focus
on Krasowskii solutions. However, motivated by [2], [1],
[27], [4], [7], it is possible to restate the results in terms
of Carathéodory solutions, which may be more appropriate
for the problem at hand. We refer the reader to [8].

The paper is organized as follows. In Section II, the robust
control approach to the quantized stabilization of nonlinear
systems is pursued. Section III deals with the dissipativity
approach. A special case (passive systems) is dealt with in
Section IV. Conclusions are drawn in Section V.

For lack of space all the proofs have been omitted. They
can be found in an unabridged version of the paper [8].

Preliminaries We denote by | · | the norm in R
n, n ≥ 1

and, if x0 ∈ R
n, we use the notation Bε(x0) = {x ∈ R

n :
|x − x0| < ε}. Given a set S ⊂ R

n, the symbols co S,
◦
S, S

denote, respectively, the convex closure of S, i.e. the smallest
closed set containing the convex hull of S, the interior of the
set S, and its closure. We refer the reader to e.g. [2], [8] for
the definition of Krasowskii solutions and for the associated
notions of stability.
The input-affine systems we will consider in the paper is

ẋ = f(x) + g(x)u
y = h(x) ,

(1)

where x ∈ R
n is the state, u ∈ U (U ⊂ R) is the input

variable, y ∈ R is the output variable. In the following we
make the following assumptions:

• f, g : R
n → R

n are vector fields of class C1, f(0) = 0;
• h : R

n → R is of class C1, with h(0) = 0;
• U ⊂ R, 0 ∈ U , U symmetric, i.e. if u ∈ U then also

−u ∈ U .

The set U of admissible inputs is formed by all measurable
functions u : [0,+∞) → U . For each initial state x0 and
each admissible input u ∈ U , system (1) has a unique local
Krasowskii solution.

II. ROBUST CONTROL APPROACH

A. Logarithmic quantizer and global stabilizability results

An important part of the literature about quantized control
focuses on techniques which allow to approximate stabilizing
feedback by means of control laws which take values in a
properly chosen discrete set. In the context of linear systems,
the logarithmic quantizer ([11]) had a great success.
Fix u0 > 0, 0 < ρ < 1, and let ui = ρiu0, U = {0,±ui, i ∈
Z}. Let δ = (1 − ρ)/(1 + ρ) and ([11], [13])

Ψ(y) =

⎧⎪⎨
⎪⎩

ui
ui

1 + δ
< y ≤ ui

1 − δ
0 y = 0

−Ψ(−y) y < 0 .

(2)

Following [13], one can consider both state and output
feedback and, in the latter case, one can further distinguish
between the cases of quantized input or quantized mea-
surement. When the full state is measured, the controller

is u = Ψ(k(x)). On the other hand, in the presence of input
quantization, the dynamic output feedback takes the form

ξ̇ = fc(ξ, h(x)) + gc(ξ, h(x))Ψ(kc(ξ, h(x)))
u = Ψ(kc(ξ, h(x)))

(3)

whereas, in the presence of output quantization,

ξ̇ = fc(ξ) + gc(ξ)Ψ(h(x))
u = kc(ξ) + �c(ξ)Ψ(h(x)) ,

(4)

with ξ ∈ R
nc . The closed-loop system turns out to be

Ẋ = F(X ) + G(X )Ψ(K(X )) , X ∈ R
N (5)

where the actual expressions of X , N , F , G, K depend on
the feedback employed and are understood from the context.
The “nominal”, i.e. with no quantization, system writes as

Ẋ = F(X ) + G(X )K(X ) , X ∈ R
N . (6)

We now give two propositions which state sufficient
conditions for a stabilizing feedback law to be “quantizable”
by means of the logarithmic quantizer (2). As a first step
we consider Krasowskii solutions of the system in which
the quantized feedback law is implemented. More precisely,
Krasowskii solutions of (5) are absolutely continuous func-
tions which satisfy the following differential inclusion:

Ẋ ∈ F(X ) + G(X )K(Ψ(K(X ))) ⊆{ F(X ) + G(X ){1 + λδ, λ ∈ [−1, 1]}K(X ) X �= 0
0 X = 0.

In fact, let X be such that K(X ) > 0 (analogous considera-
tions can be repeated for K(X ) < 0). Since (1− δ)K(X ) ≤
Ψ(K(X )) ≤ (1 + δ)K(X ) then for all v ∈ K(Ψ(K(X ))),
(1 − δ)K(X ) ≤ v ≤ (1 + δ)K(X ), i.e. v ∈ {K(X )(1 +
λδ) , λ ∈ [−1, 1]}. Hence, given V : R

N → R, for any
X ∈ R

N and any v ∈ K(Ψ(K(X ))), we will need to
study ∇V(X )(F(X )+G(X )v). We can rewrite K(X )−v =
λδK(X ), for some λ ∈ [−1, 1], so that

∇V(X )(F(X ) + G(X )v) ≤ ∇V(X )(F(X ) + G(X )·
K(X ) − G(X )λδK(X )) .

Proposition 1: Assume that there exist V,W : R
N → R

continuous positive definite, V is of class C1 and radially
unbounded, K : R

n → R continuous such that for all X ∈
R

N ,

∇V(X )(F(X ) + G(X )K(X )) ≤ −W(X ) (7)

and assume moreover that there exists α > 0 such that for
all X ∈ R

N

α|∇V(X )G(X )K(X )| ≤ W(X ). (8)

Then for every δ < α the closed-loop system (5) is globally
asymptotically stable at the origin with respect to Krasowskii
solutions.

Remark. Proposition 1 recalls results about stability under
vanishing perturbations which are collected in [19] (Section
5.1, page 204). In fact, the term λδK(X ), λ ∈ [−1, 1], can
be seen as a discontinuous vanishing perturbation affecting
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system (6). Bearing in mind this, it is not difficult to
realize that, if (6) is exponentially stable, then system (5)
is exponentially stable as well.

If a stabilizing feedback and a Lyapunov function are known,
but condition (8) is not satisfied, one can turn to the following
proposition, which is inspired by the linear discrete time
scenario studied in [13], and shows a connection between
the coarsness of the quantizer and a finite L2-gain problem.

Proposition 2: Assume that system (6) is asymptotically
stable and there exist V : R

N → R of class C1, positive
definite and radially unbounded and γ > 0 such that for all
X ∈ R

N ,

∇V(X )(F(X ) + G(X )K(X ))

+
1

4γ2
|∇V(X )G(X )|2 + K2(X ) ≤ 0.

(9)

Then for any δ ≤ 1/γ the closed-loop system (5) is globally
asymptotically stable at the origin with respect to Krasowskii
solutions.

Remark. Roughly speaking, Proposition 2 states that, if we
know a stabilizing static or dynamic, state or output feedback
controller such that we can solve (9) for some V , then any
quantization of the control input or of the measured output by
means of a function Ψ in a sector bound whose “amplitude”
is smaller than 1/γ does not cancel the stabilizing effect of
the controller. The fulfillment of the inequality (9) implies
the existence of a controller which renders the L2-gain of an
appropriate system less than or equal to γ. Observe that, in
[13], it is shown how, for linear discrete-time systems, the
inverse of the smallest γ for which this L2-gain attenuation
problem is solvable gives the coarsest quantizer for which
(quadratic) stabilization via quantized feedback is achievable.
Related results are found in [18], Lemma 1 and Remark 4.

B. Overcoming the limitation of the quantization density

We have seen so far that, unless a solution is found to the
inequality (9), it may be difficult to asymptotically stabilize
a nonlinear system using a coarse quantization. To overcome
this limitation, we resort here to a different approach. Given
the uncertainty due to the quantization, is it possible to devise
a control law that, besides stabilizing, is able to actively
counteract the quantization error? The (positive) answer is
provided by the following statement.

Proposition 3: Assume there exist V,W : R
N → R

continuous positive definite, V of class C1 and radially
unbounded, K : R

n → R continuous such that (7) holds
for all X ∈ R

N . For any pair 0 < r < R, for any δ ∈ (0, 1),
there exist u0 ≥ 0 and a continuous function K̃ : R

N → R

such that for any Krasowskii solution ϕ of

Ẋ = F(X ) + G(X )Ψ(K̃(X )) , (10)

if ϕ(0) ∈ BR(0), then there exists T > 0 such that ϕ(t) ∈
Br(0) for all t ≥ T .

Remark. Compared with Proposition 2, the result states that,
even for those δ which are not smaller than 1/γ, it is possible

to stabilize, although not asymptotically, the system under
feedback quantization.

It is seen from the latter proposition that we must trade
off global asymptotic stability against semi-global practical
stability in order to stabilize the system without posing any
constraint on the quantization density. Nevertheless, in a
special noticeable case pointed out below, it is possible to
recover asymptotic stability.

Corollary 1: Let the hypothesis of Proposition 3 hold,
with K continuously differentiable, and additionally assume
that K renders the closed loop system locally exponentially
stable. Then, for any R > 0 and any δ ∈ (0, 1), there exists
a continuously differentiable function K̃ : R

n → R such
that the closed-loop system (10) is locally asymptotically
stable at the origin with respect to Krasowskii solutions,
and for any Krasowskii solution ϕ, ϕ(0) ∈ BR(0) implies
limt→∞ ϕ(t) = 0.

C. Semi-global practical stabilization by means of finite
valued feedback laws

The results of the previous sub-section require an infinite
number of quantization levels. Here we investigate the case
in which only a finite number of quantization levels can
be used. This problem has been deeply investigated in the
case of linear discrete-time systems in [11], [12]. When a
continuous stabilizing feedback law is known, it is relatively
easy for nonlinear continuous-time systems to obtain semi-
global practical stabilization by quantizing such feedback
law. We introduce the truncated version of (2):

Ψf (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 u0/(1 + δ) < y
ui ui/(1 + δ) < y ≤ ui/(1 − δ) ,

1 ≤ i ≤ j
0 0 ≤ y ≤ uj/(1 + δ)

−Ψ(−y) y < 0 ,

with j to determine.
Proposition 4: Assume that there exist V,W : R

N →
R continuous positive definite, V of class C1 and radially
unbounded, K : R

n → R continuous such that (7) holds for
all X ∈ R

N . For any pair 0 < r < R, for any δ ∈ (0, 1),
there exist u0 ≥ 0, j ∈ N, and a continuous function K̃ :
R

N → R such that for any Krasowskii solution ϕ of

Ẋ = F(X ) + G(X )Ψf (K̃(X )) , (11)

if ϕ(0) ∈ BR(0) then there exists T > 0 such that ϕ(t) ∈
Br(0) for all t ≥ T .

Remark. The proof is constructive and expressions for u0,
j and K̃ are given.

III. STABILIZATION OF DISSIPATIVE SYSTEMS

As the conditions of Proposition 1 and 2 may be quite
demanding, whereas Proposition 3 guarantees semi-global
practical stabilizability (but see Corollary 1 for a result
on semi-global asymptotic stabilizability), we are led to
consider special classes of control systems for which clas-
sical asymptotic stabilization results are known, and whose
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features allow for extensions in case discontinuous control
is employed. The remaining part of the paper focuses on a
special class of nonlinear single input systems (1), namely
those which are dissipative with respect to a quadratic supply
rate ([17]). The technique used in the proofs does not differ
very much from the classical one, but in the novel context
further technical assumptions are needed.

The class of dissipative systems is recalled below. In order
to deal with possibly discontinuous systems, we need to
slightly extend the notion of dissipativity.

Definition 1: System (1) is said to be dissipative, respec-
tively co-dissipative, with respect to a quadratic supply rate

q(u, y) = uRu + 2uSy + yQy (12)

with R, S, Q ∈ R, if there exists a C1, positive definite and
radially unbounded function V : R

n → R such that, for all
x ∈ R

n, for all u ∈ U , for all y = h(x),

∇V (x) · (f(x) + g(x)u) ≤ q(u, y) , (13)

respectively for all x ∈ R
n, for all v ∈ co U , for all y =

h(x),
∇V (x) · (f(x) + g(x)v) ≤ q(v, y) . (14)

Any function V which verifies either (13) or (14) is said to
be a storage function for (1).

Remark. Important classes of nonlinear systems are dissipa-
tive. If q(u, y) = uy the system is said to be passive. In the
latter case, since we have assumed 0 ∈ U , by taking u = 0
in (13), we get that for all x ∈ R

n, ∇V (x) ·f(x) ≤ 0, which
implies that the unforced system

ẋ = f(x) (15)

is Lyapunov stable. Since system (1) is affine in the input
variable u, dissipativity with respect to the supply rate
q(u, y) = uy (i.e. passivity) implies co-dissipativity (that
we may call co-passivity).

Analogously we introduce the notion of dissipativity for a
static memoryless system. Since we are interested in the
negative interconnection of such systems with (1), we restrict
to functions taking values in U .

Definition 2: A system with input ũ ∈ R and output ỹ ∈
U related by the function ỹ = ψ(ũ), ψ : R → U , is said
to be dissipative, respectively co-dissipative, with respect to
a supply rate q̃ : R × U → R, if for all ũ ∈ R, for all
ỹ = ψ(ũ), q̃(ũ, ỹ) ≥ 0, respectively for all ũ ∈ R, for all
ȳ ∈ K(ψ(ũ)), q̃(ũ, ȳ) ≥ 0. Equivalently the function ψ is
said to be dissipative, respectively co-dissipative.

Remark. An important class of static memoryless systems
are sector bounded systems. More precisely the system is
said to be sector bounded if it is dissipative with respect to

q̃(ũ, ỹ) = (ỹ − αũ)(βũ − ỹ) (16)

for some pair of real numbers β > α > 0. Note that if
ψ : R → U is dissipative with respect to the previous q̃, i.e.
it is sector bounded, then it is locally bounded, continuous at

zero, ψ(ũ) = 0 if and only if ũ = 0, and moreover it is also
co-dissipative, i.e. we may say it is also co-sector bounded.

To infer asymptotic stabilizability for dissipative systems, the
following property is relevant.

Definition 3: Let Zh = {x ∈ R
n : h(x) = 0}. System

(1) is said to be zero-state detectable if for any Carathéodory
solution ϕ : [0, +∞) → R of the system (15) such that
ϕ(t) ∈ Zh for all t ≥ 0, it holds limt→+∞ ϕ(t) = 0.

The previous notion of zero-state detectability may be
strengthened when dealing with discontinuous systems and
strong zero-state detectability may be considered. We refer
the reader to [24] for a definition of the notion.

It is not hard to characterize conditions under which
dissipative systems can be asymptotically stabilized. This
descends from a result about asymptotic stability of inter-
connected dissipative systems (see e.g. [17]), where one of
the systems is a memoryless dissipative function. The usual
assumption on the function ψ is to be sufficiently regular
(for instance, locally Lipschitz). Our first result shows that
such assumption can be removed. On the other hand, the
assumption of co-dissipativity must be adopted.

Proposition 5: Let U ⊂ R be given. Assume that

(i) system (1) is co-dissipative with respect to the quadratic
supply rate (12) and zero-state detectable;

(ii) ψ : R → U is measurable, locally bounded, continuous
at 0 with ψ(ũ) = 0 if and only if ũ = 0, and ψ is
co-dissipative with respect to the quadratic supply rate

q̃(ũ, ỹ) = ũR̃ũ + 2ỹS̃ũ + ỹQ̃ỹ (17)

(iii) there exists a > 0 such that the matrix

M =
[

Q + aR̃ −S + aS̃

−S + aS̃ R + aQ̃

]

is definite negative.

Then the closed loop system

ẋ = f(x) − g(x)ψ(h(x)) , (18)

is globally asymptotically stable at the origin with respect to
Krasowskii solutions.

Remark. One of the interests of this result lies in the
possibility of stabilizing nonlinear systems using quantized
feedback. In fact, consider a discontinuous sector-bounded
static nonlinearity ψ satisfying (16). A possible function of
this kind is the one defined in (2). It is straightforward to
determine conditions on Q,R, S under which any nonlinear
system (1) co-dissipative with respect to a supply rate (12)
in negative feedback interconnection with a sector bounded
memoryless nonlinearity is such that M < 0, and, as such,
is asymptotically stabilizable under the hypothesis of zero-
state detectability. Note that dissipative systems which satisfy
conditions as discussed above can be well unstable when
u = 0. In some cases, when it is not possible to find a > 0
such that M < 0, similar arguments can be applied: a result
analogous to the previous one can be given the form of

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 WeB04.4

786



the nonlinear discontinuous version of the celebrated circle
criterion [17]. The result is omitted and can be found in [8].

IV. STABILIZATION OF PASSIVE SYSTEMS VIA SMALL

INPUTS

The results of the previous section require continuity of ψ
at the origin. Investigating the case in which this requirement
is not met is particularly interesting if the sector bound is
such that α = 0 and β = +∞. In the case of passive systems,
we derive the following propositions in which stabilization is
obtained by means of feedback laws taking values in a finite
set U . A previous result on stabilization of passive systems
which makes use of Krasowskii solutions was proved in [24].

Proposition 6: Let U = {0, ε,−ε}, ε ∈ R, ε > 0. Assume
that system (1) is passive. Moreover assume that one of the
following condition holds:

(i) for each x ∈ Zh, x �= 0,

∇h(x) · (f(x) + λg(x)) �= 0 , (19)

for any λ ∈ [−ε, ε];
(ii) system (1) is zero-state detectable and for each x ∈

Zh, x �= 0, for which there exists λ ∈ [−ε, ε] such that

∇h(x) · (f(x) + λg(x)) = 0 , (20)

either λ = 0 or g(x) = 0;
(iii) system (1) is strongly zero-state detectable.

Then, the closed-loop system

ẋ = f(x) − εg(x)sgnh(x) (21)

is globally asymptotically stable at the origin with respect to
Krasowskii solutions.

Remark. A few observations are in order:

• To the purpose of establishing a deeper connection with
the literature in switched control, Proposition 6 (i) can
be given an alternative form. Define the vector fields

f1(x) = f(x) − εg(x) , f2(x) = f(x) + εg(x) ,

and correspondingly the system

ẋ = uf1(x) + (1 − u)f2(x) ,

with u taking values in the set {0, 1}. Suppose there
exists a C1 positive definite and radially unbounded
function V and a real number α ∈ (0, 1) such that
∇V (x)(αf1(x) + (1 − α)f2(x)) ≤ 0 for all x ∈ R

n.
Assume additionally that, for any x �= 0 such that
∇V (x)f1(x) = ∇V (x)f2(x), and for any β ∈ [0, 1],
∇(∇V (x)(f1(x)− f2(x)))(βf1(x)+ (1−β)f2(x))) �=
0. Then, there exists a static state (discontinuos) feed-
back u = k(x) with values in the set {0, 1} such that the
closed-loop system is globally asymptotically stable at
the origin with respect to Krasowskii solutions. When
both f1 and f2 are linear, the result is Theorem 1 in
[2]. The reader is referred to the latter reference for a

thorough discussion of the result within the framework
of switched control.

• The main difference of the latter proof (ii) with respect
to the one of Proposition 5 lies in guaranteeing that
the solution ϕΓ asymptotically tends to zero as t →
∞ notwithstanding the fact that it is evolving on the
discontinuity manifold h(x) = 0. To this purpose,
condition (ii) plays a fundamental role. In fact, the
second one of the following examples shows that zero-
state detectability alone is not enough in order to get
asymptotic stability of system (21).

Example. Consider the system

ẋ1 = x2

ẋ2 = −x1 + x1u
y = x1x2.

(22)

Let U = {0, ε,−ε}, with ε < 1. Condition (i) of Proposition
6 holds, then the feedback law u = k(x) = −ε sgn(x1x2)
stabilizes the system asymptotically with respect to Kra-
sowskii solutions.

Zero-state detectability does not suffice to prove stabi-
lizability of passive systems with respect to Krasowskii
solutions.

Example. Consider again system (22) with U = {0,−1, 1}.
Condition (i) of Proposition 6 does not hold on the x1-
axis. It is immediate to verify that the system is passive
with storage function V (x) = xT x/2. The system is also
zero-state detectable. As a matter of fact, let u(t) = 0 and
y(t) = 0 for all t ≥ 0. Then x1(t)x2(t) = 0 for all t ≥ 0.
Then ẋ1(t)x2(t) + x1(t)ẋ2(t) = x2

2(t) − x2
1(t) = 0 which

implies x2(t) = ±x1(t) then x1(t) = 0, x2(t) = 0 for
all t ≥ 0. In this case the feedback controller is given by
u = −sgn(x1x2). Note that K(f(·)− g(·)sgnh(·))(x1, 0) =
{(0,−(1−λ)x1), λ ∈ [−1, 1]}, then, by taking λ = 1, we get
that the points on the x1-axis are equilibrium positions for
the closed-loop system, which is not asymptotically stable.

In the example below condition (ii) of Proposition 6 applies.
Example. Consider the system

ẋ1 = x2

ẋ2 = −x1 + xk
1x�

2u

y = xk
1x�+1

2

(23)

where k, � are integers not smaller than 1. Choosing as
storage function V (x) = xT x/2, it is immediately shown
that the system is passive. It is also zero-state detectable.
We have h(x) = xk

1x�+1
2 and

∇h(x)(f(x) + λg(x)) =
kxk−1

1 x�+2
2 + (� + 1)xk

1x�
2(−x1 + xk

1x�
2λ) .

Any x �= 0 such that h(x) = 0 can be equal either to (x1, 0)
or (0, x2). In the former case, ∇h(x)(f(x)+λg(x)) = 0 for
any λ, and g(x) = 0. In the latter case, if k > 1, then again
∇h(x)(f(x)+λg(x)) = 0 for any λ, and g(x) = 0, whereas,
if k = 1, ∇h(x)(f(x) + λg(x)) = kx�+2

2 , and therefore
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Fig. 1. Switched control of the system ẋ1 = x2, ẋ2 = −x1 + x1x2u,
y = x1x2

2. Note that in this case for every initial condition there exists a
unique Krasowskii solution.

never equal to zero. We conclude that the feedback u =
−sgnxk

1x�+1
2 globally asymptotically stabilizes the system

with respect to Krasowskii solutions. Moreover, along the
two switching manifolds x1 = 0 and x2 = 0, the vector
field is continuous, and no sliding mode will arise. Finally,
we observe that in the polar coordinates (ρ, θ), the system
satisfies the equation

θ̇ = −1 − xk+1
1 x�

2

ρ2
sgnxk

1x�+1
2 ,

which, bearing in mind that V (ρ, θ) = ρ2/2 and that V is
monotone non increasing along any trajectory of the system,
yields

|θ̇ | ≤ 1 + ρk+�−1(0) .

This allows to conclude that, after a switching has occurred,
a certain amount of time (dwell time) must elapse before
a new switching can take place (see also [7]). Simulation
results are reported in Figure 1 in the case k = � = 1.

V. CONCLUSIONS

For switched and quantized systems, it is interesting to
study how the powerful stabilization techniques developed
within the robust control framework and for dissipative sys-
tems can be reinterpreted. In this paper we give a contribution
in this direction in the case of single input affine systems: the
multi input case may be analogously treated. For quantized
nonlinear control systems, state quantization deserves fur-
ther attention. Investigating conditions which guarantee that
switching occurs not too fast is also of importance.
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