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A parallel implementation of the dual-input

Max-Tree algorithm for attribute �ltering

Georgios K. Ouzounis and Michael H. F. Wilkinson

Institute of Mathematics and Computing Science University of Groningen,
The Netherlands
georgios@cs.rug.nl, m.h.f.wilkinson@rug.nl

Abstract This paper presents a concurrent implementation of a previously
developed Dual-Input Max-Tree algorithm that implements anti-
extensive attribute �lters based on second-generation connectivity.
The paralellization strategy has been recently introduced for or-
dinary Max-Trees and involves the concurrent generation and �l-
tering of several Max-Trees, one for each thread, that correspond
to di�erent segments of the input image. The algorithm uses a
Union-Find type of labelling which allows for e�cient merging of
the trees. Tests on several 3D datasets using multi-core comput-
ers showed a speed-up of 4.14 to 4.21 on 4 threads running on the
same number of cores. Maximum performance of 5.12 to 5.99 was
achieved between 32 and 64 threads on 4 cores.

Keywords: second-generation connectivity, Dual-Input Max-Tree, attribute �l-
ter, parallel computing, shared memory.

1. Introduction

Attribute �lters [2, 9] are a class of shape preserving operators. Their key
property is that they operate on image regions rather than individual pix-
els. This allows image operations without distorting objects, i.e., they either
remove or preserve objects intact, based on some pre-speci�ed property. At-
tribute �lters can be e�ciently implemented using the Max-Tree algorithm
[9], or similar tree structures [3, 12]

Image regions in mathematical morphology are characterized by some
notion of connectivity, most commonly 4- and 8-connectivity. This yields
an association between connectivity and connected operators which is ex-
tensively discussed in [1, 8, 10]. These papers also provide extensions to
these basic connectivities known as second-generation connectivity. A gen-
eral framework and algorithm is presented in [7]. The algorithm referred to
as the Dual-Input Max-Tree supports the mask-based connectivity scheme,
for which we give a concurrent implementation in this paper. It is based on
the parallel Max-Tree algorithm in [14], which builds individual Max-Trees
for image regions concurrently, and merges these trees e�ciently.
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2. Attribute �lters

Attribute �lters are based on connectivity openings. In essence, a con-
nectivity opening Γx(X) yields the connected component containing the
point x ∈ X and ∅ otherwise. A connectivity opening is characterized by
the following properties; for any two sets X, Y it is anti-extensive i.e.,
Γx(X) ⊆ X, increasing i.e., if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ), and idempotent
i.e., Γx(Γx(X)) = Γx(X). Furthermore, for all X ⊆ E, x, y ∈ E,Γx(X) and
Γy(X) are equal or disjoint.

A general approach in deriving second-generation connectivity openings
using arbitrary image operators is given in [7]. A mask-based connectivity
opening is de�ned as:

ΓMx (X) =


Γx(M) ∩X if x ∈ X ∩M , (1a)

{x} if x ∈ X \M , (1b)

∅ otherwise. (1c)

where M is an arbitrary, binary mask image.
We can de�ne a number of other connected �lters based on a connectivity

opening that work by imposing constraints on the connected components it
returns. In the case of attribute openings such constraints are commonly
expressed in the form of binary criteria which decide to accept or to reject
components based on some attribute measure.

Attribute criteria Λ are put in place by means of a trivial opening ΓΛ.
The latter yields C if Λ(C) is true, and ∅ otherwise. Furthermore, ΓΛ(∅) = ∅.
Attribute criteria are typically expressed as:

Λ(C) = Attr(C) ≥ λ, (2)

with Attr(C) some real-value attribute of C, and λ an attribute threshold.

De�nition 1. The binary attribute opening ΓΛ of a set X with an increas-
ing criterion Λ is given by:

ΓΛ(X) =
⋃
x∈X

ΓΛ(Γx(X)). (3)

Many examples are given in [2, 9]. Note that if Λ is non-increasing we
have an attribute thinning ΦΛ [2] instead. An example is the scale-invariant
non-compactness criterion of the form of (2), in which

Attr(C) = I(C)/V 5/3(C), where I(C) =
V (C)

4
+
∑
x∈C

(x− x)2, (4)
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Figure 1. Isosurface projections of a confocal laser scanning micrograph of a
pyramidal neuron and the output of the non-compactness �lter (4) based on the
26-connectivity, both at isolevel 1. The �rst image in the bottom row illustrates
the �lter's performance using closing-based connectivity and the second shows the
di�erence volumes between two attribute �lter results. Various details within the
neuron are lost using the 26-connectivity which are preserved by using a second-
generation connectivity instead. See [7] for details.

with I the trace of the moment of inertia tensor in 3D and V (C) the vol-
ume of a component C [15]. Attribute �lters can be operated on sets char-
acterized by second-generation connectivity by replacing Γx with ΓMx in-
stead. The proof of this and a more detailed analysis can be found in [7].
Furthermore, an investigation in optimizing the parameters a�ecting the
performance of these �lters is discussed in [6] An example of attribute thin-
nings using closing-based second-generation connectivity is shown in Fig-
ure 1.

3. The Max-Tree algorithm

The Max-Tree was introduced by Salembier [9] as a versatile structure for
computing anti-extensive attribute �lters on images and video sequences. It
is a rooted, unidirected tree in which the node hierarchy corresponds to the
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Figure 2. Example of input signal, peak components, Max-Tree and its encoding
in a par array, in which ⊥ denotes the overall root node, and boldface numbers
denote the level roots, i.e., they point to positions in the input with grey level
other than their own.

nesting of peak components given a gray-scale image. A peak component Ph
at level h is a connected component of the thresholded image Th(f). Each
tree node Ckh (k is the node index) contains only those pixels of a given peak
component which have gray-level h. In addition each node except for the
root, points towards its parent Ck

′

h′ with h
′ < h. The root node is de�ned

at the minimum level hmin and contains the set of pixels belonging to the
background.

The algorithm is a three-stage process in which the construction of
the tree and the computation of node attributes is independent of �lter-
ing and image restitution. During the construction stage every pixel vis-
ited contributes to the auxiliary data bu�er associated to the node it be-
longs to. Once a node is �nalized, its parent inherits these data and re-
computes its attribute. Inheritance in the case of increasing attributes such
as area/volume is a simple addition while for non-increasing attributes such
as the non-compactness measure of (4) the accumulation relies on more
delicate attribute handling functions described in [7].

4. Including union-�nd in the Max-Tree

The hierarchical queue-based algorithm given by Salembier [9] cannot be
trivially parallellized. In our approach we choose to partition the image
into Np connected disjoint regions the union of which is the entire image
domain. Each region is assigned to one of the Np processors for which a
separate tree is constructed. The non-trivial part of this approach is the
merging of the resulting trees. It is a process that requires (i) the merging of
the peak components P ih, (ii) the updating of the parent relationships, and
(iii) the merging of the attributes of the peak components. Parallellizing
the �ltering stage is trivial.

Previously, Najman et al. provided an algorithm to compute the Max-
Tree using union-�nd [5]. Wilkinson et al. [14] use a di�erent approach,
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using Salembier et al.'s original algorithm [9] and changing the way the
labels indicating node-membership of each pixel were chosen. Instead of
using arbitrary numbers, Wilkinson et al. use the index of the �rst pixel of
a node as the label. This means that each pixel of a node points to this
�canonical element�, which is referred to as a level root. The level root of
a node itself is given the level root of its parent node as its index. These
labels (or actually parent pointers in union-�nd terms) are stored in an array
denoted par. Thus, if f(par[x]) 6= f(x), x is a level root. In the algorithm in
[14], after building a tree using a single thread, each par[x] points directly to
a level root: its own if x is not a level root, or to the level root of the parent
node. An example is shown in Figure 2. Once the results of multiple threads
are merged, this is no longer true. Therefore, we implement a function
levroot to �nd the level root of any pixel. If levroot(x) = levroot(y)
x and y belong to the same node. The implementation of levroot also
includes path compression as in [11].

5. The dual-input mode

As in the sequential case, the structure of the Max-Tree is dictated by the
peak components of the mask volume m rather than the original volume f .
An example is given in Figure 3. The dual-input version of the algorithm
in [14] requires a number dummy nodes which assist in the merging of the
di�erent trees once all the threads return. To do this we double the size of
the par array, and place the volumes f and m side by side in a single block
of memory. In this way f(p+ volsize) = m(p) for all voxels p in the volume
domain. For all p for which f(p) 6= m(p) par(p + volsize) will contain a
valid reference to a level root.

The �ooding function proceeds as described in [14] only we modify the
way auxiliary data are handled and add a number of intensity mismatch
checks to conform with the dual-input algorithm. After reaching a given
level lev(=current level in mask m) and before retrieving any of the pixels
available in the queue for that level, we �rst initialize the auxiliary data
variable attr. It is set to the attribute count of the node corresponding to
the lero[lev]. If an attribute count from a node at higher level is inherited
through parameter thisattr, we update attr. A while loop then retrieves
sequentially the members of the queue and for each one performs the mis-
match check. If f(p) 6= m(p) for a pixel p this signals the case in which p
belongs to the current active node at f(p) through the connected component
at levelm(p), i.e., it de�nes a peak component at level f(p) to which p in the
mask volume is connected. In terms of our parallelizing strategy this means
that it already de�nes a dummy node at m(p) o�set by volsize. We must
then set par(p + volsize) to lero[lev]. We must also create a new node at
level f(p) if none exists, and add p to the node at level f(p). If f(p) > m(p)
p is a singleton (according to (1)). This requires �nalizing the node which
is done by setting its parent to lero[lev], setting its auxiliary data to the
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Figure 3. Dual-Input Max-Tree of 1D signal f using mask m: The attributes of
C0

2 and C1
2 are merged to C0

2 since all pixels at level h = 2 are clustered to a single
peak component. Furthermore C1

1 breaks up to a number of singleton nodes equal
to the number of pixels in P 1

f1. Bottom row: partial Max-Trees of segments of
signal indicated by the dashed lines; merger of partial Max-Trees at level of f at
the boundaries yields standard Max-Tree in this case; merging at level of m at
the boundary yields correct result.

unit measure and clearing lero[f(p)]. Details are given in Algorithm 1.
Otherwise, if f(p) = m(p), it is necessary to check if the lero[lev] ≥

volsize, i.e., if it is a dummy node. If this is the case, we update par[lero[lev]]
to p, and then set lero[lev] to p, e�ectively setting the level root to a non-
dummy node. The auxiliary data stored in attr are then updated.

For every unprocessed neighbour q of p we determine where to create
a new node. If f(q) = m(q) the new node is q, otherwise q + volsize. If
lero[m(q)] exists, we set par[newnode] to lero[m(q)], otherwise lero[m(q)]
is set to par[newnode]. If m(q) ≥ lev we then enter into the recursion as in
[9, 14].

6. Concurrent merging of Max-Trees

As in regular connectivities, we must now connect the Np Max-Trees. In
[14], this is done by inspecting the pixels along the boundary between the
parts, and performing the connect function on adjacent pixels on either
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Algorithm 1 The �ooding function of the concurrent Dual-Input Max-Tree
algorithm.

procedure LocalTreeFlood(threadno, lero, lev, thisattr) =
Initialize auxilliary attribute data attr and merge with thisattr
while (QueueNotEmpty(set, lev)) do

retrieve p from queue at level lev
if f(p) 6= lev then

par[p+ volsize] := lero[lev];
if node at level f(p) exists then

add p to it; par[p] := lero[f(p)];
else

create node at level f(p); lero[f(p)] := p;
end;
if f(p) > lev then (* singleton with parent at lev *)

�nalize node; add p to attr; par[p] := lero[lev];
end;

else (* No mismatch *)
if lero[lev] ≥ volsize then (* First pixel at level lev *)

par[lero[lev]] := p; lero[lev] := p;
end;
add p to attr;

end; (* No mismatch *)
end; (* while *)
for all neighbours q of p do

if not processed[q] then
processed[q] := true; mq := m(q);
initialize childattr to empty;
if m(q) 6= f(q) then newnode := q + volsize;
else newnode := q; end;
if lero[m(q)] does not exist then lero[m(q)] := newnode;
else par[newnode] := lero[m(q)]; end;
while mq > lev do

mq := LocalTreeFlood(threadno, lero,mq, childattr);
end;
add any data in childattr to attr;

end;
end; (* for *)
detect parent of lero[lev]
add auxilliary data in attr to auxilliary data of lero[lev]
set thisattr to attribute data of lero[lev]
return level of parent of lero[lev]

end LocalTreeFlood.
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Algorithm 2 Concurrent construction and �ltering of the Max-Trees,
thread p.

process ccaf(p)
build dual input Max-Tree Tree(p) for segment belonging to p
var i := 1 , q := p ;
while p+ i < K ∧ q mod 2 = 0 do

wait to glue with right-hand neighbor ;
for all edges (x, y) between Tree(p) and Tree(p+ i) do

if f(x) 6= m(x) then x := x+ volsize;
if f(y) 6= m(y) then y := y + volsize;
connect(x, y) ;

end ;
i := 2 ∗ i ; q := q/2 ;

end ;
if p = 0 then

release the waiting threads
else

signal left-hand neighbor ;
wait for thread 0

end ;
filter(p, lambda) ;

end ccaf.

side of the boundary. This function is shown in Algorithm 3. A proof of the
correctness and a detailed discussion are given in [14]. The key reason why
this works e�ciently, is that merging two nodes containing x and y, with
f(x) = f(y) reduces to the assignment:

par[levroot(y)] := levroot(x). (5)

This is easily veri�ed as follows: par[levroot(y)] now points to a pixel with
the same grey level because f(x) = f(y), and levroot(x) = levroot(y)
after assignment (5), so that x and y belong to the same node.

Function connect is called by the process concurrent construction and
�lter or ccaf(see Algorithm 2), which corresponds to one of the threads of
the concurrent merging algorithm. Each thread p �rst builds a Max-Tree
for its own sub-domain Vp.

Process ccaf is called after initializing par, the auxiliary data functions
and preparing the thread data. It starts o� by �rst initializing the level root
array lero and hierarchical queue for all gray-levels and �nding the minimum
voxel values in f and m. Having got the starting voxel of minimum grey
value in m it calls LocalTreeFlood. If the minimum values in f and m
di�er, some post-processing as explained in [7] is required.

After this, the sub-domains are merged by means of a binary tree in
which thread p accepts all sub-domains Vp+i with p+i < Np and 0 ≤ i < 2a,
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Algorithm 3 Merging two Max-Trees.

procedure connect(x, y) =
Initialize auxilliary attribute data temp1 to empty
x := levroot(x) ; y := levroot(y) ;
if f(y) > f(x) then swap(x, y) end
while x 6= y ∧ y 6= ⊥ do

z := levroot(par[x])
if z 6= ⊥ ∧ f(z) ≥ f(y) then

Add data in temp1 to attribute data of x ;
x := z ;

else
temp2 := sum of attribute data of x and temp1 ;
temp1 := attribute data of x ;
attribute data of x := temp2 ;
par[x] := y ; x := y ; y := z ;

end
end
if y = ⊥ then (* root of one tree reached *)

while x 6= ⊥ do (* process remaining ancestors of x *)
Add data in temp1 to attribute data of x ;
x := levroot(par[x]) ;

end
end

end connect.

where 2a is the largest power of 2 that divides p. An example of a binary
tree for Np = 8 is shown in Figure 4. Note that odd-numbered threads
accept no sub-domains. A thread that needs to accept the domain of its
right-hand neighbor, has to wait until the neighbor has completed its Max-
Tree computation. Because the �nal combination is computed by thread
0, all other threads must wait for thread 0 before they can resume their
computation for the �ltering phase. This synchronization is realized by
means of two arrays of Np − 1 binary semaphores. The �ltering phase is
also fully concurrent, and is identical to that described in [14].

For second-generation connectivity, the di�erence lies not in the imple-
mentation of connect, but in which pixels need to be merged. Suppose x
and y are adjacent voxels which lie on di�erent sides of the boundary in-
spected by ccaf. If f(x) = m(x) the node in the Max-Tree at level f(x) is
the correct one, as before, otherwise we should start merging at level m(x),
as shown in Figure 3. At the left-hand segment boundary in this �gure,
merging at level f(x) ignores the fact that P 0

f2 and P 1
f2 are clustered to-

gether in node C0
2 using connectivity based on mask m. By contrast, at the

right-hand segment boundary, merging from level f(x) would merge nodes
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Figure 5. Speed-up for volume openings (solid) and non-compactness thinnings
(dashed) as a function of number of threads. The left graph shows the initial,
slightly better than linear (dotted-line) speed-up as we move from 1 to 4 threads.
The right-hand graph also shows the behaviour up to 64 threads.

C2
1 and C3

1 , which are considered singletons in the mask-based connectivity.
In the scheme outlined above, this means that we start the merger from x
if f(x) = m(x), and from x + volsize, otherwise. The same holds for y.
Thus the only changes to the ccaf function when compared to [14] lies in
the statements immediately preceding the call to connect.

7. Performance testing and complexity

The above algorithm was implemented in C for the general class of anti-
extensive attribute �lters. Wall-clock run times for numbers of threads equal
to 1, 2, 4, 8, 16, 32, and 64 for for two di�erent attributes were determined.
The attributes chosen were volume (yielding an attribute opening) and the
non-compactness measure (4) [15] yielding an attribute thinning.

Timings were performed on an AMD dual-core, Opteron-based machine.
This machine has two dual-core Opteron 280 processors at 2.4 GHz, giving


