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Abstract

In applications such as architecture, early design sketches often mislead the target audience [SSRL96]. Approxi-
mate human-drawn sketches are typically accepted as a better way of demonstrating fundamental design concepts.
To this end we have designed an algorithm that creates lines that perceptually resemble human-drawn lines. Our
algorithm works directly with input point data and physically based mathematical model of human arm movement.
Further, the algorithm does not rely on a database of human drawn lines, nor does it require any input other
than the end points of the lines to generate a line of arbitrary length. The algorithm will generate any number of
aesthetically pleasing and natural looking lines, where each one is unique. The algorithm was designed by con-
ducting various user studies on human line sketches, and analyzing the lines to produce basic heuristics. We found
that an observational analysis of human lines made a bigger impact on the algorithm than a statistical analysis.
A further study has shown that the algorithm produces lines that are perceptually indistinguishable from straight
hand-drawn pencil lines.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous—Non-
photorealistic rendering, natural media simulation, pencil rendering, dynamic optimization yielding voluntary arm
movement trajectory, image processing.

1. Introduction

Non-photorealistic Rendering (NPR) can convey informa-
tion more effectively by omitting extraneous detail (abstrac-
tion), by focusing the viewer’s attention on relevant features
(emphasis), and by clarifying, simplifying, and disambiguat-
ing shape. In fact, a distinguishing feature of NPR is the con-
cept of controlling and displaying detail in an image to en-
hance communication. The control of image detail is often
combined with stylization to evoke the perception of com-
plexity in an image without its explicit representation. NPR
imagery allows the:

• communication of uncertainty—precisely rendered com-
puter graphics imply an exactness and perfection that may
overstate the fidelity of a simulation or representation; and

• communication of abstract ideas—simple line drawings
such as diagrams used in textbooks can communicate ab-
stract ideas in ways that a photograph cannot.

While there is no precise metric to differentiate between
hand-drawn and computer-generated line drawings (some at-
tempts have been made for specific techniques [MIA∗08]),

humans can typically distinguish with ease the difference by
a shear glance. For pencil lines this may be due to changes
in grey levels, a variation not proportional to the path, or a
change in the path orientation. Such variations make it diffi-
cult to produce aesthetically pleasing, natural looking results
that mimic human-drawn lines.

Our method is based upon observation and statistical anal-
ysis of hand-drawn lines in conjunction with a model of
human arm movement to create unique lines—given only
a start and an end point without the use of a large sample
line database. In addition, our method does not require the
setting of user-determined parameters (patterns of deforma-
tion, pressure, density, etc.). The only parameter users are re-
quired to select through the system interface is one of eight
commonly used pencil types. Our method then formulates
and reproduces a curvature and texture that conforms and
mimics real human-drawn pencil lines.

The goal of this research is to capture the essence of a sin-
gle stroke, drawn by humans as straight pencil lines of arbi-
trary length, and encode it into an algorithm. In turn, an ap-
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plication may use this algorithm to produce lines that resem-
ble human-drawn lines (e. g., [Bre65]). Ideally, such an algo-
rithm would reproduce the details carried by a human-drawn
pencil line, without the need of storage libraries or user input
to specify line attributes (as is the case, e. g., with [SB00]).
Since the lines do not have set widths, colors, or particular
textures, our proposed method will approximately reproduce
the pencil details within the stroke it follows. In addition,
such a line should not have repeated sections so that each
line is unique.

We divide our algorithm for generating a human-like pen-
cil lines into two parts: (a) synthesizing the path that cor-
responds to human arm movement and (b) synthesizing the
pencil texture applied along the path, inspired by the textures
produced by real pencils. Based on this general approach,
our algorithm:

• produces high quality simulations of hand-drawn lines;

• easily incorporates into existing applications;

• produces lines of arbitrary length;

• does not require a library of sample lines (only a grey level
dynamic range array and a co-occurrence matrix); and

• creates unique lines for every set of input point pairs.

Our contribution is a high quality pencil media line reproduc-
tion agent for creating aesthetically pleasing lines that mimic
human-drawn lines. For this purpose, we use methods of im-
age synthesis and a model of human arm movement for its
replication. Our method avoids computationally expensive
techniques and large storage space while continuously pro-
ducing new, unique lines.

2. Previous Work

Our work draws from research on interactive non-
photorealistic rendering (NPR) methods that approximate
artistic hand-drawn images or paintings. In particular, we
draw from NPR approaches for generating human line draw-
ings and the simulation of graphite pencil texture, texture
synthesis, and literature on the trajectory of human arm
movement while drawing.

2.1. Human Line Drawings

Characteristics of lines in sketched and hand-drawn images
have been studied closely in the field of NPR. Many algo-
rithms captured style characteristics and applied multiple
parameters (such as length, width, pressure, etc.). Previous
methods [HL94, SSSS98, SS02] used style parameters and
distorted a textured predefined piecewise polynomial curve
or polygon path to create a stylized line. Other approaches
reproduced and synthesized similar styles from examples
lines [JEGPO02, KMM∗02, FTP03, FS94, SD04, Bru06].

Our method differs from example-based methods in that we

do not require example lines to generate unique paths and
textures. For each pencil type there exists two pieces of
information in the algorithm, a dynamic range, and a co-
occurrence matrix. We simply require vector endpoints to
produce lines. Our aim is not to generate varying style from
a single given style as seen in example-based methods, but
to develop an algorithm that generates lines that vary in path
orientation and texture synthesis mimicking observed real
human movement and graphite pencil deposits noticed from
straight line drawings on paper.

Our work is inspired by methods that simulated pencils as
a medium, specifically the work by Sousa and Buchanan
[SB99, SB00], who contributed a low-level simulation of
graphite pencils on a paper medium. They designed a sys-
tem to simulate graphite pencil on paper using microscopic
observations [SB99]. Their work focused on generating fill
strokes, using it for hatching purposes to reproduce artistic
drawings. Our method differs because our lines are not re-
stricted to short strokes and can vary greatly in length with
no repeating segments. We also base our work on interac-
tive pen-and-ink illustration by Salisbury et al. [SABS94],
who described a level-of-detail system that interactively pro-
duces multiples of strokes to avoid tediously placing them
manually. Our algorithm for drawing lines could easily be
incorporated into the above approaches, adding the benefit
of a model of human arm movement and a simple perceptual
simulation model for graphite pencils without the require-
ment of a library of lines to copy, paste, and reshape.

2.2. Texture Synthesis

We were also influenced by a texture synthesis method based
upon sequential synthesis [GM85] that preserves the sec-
ond order statistics of the natural texture into the newly
synthesized texture. Gagalowicz and Ma [GM85] also pro-
vided experimental evidence that the visual system is only
sensitive to second-order spatial averages of a given tex-
ture field. More recent texture synthesis research renames
second order statistics (spatial averages) using the term co-
occurrence (CC) models or grey level co-occurrence (GLC)
models [CRT01]. We use the GLC model, which is defined
as the proportion of second order probability statistics of
grey levels pairs that differ by a delta in the texture.

Applying co-occurrence matrices to synthesize texture have
been shown to be extremely efficient in creating artificial
textures that are hard to discriminate from in real textures
[JB87]; the amount of data necessary to achieve the synthesis
is very small and the texture can be generated easily to fit all
kinds of surface shapes and sizes. Using this method allows
us to control the second-order spatial averages of a given tex-
ture, since the synthesis is achieved directly from them with-
out the computation of higher order statistics [GM85]. Also,
texture similarity techniques using GLC probability distribu-
tion have shown to have high correlation with human percep-
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tion of textures (the images appear to be visually similar to
the original natural images).

Copeland et al. [CRT01] used a texture similarity metric
based on the texture field of a model texture. The multi-
resolution version of their algorithm, “Spin Flip”, showed
satisfactory performance and resulted in pleasing outputs.

Zalesny and Gool [ZG01] introduced a similar texture syn-
thesis method based on simulation of image intensity statis-
tics. They collect the first order statistics (an intensity his-
togram), then extract the co-occurrence matrix (CCM) using
cliques, i. e.pair of points (a head and a tail). Zalesny and
Gool apply an additional criteria for classifying groups of
cliques, using the CCM to store the distribution of intensity
differences between the heads and tails pixels for a given ori-
entation.We found this latter criteria was not necessary for
our approach. Our CCM is calculated by summing all the
joint probabilities of intensities for a given pixel neighbor-
hood into their relative position in the CCM.

2.3. Dynamic Optimization of Human Arm Movement

In order to produce a good simulation of a human drawn
lines we have also examined studies of the coordination
of voluntary human arm movements. Human motor pro-
duction has been analyzed, modeled and documented for
well over a century [Woo99,Ber67,Ada71,Sch75]. Over the
past few decades, theories of the functions of the Central
Nervous System (CNS) with respect to human arm move-
ment lead to the hypothesis of various mathematical mod-
els [FH85, UKS89, BMIG91, MAJ91, KG92, CVGB97].

According to these CNS theories, arm movements are pro-
duced in either one of two ways:

• Natural movements maintain a constant ratio of angular
velocities of joints to bring reduction in control complex-
ity and constrain the degrees of freedom.

• Hand trajectories are in extra-corporal space, joint rota-
tions and additional non-physical parameters are tailored
to produce the desired or intended hand movements.

Plamondon’s model [Pla95] describes a synergy of agonist
and antagonist neuromuscular systems involved in the pro-
duction of arm movements. He developed his theory by mod-
eling the impulse responses to neuromuscular activities; His
system produces a close proximity bell-shaped velocity pro-
file to represent an entire point-to-point movement.

The minimum jerk model introduced by Flash and Hogan
[FH85]formulated an objective function to solve a dynamic
optimization problem for measuring the performance of any-
possible movement as the square of the jerk (defined as the
change rate in acceleration) of the hand position integrated
over an entire movement from start to end positions. Flash
and Hogan [FH85] showed that the unique trajectory of pla-
nar, multi-joint arm movements that yields the best perfor-

mance was in agreement with experimental data. Their anal-
ysis was based solely on the kinematics of movement and
independent from the dynamics of the musculoskeletal sys-
tem as in the work done by Plamondon [Pla95]. We adopt the
Flash and Hogan model because the model represents human
arm trajectory in a planar field, similar to the movement of a
human hand guided pencil across a piece of paper.

3. Algorithm

There are two parts to this work. The first constructs an algo-
rithm to generate a realistic path. The second synthesizes a
suitable texture to mimic a human line using a specific pencil.
Our technique analyzes both the path and the stroke texture.

3.1. The Path

One of the hardest parts of replicating a human line draw-
ing is creating the natural variation in the path of the line.
We construct a path that conforms to a human arm trajec-
tory using the method described by Flash and Hogan [FH85].
This method provides “the smoothest motion to bring the
hand from an initial position to the final position in a given
time” [FH85]. Our goal is to simulate a hand-drawn line only
given two points. The Flash and Hogan model produces tra-
jectories that (1) are invariant under translation and rotation
and (2) whose shape does not change with amplitude or dura-
tion of the movement. All of these characteristics are based
on observations of low frequency movements of human sub-
jects. No high frequency movements were observed or im-
plemented in the Flash and Hogan model. Our work adopts
the same assumptions.

The Flash and Hogan mathematical model leads to a fast and
interactive line path algorithm by providing a realistic over-
all velocity and acceleration profile and trajectory.

Our lines are defined by Equation 1, a fifth order polynomial:

x(t) = x0 +(x0− x f )(15τ
4−6τ

5−10τ
3)

y(t) = y0 +(y0− y f )(15τ
4−6τ

5−10τ
3) (1)

where,

τ =
t
t f

, t ∈ [0,2]

in which x0,y0 are the initial hand position coordinates at
time increment t, and x f ,y f are the final hand positions at t =
t f . The value of t varies within [0,2] from the start position t0
to the end position t f inal . We found empirically that t f inal = 2
provides satisfactory results, regardless of line length.

Line orientation is not present in the mathematical model,
but we conducted user studies that indicate the disparity
of the line orientation was not noticed by participants and
did not effect the classification of real versus computer-
generated drawings.
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(a) Short line.

(b) Medium Line.

(c) Long line.

Figure 1: Generated lines and control point positions for
varying lengths. For (a) ∆t = 0.5, for (b) ∆t = 0.3 and for
(c) ∆t = 0.2. The red dots represent the control point.

The points resulting from the polynomial of Equation 1 pro-
vide control points for a Catmull-Rom interpolating spline
[SAG∗05]. The number of points (defined by the time step,
∆t) depend on the length of the line. Experimental evidence
[FH85] shows that short hand drawn lines are perceptually
closer to straight lines and longer lines have more variation.
We conducted experiments to find reasonable values for ∆t
and provide the results in Table 1. Figure 1 shows the posi-
tions of the control points for three lines of varying length
using each of the prescribed values for ∆t.

We conducted a pilot study in which the participants were
seated upright in front of a horizontal table with no con-
straints. Each participant drew a number of pencil lines be-
tween different orientation pairs of points.

To introduce a variation across the line, we include a devia-
tion parameter based on observations of how humans draw
lines. The data we collected showed considerably more vari-
ation from the centre line that wasn’t accounted for with the
variation of trajectories assumed by Equation 1.

To represent this variation, we introduce a deviational param-
eter we call squiggle as an extension to the Flash and Hogan
model. The additional term is necessary to provide suffi-
cient variation in the line paths based on our observations
of human drawn drawings. Experiments were conducted to
validate this choice, Section 5 provides details on these ex-
periments. We define squiggle as a variable, D, for control-
ling the deviation normal to the Catmull-Rom spline at each
of the lines control points also similar to methods used by
Strothotte et al. [SS02]. The magnitude of the squiggle pa-
rameter controls the magnitude of random displacements ap-
plied to the Catmull-Rom spline controls points and there-
fore strongly influences the appearance of the path.

The deviational value is applied approximately normal to the
Catmull-Rom spline at each of its control points. The vari-
able D varies randomly in order to provide variation along
the path; we empirically found a range [-5,+5] worked for
our lines regardless of length and produces independent dis-
placement values for each control point.

approx. Line Length in pixels Time step ∆t
[0,200] 0.5

(200,400] 0.3
> 400 0.2

Table 1: Empirical Values for the time step ∆t.

3.2. The Texture

For each pencil type, we conduct a one time analysis of ex-
ample lines in order to create a statistical profile, encoded in
a histogram and CCM. Our algorithm creates the line texture
after the natural-appearing path is created by initializing the
stroke with random values, applying a bell-shaped fall-off of
intensities from beginning to end of the stroke, applying the
CCM for the pencil type, and then applying a Gaussian filter.

First, we obtain texture for simulating hand drawn lines by
scanning and analyzing the statistical properties of example
lines drawn by human participants using a wide range of pen-
cils of the following types: 2H, H, HB, F, B, 3B, 6B, 8B (ex-
amples are shown in Table 2) on plain, 100% recycled, white
paper. The following steps are taken to correctly capture the
textural properties of the model texture:

• First, we determine the range of grey levels for pixels
along the approximate centre of the pencil line (non-
repeating Catmull-Rom control points) and record the his-
togram for the range [minmid ,maxmid ].

• Next, we determine the histogram of the grey levels for
the line image, assuming that white pixels surround each
line segment; since very few white pixels appear inside
the line image, we do not consider white in the his-
togram. The histogram records intensities in the range
[minrange,maxrange].

• Finally, we compute the co-occurrence matrix for the line
image.

To determine the co-occurrence matrix (CCM), each image
scan is rotated so that the line is approximately vertical. The
co-occurrence matrix is updated by examining each pixel
(p,q) with value i ∈ [0,255] and it’s immediate neighbor
in the positive y-direction, (p,q + 1) with value j ∈ [0,255].
The values (i, j) are indices to increment the appropriate cell
of the co-occurrence matrix C defined over an n x m image
I, parameterized by an offset (∆x, ∆y) as in Equation 2:

C(i, j) =
n

∑
p=1

m

∑
p=1


1 i f I(p,q) = i and

I(p+∆x,q+∆y) = j
0 otherwise

(2)

We use the dynamic range and the co-occurrence of a target
pencil texture to synthesize new the texture. We formulate
a grey value distribution technique according to statistical
observations that indicate, for most pencil lines, the distribu-
tion of grey pixel values starts at a dark value in the middle
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of the line and falls off according to the bell-shaped curve in
the direction normal to the line, see Figure 2.

Cross Section of a 6B Pencil Line
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Figure 2: The approximately bell-shaped curve showing in-
tensity values of cross sections of a lines drawn with a 6B
pencil.

We first seed the line with initial random values (using the
pre-selected pencil type) and then apply the co-occurrence
matrix. According to the bell-shaped fall off we observed,
we distribute the grey levels of the centre pixels of the
generated spline, replicating the histogram in the range
[minmid ,maxmid ]. We determine an approximate direction
normal to the line and the pixels along this direction to ei-
ther side of the centre pixel are set to values randomly cho-
sen in the range [minrange,maxmid ] and pixels further away
are given a lighter intensity in the range [maxmid ,maxrange],
as illustrated in the texture sample of Figure 3.

Figure 3: Initial synthesized line texture and partial close-
up view of the line texture. Placing the grey dynamic range
values across the width and length of the path uniformly.

Next, we apply the CCM by comparing a 3 × 3 neighborhood
of pixels. If the combination of pixel intensities does not ex-
ist in the CCM, each pixel’s grey value is replaced with an ex-
isting neighboring value from the co-occurrence matrix. We
repeat the co-occurrence process over the entire line multiple
times until the amount of pixel changes reach a minimum, in-
dicating how well the synthesized co-occurrence matrix rep-
resents the model CCM (see Figure 4).

Once complete, a single-pass Gaussian filter is applied to
the generated lines to reduce tone differences and filter out
aliasing effects (Figure 5).

Figure 4: Line and partial close-up view of the line tex-
ture after CCM step. The values of the pixels are analyzed
and pairs of pixels are compared to their indices in the co-
occurrence matrix and replaced with an appropriate value if
their pair does not exist.

Figure 5: Final pencil line and close-up view of the line after
a 3 × 3 single-pass Gaussian filter is applied.

4. Results

Our Human Line Algorithm (HLA) is implemented in C++
and runs on a 2.00 GHz Intel dual core processor worksta-
tion without any additional hardware optimization. We can
interactively draw lines while the system synthesizes the new
path and texture. All line drawing figures in this paper are
drawn with our system when “generated by HLA” is indi-
cated. Table 2 shows a comparison of hand-drawn lines with
lines that were synthesized by our system.

The following is a pseudo-code description of the HLA algo-
rithm, to enable easy application of the method:

1. initialize the CCM and histogram to the user-selected pen-
cil type,

2. read in endpoints, and
3. if the number of endpoints equals 2 then
• find the control points of the line between the two

specified end points,
• distribute random grey values across & along the line,
• use the CCM to replace random grey values along the

line in 3 × 3 neighbourhood with existing co-located
neighbour values in the CCM, and

• Gaussian-blur the line.

5. Verification

In order to evaluate our technique, we designed a study using
eighteen images; nine of which were scanned human-made
drawings, and the other nine were exact replications of the
scanned images, made using our line algorithm. The aim of
this study was to evaluate whether our generated lines would
pass for real human-drawn lines. Eleven participants took
part in our study, all graduate and undergraduate students in
the department of Computer Science at the University of Vic-
toria. Each participant spent three seconds viewing each im-
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Line Real human “HLA”-generated
type line lines

H

HB

B

3B

6B

8B

Table 2: Texture only line examples: comparison of hand-
drawn lines with synthesized lines (squiggle, D parameter,
set to zero).

age and then selecting true if they thought the drawing was
hand-made, false if they thought the drawing was computer-
generated. The timing was chosen empirically, such that par-
ticipants had enough time to compare drawings without hav-
ing too much time to over-analyzing their decision.

Overall, participants made mistakes in 42% of the decisions.
Out of these, in 69.5% of the decisions people selected im-
ages to be of hand-drawn type (when they were actually
computer-generated) and in 30.5% of the wrong choices par-
ticipant selected images to be of computer-generated type
(when they were actually real). A paired T-test showed a
significant difference between computer-generated lines mis-
taken for real hand-drawn lines and the real hand drawn
lines mistaken for computer-generated lines (paired t(11) =
2.849, p < .05). Our experimental results shows that the
HLA generated line drawings were good enough to pass for
hand-drawn lines.

6. Applications

Our technique is suitable for several different domains. Our
line generation incorporates easily into existing graphics pro-
grams that produce line end points, and are editable by artists
or additional algorithms. Our technique only requires the se-
lection of a pencil type and specification of the end points of
each line. For example, Figure 6 show a Gosper’s Flowsnake
[Gar76] space filling curves rendered with human like lines
using the B pencil setting. The synthesized lines are applied
to each of the short individual line segments of each curve.
The drawings could be improved by detecting co-linear seg-
ments and processing them as a longer line to better emulate
a humans artist.

In Figure 7 hatching lines are generated and replaced with
synthesized lines; in this way we can simulate the effect of
filling a part of the plane with unique human-like lines.

Figure 6: Flowsnake space filling curve using a B pencil
generated by HLA.

Figure 7: Line hatching generated by HLA (6B pencil).

In Figure 8 a hand drawn illustration is used to extract vector
lines, then used as input to the “HLA” algorithm resulting in
Figure 8(c). We note that our result is quite different than the
artist’s lines, but point out that our result in Figure 8(c) has
the appearance of being hand-drawn.

In Figure 9 an architectural model has been rendered using
our lines. This example shows the variability of the line paths
and provides the appearance of an hand-made image.

Finally, by capturing (e. g., through tablets) or tracing the
lines drawn by artists we can apply the pencil style to those
drawings as well.

7. Conclusion and Future Work

The main contribution of this work is to provide a sys-
tem that will serve as a high quality pencil line reproduc-
tion agent. Our system creates aesthetically pleasing human
drawn pencil lines by using an image synthesis method
and human arm movement replication model. The algorithm
avoids computationally expensive techniques and large stor-
age space. More investigation is needed to mimic the appear-
ance of variable pressure along the lines. Choosing param-
eters that will make the lines appear to have more charac-
ter will definitely increase the aesthetic property of the lines.
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(a) Hand Drawn Illustration. (b) Input Vector Lines.

(c) Result generated by HLA.

Figure 8: Our method takes as input lines specified only
via their start and end points, such as the vector line draw-
ing in (b), and produces a line drawing that mimics a real
hand drawn graphite pencil drawing (a) by modeling human
arm trajectory and a statistical model of graphite texture to
produce unique, aesthetically pleasing and natural looking
lines, without the need for databases of example strokes.

Similar approaches to the work documented here may work
for drawing curved lines (Figure 10), but further investiga-
tion would be necessary to correctly mimic the resulting
graphite textures on curved paths. Also more work can be
done to mimic human hatching by conducting similar studies
and observing the relationship between arm and wrist move-
ment when producing shorter strokes. Figure 7 demonstrates
our first attempt to consider hatching as an application, more
experiments and analysis are needed to present accurate hu-
man hatching techniques.
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