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We consider planar rotors �XY spins� in Zd, starting from an initial Gibbs measure
and evolving with infinite-temperature stochastic �diffusive� dynamics. At interme-
diate times, if the system starts at low temperature, Gibbsianness can be lost. Due
to the influence of the external initial field, Gibbsianness can be recovered after
large finite times. We prove some results supporting this picture. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2989145�

I. INTRODUCTION

Time evolution of spin systems with different initial Gibbs measures and different dynamics
shows various interesting features. In particular, in the transient regime, the structure of the
evolved measure can have various properties, which may change in time. For example, in Refs. 7,
9, 14, 15, and 3 the question was investigated whether the time-evolved measure is Gibbsian or
not. Results about conservation, loss, and recovery of the Gibbs property could be obtained. Ising
spin systems were considered in Ref. 7 and different types of unbounded spin systems in Refs. 3
and 15. In Refs. 9 and 14 compact continuous spin systems are investigated. In more physical
terms, the question is whether one can or cannot associate an effective temperature �=inverse
interaction norm� with the system when it is in this nonequilibrium situation.19

Variations in both the initial and the dynamical temperature �the temperature of the Gibbs
measure�s� to which the system will converge, which is a property of the dynamics� have influence
on the existence �or the absence� of the quasilocality property of the time-evolved measure of the
system. This quasilocality property is a necessary �and almost sufficient� condition to have
Gibbsianness.8,13,16

In Ref. 9 we showed that the time-evolved measure for planar rotors stays Gibbsian for either
short times, starting at arbitrary temperature and with arbitrary-temperature dynamics, or for high-
or infinite-temperature dynamics starting from a high- or infinite-temperature initial measure for
all times. Furthermore the absence of the quasilocality property is shown for intermediate times
for systems starting in a low-temperature regime with zero external field and evolving under
infinite-temperature dynamics. The fact that there exist intermediate times where Gibbsianness is
lost for XY spins even in two dimensions is remarkable because those systems do not have a
first-order phase transition due to the Mermin–Wagner theorem. However, it turns out that condi-
tionings can induce one. To establish the occurrence of such conditional first-order transitions is a
major step in the proof that a certain measure is not Gibbsian. Similar short-time results for more
general compact spins can be found in Ref. 14.

These results about compact continuous spins can be seen as intermediate between those for
discrete Ising spins and the results for unbounded continuous spins. Conservation, loss and recov-
ery results can be found in Ref. 7 for Ising spins and conservation for short times and loss for
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larger times for unbounded spins in Ref. 15. Conservation for short times for more general
dynamics �e.g., Kawasaki� for discrete spins was proven in Ref. 17 and for unbounded spins with
bounded interactions in Ref. 3.

This paper is a continuation of Ref. 9. As in that paper, we consider XY-spins living on a
lattice sites on Zd and evolving with time. The initial Gibbs measure is a nearest neighbor ferro-
magnet, but now in a positive external field. So we start in the regime where there is a unique
Gibbs measure. The system is evolving under infinite-temperature dynamics. We expect, that just
as in the Ising case, whatever the initial field strength, we have after the short times when the
measure is always Gibbsian, if the initial temperature is low, that a transition toward a non-
Gibbsian regime occurs, and that after another, longer time, the measure becomes Gibbs again. We
can prove a couple of results which go some way in confirming this picture.

We prove that when the initial field is small, and d is at least 3, there exists a time interval,
depending on the initial field, during which the time-evolved measure is non-Gibbsian. We present
a partial result, indicating why we expect the same phenomenon to happen in two dimensions.
Furthermore, we argue that the presence of an external field is responsible for the re-entrance into
the Gibbsian regime for larger times, independently of the initial temperature. We can prove this
for the situation in which the original field is strong enough.

II. FRAMEWORK AND RESULT

Let us introduce some definitions and notations. The state space of one continuous spin is the
circle, S1. We identify the circle with the interval �0,2��, where 0 and 2� are considered to be the
same points. Thus the configuration space � of all spins is isomorphic to �0,2��Z

d
. We endow �

with the product topology and natural product probability measure d�0�x�= � i�Zdd�0�xi�. In our
case we take d�0�xi�= �1 /2��dxi. An interaction � is a collection of F�-measurable functions ��

from ��0,2���� to R, where ��Zd is finite. F� is the �-algebra generated by the canonical
projection on �0,2���.

The interaction � is said to be of finite range if there exists a r�0 such that diam����r
implies ���0 and it is called absolutely summable if for all i, ���i�����	�.

We call � a Gibbs measure associated with a reference measure �0 and interaction � if the
series H�

� =���������� converges �� is absolutely summable� and � satisfies the Dobrushin-
Lanford-Ruelle �DLR� equations for all i:

d�
�xi�xj, j � i� =
1

Zi
exp�− 
Hi

��x��d�0�xi� , �1�

where Zi=	0
2�exp�−
Hi

��x��d�0�x� is the partition function and 
 proportional to the inverse
temperature. The set of all Gibbs measures associated with � and �0 is denoted by G�
 ,� ,�0�.

Now, instead of working with Gibbs measures on �0,2��Z
d

we will first investigate Gibbs

measures as space-time measures Q�
 on the path space �̃=C�R+ , �0,2���Z
d
. In Ref. 4 Deuschel

introduced and described infinite-dimensional diffusions as Gibbs measures on the path space
C��0,1��Z

d
when the initial distribution is Gibbsian. This approach was later generalized in Ref. 2

which showed that there exists a one-to-one correspondence between the set of initial Gibbs
measures and the set of path-space measures Q�
.

We consider the process X= �Xi�t��t�0,i�Zd defined by the following system of stochastic dif-
ferential equations:

dXi�t� = dBi
��t�, i � Zd,t � 0,

�2�
X�0� 
 �
, t = 0,

for �
�G�
 , �̃ ,�0� and the initial interaction �̃ given by
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�̃��x� = − J �
i,j��:i
j

cos�xi − xj� − h�
i��

cos�xi� , �3�

J ,h some non-negative constants and d�0�x�= �1 /2��dx. H̃ denotes the initial Hamiltonian asso-
ciated with �̃ and �Bi

��t��i,t is independent Brownian motion moving on a circle with transition
kernel given �via the Poisson summation formula�

pt
��xi,yi� = 1 + 2 · �

n�1
e−n2t cos�n · �xi − yi��

for each i�Zd, just as we used in Ref. 9. Note also that the eigenvalues of the Laplacian on the
circle, which is the generator of the process, are given by �n2 ,n�1�, see also Ref. 20. We remark
that the normalization factor 1 /2� is absorbed into the single-site measure �0.

Obviously �̃ is of finite range and absolutely summable, so the associated measure �
 given
by �1� is Gibbs.

For the failure of Gibbsianness we will use the necessary and sufficient condition of finding a
point of essential discontinuity of �every version of� the conditional probabilities of �
, i.e., a
so-called bad configuration. It is defined as follows.

Definition 2.1: A configuration � is called bad for a probability measure  if there exists an
��0 and i�Zd such that for all � there exists ��� and configurations � , � such that

���Xi���\�i���\�� − ��Xi���\�i���\��� � � . �4�

The measure at time t can be viewed as the restriction of the two-layer system, considered at times
0 and t simultaneously, to the second layer. In order to prove Gibbsianness or non-Gibbsianness
we need to study the joint Hamiltonian for a fixed value y at time t.

The time-evolved measure is Gibbsian if for every fixed configuration y the joint measure has
no phase transition in a strong sense �e.g., via Dobrushin uniqueness or via cluster expansion/
analyticity arguments�. In that case, an absolutely summable interaction can be found for which
the evolved measure is a Gibbs measure. On the other side the measure is non-Gibbsian if there
exists a configuration y which induces a phase transition for the conditioned double-layer measure
at time 0 which can be detected via the choice of boundary conditions. In that case no such
interaction can be found, see, for example, Ref. 10.

The results we want to prove are the following.
Theorem 2.1: Let Q�
 be the law of the solution X of the planar rotor system �2� in Zd, �


�G�
 , �̃ ,�0� and �̃ given by �3�, with 
 the inverse temperature, J some non-negative constant
and h�0 the external field, and d at least 3. Then, for 
 large enough and h small enough, there
is a time interval �t0�h ,
� , t1�h ,
�� such that for all t0�h ,
�	 t	 t1�h ,
� the time-evolved mea-
sure �


t =Q�
 �X�t�−1 is not Gibbs, i.e., there exists no absolute summable interaction �t such that
�


t �G�
 ,�t ,�0�.
Theorem 2.2: For any h chosen such that 
h is large enough, compared to 
 , there exists a

time t2�h� , such that for all t� t2�h� the time-evolved measure is Gibbs, �

t �G�
 ,�t ,�0�.

Proof of Theorem 2.1: We consider the double-layer system, describing the system at times
0 and t. We can rewrite the transition kernel in Hamiltonian form, and we will call the Hamiltonian
for the two-layer system the dynamical Hamiltonian �as it contains the dynamical kernel�. It is
formally given by

− H

t �x,y� = − 
H̃�x� + �

i�Z2

log�pt
��xi,yi�� ,

where x ,y� �0,2��Z
d
, pt

��xi ,yi� is the transition kernel on the circle and H̃�x� is formally given by

− H̃�x� = J�
i
k

cos�xi − xk� + h�
i

cos�xi� .
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First we want to prove that there exists a time interval where Gibbsianness is lost. For this we
have to find a bad configuration such that the conditioned double-layer system has a phase
transition at time 0, which implies �4� for the time-evolved measure. We expect this to be possible
for each strength of the external field and in each dimension at least 2. At present we can perform
the program only for weak fields and for dimension at least 3. We also show a partial result, at
least indicating how a conditioning also in d=2 can induce a phase transition.

Thus, given h�0, we immediately see that the spins from the initial system prefer to follow
the field and point upward �take the value xi=0 at each site i�. To compensate for that, we will
condition the system on the configuration where all spins point downward �at time t�, i.e., yspec

ª ���i�Zd. Thus the spin configuration in which all spins point in the direction opposite to the
initial field will be our bad configuration. We expect that then the minimal configuration of
−H


t �x ,yspec�, so the ground states of the conditioned system at time 0 will need to compromise
between the original field and the dynamical �conditioning� term. In the ground state�s� either all
spins will point to the right �see Fig. 1�, possibly with a small correction �t, �� /2−�t�i�Z2, or to the
left �see Fig. 2�, �3� /2+�t�i�Z2, also with a small correction. �t is a function depending on t.
Finally these two symmetry-related ground states will yield a phase transition of the “spin-flop”
type, also at low temperatures. It is important to observe that for this intuition to work, it is
essential that the rotation symmetry of the zero-field situation will not be restored due to the
appearance of higher-order terms from the expansion of the transition kernel, as we will indicate
below.

}ε t

FIG. 1. Rightpointing ground state, direction �� /2−�t�i.

}ε t

FIG. 2. Leftpointing ground state, direction �3� /2+�t�i.
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We perform a little analysis for the logarithm of the transition kernel pt
�. Let yspec

ª ���i�Zd.
We want to focus on the first three terms coming from the expansion of the logarithm.

log1 + 2�
n�1

e−n2t cos�n�xi − ���� = − 2e−t cos�xi� − 2e−2t cos2�xi� −
8

3
e−3t cos3�xi� + Rt�xi� ,

where

Rt�xi� ª ��
n�1

�− 1�n+1

n 2�
k�1

e−k2t cos�k�xi − ����n�1�n�1,2,3���k�1�

is of order Oi�e−4t�, for details, see Appendix. We define ht=e−t. Note that given 
h, there is a time
interval where the effect of the initial field is essentially compensated by the field induced by the
dynamics �containing the ht�. For large times the initial field term dominates all the others and the
system is expected to exhibit a ground �or Gibbs� state following this field. For intermediate times
the other terms are important, too. If we consider a small initial field, it is enough to consider the
second and third order terms which we indicated above. Those terms create, however, the discrete
left-right symmetry for the ground states which will now prefer to point either to the right or to the
left.

For the moment we forget about the rest term Rt�xi� and investigate the restricted Hamiltonian
−Hres3

t �x ,yspec� which is formally equal to


J�
i
k

cos�xi − xk� + 
h�
i

cos�xi� + �
i
− 2ht cos�xi� − 2ht

2 cos2�xi� −
8

3
ht

3 cos3�xi�� . �5�

To be more precise, the external field including the inverse temperature 
h will be chosen small
enough, and then the inverse temperature 
 large enough. We want first to find the ground states
of the restricted Hamiltonian Hres3

t �x ,yspec� which are points x= �xi�i�Zd. It is fairly immediate to
see that in the ground states all spins point in the same direction, so we then only need to minimize
the single-site energy terms. The first-order term more or less compensates the external field, and
the second-order term is maximal when cos2�xi� is minimal, thus when one has the value � /2 or
3� /2. The higher-order terms will only minimally change this picture.

We can define a function �t depending on t such that asymptotically 
h=ht+�t yields the
following unique maxima �� /2−�t ,� /2−�t� and �3� /2+�t ,3� /2+�t�. The function �t is a cor-
rection of the ground states pointing to the left or right. We present a schematic illustration of the
two ground states,

�3�/2 + �t�i ��/2 − �t�i.

Hence for every arbitrarily chosen small external field h, we find a time interval depending on
h, such that we obtain two reflection symmetric ground states of all spins pointing either �almost�
to the right �� /2−�t�i�Zd or all spins pointing �almost� to the left �3� /2+�t�i�Zd. The rest term
Rt�xi� does not change this behavior since it is suppressed by the first terms and is of order
Oi�e−4t�. Moreover, it respects the left-right symmetry.

We will first, as a partial argument, show that the interaction

J�
i
k

cos�xi − xk� + h�
i

cos�xi� + �
i
− 2ht cos�xi� − 2ht

2 cos2�xi� −
8

3
ht

3 cos3�xi�� �6�

has a low-temperature transition in d�2.
To show this we notice that we are in a similar situation as in Ref. 9. The conditioning of the

double-layer system for the XY spins created left-right symmetric ground states.
Now we want to apply a percolation argument for low-energy clusters to prove that such that

spontaneous symmetry breaking occurs. The arguments follow essentially Ref. 9 and are based on
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Ref. 12. The potential corresponding to the Hamiltonian �5� is clearly a C-potential, that is, a
potential which is nonzero only on subsets of the unit cube.12 It is of finite range, translation
invariant, and symmetric under reflections.

Including the rest term �which is a translation-invariant single-site term� does not change this.
A fortiori the associated measure is reflection positive and we can again use the same arguments
as in Ref. 9 to deduce that for 
 large enough, there is long-range order. This argument indicates
how conditioning might induce a phase transition.

However, to get back to our original problem, that is, to prove the non-Gibbsianness of the
evolved state, we need an argument which holds for values of not only of h but also of 
h which
are small uniformly in temperature. Then only we can deduce that there exists a time interval
�t0�
 ,h� , t1�
 ,h�� such that �G
�H


t �· ,yspec� ,�0���2.
To obtain this, for d=3, we can invoke a proof using infrared bounds �see e.g., Refs. 11, 13,

and 1�. Note that the infrared bound proof, although primarily developed for proving continuous
symmetry breaking, also applies to models with discrete symmetry breaking as we have here. In
fact, we may include the rest term without any problem here, as the symmetry properties of the
complete dynamical Hamiltonian are the same as that of our restricted one, and adding single-site
terms does not spoil the reflection positivity. From this an initial temperature interval is estab-
lished, where Gibbsianness is lost after appropriate times.

Indeed, the infrared bound provides a lower bound on the two-point function which holds
uniformly in the single-site measure �which in our case varies only slightly anyway, as long as the
field and the compensating term due to the kernel are small enough�. This shows that a phase
transition occurs at sufficiently low temperatures, as for decreasing temperatures the periodic
boundary condition state converges to the symmetric mixture of the right- and left-pointing
ground-state configurations.

Comment: One might expect that, by judiciously looking for other points of discontinuity, the
time interval of proven non-Gibbsianness might be extended, hopefully also to d=2; however,
qualitatively this does not change the picture. In fact, there are various configurations where one
might expect that conditioning on them will induce a first-order transition. For example, the XY
model in at least two dimensions in a weak random field which is plus or minus with equal
probability is expected to have such transitions.21 The same situation should occur for various
appropriately chosen �in particular, random� choices of configuration where spins point only up or
down. In a somewhat similar vein, if the original field is not so weak, and thus also higher terms
are non-negligible, we expect that qualitatively not much changes, and there will again be an
intermediate-time regime of non-Gibbsianness at sufficiently low temperatures.

About the proof of Theorem 2.2: Let us now turn to the second statement. Here the initial
temperature does not affect the argument. The intuitive idea, as mentioned before, is as follows:
After a long time, the term due to the conditioning becomes much weaker than the initial external
field—however, weak it is—uniformly in the conditioning, and thus the system should behave in
the same way as a plane rotor in a homogeneous external field and have no phase transition.
However, the higher-order terms which were helpful for proving the non-Gibbsianness now pre-
vent us using the ferromagneticity of the interaction. Indeed, we cannot use correlation inequalities
of Fortuin-Kasteleijn-Ginibre �FKG� type, and we will have to try analyticity methods.

In fact, we expect that the statement should be true for each strength of the initial field.
Indeed, once the time is large enough, the dynamical single-site term should be dominated by the
initial field, and, just as in that case, one should have no phase transition.5,6,18 However, to
conclude that we can consider the dynamical single-site term as a small perturbation, in which the
free energy and the Gibbs measure are analytic, although eminently plausible, does not seem to
follow from Dunlop’s Yang–Lee theorem.

For high fields, we can either invoke cluster expansion techniques, showing that the system is
completely analytic, or Dobrushin uniqueness statements. Precisely such claims were developed
for proving Gibbsianness of evolved measures at short times in Ref. 9 and in Ref. 14. A direct
application of those proofs also provides our theorem, which is for long times.
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III. CONCLUSION

In this paper we extended the results from Ref. 9 and show some results on loss and recovery
of Gibbsianness for XY spin systems in an external field. Giving a low-temperature initial Gibbs
measure in a weak field and evolving with infinite-temperature dynamics, we find a time interval
where Gibbsianness is lost. Moreover at large times and strong initial fields, the evolved measure
is a Gibbs measure, independently of the initial temperature.

Generalizations are possible to include, for example, more general finite-range translation-
invariant ferromagnetic interactions �̃. We conjecture, but at this point cannot prove, that both the
loss and recovery statements actually hold for arbitrary strengths of the initial field.
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APPENDIX

The logarithm of the transition kernel is given by

log1 + 2�
n�1

e−n2t cos�n�xi − ���� = �
k�1

�− 1�k+1

k 2�
n�1

e−n2t cos�n�xi − ����k
. �A1�

Since the first term of the series of pt
� is dominating we can write

2�
n�1

e−n2t cos�n�xi − ��� = − 2e−t cos�xi� + Restt�xi� .

The rest term Restt�xi� is smaller than 2e−4t uniformly in xi. Then we can bound

2 �
n�1

e−n2t cos�n�xi − ��� � − 2e−t cos�xi� + 2e−4t.

Furthermore we write �A1� as

�− 2e−t cos�xi� + O�e−4t�� −
1

2
�− 2e−t cos�xi� + O�e−4t��2 +

1

3
�− 2e−t cos�xi� + O�e−4t��3

+ �
k�4

�− 1�k+1

k
�− 2e−t cos�xi� + O�e−4t��k

and afterwards bound it by

− 2e−t cos�xi� + O�e−4t� − 2e−2t cos2�xi� + O�e−5t� − 8
3e−3t cos3�xi� + O�e−6t� + O�e−4t� ,

thus �A1� is then bounded by

− 2e−t cos�xi� − 2e−2t cos2�xi� − 8
3e−3t cos3�xi� + O�e−4t� .

Altogether we consider the leading terms of the series �A1�, −2e−t cos�xi�−2e−2t cos2�xi�
− 8

3e−3t cos3�xi�, separately and bound the rest uniformly in xi for every i by const�e−4t for large
t.
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