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Abstract Lau and Murnighan’s faultline theory explains negative effects of demo-
graphic diversity on team performance as consequence of strong demographic fault-
lines. If demographic differences between group members are correlated across vari-
ous dimensions, the team is likely to show a “subgroup split” that inhibits communi-
cation and effective collaboration between team members. Our paper proposes a rig-
orous formal and computational reconstruction of the theory. Our model integrates
four elementary mechanisms of social interaction, homophily, heterophobia, social
influence and rejection into a computational representation of the dynamics of both
opinions and social relations in the team. Computational experiments demonstrate
that the central claims of faultline theory are consistent with the model. We show fur-
thermore that the model highlights a new structural condition that may give managers
a handle to temper the negative effects of strong demographic faultlines. We call this
condition the timing of contacts. Computational analyses reveal that negative effects
of strong faultlines critically depend on who is when brought in contact with whom
in the process of social interactions in the team. More specifically, we demonstrate
that faultlines have hardly negative effects when teams are initially split into demo-
graphically homogeneous subteams that are merged only when a local consensus has
developed.
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Demographic diversity · Homophily · Social influence
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1 Introduction

The demographic diversity of a work team is seen as one of the major determinants
of its performance. While managers as well as diversity researchers emphasize that
diverse teams benefit from their large variety of social and human capital resources,
(e.g. Chatman et al. 1998), many studies also highlight that this benefit comes at a
potentially large cost. Diverse teams may be less socially cohesive than homogeneous
teams and social cohesion, in turn, can be an important antecedent of performance
(e.g. Jehn and Bezrukova 2004; Jehn et al. 1999). Milliken and Martins concluded
that “diversity thus appears to be a double-edged sword” (Milliken and Martins 1996:
403), reflecting the mixed research evidence that produced both positive as well as
negative effects of demographic diversity on team performance (for comprehensive
reviews about theoretical and empirical research see: Bowers et al. 2000; Milliken
and Martins 1996; Pelled 1996; Stewart 2006; Webber and Donahue 2001; Williams
and O’Reilly 1998).

The mixed effects of diversity have been attributed to the simultaneous operation
of both positive effects on a team’s human capital and negative effects on team co-
hesion (Reagans and Zuckerman 2001). However, Lau and Murnighan (1998, 2005)
have questioned that demographic diversity is necessarily a threat for team cohe-
sion. In Lau and Murnighan’s view, cohesion suffers in a diverse group only to the
extent that the distribution of demographic attributes across group members gener-
ates a strong demographic faultline. “Group faultlines increase in strength as more
attributes are highly correlated, reducing the number and increasing the homogene-
ity of resulting subgroups. In contrast, faultlines are weakest when attributes are not
aligned and multiple subgroups can form” (Lau and Murnighan 1998: 328). To give
an example, a faultline is strong in a team consisting of two Caucasian, highly ed-
ucated women and two African-American men with low level of education. In this
case, all three demographic dimensions along which team members differ (race, sex,
educational level) split the team along the same line. The faultline would be weaker
if, for example, the two highly educated team members would be one man and one
woman. The core prediction (see Lau and Murnighan 1998: 331) is that stronger de-
mographic faultlines increase the potential for dissensus between team members and
thus put performance under pressure. The theory also implies that the direct effects of
diversity on performance are positive due to larger human and social capital in diverse
teams. Subsequent empirical research has provided partial support for the proposed
negative effects of strong faultlines (e.g. Lau and Murnighan 2005; Molleman 2005;
Thatcher et al. 2003) and has identified organizational design features that interact
with the effects of faultline strength on team outcomes, such as team empowerment
strategies or the use of knowledge management systems in team learning (Gibson and
Vermeulen 2003).

In a nutshell, the theory of faultlines (Lau and Murnighan 1998: 332–333) is based
on two main mechanisms: First, it is assumed that team members prefer to interact
with those who are similar with respect to a salient demographic attribute. This cor-
responds to the prominent notion that homophily (Lazarsfeld and Merton 1954) is
a strong force in social interactions (McPherson et al. 2001). Which demographic
attribute is salient in a certain work situation changes from situation to situation. Sec-
ondly, if actors choose to interact they are assumed to exert social influence (Festinger
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et al. 1950) upon each other. Lau and Murnighan seem to assume furthermore that de-
mographically similar actors tend to hold similar opinions even prior to interaction.
Based on psychological research on opinion formation in groups (Isenberg 1986;
Vinokur and Burnstein 1978) the authors propose that interactions between demo-
graphically similar actors reinforce the opinions they hold prior to interaction and, in
the process, increase dissensus with demographically dissimilar group members. In
other words, demographically similar interaction partners become more convinced of
their respective opinions, because they tend to agree in opinion and they learn new
arguments that are in line with their opinion. But only in teams with a strong faultline,
the same team members interact again and again so that the opinions of the demo-
graphic subgroups become increasingly distinct at the expense of lower cohesion of
the team as a whole. By contrast, in teams with weak faultlines, group members re-
peatedly interact with colleagues with a large variety of demographic characteristics
and opinions, such that no self reinforcing dynamic towards an emergent subgroup
split can develop.

While applications of faultline theory clearly demonstrate its relevance for both
researchers and managers, neither Lau and Murnighan’s original elaboration nor sub-
sequent extensions have fully explicated the mechanisms that may underlie faultline
effects. Both the transparency of Lau and Murnighan’s theory as well as its deduc-
tive power can benefit considerably from a formal deduction of their central claims
and an analysis of the precise combination of assumptions that is needed to derive
them. In a previous paper we proposed a formal model of faultline effects that al-
lows to generate hypotheses in line with previous informal reasoning (Flache and
Mäs 2008). We could also show that it is not even necessary to assume that opinions
and demographic characteristics of team members are correlated already prior to in-
teraction.1 In the present paper, we move one step further and argue that the model
also implies a remedy against negative effects of strong faultlines that has hitherto
been overlooked in the literature. We propose that the effects of strong faultlines may
critically depend on who is when brought in contact with whom in the process of so-
cial interactions in the team. More generally, it may depend on the timing of contacts
between team members whether strong faultlines have negative effects on team cohe-
sion. To be precise, we use “timing of contacts” here in the sense of Moody’s (2002)
concept of “relationship timing”. Broadly, relationship timing defines the sequence
within which social interactions occur in given network of interactions. Consider for
example an opinion formation process between three members of a work team, two
of whom agree with each other and totally disagree with the third one. One possible
timing of contacts might be that all three group members are brought together to dis-
cuss the issue. In this case, social influence occurs simultaneously in all three dyads
in the network. Another sequence might be that only one of the two majority mem-
bers discusses the issue with the minority member and after each meeting, the two
majority members come together again. Obviously, in the first sequence the deviant
might influence the positions of both other team members at the same time, while in
the second sequence, he can directly influence only one of them, while the other one
may bring his colleague “back into line” after each encounter with the deviant.

1We explain this point below in our elaboration and discussion of the formal model.



26 A. Flache, M. Mäs

Effects of the timing of contacts on the outcome of group discussions have
been demonstrated in experimental research by Kameda and Sugimori (1995).
These authors manipulated the sequence within which in a group discussion mi-
nority members encountered majority members and found that this affected the
chances for consensus in the overall group. More recently theoretical analyses have
shown that the diffusion dynamics of, e.g., knowledge or diseases in social net-
works may critically depend upon the timing of network contacts (Gibson 2005;
Moody 2002). For example, whether an infectious disease can spread in a chain
A-B-C from A to C critically depends upon whether B was infected by A before
or after being in contact with C. The idea that timing matters has not yet been theo-
retically elaborated for the study of opinion dynamics. However, we believe that the
diffusion of opinions may be similarly affected by relationship timing than the diffu-
sion of infection or information. The key reason why we expect the timing of contacts
to be important for the group dynamics in diverse teams is the inherent path depen-
dence of the process of social interactions between team members. For example, early
contacts between group members who are strongly dissimilar both in terms of their
opinions and their demographic characteristics may trigger negative and hostile in-
teractions between the interactants. This, in turn, may lead them to adopt extreme
positions on some issues. If these “radicalized” actors interact subsequently with de-
mographically similar “friends”, this may entail “bandwagon dynamics” in which the
friends of the early conflict partners are socially influenced to adopt similarly extreme
positions. The stronger are demographic faultlines, the more such a dynamic would
project the demographic faultline onto an emergent faultline in the opinion space,
with the result that communication between team members and thus group cohesion
and team performance may severely suffer. Clearly, this downward spiral might be
avoided when contacts between team members are arranged in such a way that op-
posed “extremists” are initially isolated from each other and are instead exposed to
interactions with demographically similar in-group members who are more moderate
in their opinions. Then, the likely consequence is that initial extremists also become
more moderate and initial moderates from different demographic subgroups move
towards each other in the opinion space.

It may be a plausible idea that the timing of contacts modifies faultline effects,
but Lau and Murnighan’s original theory is not precise enough to generate testable
predictions about the exact conditions under which this mechanism may work. We
use and extend in the present analysis the formal model proposed by Flache and Mäs
(2008) to elaborate our reasoning why timing matters and under which conditions.
In Sect. 2, we describe the formal model and its extension to accommodate timing
effects. Section 3 contains a description of the simulation experiments and results. In
Sect. 4, we discuss results and offer conclusions.

2 The model

The model consists of four main elements, the formalization of the dynamics and
elementary mechanisms of social interactions and influence between team members,
the operationalization of demographic faultlines, the model of the timing of contacts
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and, finally, aggregate outcome measures that capture the dependent variables we are
interested in.

2.1 The social interaction and influence dynamics

The main endogenous outcome variable of our model is the distribution of work
related opinions in the team, because following previous work (Mason 2006: 234;
Molleman 2005: 175–176; Pfeffer 1985) we assume that consensus at least on funda-
mental issues seems a necessary precondition for effective teamwork, while opinion
polarization on these issues may be a major obstacle to good team performance. The
theoretical assumptions of homophily and social influence identify a clear causal link
between team cohesion, consensus on work related opinions and the strength of de-
mographic faultlines in a team. Broadly, the stronger are faultlines in the team, the
less likely it is that team members in different subgroups influence each other suffi-
ciently to generate a consensus on work related opinions on the level of the team as
a whole, and the more likely it is that the influence processes result in polarization
rather than consensus. At the same time, the combined assumptions of homophily and
influence link the degree of consensus closely to the level of cohesion in the team.
We assume that only when team members agree on important issues, they have good
social relations with each other which, in turn, generates social cohesion.

With this approach, we deliberately exclude from our analysis variables which
also may affect performance but which are not or at least much less directly causally
related to faultline strength (Lau and Murnighan 1998), like the size of the team’s
pool of human and social capital.

We assume that the effects of faultlines on opinion polarization (and poor team
performance) are generated by the interplay of the four fundamental social mech-
anisms homophily, social influence, heterophobia and rejection. According to ho-
mophily, the more similar two actors are with respect to salient opinions or demo-
graphic characteristics, the more they like each other and the more they interact (Brass
et al. 2004; Byrne 1971; Homans 1951; Kandel 1978; Lazarsfeld and Merton 1954;
McPherson et al. 2001; Rogers and Bhowmik 1970). According to social influence,
if two persons interact they adapt their opinions (Abelson 1964; Brass et al. 2004;
Kerr and Tindale 2004). But homophily and social influence alone do not suffice to
explain why groups with strong faultlines exhibit a tendency towards extreme and
over time increasing opinion differences between a small number of opposed and
demographically dissimilar factions in the team (cf. Early and Mosakowski 2000).2

To address this pattern with our model, we followed previous research and comple-
mented the mechanisms of homophily and social influence with their negative coun-
terparts of heterophobia and rejection (Flache and Macy 2006; Jager and Amblard

2Axelrod (1997) proposed to add the assumption that social influence may be entirely cut off when actors
disagree beyond a certain critical level. With this assumption, homophily and social influence can stabilize
differences between subgroups (Axelrod 1997; Flache and Macy 2006; Flache et al. 2006; Hegselmann and
Krause 2002; Weisbuch et al. 2005). However, this explanation is not readily applicable to work groups,
where there is little room to entirely avoid social interaction with dissimilar others. Moreover, Axelrod’s
assumptions can at best explain why differences between subgroups persist over time, but not why groups
may increasingly polarize in the course of team interaction, as described by Early and Mosakowski (2000).
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2005; Kitts 2006; Macy et al. 2003; Rainio 1961a, 1961b, 1962, 1965; Salzarulo
2006). Heterophobia implies that if the dissimilarity of two actors exceeds a certain
threshold then the actors do not like each other (Byrne et al. 1986; Chen and Ken-
rick 2002; Pilkington and Lydon 1997; Rosenbaum 1986a, 1986b; Smeaton et al.
1989). Rejection states that actors have a tendency to change their attributes in a way
to become more dissimilar to interaction partners they do not like (Abelson 1964;
Kitts 2006; Salzarulo 2006; Tsuji 2002).

It is important to note that Lau and Murnighan do not directly assume rejection.
They propose instead that increasing opinion differences between dissimilar actors re-
sult from a self-reinforcing dynamic that is triggered by an initial correlation between
demographic attributes and opinions. We avoided this assumption, because what we
aim to explain is that the strength of the demographic faultline leads to opinion po-
larization along this faultline. If we already assume in the model that demographic
attributes are correlated with the opinions then it is not surprising that the model pre-
dicts exactly this as an outcome. In our previous work (Flache and Mäs 2008, under
review), we could show that the model sketched here suffices to reconstruct the main
regularities predicted by faultline theory. Hence, we argue that the assumption of an
initial positive correlation between demographic attributes and opinions should be
avoided in this context. However, our argument is purely theoretical. We do not claim
that the dynamics that Lau and Murnighan describe do not occur in real work teams.

Finally, our model distinguishes between two types of attributes on which agents
can differ and which define the level of similarity between agents. Demographic at-
tributes on the one hand are fixed and can not be changed by the dynamics of social
influence and rejection. On the other hand, opinions are flexible and are subject to
social influence and rejection. Previous computational studies based on similar sets
of assumptions have already demonstrated how demographic differences can lead to
the emergence of cultural niches in demographic space such that demographically
dissimilar actors also hold dissimilar or even radically opposing opinions (Macy et
al. 2003; Mark 2003). However, these studies did not address the effects of faultline
strength in the demographic distribution.

Technically, each of the N team members is represented as an agent i character-
ized by D fixed (a fix

id ) and K flexible attributes (a flex
ik ), where d and k refer to the

d’th and k’th fixed and flexible attribute, respectively. The fixed attributes correspond
to the demographic characteristics, the flexible ones represent the agent’s work re-
lated opinions. For simplicity, we assume that demographic attributes and opinions
are equally salient. Moreover, we focus on clearly distinguishable demographic at-
tributes, expressed by the assumption that demographic attributes are dichotomous
and can take either the value −1 or +1 (a fix

id ∈ {−1;1}). Opinions of the team mem-

bers can instead vary continuously between −1 and +1 (−1 ≤ a
flex
ik ≤ +1).

A key assumption of the model is that the direction and strength of influence that
an agent i imposes on an agent j does not depend directly on the opinion of j , but
it is moderated by the sign and the strength of the interpersonal relation between i

and j . To model the interpersonal relations between the team members we assume
a directed graph where wij represents the weight of the corresponding relationship
(−1 ≤ wij ≤ +1). If team member i has contact to team member j then the weight
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wij takes a nonzero value between −1 and 1. A positive weight reflects that i evalu-
ates j positively, whereas a negative one represents a hostile relationship. If there is
no contact between i and j , or i is indifferent between liking and disliking j , then
the weight is 0.

Both the K flexible attributes and the weights of the relationships are endogenous
and change in discrete time steps. In every time step, one team member is selected
randomly with equal probability to update either his flexible attributes or weights.
With probability 0.5, all weights of i are updated simultaneously. In the event that
flexible attributes are updated, all flexible attributes are updated simultaneously.

Time is modeled in discrete steps. The duration of a simulation run is expressed
in number of iterations. One iteration corresponds to N simulation steps to assure
that on average each agent updates either his weights or his attributes once within an
iteration. To be sure, given the asynchronous random updating of agents, an iteration
does not encompass any particular length of time or synchronization of events (e.g.
work days). Rather, one iteration indicates that N events have taken place in which
agents have changed their opinions or weights.

Similar to previous models of social influence with continuous opinions (Abelson
1964; Hegselmann and Krause 2002), we assume that the change of team member
i’s flexible attribute k is an aggregated result of the influences imposed by all other
agents who exert influence upon i. Technically, the new value of the attribute, a

flex
ik,t+1

is obtained by adding to the old value a weighted sum of the pressures of all influ-
ential others. To model a somewhat gradual change of opinions, we also divide this
weighted sum by 2. The pressure imposed by a single alter j “pulls” i towards j ’s
opinion if the weight wij is positive, and “pushes” i away from j ’s opinion if the
weight is negative. The magnitude of this pressure is proportional to the distance in
opinions between i and j, a

flex
ik − a

flex
jk . With only positive weights summing to one,

this assumption would imply that the net pressure imposed on i moves the agent to-
wards the weighted average of the opinions of all interactions partners. Equation (1)
formalizes these assumptions:

a
flex
ik,t+1 = a

flex
ik,t + 1

2Ct

∑

i �=j

wij (a
flex
jk,t − a

flex
ik,t ). (1)

The Ct in (1) refers to the number of agents who are in contact with i at the mo-
ment influence takes place (Ct ≤ (N − 1)). We will discuss further below effects of
interaction structures in which team members can interact only with a subset of other
team members temporarily. To be precise, (1) only shows the principle model of in-
fluence. In the actual implementation, we apply a slight modification of the influence
equation both to make sure that opinions do not go out of bounds and to smoothen
the change of opinions when agents move towards the extreme ends of the opinion
scale. Equations (1a) and (1b) fully specify opinion change

�a
flex
ik,t = 1

2Ct

∑

j �=i

wij (a
flex
jk,t − a

flex
ik,t ), (1a)
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a
flex
ik,t+1 =

{
a

flex
ik,t + �a

flex
ik,t (1 − a

flex
ik,t ), if �a

flex
ik,t > 0,

a
flex
ik,t + �a

flex
ik,t (1 + a

flex
ik,t ), if �a

flex
ik,t ≤ 0.

(1b)

The second key element of our model is the update of weights. Following previous
work (Macy et al. 2003) we assume that the weight that agent i has towards an agent
j , changes depending on the similarity between i and j in terms of both their demo-
graphic attributes and their opinions. More precisely, we assume that after updating,
the weight adopts a level that is proportional to the current level of similarity. The
new weight is negative if the average distance between i and j across all dimensions
of demographic and opinion space exceeds one, i.e. half of the maximum average
distance. If this average distance is exactly one, the weight is zero and otherwise it
obtains a positive value. Technically,

wij,t+1 = 1 −
∑D

d=1 |a fix
id,t − a

fix
jd,t | +

∑K
k=1 |a flex

ik,t − a
flex
jk,t |

D + K
. (2)

2.2 Faultline strength

To disentangle the effects of the strength of demographic faultlines from effects of
demographic diversity, we devised a method that allows for varying faultline strength
and keeping diversity constant at the same time. More precisely, we generated dif-
ferent distributions of the fixed attributes in such a way that all fixed attributes were
equally frequent (= all distributions generate equally diverse groups) but the cor-
relation between the attributes differed between distributions (= the strength of the
faultline differs).

Table 1 shows our construction method for the prototypical case of a group
with 20 members (N = 20) who differ along three demographic dimensions (e.g.
male/female, young/old, western/non-western ethnic background). Column 2 of the
table shows that we constructed the first demographic variable (A1) by alternately
assigning the values −1 and 1 to the first N/2 agents beginning with the value 1 for
agent 1. We did the same with the second N/2 agents but here we started with the
value −1. The distribution of this variable is the same in all work teams.

We expressed the faultline strength by a parameter f that varies between 0.5
and 1, where f = 0.5 corresponds to a situation where the demographic attributes
are completely uncorrelated and f = 1 imposes a perfect correlation between all de-
mographic attributes. The first step in the construction is to impose the correlation
between attribute A1 and A2 that corresponds to the given parameter value of f . To
arrive at the values for attribute A2, we assigned to the first (100 ·f )% of the cases the
same value as for attribute A1. For example, for f = 0.9, the first 90% of the agents
(= the first 18 agents if N = 20) hold the same value at attribute A1 and A2 (see the
grey cells in column 3 of Table 1). To the rest of the agents we assigned on attribute
A2 the opposite value of what we assigned for attribute A1.

To determine the values for attribute A3 we used the same method with a small
change. We first assigned to the first (50 ·f )% of the cases the same value as for
attribute A1. Then we continued with the (N/2 + 1)th case and again assigned to the
following (50 ·f )% of the cases the same value as for attribute A1. Again the rest of
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Table 1 Implementation of faultline strength

the cases got the opposite value than for attribute A1. Thus for f = 0.9 and N = 20
the agents 1–9 and 11–19 hold the same value at attribute A1 and A3 (see column 4
of Table 1). This procedure makes sure, that the agents also hold at the attributes A2

and A3 in exactly (100 ·f )% of all cases the same value.
Table 1 also reports the correlations between the three attributes. Note that for

a given distribution all pairwise correlations between two of the three attributes are
equal. The relationship between f and the correlation is: r = −1 + 2f . If f takes
the value 1 then the three attributes are perfectly correlated (r = 1) and the faultline
strength is maximal. If f takes the value 0.5 then there is no relationship between the
attributes (r = 0). Thus the faultline has a minimal strength. Because of its better in-
telligibility we use the parameter r to describe the faultline strength in the following.
At all levels of f , all variables are equally distributed in all teams.

The key advantage of our method is that it separates variation in faultline strength
from variation in diversity. A more intuitive alternative approach could have been to
assign attributes randomly with a given probability and a given correlation. However,
for the relatively small groups we are interested in, that method would have produced
considerable random variation in faultline strength between single realizations of dis-
tributions imposed by the same level of f . Our deterministic approach excludes this



32 A. Flache, M. Mäs

source of random noise and thus allows us to focus in our computational experiments
exclusively on effects of variation in f .

2.3 Timing of contacts

There is in principle an infinite number of ways how the sequence of who is when
brought into contact with whom in a work team can be manipulated. For the sake
of simplicity, we decided to focus upon three ideal typical forms of timing that we
expect to shape the effects of faultline strengths in clearly different ways. The first
form is the baseline scenario: no timing. Under “no timing” there is from t = 1 on no
structural restriction on the interactions between group members. I.e. all dyads are si-
multaneously “active” in the process of social influence, Technically, every agent can
have a weight different from zero towards all other group members (Ct = (N − 1),
see (1)). The second scenario represents the intuition that it may temper the effects of
strong faultlines if in the early phases of the group process interactions are restricted
to relatively homogeneous smaller subgroups (Ct < (N − 1)). In other words, dyads
between group members who are strongly different demographically are not active
in the first phase of the influence process, while dyads between similar group mem-
bers are. For the sake of idealization, we represent the subgroups as isolated “caves”
such that interaction in the early phase is entirely restricted within caves. All weights
between agents who do not belong to the same cave are set to zero and kept at zero
until caves are merged. The corresponding timing scenario of “first homogeneous
caves, then complete” imposes from t = 1 on isolated caves which are arranged in
such a way that the demographic homogeneity within the caves is very high.3 Then,
after a critical time point t∗, the boundaries between caves are eliminated. Techni-
cally, we set at t∗ all weights between agents who belong to different caves to the
value that corresponds to their current overall similarity (see (2)) and leave all oth-
ers weights and opinions unchanged. Hence, after t∗ agents will be influenced by all
other agents in the team and can have non-zero ties with all other group members.
The third and final scenario is a control condition that we called “first heterogeneous
caves, then complete”. We wanted to know whether the formation of smaller sub-
groups in the initial phase also tempers faultline effects when the subgroups are not
homogeneous but instead are formed randomly. Our intuition is that this scenario will
not differ from the baseline, because particularly in groups with strong faultlines it
is likely that demographic divisions will induce early splits and extremist opinions
within each separate cave. Once this local polarization arises, the merger of caves
into one large group is likely to “export” extremism and thus polarization also into
the group as a whole.

2.4 Aggregate outcome measures

The main claims of the theory of faultlines address two relationships: First the rela-
tionship between faultline strength and the level of consensus in the team, and sec-
ond the relationship between faultline strength and the degree to which divisions in

3Details of the method for maximization of demographic homogeneity depend on the exact settings for
group size and cave size and will thus be explained in the discussion of the initialization of our computa-
tional experiments (Sect. 3).
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opinions are associated with demographical divisions in the team. To assess whether
our model can reproduce these relationships, we devise four different outcome mea-
sures, opinion diversity, opinion variance, polarization and a measure of the degree
to which differences in fixed (demographic) and flexible (opinion) attributes of agents
are associated with each other, called attribute-opinion covariance, cov(fix;flex).

Opinion diversity is based on a count of the number of different opinion vectors
present in the group as a whole, where only flexible attributes are taken into account.
For normalization, we divide this number by the group size N . We set opinion diver-
sity = 0 if there is perfect consensus. Hence, 0 ≤ opinion diversity ≤ 1. Clearly, both
a group with high consensus and a group with perfect polarization will exhibit low
opinion diversity. Perfect consensus implies that all agents share the same vector of
opinions (opinion diversity = zero), whereas perfect polarization implies that there
are exactly two maximally different factions in the opinion space (opinion diversity
= 2/N ).

Opinion variance is the average standard deviation of opinions across all K di-
mensions of the opinion space. In the case of perfect consensus, we obtain opinion
variance = 0, and in the case of perfect polarization with two equally large maxi-
mally opposed subgroups we measure opinion variance = 1, the highest value we
ever obtained.4 However, a high level of opinion variance does not necessarily indi-
cate that the group polarizes in the opinion space. High opinion variance may occur
if agents strongly differ from each other in all dimensions of the opinion space, but
these differences are not correlated across dimensions. In that case, the group is not
polarized.

Polarization captures the degree to which the group can be separated into a small
set of factions who are mutually antagonistic in the opinion space and have maximal
internal agreement. To compute polarization, we use the variance of pairwise agree-
ment across all pairs of agents in the population, where agreement is ranging between
−1 (total disagreement) and +1 (full agreement), measured as one minus the average
distance of opinions (averaged across all K subdimensions). This measure obviously
adopts its lowest level of zero for the case of perfect consensus. The maximum level
of polarization (polarization = 1) is obtained when the population is equally divided
between the opposite ends of the opinion scale at −1 and +1 and all opinion dimen-
sions are perfectly correlated.5 With uniformly distributed opinions, the polarization
measure yields approximately 0.22 for K = 1.

To test the relationship between demographic differences and differences in opin-
ions, we compute the attribute-opinion covariance, cov(fix;flex) as the covariance
between the vector of pairwise demographic dissimilarities and the pairwise opinion
dissimilarities, where we computed for every pair of actors i and j the dissimilar-
ity measures �

fix
i,j and �

flex
i,j , as given by (4a) and (4b). These dissimilarity measures

4In this case, the average opinion in all dimensions is zero. Moreover, in all dimensions half of the group
adopts an extreme opinion at +1 and the other half of the group does so at −1. Hence, on average the
distance from the mean amounts to +1 in all dimensions, yielding the result of variance = +1.
5To see this: in 50% of all dyads the agreement is 1 (indicating maximal agreement), in 50% it is −1
(indicating maximal disagreement). The average level of agreement is zero and the average distance be-
tween the agreement in a particular dyad and the average level of agreement, i.e. the square root of the
variance, is one yielding polarization = 1.
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express the average distance across all dimensions for fixed attributes and flexible
opinions, respectively. The resulting covariance cov(fix;flex) adopts values between
−1 and 1. A value of zero indicates that similarity in opinions and similarity in de-
mographic attributes are statistically unrelated. The initial values of cov(fix;flex) are
expected to be near to zero, because opinions are initialized randomly. Changes of
cov(fix;flex) that occur when the simulation proceeds indicate how much differences
in opinions and demographic differences become aligned:

�
fix
i,j = 1

D

D∑

d=1

|a fix
id − a

fix
jd |, (4a)

�
flex
i,j = 1

K

K∑

k=1

|a flex
ik − a

flex
jk |. (4b)

Thus cov(fix;flex) is calculated as given by (5):

cov(fix;flex) =
∑

j �=i ((�
fix
ij − �fix)(�

flex
ij − �flex))

N(N − 1)
. (5)

3 Results of the computational experiments

We structured our computational analysis in two sets of experiments. In the first set
of experiments the objective is to show that the dynamics of our model are consistent
with Lau and Murnighan’s (1998) informal reasoning. More precisely, we devise a
fixed work team scenario and conduct ceteris paribus replications of the group dy-
namics that our model generates for different levels of faultline strength under the
given scenario. The stylized regularity our model should produce in this set of exper-
iments is a clear-cut negative relationship between the average level of consensus in
the opinion distribution and the strength of demographic faultlines, r . More in partic-
ular, the model should generate both less often consensus and more often polarization
as r increases. A second regularity that follows from the theory of faultline effects is
an increasing association of opinion divisions with demographic divisions as fault-
lines become stronger. In other words, the stronger are the demographic faultlines,
the clearer we expect subgroup splits in the simulated opinion distribution to reflect
the distribution of demographic attributes.

The second set of experiments focuses on the effects of timing. Broadly, we ex-
pect that the negative effects of strong faultlines will be considerably tempered when
homogeneous and mutually isolated subgroups are formed in a first phase, before
in a second phase all group members interact with each other. We also want to test
whether—as we intuit—this form of timing reduces the association between demo-
graphic and opinion differences in the team. To test these intuitions, we will conduct
ceteris paribus replications of the scenario analyzed in the first set of experiments, but
now with variation of the timing of contacts across the two options of “first homoge-
neous caves, then complete” and, “first heterogeneous caves, then complete”, where
the results of experiment 1 serve as the “no timing” baseline.
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In both sets of experiments we use the following parameter settings. With regard
to group size, we assume N = 20, a size that is not too big to be unrealistic for a
work team, but also large enough to allow for a sufficiently fine-grained variation
in the strength of demographic faultlines (cf. Table 1). Furthermore, we assume that
there are three salient demographic (fixed) attributes (D = 3). As Table 1 shows, the
combination of 20 agents and 3 fixed attributes allows sufficient variation in the cor-
relations between the fixed attributes of team members. Values for the demographic
attributes are assigned to agents as shown in Table 1, imposed by the data set we
generated for the corresponding level of faultline strength f . For the number of flex-
ible attributes (opinions), we choose K = 4. This is the smallest number that makes
polarization under strong faultlines not trivial, because with K = 3 and D = 4 it is
still possible that two agents who maximally differ in all three demographic dimen-
sions can have a positive relationship if they have sufficiently similar opinions. At
the same time, this setting makes it hard to avoid polarization in a group with max-
imal faultline strength. Accordingly, K = 3 and D = 4 provides a particularly hard
test for our conjecture that the right form of timing can prevent polarization even in
groups with strong faultlines. Furthermore we assumed that initially (at the outset of
t = 1) all opinions of all agents are randomly drawn from a uniform distribution with
full coverage of the entire opinion interval and with statistically independent dimen-
sions of the opinion space. As a consequence, initial opinions are also statistically
independent from demographic attributes. After initial opinions have been assigned,
initial weights are computed on basis of overall similarity (see (2)). In the timing ex-
periments, initial weights between agents who do not belong to the same cave are set
to zero and kept at zero until the boundaries between caves are removed.

3.1 Experiment 1: the effects of faultline strength

To illustrate how variation in faultline strength affects the model dynamics, we show
first two typical simulation runs obtained for a setting with low faultline strength
(r = 0.2) and high faultline strength (r = 0.8), respectively. Figure 1 charts for both
settings the dynamics of the four outcome measures for the first 120 iterations.

Figure 1 shows dramatically different outcomes for the two different levels of
faultline strength. In the weak faultline case, the simulated group quickly moves to-
wards perfect consensus, as indicated by the rapid decline of opinion diversity and
opinion variance, as well as polarization, from the levels given by the initial ran-
dom distribution down to the theoretical minimum level of zero for all three outcome
measures. The graph also shows that from the outset there is no (actually even a
slightly negative) association between differences in opinions and demographic dif-
ferences (see cov(fix;flex)). In the strong faultline case, it takes about 60 iterations
until the group has moved from the random initial opinion distribution towards per-
fect polarization into two maximally opposed factions. Moreover, opinion divisions
and demographic divisions align almost perfectly in this case, as indicated by a level
of cov(fix;flex) = 0.8 obtained after about 60 iterations.

The explanation for the differences shown by Fig. 1 can be readily derived from
our model assumptions. In the weak faultline scenario, demographic attributes are
almost perfectly uncorrelated with each other. Hence, there are only very few pairs
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Fig. 1 Change in outcome measure for typical simulation runs with weak faultline (left) and strong fault-
line (right). N = 20, D = 3, K = 4. No timing of contacts

of agents who maximally differ on all three demographic dimensions. This makes
it unlikely that negative ties (wij < 0) arise in the initial configuration. In addition,
if some negative ties arise, then they will most likely be between agents who are,
in turn, embedded into a large number of positive ties with the same colleagues. As
a consequence, positive social influence prevails and rejection hardly ever occurs in
the social interactions between agents. If some agents are “pushed” to reject some
enemies’ opinions, then they are at the same time “pulled in” by many more friends
so that the net change of their opinion is more likely towards the group average than
towards the extreme ends of the opinion scale. A similar reasoning explains why
the outcome for the strong faultline case is so different. In the strong faultline case,
demographic differences are maximal within a large fraction of the dyads in the team.
In these dyads only relatively small opinion differences in the initial configuration
suffice to generate a negative relationship between the interactants. Moreover, these
negative relationships tend to segregate the two major subgroups in demographic
space so that most agents have the same enemies than their friends have. This entails
a quick self reinforcing dynamic towards opinion polarization. Most agents move
towards whatever is the current average opinion profile in their (demographic) in-
group and they distance themselves from whatever is the current average opinion
profile in the (demographic) out-group. The result is a coordinated movement of all
agents that soon leads to convergence of their opinions on two opposite poles that
align with the demographic faultline in the group.

For statistical reliability, we conducted a large number of replications of this sim-
ulation experiment and varied faultline strength across the entire interval between
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Fig. 2 Effect of faultline strength on outcome measures, averages over 500 replications per conditions,
outcomes measured after 1000 iterations per replication N = 20, D = 3, K = 4. No timing of contacts

r = 0 and r = 1.0 in steps of 0.2. Figure 2 reports the average of the outcome mea-
sures we obtained after iteration 1000, based on 500 replications per condition. We
do not report opinion diversity in Fig. 2, because final states are almost always ei-
ther perfectly polarized or exhibit perfect consensus so that the variation of opinion
diversity across conditions is extremely small. To make it easier to distinguish the
different outcome measures in the figure, we used lines to connect the data points for
the six different levels of r that we simulated but we did of course not obtain results
for r-values other than those shown in Table 1.

Figure 2 clearly confirms that our model generates the stylized regularities pre-
dicted by Lau and Murnighan’s theory of faultlines. All three outcome measures
consistently increase with higher levels of faultline strength. More specifically, the
average outcomes of almost zero for opinion variance, polarization and cov(fix;flex)
when demographic dimensions are entirely unrelated (r = 0) indicate that virtually
all simulated groups have reached almost perfect consensus in this condition. By con-
trast, with maximal faultline strength (r = 1.0) groups almost always polarize maxi-
mally, as indicated by an average polarization and an average opinion variance at the
same level. The correspondingly high value of cov(fix;flex) in this condition shows
that it is the demographic faultline along which the group also splits in the opinion
space. The consistent increase of the outcome in between these two extremes shows
that—for the given set of conditions (N = 20, D = 3, K = 4)—our model clearly
implies that higher faultline strength is associated with less consensus, more polar-
ization and a stronger association between demographic and attitudinal differences,
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as predicted by Lau and Murnighan’s theory. A further striking feature of Fig. 2 is
that average polarization and opinion variance take almost the same values for all
conditions. The reason for this is explained in more detail in Flache and Mäs (2008).
It is shown there that the model tends to generate in almost every replication of the
experiment either nearly perfect polarization or nearly perfect consensus. The effects
of faultline strength reported in Fig. 2 mainly reflect a shift in the distribution of
these two outcomes. Accordingly, in a single run polarization and opinion variance
take in equilibrium almost always either both the value of zero (consensus and no
polarization) or of +1 (maximal variance and maximal polarization).

3.2 Experiment 2: effects of timing of contacts

The design of our second experiment mirrors that of experiment 1, except that we
replicate all conditions for the two different forms of timing, “first homogeneous
caves, then complete” and “first heterogeneous caves, then complete”. For the condi-
tions that impose temporary caves, we set the size of caves to NC = 5. This cave size
is chosen because with N = 20, it allows to easily generate demographically homo-
geneous caves. With NC = 5 and the 50/50 distribution of demographical attributes
that we use in all demographic dimensions, it is always possible to collect within one
cave those 25% of the agents in the group who are equal on at least the first two of
their three demographic attributes. For the condition “first homogeneous caves, then
complete”, we generate the corresponding caves as follows. In a first step, we lexi-
cographically order the set of agents based on their three fixed attributes. Thus, the
first five agents in this ordered set have attributes −1,−1 on dimensions d = 1 and
d = 2 respectively, the subsequent five agents have attributes −1,+1 and so forth. In
the second step, we match these relatively homogeneous subgroups of five generated
in step 1 with the caves of size five. The result of this procedure is shown in Table 2
which shows the composition of the caves depending on the strength of the faultline.
If the correlation between the demographic variables is perfect (a case not included
in this table) then there are 4 perfect homogeneous caves: two where all actors hold
on all attributes the value +1 and two where all actors hold on all attributes the value
−1. The grey cells in Table 2 indicate that for other cases some caves are not perfectly
homogeneous. While this can not be avoided under the assumptions that N = 20 and
NC = 5, the table also shows that our method generates a high level of homogeneity
within caves.

Our method assures that in the condition “first homogeneous caves, then com-
plete”, there are almost no negative weights within caves in the initial condition,
regardless of the level of faultline strength. Finally, we assumed that in the conditions
with caves, the caves are merged in iteration t∗ = 250. This choice of the critical
time point assured that the dynamics within caves had practically settled down to
equilibrium before the caves were joined.

We start again with an illustration of the timing effects by a comparison of typical
model dynamics as we obtained them for the two different forms of timing with
caves, crossed with low faultline strength (r = 0.2) and high faultline strength (r =
0.8), respectively. Figures 3 and 4 chart for all four settings the dynamics of the four
outcome measures until equilibrium. Both figures show for both weak and strong
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Table 2 Initialization of homogeneous caves

∗Note that actors’ numbers in this table do not correspond to those in Table 1.

faultlines the type of dynamic that we encountered most frequently in the replications
we ran for the corresponding condition (cf. Fig. 6). The corresponding “no timing”
baseline is visualized by the time charts in Fig. 1.

The figures show that the merger of the caves at time t∗ = 250 dramatically
changes group dynamics under both forms of timing. But already in the first phase of
the simulated group process there are remarkable differences between homogeneous
and heterogeneous caves. The results illustrate that the simulated group dynamics in
homogeneous caves exhibit a very strong tendency towards perfect consensus both
for weak and for strong faultlines before the merger occurs. Polarization drops to
nearly zero in this phase and the measures for opinion variance and opinion diversity
approach low levels (about 0.1 and 0.2, respectively). The explanation for this pattern
is that homogeneous caves generate local convergence within the caves. Between the
agents in a homogeneous cave, there are almost no negative ties. Accordingly their
opinions converge towards the average of the randomly chosen initial local opinion
distributions. In other words, in each cave the agents reach consensus on moderate
opinions. All local initializations are drawn from the same random distribution. As
a consequence, the remaining opinion diversity and opinion variance between the
caves is also relatively small. The opinion diversity of 0.2 at t∗ = 250 in both subfig-
ures of Fig. 3 shows that exactly four different opinion vectors remain after the early
phase, one per cave. The corresponding low opinion variance (about 0.1) indicates
that the differences between the caves are also very small. By contrast, Fig. 4 shows
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Fig. 3 Change in outcome measure for typical simulation runs with timing “first homogeneous caves,
then complete”, for weak faultline (left) and strong faultline (right). N = 20, D = 3, K = 4

that in heterogeneous caves groups tend to develop a higher level of polarization al-
ready within the caves, at both levels of faultline strength. The polarization measure
increases in both conditions to about 0.2 and opinion variance moves to 0.4 (weak
faultline) and 0.6 (strong faultline). Opinion diversity takes in both runs the value
0.25 before the merger. This indicates that there are 5 different opinion vectors in
the team what shows that there is perfect consensus in 3 caves and perfect polariza-
tion in one.6 The local polarization is triggered by the relatively high proportion of
negative within-cave ties that is generated due the high likelihood that demograph-
ically strongly dissimilar agents are matched within the same cave by the random
assignment procedure.

The different developments within the caves set the stage for the dynamics that
unfold after merger. A comparison of Figs. 3 and 4 shows that after t∗ = 250, groups
move to perfect consensus when caves were homogeneous, while perfect polarization
is the outcome when initially caves were heterogeneous. Under homogeneous caves,
all caves reached consensus on moderate opinions. As a consequence there are virtu-
ally no negative ties in the overall group at the point when caves are merged. Accord-
ingly, social influence is overwhelmingly positive and all agents move towards and
converge upon the current average group opinion. By contrast, with heterogeneous
caves, the dynamics of rejection drove the agents of one cave to the very extreme

6It is also possible that this result obtains when the opinions in more than one cave polarized and the
opinion vectors in the different caves happened to be equal. We checked to make sure that this was not the
case in the runs that are reported in Figs. 3 and 4.
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Fig. 4 Change in outcome measure for typical simulation runs with timing “first heterogeneous caves,
then complete”, for weak faultline (left) and strong faultline (right). N = 20, D = 3, K = 4

ends of the opinion dimensions already before the caves are joined. After the merger
these extremists exert influence on all team members, with many of whom they have
negative ties due to their large opinion differences. As a consequence, agents suffi-
ciently disagree with each other within many dyads, to generate a large proportion of
negative ties within the group as a whole at the point when the caves are connected.
The result is that in the runs shown by Fig. 4, the previously uncoordinated local
division lines merge after t∗ = 250 into a developing global opinion division, as ex-
hibited by the maximum level of polarization (1.0) shown for the final state in both
subgraphs of Fig. 4. The dynamics of the attribute-opinion association cov(fix;flex)
in Fig. 4 also show that this division occurs mainly along demographical differences
when faultlines are strong, whereas the division is only weakly related to demograph-
ical differences when faultlines are weak.

For statistical reliability, we conducted again a large number of replications of this
simulation experiment and varied faultline strength across the entire interval between
r = 0 and r = 1.0 in steps of 0.2. Figure 5 reports the results we obtained in both
timing conditions for the outcome measures of polarization (a), opinion variance (b)
and cov(fix;flex) (c). For comparison, we also include the baseline results of “no
timing” in the figures. Results are averages based on 500 replications per condition,
where we measured the outcomes after 1000 iterations.

Figure 5 confirms the patterns exhibited by the typical simulation runs shown in
Figs. 3 and 4. Overall, we find that the indicators for polarization and its association
with demographic differences are dramatically lower when the “right” form of tim-
ing is chosen (homogeneous caves) than in any of the two alternative cases (no timing
or heterogeneous caves). The results also support our intuition that the “right” form
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Fig. 5 Effect of timing and
faultline strength on average
polarization (a), average
opinion variance (b) and
average association between
demographic differences and
opinion differences (c), based on
500 replications per condition,
outcomes measured after 1000
iterations per replication
N = 20, D = 3, K = 4

of timing strongly tempers the negative effects of faultline strength that we found in
the baseline condition of “no timing”. As part (a) of Fig. 5 shows, without timing,
average polarization increases from zero at r = 0 (no faultline) to almost the theoret-
ical maximum of 1 at r = 1 (maximally strong faultline). With homogeneous caves,
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there is only a slight increase of polarization between those two extremes, from zero
at r = 0 to 0.2 at r = 1. An inspection of the measure of association between fixed
and flexible attributes (part (c) Fig. 5) reveals that the formation of homogeneous
caves also greatly reduces the degree to which opinion differences in the team align
with demographic differences. While the association measure increases for no timing
from cov(fix;flex) about 0 at r = 0 to about 0.6 at r = 1, the association measure
increases only slightly under homogeneous caves, from cov(fix;flex) about 0 at r = 0
to about 0.2 at r = 1.

Figure 5 shows furthermore that the effects of timing strongly depend on the
“right” choice for the method of assignment of agents to caves. Broadly, while homo-
geneous caves generated high levels of consensus and virtually eliminated the nega-
tive effects of strong faultlines, heterogeneous caves turned out to make things even
worse than they were in the baseline condition of no timing. Part (a) of Fig. 5 shows
that with heterogeneous caves, polarization was high (about 0.6) even without demo-
graphic faultlines and stayed high at all levels of faultline strength. Correspondingly,
we found at almost all levels of faultline strength a higher opinion variance (part (b))
and stronger association between demographic and opinion differences (part (c)) for
heterogeneous caves than for any of the other timing conditions. Only for very strong
faultlines (r = 0.8 and r = 1.0), we find that a further increase in faultline strength
is related to a slight decline of the average level of polarization in initially heteroge-
neous caves, such that for r = 1.0 the level of polarization is even somewhat lower
than in the baseline condition of no timing. This decline will be explained further be-
low, when we present a detailed analysis of the distribution of equilibrium outcomes
that generated the averages reported in Fig. 5.

Figure 5 shows the expected association of the timing conditions with the out-
come measures, but it does not directly test our intuition that the effect of the timing
conditions can be attributed to a reduction of negative ties in the early phase of the
group process. For this, we checked as a first test whether the manipulations of ho-
mogeneous and heterogeneous caves affected the proportion of negative ties in the
group at the time point before caves were merged (t = 250) in the expected direc-
tion. While without caves (no timing) on average across all levels of r (3000 runs)
13.3% of all possible dyads were strongly negative (wij ≤ −0.95), there was not a
single strongly negative tie7 in any of the 12000 simulated homogeneous caves. As
expected, this discrepancy between no timing and homogeneous caves became more
pronounced for stronger faultlines, with a maximum level of about 47% of all possi-
ble ties in iteration 250 being strongly negative at r = 1.0 with no timing (and zero
for homogeneous caves). For comparison, we found 21.9% strongly negative ties at
t = 250 with heterogeneous caves. These checks confirm our expectation that ho-
mogeneous caves suppress the formation of negative ties, while heterogeneous caves
foster negativity compared to the baseline of no timing. We also tested whether a
higher proportion of negative ties at t = 250 was related to higher levels of polariza-
tion in equilibrium across all conditions of the experiment. We discovered that even a
very small proportion of negative ties at t = 250 dramatically increased polarization

7The number of iterations (250) was chosen large enough to assure that if a tie was negative at this point,
it would also be strongly negative, i.e. have a weight w of less than −0.95.
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Fig. 6 Distribution of polarization measure over 500 replications per condition, broken down by the
six different levels of faultline strength and the two different forms of timing. N = 20, D = 3, K = 4.
p < 0.02: perfect consensus; p > 0.98: perfect polarization (2 opposing subgroups); 0.02 ≤ p ≤ 0.98:
multiplex equilibrium outcome (more than 2 subgroups)

in the final state. With no timing, average polarization in equilibrium across all levels
of faultline strength (3000 runs) was about 0.01 if the proportion of negative ties at
t = 250 was less than 2.5% (947 runs). The average polarization soared to 0.997 if the
proportion of negative ties was above that figure (2053 runs) in this condition. The
corresponding figures for heterogeneous caves are an average polarization in equi-
librium of about 0.16 if less than 2.5% of the possible ties were negative in t = 250
(200 runs), and of about 0.73 with more negative ties (2800 runs). The lower level of
polarization for heterogeneous caves reflects the decline of the polarization level that
Fig. 5 showed for this condition at high levels of faultline strength r . An explanation
for this decline can be found in a closer inspection of the distribution of equilibrium
outcomes that generated the averages reported in Fig. 5. We turn now to this analysis.

Figure 6 shows how timing affects the distribution of polarization in equilibrium
over the 500 replications that we conducted in each of the two cave conditions in
experiment 2.

Overall, Fig. 6 supports the interpretation that homogeneous caves greatly increase
the odds that a group ends up in consensus, even when faultlines are strong. The
highest relative frequency of polarized groups that we obtained with homogeneous
caves was 15% for maximally strong faultiness (r = 1.0). In almost all other re-
alizations under this timing condition the outcome was perfect consensus. That in
some cases groups polarize despite homogeneous caves is a consequence of how the
caves were formed. As Table 2 shows, some of the caves are not perfectly homoge-
neous. For r = 0.8, for example, actor 11 holds only on one demographic attribute
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the same value as the other actors in his cave. The other actors in this cave are demo-
graphically perfectly similar to each other. As a consequence, the likelihood is high
that the randomly drawn initial opinions generate differences between actor 11 and
his cave mates that are high enough to impose negative ties. Agents will then reject
each other’s opinions and with a high chance the cave polarizes. Thus all actors from
this cave hold extreme opinions. After the merger those extremists suffice to create
enough negative ties in the whole team to make it polarize as well.

As we expected, the pattern is quite different when caves are heterogeneous. As
Fig. 6 shows, we find that even with no faultlines (r = 0) about 46% of the repli-
cations generated a perfectly polarized group and only about 16% produced perfect
consensus. Like for homogeneous caves and for the baseline condition, the stronger
the faultline is the less often the dynamics end with perfect consensus, but the overall
level of polarization that we find for weak faultlines is much higher. This result differs
clearly from the baseline condition (no timing) where about 98% of the runs ended in
perfect consensus when there was no faultline. The key factor that drives this result is
the relative size of the caves. With heterogeneous caves, the four different caves per
group can be seen as four independent replications of the baseline condition, but each
with a much smaller group size (N = 5 as opposed to N = 20) than in the baseline.
But the smaller the caves, the more likely it is that there are at least some caves in
which there is a relatively high concentration of negative ties from the outset8. As a
consequence it is relatively likely that the opinions in at least one of the caves polar-
ize perfectly. If the caves are then merged the extremists pull (or push) the rest of the
team to the extremes of the opinion scales. Thus the whole team polarizes.

A second main difference between the results from the condition “first heteroge-
neous caves, then complete” and the other two timing conditions is that with het-
erogeneous caves multiplex equilibria occur much more frequently. In a multiplex
equilibrium, all actors hold extreme opinions, but there are more than only two dif-
ferent opinion vectors in the group. A multiplex equilibrium can arise if the overall
pattern of relationships and opinions is exactly balanced so that “push” and “pull”
forces exerted upon agents’ opinions from different groups of friends and enemies
exactly neutralize each other (cf. Macy et al. 2003). Multiplex equilibria are rela-
tively frequent under the timing condition “first heterogeneous caves, then complete”
because often the opinions in more than one of the heterogeneous caves polarize be-
fore merger. If in addition the opinions of the extremists from different caves differ
sufficiently then the extremists pull the moderate actors from the caves that reached a
consensus to different poles of the opinion scales after the merger. Table 3 reports the
absolute frequencies of the number of different opinion vectors in teams after 1000
iterations (only for the experiments with heterogeneous caves). If there was only one
opinion vector then the whole team reached a perfect consensus. As Table 3 shows,
this happened in 81 of the 500 runs with minimal faultline strength. The stronger
the faultline the less often the team found a consensus under this timing condition.

8The reason is that in smaller caves the initial random distribution of opinions produces a relatively sparse
coverage of the opinion space. As a consequence, occasional initial “extremists” are likely to have larger
opinion distances and thus relatively more negative ties to other group members than in a more densely
packed opinion space.
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Table 3 Number of different opinion vectors after 1000 iterations under the condition “first heterogeneous
caves, then complete” (the crosstabulation shows absolute frequencies of runs)

# opinion Faultline strength �

vectors 0 0.2 0.4 0.6 0.8 1

1 81 53 25 5 2 0 166

2 286 301 292 316 286 180 1661

3 3 4 14 3 0 0 24

4 99 105 119 128 148 205 804

5 1 2 8 5 7 3 26

6 21 24 28 26 30 53 182

7 3 4 4 2 1 0 14

8 3 6 7 12 26 59 113

9 3 1 2 3 0 0 9

10 0 0 0 0 0 0 0

11 0 0 1 0 0 0 1

� 500 500 500 500 500 500 3000

2 final opinion vectors indicate that the team perfectly polarized (polarization = 1).
If there were more than 2 final opinion vectors in the team then a multiplex equi-
librium was reached in which all agents hold extreme opinions but there were more
than 2 subgroups in the team. This happened when the opinions in more than one
of the heterogeneous caves polarized. If there is an unequal number of final opinion
vectors larger than 1 then the opinions in more than one cave polarized but the opin-
ion vectors of extremists from two different caves happened to be very similar. As
a consequence the members of the two subgroups will have positive relationships. It
can thus happen that after the merger these two subgroups of extremists coordinate
on the same opinion vector. Table 3 shows that the higher the faultline strength the
more often multiplex equilibria occurred.

Multiplex outcomes are also the reason why we saw in Fig. 5 that the mean of
polarization decreases of r = 0.8 and r = 1.0 and that at r = 1.0 the average level
of polarization is even lower for initially heterogeneous than for no timing. Figure 6
makes clear that this result should not be interpreted as showing that there was more
perfect consensus under heterogeneous caves in these conditions. For example, in
the 500 runs under the condition “first heterogeneous caves, then complete” the dy-
namics never produced perfect consensus. But Fig. 6 shows that in many runs under
this condition more than two groups with partially opposing opinions formed. The
opinions of all team members were at the poles of the respective opinion scales in
all of these cases. However, the outcome was multiplex, so that there was not perfect
polarization into two opposed subgroups in these cases. This is reflected by a value
of the polarization measure that is somewhat lower than the theoretical maximum of
1.0, but still considerably above the level for consensus (0.0), which explains why on
average across all runs we found a polarization level of about 0.7 in this condition.

We believe the reason that we find more multiplex outcomes with heterogeneous
caves than in any of the other timing conditions lies with the uncoordinated local po-
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larizations that under strong faultlines are likely to arise at the end of the first phase.
In a four dimensional opinion space, there are only 16 possible combinations of ex-
treme positions on every dimension. Equilibrium outcomes will arise if agents are
distributed in the right way over these 16 combinations, or over smaller subsets of
the combinations (e.g. with 4 or 8 different opinion vectors in the group) such that
all mutual influences on agents’ opinions are in balance. With heterogeneous caves,
every locally polarized cave produces at least two of those combinations with some
incumbents. With five caves overall, it is not unlikely that this process generates an
overall distribution in the group as a whole that is in or close to a multiplex equilib-
rium when all caves are merged.

4 Summary and discussion

We modeled in this paper the effects of demographic faultlines on team cohesion. Lau
and Murnighan’s theory suggests that the stronger a team’s demographic faultline is
the less cohesive the team will be and the less likely will the team therefore be able to
find a consensus with regard to work related opinions. As a consequence, teams with
a strong demographic faultline tend to perform poorly. We proposed a formal compu-
tational model of this process based on four fundamental sociological mechanisms,
homophily, heterophobia, social influence and rejection. We showed that the model
generates results that are consistent with Lau and Murnighan’s faultline theory. Our
simulations demonstrate that the stronger the demographic faultline in a group the
more likely will the group split up into subgroups. These subgroups’ members hold
opposing opinions and do not like each other.

We then used our model to show that the degree to which strong faultlines have
negative effects may critically depend on the timing of contacts between group mem-
bers. We tested a counter intuitive prediction: if in the first phase of the team inter-
action the team is separated into demographically homogeneous groups which are
merged only later in the team process, then strong demographic faultlines do less of-
ten lead to opinion polarization than in a process where all group members interact
with each other from the outset. This result contradicts to some extent predictions
of contact theory (Allport 1954; Pettigrew 1998) which states that contact improves
the relationships between demographically dissimilar actors. However, as discussed
above, the effects of timing follow logically from the fundamental social mechanisms
that constitute our model.

It was our main interest in this paper to show the theoretical consistence of the
reasoning that implies effects of the timing of contacts in demographically diverse
groups. Accordingly, we did not conduct an extensive analysis of the robustness of
our results with regard to variation in other model parameters than those we have ma-
nipulated. We have shown elsewhere (Flache and Mäs 2008) that our model recon-
structs basic predictions of faultline theory also for different numbers of opinions and
demographic dimensions. It is a task for future research to conduct more extensive
sensitivity analyses. At this point we see no a priori reason to expect that qualitative
model results may fundamentally change for other sets of parameters, as long as the
parameters of the model are chosen such that the model equations are consistent with
the social mechanisms we assume.
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The mechanisms we use in our model imply that timing is not the only manipu-
lation that may avoid the negative effects of strong demographic faultlines on team
cohesion. More generally, according to our model every condition that suppresses the
emergence of negative ties helps to sustain group cohesion despite demographic di-
visions. Team building measures, emphasis on common goals or team learning may
have similar effects than the right form of timing. Such measures have been proposed
by previous research on the faultlines (e.g. Gibson and Vermeulen 2003). Also pre-
vious work on agenda setting points to measures that may have similar effects (see
e.g.: Levine and Plott 1977; List 2004; Plott and Levine 1978). Team managers might
manipulate the sequence in which certain issues are discussed. If in a first phase only
salient issues are discussed that all team members agree on, this would imply the
emergence of positive interpersonal relationships between the team members. If then
more controversial issues are addressed in a later phase, the prospects for finding a
consensus are much better than compared to a situation where only controversial top-
ics were addressed from the outset. Clearly, previous research on team building and
agenda setting points to fruitful new applications of our model, but we also wish to
emphasize that with the manipulation of the timing of contacts that we addressed in
this paper our model suggests a measure that to our knowledge is new in the litera-
ture. One possible advantage of timing may be that it is a measure that organizations
can implement unobtrusively, seemingly as a byproduct of functional arrangements
of the workflow.

Future research should also focus on the mechanisms that produce opinion po-
larization. As we argued above, Lau and Murnighan’s reasoning seems to critically
hinge upon the assumption that there is an initial correlation between demographic
attributes and opinions. In our model, this assumption is not necessary. Instead, the
two negative mechanisms of heterophobia and rejection are sufficient to generate
an effect of faultline strength on opinion polarization. We propose that future work
should compare our model with the Lau and Murnighan reasoning on a theoretical
level, to search systematically for contradicting predictions that can subsequently be
submitted to empirical tests. We suggest that effects of the timing of contacts are
particularly promising to compare the models empirically. We expect that the mech-
anisms we used and those of Lau and Murnighan produce different dynamics under
certain timing conditions. As we have shown, our mechanisms produce less polariza-
tion if first homogeneous subgroups are formed. By contrast, Lau and Murnighan’s
mechanism should lead to the opposite outcome. Their reasoning implies that in ho-
mogeneous groups the actors agree on opinions and that their opinions should become
more extreme then. Because Lau and Murnighan assume that demographically dis-
similar actors also hold opposing opinions, each of the subgroups will find a different
very extreme consensus. If then the team is merged, all team members hold very
extreme opinions and a consensus is very unlikely. If on the other hand in the first
phase heterogeneous groups are formed then the actors in each subgroup will hold
different opinions. If they then exchange the arguments their opinions are based on
they may be able to convince each other. From this view, it is thus very likely that the
subgroups find a consensus on moderate opinions. After the merger, the moderates
will very likely find an overall consensus. Hence, the predictions of our model and
the Lau and Murnighan reasoning are contradictory under certain timing conditions.
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Our analysis has demonstrated how the theory of faultlines can be rigorously and
formally reconstructed. We also have shown that this reconstruction can yield new,
empirically testable hypotheses about the conditions and mechanisms that may tem-
per or elicit the negative effects of demographic faultlines on team performance. Fi-
nally, our analysis suggests that the timing of contacts is a potentially fruitful gover-
nance instrument that managers may be able to use in order to avoid that the negative
effects of demographic faultlines overshadow the benefits that diverse human and
social capital can create for organizations.
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