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J. W. ROMEYN

HYPOTHESES AND INDUCTIVE PREDICTIONS

Including examples on crash data

ABSTRACT. This paper studies the use of hypotheses schemes in generating induct-
ive predictions. After discussing Carnap–Hintikka inductive logic, hypotheses schemes
are defined and illustrated with two partitions. One partition results in the Carnapian
continuum of inductive methods, the other results in predictions typical for hasty gen-
eralization. Following these examples I argue that choosing a partition comes down to
making inductive assumptions on patterns in the data, and that by choosing appropriately
any inductive assumption can be made. Further considerations on partitions make clear
that they do not suggest any solution to the problem of induction. Hypotheses schemes
provide the tools for making inductive assumptions, but they also reveal the need for such
assumptions.

1. INTRODUCTION

This paper concerns inductive predictions. It takes these predictions as the
result of inductive methods. The input of an inductive method includes
a data set, usually consisting of observations, and possibly some further
assumptions. The output may consist of predictions or general statements,
where predictions concern unobserved singular states of affairs, and gen-
eral statements, such as empirical generalizations, concern universal states
of affairs. For example, from the fact that some internet startup has had
decreasing stock price on all days until now, we may derive that the next
day it will have decreasing stock price as well. This is a prediction about a
single event, namely the decrease of stock price on the next day, based on
data of the stock price movements on all days until now. From the same
data set we may also derive that the internet startup will have a decreasing
stock price on all future days, which is a general statement about events.

The inductive methods in this paper employ general statements to ar-
rive at predictions. In inductive methods of this form, the data are first
reflected in an opinion over a specific set of general statements, called a
partition of hypotheses. For example, from the data on decreasing stock
price we first derive an opinion over some partition of hypotheses on the
state and nature of the internet startup. The predictions on the internet
startup are subsequently derived from this opinion and the data. Since
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predictions and hypotheses have a content that exceeds the content of
the data, neither of these can be derived from the data with certainty. As
opposed to deductive arguments, inductive methods therefore render the
conclusions uncertain. This uncertainty can be expressed in a probability
function. In sum, this paper concerns probabilistic inductive methods that
employ hypotheses for making predictions. I will say that such predictions
are based on hypotheses schemes, or alternatively, based on partitions.

The main line of the paper is the following. I first show that the use of
partitions enables us to describe predictions typical for hasty generaliza-
tions. These predictions can be generated by choosing a specific partition
used in the hypotheses scheme. This example triggers two different dis-
cussions, one on the function of partitions in the hypotheses schemes, and
one on hypotheses schemes in relation to the problem of induction. The
main conclusion of the first is that partitions are tools for making inductive
assumptions. They determine which patterns are identified in the data and
projected onto future observations. The main conclusion of the second
discussion is that hypotheses schemes do not suggest anything towards
solving the problem of induction. However, the schemes direct attention
to choosing partitions as key element in the inductive method. I argue that
they are a first step in a logic of induction that makes explicit the input of
both data and projectability assumptions.

The plan of the paper is as follows. In Section 2, the present treatment
of inductive predictions is related to a dominant tradition in formalizing
inductive predictions, called Carnap–Hintikka inductive logic. The induct-
ive predictions of this paper are seen to expand this tradition. Section 3
deals with the formal details of inductive predictions based on hypotheses
schemes, and ends with some further remarks on such schemes. Section 4
considers two prediction rules working on the same data, but based on
different partitions, and shows that they result in different predictions.
It further elaborates the relation between inductive predictions and the
Carnap–Hintikka tradition. In Section 5 and 6 the results are given a further
philosophical interpretation, and related to the problem of induction. The
conclusion summarizes the results.

2. CARNAP–HINTIKKA INDUCTIVE LOGIC

This section discusses the Carnap–Hintikka tradition of inductive logic. It
emphasizes two characteristic features of this tradition: its focus on ex-
changeable predictions, and its suspicion towards general statements. The
inductive predictions of this paper extend the Carnap–Hintikka tradition
with respect to these two features.
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As indicated, the inductive methods of this paper relate a data set, and
possibly some other assumptions, with probabilistic predictions. The data
of this paper are records of observations, encoded in natural numbers qi ,
indexed with time, and collected in ordered t-tuples et = 〈q1, q2, . . . , qt 〉.
At any time t , the probability of the next observation qt+1 follows from this
data set et and some further assumptions. Let us say that these further as-
sumptions can be encoded in some collection of parameters, so that we can
define inductive prediction rules as functions expressing the probability of
the next observation qt+1 in terms of the data et and these parameters. This
enables us to study inductive methods for making predictions by designing
and comparing classes of such functions, which I call inductive prediction
rules.

Carnap was the first to study inductive prediction rules at length. An
exemplary class of probabilistic inductive inference rules for making pre-
dictions is his so-called γ λ continuum, as elaborated in Carnap (1950,
1952), and Carnap and Stegmüller (1959):

Cγλ(et , q) =
(

t

t + λ

)
tq

t
+

(
λ

t + λ

)
γq. (1)

The function C, the probability for observing q at time t +1, is a weighted
average of the observed relative frequency tq/t of instances of q among the
ordered set of known observations et , and the preconceived or virtual relat-
ive frequency of observing q, denoted γq . The weights depend on the time
t and a learning rate λ. With increasing time, the weighted average moves
from the preconceived to the observed relative frequency. The learning rate
λ determines the speed of this transition.

After Carnap, inductive prediction rules have been studied extensively.
Axiomatizations, elaborations and synthetizations of inductive prediction
rules have been developed by Kemeny (1963), Hintikka (1966), Carnap
and Jeffrey (1971), Stegmüller (1973), Hintikka and Niiniluoto (1976),
Kuipers (1978), Costantini (1979), Festa (1993) and Kuipers (1997). To
this research tradition I refer with the names of Carnap and Hintikka.

Most of the work in this tradition concerns exchangeable prediction
rules. Exchangeability of a prediction rule means that the predictions do
not depend on the order of the incoming observations. As I elaborate
below, exchangeable rules typically apply to settings in which the events
producing the observations are independent. Exchangeable rules thus have
a very wide range of application. Moreover, on the assumption that the
prediction rule is exchangeable, it can be proved that the predictions even-
tually converge to optimal values. That is, if the observations are produced
by some process with constant objective chances, the predictions of an
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exchangeable rule will, according to Gaifman and Snir (1987), almost al-
ways converge on these chances, whatever the further initial assumptions.
Both for their range of applicability and for this convergence property,
exchangeable rules are a main focus in the Carnap–Hintikka tradition.

The second feature that I want to emphasize can only be made explicit
if we establish the link, in both directions, between exchangeability of ob-
servations and the independence of the events that are supposed to produce
these observations. The first component of this link is the assumption that
the events producing the observations are part of some underlying process.
The second component is the fact that if this underlying process generates
the events with constant objective chances, then the chance of an event is
independent from events occurring before or after it, so that the events can
be called independent.

The link from exchangeability to independence is then established by
the representation theorem of De Finetti, as discussed in (1964). This
theorem shows that any exchangeable prediction rule can be represented
uniquely as a Bayesian update over the partition of hypotheses that concern
processes with constant chances. Section 4 deals with this representation
theorem in some more detail. The link from independence to exchangeab-
ility, on the other hand, is established by the fact that any Bayesian update
over a partition of hypotheses on constant chance processes results in an
exchangeable prediction rule. This is seen most easily from the fact that
the influence of observations on the probability over the hypotheses are
commutative operations. The order of such updates is therefore inessential
to the resulting probability assignment over the hypotheses, and thus ines-
sential to the predictions resulting from this assignment. Again Section 4
shows this in more detail. In sum, assuming the independence of the events
producing the observations can be equated with the use of exchangeable
prediction rules.

The above leads up to the second characteristic feature of the Carnap–
Hintikka tradition, which is connected to its empiricist roots. De Finetti
interpreted the representation theorem as a reason to leave out the reference
to underlying processes, and to concentrate on exchangeable prediction
rules instead. As Hintikka (1970) argues, this is not so much because of a
subjectivist suspicion towards objective chances, but mainly because these
chance processes are described with universal statements, which cannot
be decided with finite data. De Finetti deemed such universal statements
suspect for empiricist reasons. For similar reasons, Carnap maintained that
universal statements have measure zero. For both De Finetti and Carnap,
the representation theorem showed that it is simply unnecessary to employ
chance processes: we can obtain the same results using the exchangeability
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of the prediction rule. In line with this, most of the Carnap–Hintikka tradi-
tion focuses on the properties of prediction rules, such as exchangeability
or partial exchangeability, and avoids reference to the chance processes
underlying these prediction rules.

Prediction rules with this feature I call Carnapian. This terminology
signals that this second feature is not fully applicable to the Hintikka part
of the Carnap–Hintikka tradition. In Hintikka (1966) and Tuomela (1966)
we find a different attitude towards underlying chance processes, or at least
towards the use of universal statements in inductive logic. More in par-
ticular, Hintikka employs universal generalizations on observations in the
construction of his αλ continuum of inductive prediction rules. Tuomela
discusses universal statements on ordered universes, and refers to Hintikka
for the construction of prediction rules based on these universal statements.
Both these authors thus employ universal statements to inform predictions
in a specific way.

While this already presents a valuable extension, I feel that universal
statements have not been employed with full force in the Carnap–Hintikka
tradition. Perhaps some empiricist feelings have remained, which have
curbed the further development of Hintikka systems. The αλ continuum
offers little room for varying the kind of universal statements: the con-
tinuum concerns universal generalizations only, and the role of these
generalizations is controlled completely by the value of the parameter α.
As Hintikka himself remarks in (1997), it would be more convenient if the
universal statements can simply be expressed by premisses, so that other
kinds of universal statements can be employed too, and also controlled
more naturally. Related to this, many prediction rules in which the use
of specific universal statements seems very natural do not employ such
statements in their construction. For example, in the inductive prediction
rules for Markov chains by Kuipers (1988) and Skyrms (1991), and the
prediction rules describing analogy reasoning by Niiniluoto (1981) and
Kuipers (1984), the construction of prediction rules is based on particular
properties of the prediction rules. Underlying chance processes are not
really used in the construction.

With this introduction, I can make precise the innovations that this
paper offers. It extends the Carnap–Hintikka tradition in inductive logic
in two ways, connected to the two characteristic features noted above.
First, it advocates an almost unrestricted use of chance processes. Below I
explicitly employ hypotheses, associated with chance processes, to define
prediction rules. Second, this paper proposes a prediction rule that is not
exchangeable, by adding hypotheses concerning a particular deterministic
pattern to an existing partition of constant chance hypotheses. The claims
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deriving from this are that partitions are a tool in making assumptions on
patterns in data, and furthermore, that the use of this tool does not suggest
specific preferred rules, nor restrict the class of prediction rules in any
way. On the contrary, the tool widens the range of interesting inductive
prediction rules.

The last two paragraphs of this section disclaim some topics that oth-
erwise complicate the discussion too much. First, it can be noted that the
prediction rules of this paper are somewhat similar to those of the paper by
Tuomela on ordered universes. Both focus on predictions based on these
specific patterns in the data. But for lack of space, I will not elaborate on
this similarity in the following. Second, I will not discuss representation
theorems like De Finetti’s in full generality, and similarly I will not touch
upon the various brands of partial exchangeability. The focus of this paper
is on a particular non-exchangeable prediction rule, generated by a par-
tition of hypotheses concerning particular chance processes, and on the
moral that derives from the use of such partitions.

Finally, I do not discuss issues on the use and interpretation of prob-
ability. Inductive inferences concern degrees of belief, and are usually
associated with epistemic or subjective probability. If, for instance, on the
basis of data I assign an epistemic probability of 0.9 to the event that some
internet startup has decreasing stock price on the next day, this means that I
consider it likely that the stock price decreases the next day, and not neces-
sarily that there is a tendency in the startup itself to have decreasing stock
price. However, the present paper also involves explicit reference to chance
processes, in which the probabilities are objective. For example, I may
assign an epistemic probability of 0.9 to the hypothesis that the objective
probability for any internet startup to have increasing stock price is smal-
ler than 0.5. In the following, I assume that both objective and epistemic
probability can be given an unproblematic interpretation in such a setting
(Cf. Jeffrey (1977)). In the present context, I cannot resolve the tensions
that may result from the simultaneous usage of these interpretations.

3. PREDICTIONS USING HYPOTHESES SCHEMES

This section introduces Bayesian hypotheses schemes. Bayesianism, as
presented by Jeffrey (1984), Howson and Urbach (1989), and Earman
(1992), is a dominant position in the philosophical discussion concern-
ing probabilistic inferences. While the Carnapian prediction rules directly
relate the data to a prediction, Bayesian updating can also relate the data
with general statements or hypotheses. If the data are observations of trad-
ing days of an internet startup, a hypothesis can for instance be that all
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trading days result in decreasing stock price, or that the portion of trading
days with decreasing stock price has some value θ . The following elabor-
ates the use of Bayesian updating over hypotheses in generating inductive
predictions.

3.1. Hypotheses Schemes

In this subsection I define, in that order, set theoretical notions of ob-
servation and observational hypotheses, belief states over observations
and hypotheses, Bayesian updating as a way of adapting belief states to
new observations, partitions as specific sets of hypotheses, and predic-
tions based on Bayesian updating over such partitions. The construction
in which a partition of hypotheses is used for predictions is called the
hypotheses scheme.

Let us define a space of possible observations K. As the simplest ex-
ample of this, take K = {0, 1}, so that observations can be represented as
bits qi ∈ K. We can think of such observations as simple facts about some
system, e.g. that a particular internet startup has decreasing or increasing
stock price on day i. As in the above, finite sequences of observations can
be written as et = 〈q1, q2, . . . , qt 〉, so that et ∈ Kt , the t-th Cartesian
power of K. The result of a particular observation i in such a finite se-
quence is denoted et (i) = qi . In all of the following, the lower case letters
e and q refer to such single numbers and finite sequences of numbers
respectively. They constitute a finite observational language.

Now consider the space of infinite sequences of possible observations.
Analogous to the above, we can define infinite sequences of results e ∈ Kω

as infinite ordered sequences e = q1q2 . . . We can again define the separate
observations e(i) = qi . But we can also define the finite sequences et in
terms of these infinite sequences of observations. Define the set Et ⊂ Kω

as the set of all infinite sequences e that start with the observations Et and
diverge after that:

Et,〈q1,q2,...,qt 〉 = {e ∈ Kω | ∀i ≤ t : e(i) = qi}. (2)

For later purposes we also define Qt+1 ⊂ Kω, the set of strings e that start
with any Et ∈ Kt , have the same observation q at time t + 1, and diverge
again after that:

Qt+1,q = {e ∈ Kω | e(t + 1) = q}. (3)

The sets Et and Qt+1 are determined by the sequence of numbers
〈q1, q2, . . . , qt 〉 and the single number q respectively. However, for sake
of brevity I do not normally attach these numbers when I refer to the sets.
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The upper case letters Et and Qt+1 thus refer to specific sets in Kω as well.
Together these sets constitute a so-called cylindrical algebra, which I call
the observation field Q0. It may be taken as the set theoretical equivalent
of the finite observational language.

We can also define hypotheses as sets of infinite sequences of observa-
tions in Kω. It is because they are defined on Kω that we can call these
hypotheses observational. Let Ih : Kω �→ {0, 1} be the characteristic
function of some hypothesis h applying to infinite sequences e. That is,
Ih(e) = 1 if and only if the proposition h is true of the infinite sequence e,
and Ih(e) = 0 otherwise. We can then define:

H = {e ∈ Kω | Ih(e) = 1}. (4)

In the context of this paper, I consider hypotheses that are defined by refer-
ence to the infinite sequences e only. That is, I consider hypotheses that are
verifiable only on the basis of an infinite sequence of observations e. Such
hypotheses are, as Kelly (1997) calls them, gradually refutable or gradually
verifiable. Following Billingsley (1995), they can also be called tail events
in the observation field Q, which contains all observations Qi , and further
all infinite intersections e = Q1 ∩Q2 ∩ . . . This extended observation field
Q is also called the σ field generated by Q0, denoted σ (Q0). It is the set
theoretical equivalent of an infinite observational language.

To represent belief states over these observations and hypotheses,
define a collection of probability functions p[et ] on the extended obser-
vation field Q:

p[et ] : Q �→ [0, 1]. (5)

These probability functions are defined over all sets in Q, and obey the
standard Kolmogorov axioms of probability. They represent the belief
states of an observer concerning both observations and hypotheses, who is
given a knowledge base, or data set, et . It must be noted that every different
knowledge base is connected to a unique belief state. Note finally that
these probabilities are defined over sets in Q. Therefore, when referring
to the probability of hypotheses or observations at t + 1, I refer not to the
propositions h or the numerical values qt+1, but rather to the sets H and
Qt+1.

Bayes’ rule can be defined as a way of relating these separate belief
states, or more precisely, as a recursive relation over these probability
functions:

p[ei+1]( · ) = p[ei ]( · |Qi+1). (6)

This rule applies to all sets in Q, and thus to observations and hypotheses
equally. Bayes’ rule dictates in what manner the probability of a set must



HYPOTHESES AND INDUCTIVE PREDICTIONS 341

be updated when some new observation is added to the data set. In par-
ticular, the new probability is equal to the old probability conditional on
this observation. In this paper, the main use of Bayes’ rule is in adapting
the probability assignments of the hypotheses for incoming observations.
Taking hypothesis H as the argument, the conditional probability on the
right hand side of Equation (6) is defined as

p[ei ](H |Qi+1) = p[ei ](H)
p[ei ](Qi+1|H)

p[ei ](Qi+1)
(7)

So to compute the probability for some H relative to a data set ei+1, we
need the preceding probability assignment p[ei ](H), the observation qi+1

by means of which we can pick out the set Qi+1, and the probabilities
p[ei ](Qi+1|H) and p[ei ](Qi+1) belonging to that set. The probabilities of
observations conditional on a hypothesis, p[ei ](Qi+1|H), are called the
likelihoods of the observations. The function from i to p[ei ](Qi+1|H) is
called the likelihood function of H .

Note that the other probability of the observation Qi+1 in (7) is the pre-
diction p[ei ](Qi+1), the probability of the next observation Qi+1 given the
data Ei . In an update procedure aimed at making predictions, this cannot
be part of the required input. Fortunately we can avoid this by employ-
ing a partition of hypotheses. From now on, I focus on such partitions
instead of on separate hypotheses H . A partition P is a set of hypotheses
{H0,H1, . . . , HN}, all of them defined as in Equation (4), such that

∀e ∈ Kω :
N∑

j=0

Ihj
(e) = 1. (8)

Recall that Ihj
: Kω �→ {0, 1}, so that with definition (8), every e is

included in precisely one of the Hj ∈ P . The hypotheses in a partition
are thus mutually exclusive and jointly exhaustive. We can write for the
prediction:

p[ei ](Qi+1) =
N∑

j=0

p[ei ](Hj)p[ei ](Qi+1|Hj). (9)

At every time i, the predictions are written as a function of the probabil-
ity assignments over the partition, p[ei ](Hj) for all j , and the likelihood
functions for all the hypotheses, that is, the probabilities of the observation
Qi+1 conditional on these hypotheses, p[ei ](Qi+1|Hj).

We are now in a position to define predictions based on a hypo-
theses scheme. First we compute the probability assignments over the
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Hj in the partition P in terms of the priors, the likelihoods and the data
et = 〈q1, q2, . . . , qt 〉 by repeated application of (6), (7) and (9):

p[et ](Hj) = p[e0](Hj)

t−1∏
i=0

p[ei ](Qi+1|Hj)∑N
j=0 p[ei ](Hj)p[ei ](Qi+1|Hj)

. (10)

Having thus obtained p[et ](Hj), we can compute the predictions
p[et ](Qt+1) by yet another application of Equation (9). The prediction of
Qt+1 then takes as input the probabilities p[e0](Hj) for every j ≤ N ,
called the priors, and the likelihoods p[ei ](Qi+1|Hj) for every j ≤ N and
0 < i ≤ t . The belief attached to the hypotheses thus functions as an
intermediate state in determining the predictions.

3.2. Elaborating the Schemes

The definition of predictions using hypotheses schemes is now complete.
In the remainder of this section, I further elaborate these schemes. I con-
sider the relation between the partition on the one hand, and the priors and
likelihoods for the hypotheses in the partition on the other. The definition
of the hypotheses suggests natural restrictions on the likelihoods, which
are provided in the next two paragraphs. After that, I briefly discuss the re-
lation between the Carnap–Hintikka tradition and the hypotheses schemes.
Finally, I deal with the possibility of a continuum of hypotheses. The
above defines Bayesian updating over finite partitions, but the extension
to a continuum of hypotheses is relatively easy. This extension prepares
for Section 4.

First, let us consider how the partition restricts priors and likelihoods.
For priors, the normalization of p[e0] over the hypotheses is the only
restriction:

N∑
j=0

p[e0](Hj) = 1, (11)

Much more can be said on the relation between likelihoods and hypo-
theses. Clearly the likelihoods are restricted by the axioms of probability
and the definition of conditional probability:

p[ei ](Qi+1|Hj) = p[ei ](Qi+1 ∩ Hj)

p[ei ](Hj)
. (12)

Whenever a hypothesis hj deems some observation qi+1 to be either
impossible or positively certain, this carries over to the likelihoods:

Qi+1 ∩ Hj = ∅ ⇒ p[ei ](Qi+1|Hj) = 0,(13)

Qi+1 ∩ Hj = Hj ⇒ p[ei ](Qi+1|Hj) = 1.(14)
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These restrictions, which follow from deterministic aspects of the hypo-
theses, are indisputable.

In many cases, however, the hypotheses are not deterministic, and in
those cases the link between the sets Hj ∈ Q and the probabilities of
observations Qt+1 within these Hj is less straightforward. In the example
on the internet startup, a hypothesis Hj may be that the relative frequency
of trading days that have increasing stock price has some particular value
θj ∈ [0, 1]. One way of connecting this hypothesis with probability as-
signments for the observations is to adopt a frequentist interpretation of
probability. The hypothesis is then identical to the statistical hypothesis
that on any day the probability for an increasing stock price has this
particular value θj ∈ [0, 1], so that

p[ei ](Qi+1,1|Hj) = θj . (15)

Note that the set Qi+1 here has the further argument qi+1 = 1 to signify the
set of infinite sequences e in which the (i+1)-th trading day has increasing
stock price.

In this paper, I cannot deal with the relation between hypotheses and
likelihoods any further than this. I am aware that the use of the frequentist
interpretation is rather unusual in a Bayesian framework, which is typically
associated with the subjective interpretation of probability. A complete
picture of inductive Bayesian logic must include a further elaboration
and explanation of the restriction (15). In the following, I simply employ
the frequentist interpretation of probabilities to connect hypotheses and
likelihoods, and I use the resulting restriction (15) uncritically.

A further remark concerns the relation between Carnapian prediction
rules and the predictions based on hypotheses. Within the framework
of Section 3.1, Carnapian prediction rules may be defined as a direct
computation of predictions from data,

p[et ](Qt+1,q) = P(et , q) (16)

in which P is a function of et and q ranging over the interval [0, 1], as
in expression (1). For these rules, the probabilities for next observations,
p[et ](Qt+1), are determined directly, without using an intermediate prob-
ability assignment over hypotheses. We can now use Bayes’ rule to trace
back these assignments to a restriction on the prior probability over the
field Q:

p[e0](Et ∩ Qt+1,q) = P(et , q) p[e0](Et ), (17)

for all et and qt+1 with t > 0, where the sets Et and Qt+1 are obviously
associated with the actual observational results et and q. This restriction
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amounts to a full specification of the prior probability assignment over the
observation field Q. A Carnapian prediction rule is thus a direct choice of
a probability function over Q.

A similar choice of p[e0] is effected by choosing a partition, along with
its prior and likelihoods, in a hypotheses scheme. That is, any hypotheses
scheme comes down to some prediction rule, and any Carnapian prediction
rule corresponds to some hypotheses scheme, most trivially to a scheme
with only one hypothesis. It can further be noted that different hypotheses
schemes may entail the same restriction over Q, and thus the same predic-
tion rule. However, it is very difficult to make general claims on the relation
between hypotheses schemes and prediction rules. De Finetti’s representa-
tion theorem is one of the exceptions. It states that prediction rules P(et , q)

that are exchangeable can always be replicated in a hypotheses scheme
with hypotheses on constant chances. However, the salient point here is
that any hypotheses scheme can be replicated with a Carnapian prediction
rule, and vice versa.

Another remark concerns the number of hypotheses in a partition. In
the above this number has been finite, but there is no reason to exclude
partitions with an infinite number, or even a continuum, of hypotheses.
Consider the continuous partition P = {Hθ}θ∈[0,1], in which the index j

is replaced by a variable θ . The probability assignments over the hypo-
theses p[et ](Hj) then turn into probability densities p[et ](Hθ)dθ . Bayesian
updating becomes an operation which transforms this probability density:

p[ei+1](Hθ)dθ = p[ei ](Qi+1|Hθ)

p[ei ](Qi+1)
p[ei ](Hθ)dθ. (18)

Further, in the definition of a partition (8), the predictions (9) and the
normalization condition (11), the summation must be replaced by an
integration:

∀e ∈ Kω :
∫ 1

0
Ihθ

(e) dθ = 1,(19)

p[ei ](Qi+1) =
∫ 1

0
p[ei ](Hθ)p[ei ](Qi+1|Hθ) dθ,(20) ∫ 1

0
p[e0](Hθ) dθ = 1.(21)

In all other expressions, the index j must be replaced by the variable θ .
Apart from that, there are no further changes to the update machinery, and
the remarks on the hypotheses schemes remain equally valid.

Some remarks complete this section. First, note that until now I have
only considered the likelihoods of Qi+1 at time i, that is, the assignments
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p[ei ](Qi+1|Hj). It is more in line with the interpretation of p[ei ] as the belief
state at time i to fix only the likelihoods p[e0](Qi+1|Hj), which express the
opinion at the start of the update, and to update the likelihoods according
to

p[ei′ ](Qi+1|Hj) = p[e0](Qi+1|Hj ∩ Ei′) (22)

for all i′ ≤ i. For hypotheses on constant chances we can choose that

p[e0](Qi+1|Hj ∩ Ei′) = p[e0](Qi+1|Hj), (23)

but depending on the hypothesis, the update operation may also change the
likelihoods.

Further, many arguments have been proposed to the effect that Bayesian
updating, or updating by strict conditioning, is the only consistent way
of updating probabilities. This position is criticised for being too restrict-
ive, as for example in Bacchus, Kyburg and Thalos (1990). However,
the present paper works completely within the Bayesian framework, and
argues that the restrictive character of strict conditioning is overrated. Re-
lated to this, it must be noted that the hypotheses schemes allow for a wide
variety of possible partitions P , none of which is excluded in principle.
In the next sections, the freedom in choosing partitions will turn out that
because of this freedom, the predictions that can be generated by Bayesian
updating over hypotheses are completely unrestricted.

4. EXAMPLES ON CRASH DATA

The above introduces a general framework for using hypotheses and
Bayesian updating in making predictions. This section gives two applic-
ations of the framework. The first application employs hypotheses on
constant chances for the observations, resulting in the prediction rules of
Carnap’s γ λ continuum. This also serves as an illustration of the represent-
ation theorem of de Finetti. The second application provides an extension
of the Carnap–Hintikka tradition. Apart from the hypotheses on constant
chances, it employs hypotheses concerning a particular pattern in the data.
The resulting predictions are not covered by the γ λ continuum, and they
are not in general exchangeable.

4.1. Statistical Partition

The example concerns stock price movements. Consider the following
strings of data, representing stock prices for t = 35 days. In the data,
qi equals 0 if the stock price decreased over day i, and qi equals 1 if the
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stock price increased or remained unchanged over that day. Here are two
possible histories of the prices of a stock of some internet startup:

e35 = 01000100000010110000010000000010000,

e∗
35 = 01001010111010000000000000000000000.

Note that e35 and e∗
35 have an equal number of trading days i with qi = 1,

but that the order of increase and decrease is different for both strings. In
particular, e∗

35 shows what can be called a crash: from some day onwards
we only observe decreasing stock price.

Now imagine a marketeer who aims to predict stock price movements
based on observed price movements on foregoing trading days. Further,
assume that she employs some partition C with a continuum of hypotheses
to specify her predictions. To characterize the hypotheses, define

frq(e) = lim
t→∞

1

t

t∑
i=1

e(i). (24)

For any infinitely long sequence of days e, the function frq(e) gives the
ratio of trading days i for which e(i) = 1. Note that frq(e) is undefined for
some of the e ∈ Kω. Now define Ihθ

as follows:

Ihθ
(e) =

{
1 if frq(e) = θ,

0 otherwise,
(25)

in which θ ∈ [0, 1]. Further define Ih¬θ
= 1 if frq(e) is not defined, and

Ih¬θ
= 0 otherwise. It then follows that

∀e : Ih¬θ
(e) +

∫ 1

0
Ihθ

(e) dθ = 1, (26)

so that C = {H¬θ} ∪ {Hθ |θ ∈ [0, 1]} is a partition including a continuum
of hypotheses on relative frequencies. I call C the Carnapian partition.

Assume that the marketeer employs the following input probabilities:

p[e0](Hθ)dθ = 1,(27)

p[e0](H¬θ ) = 0,(28)

∀i > 0 : p[e0](Qi+1,Q|Hθ) =
{

θ if Q = 1,

1 − θ if Q = 0.
(29)

where again θ ∈ [0, 1]. Equation (27) states that the probability density
over the hypotheses Hθ is uniform. This may be motivated with an appeal
to the principle of indifference or some other symmetry principle. Equation
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Figure 1. Predictions p[et ](Qt+1) against time t , based on the partition C. The dotted
line shows the predictions for the normal data e35, the unbroken line shows the predictions
for the crash data e∗

35.

(28) states that those sequences e in which the frequency of trading days
with e(i) = 1 has no limit are almost impossible. This assumption is not
compulsory. It is here made for computational simplicity, as it allows us
to ignore hypothesis H¬θ in further calculations. Also, it is required if we
want to illustrate the representation theorem.

Equation (29) can be motivated with the restriction on likelihoods as
given in expression (15). Assume that at every i, the Bayesian agent up-
dates the likelihood that is used in the next prediction and subsequent
update to

p[ei ](Qi+1|Hθ) = p[e0](Qi+1|Hθ), (30)

so that, in conformity with the definition of the hypotheses Hθ , the
accumulation of data ei does not change the original likelihoods. The
hypotheses Hθ on relative frequencies then have constant likelihoods
p[ei ](Qi+1|Hθ) = θ .

We have specified all probabilities that are needed for generating pre-
dictions. Using the values of the priors p[e0](Hθ)dθ for all θ , and of the
likelihoods p[ei ](Qi+1|Hθ) for all θ and i ≥ 0, we can compute the predic-
tions on next observations p[et ](Qt+1) that the Bayesian agent will make
when confronted with the observations e35 and e∗

35 respectively. I have cal-
culated these predictions on a computer, and depicted them in figure 1. In
the remainder of this subsection I make some remarks on these predictions,
and on the hypotheses scheme with the statistical partition in general.
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First of all, the above hypotheses scheme illustrates the representation
theorem of de Finetti. The hypotheses Hθ are exactly the hypotheses on
processes with constant chances, which I alluded to in sections 2 and 3. The
representation theorem is that any exchangeable prediction rule P(et ,Q)

can be represented as a Bayesian update over the partition C, given the
above restrictions (28) and (29). Different exchangeable prediction rules
are defined by choosing different priors p[e0] over the hypotheses Hθ . For
example, choosing a member from a particular family of so-called Dirich-
let distributions for p[e0](Hθ)dθ results in a prediction rule from the γ λ

continuum of Carnap, as given in expression (1). As described in Festa
(1993), the parameters of the Dirichlet distribution thereby fix the values
of γ and λ. More in particular, choosing the uniform prior of Equation (27)
results in rule (1) with parameters λ = 2 and γ0 = γ1 = 1/2. Note however
that the range of the representation theorem is much wider than the specific
equivalence of the γ λ continuum and the Dirichlet distributions over C.

Section 2 indicated that the representation theorem was taken as an
opportunity to dispose of hypotheses schemes using C, in favour of ex-
changeable prediction rules. One reason was that the hypotheses schemes
committed to the assumption of underlying chance processes and the as-
signment of probability to universal statements. Another, more immediate
reason for not using the hypotheses schemes may have been that they are
unnecessarily roundabout. In the above and in the following, however, I
explicitly use the hypotheses schemes to design and study predictions.
Even while the predictions based on C may always be generated with a
simpler exchangeable prediction rule, I explicitly employ hypotheses in
the construction. In Section 5 I argue that there are independent reasons
for doing so.

Finally, it can be noted that after 32 days the predictions are the same for
both strings of data. This shows the exchangeability of the above Bayesian
update procedure. Probability assignments after any et are invariant under
the permutation of results et (i) within that et , and as said, e35 and e∗

35
have the same number of 1’s. For both e35 and e∗

35 it is further notable
that the predictions p[ei ](Qi+1,0) converge to 1. The speed of convergence,
however, decreases with the addition of further instances of et (i) = 0, or
more precisely, the second derivative to time of the predictions, taken as a
function over time, is negative. For this reason, the predictions depicted in
figure 1 do not accommodate the fact that the data e∗

35 may be the result of
a crash.
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4.2. Crash Hypotheses

Figure 1 shows the inductive predictions of a marketeer who is not sensit-
ive to the possibility of a crash. In the example below, I alter the hypotheses
scheme in such a way that this sensitivity is modelled. This is done by
adding hypotheses to the statistical partition, thereby implicitly altering
the resulting prediction rule. In particular, I add the hypotheses g

q

γλτ to
the statistical partition, the meaning of which can be phrased as: until
trading day τ , stock price behaves like the Carnapian γ λ rule says, but
from trading day τ onwards, all stock price movements are q.

Let us denote the partition consisting of the statistical hypotheses hθ

and the crash hypotheses g
q

γλτ with G. The crash hypotheses can be as-
sociated with sets G

q

γλτ in Q using a characteristic function to select for
crashes:

Ig
q
γλτ

(e) =
{

1 if e(τ) �= q ∧ ∀i > τ : e(i) = q,

0 otherwise,
(31)

G
q

γλτ = {e ∈ Kω | Ig
q
γλτ

(e) = 1}.(32)

Note that the γ and λ do not occur in the definition of the sets G
q

γλτ . The
sets can be defined solely on the basis of the crash starting at time τ .

The hypotheses G
q

γλτ can be given likelihoods that reflect the above
meaning:

p[e0](Qi+1,q ′ |Gq

γλτ ∩ Ei) =




iq′ +λγq′
i+λ

if t < τ,

1 if i = τ , q ′ �= q, or i > τ , q ′ = q,

0 if i = τ , q ′ = q, or i > τ , q ′ �= q,
(33)

where iq denotes the number of results q ′ in the observations ei . The last
two clauses of the likelihood definition are motivated with definition (31)
and restriction (13). However, as there is no restriction on the first τ − 1
observations in the sets G

q

γλτ , there is no restriction motivating the first
clause. The likelihoods before τ may be chosen in accordance with the
predictions generated by the partition C, so that, when the hypotheses G

q

γλτ

are added to that partition, they only distort the predictions insofar as there
is a crash pattern in the data. Because of this choice, the first clause in the
likelihood definition depends on the actual data ei . This means that with
every new observation before τ , updating the likelihoods according to (22)
changes these likelihoods.
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Finally, the hypotheses G
q

γλτ are given prior probabilities of the
following form:

p[e0](G
0
γ λτ ) = α (1 − δ) δτ ,(34)

p[e0](G
1
γ λτ ) = 0,(35)

where τ > 0 and 0 < δ < 1 so that (1 − δ)δτ is a discount factor, which
describes how a trader slowly grows less suspicious for crashes, and where
0 < α < 1. The factor α is the total probability that is assigned to all
the crash hypotheses, that is, α = ∑∞

τ=1 p[e0](G
0
γ λτ ). Note that because of

(35), booming markets, in which from some time onwards prices only go
up, are not reckoned with.

The probability mass 1 − α can be divided over the remaining hypo-
theses from C according to

p[e0](Hθ)dθ = 1 − α, (36)

where in this case θ ∈ (0, 1]. The likelihoods (33) of the crash hypotheses
can be made to accord with this prior by setting γq = 1/2 for both values
of q, and λ = 2. Note further that the hypothesis H0 is now excluded from
the subpartition C. This is because for all e ∈ G0

γ λτ , the relative frequency
frq(e) is 0, so that G0

γ λτ ⊂ H0 for all τ . On the other hand, according to
the original likelihoods in (29), the hypotheses G0

γ λτ have zero probability
within H0, because any observation of q = 1 is deemed impossible within
it. The simplest solution to all this is to exclude the hypothesis H0 from the
partition altogether. Since hypothesis H0 had a negligible measure in the
original hypotheses scheme with C, leaving it out of the combined partition
G does not affect the predictions generated by the new update.

In sum, we have created a new partition G, including both Hθ and G0
γ λτ .

As will be seen, updating over this partition generates predictions which
express a sensitivity for crashes. Choosing values for α and δ determines
to what extent this sensitivity influences the predictions. Admittedly, the
partition G involves considerable idealizations, for example that crashes
are taken to last forever and that the prior probability for a crash slowly di-
minishes. These idealizations are not compulsory: the hypotheses schemes
offer space for further specifications and elaborations in these respects. In
the following, however, I want to focus on the fundamental possibilities
that the freedom in choosing partitions presents. The idealizations of G,
and the ways to avoid them, are not discussed in this paper.

Like for figure 1, we can calculate the predictions p[et ](Qt+1) using
equations (6), (7) and (9). Figure 2 shows a comparison of two market-
eers confronted with the crash data e∗

35. The diamond curve shows the
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Figure 2. Predictions p[et ](Qt+1) against time t for the crash data e∗
35. The bulleted curve

is based on the partition C, the diamond curve is based on the partition G.

predictions based on the use of the partition G, and the bullet curve shows
the predictions of the statistical partition C. The hypotheses G0

γ λτ of this
particular update have α = 0.5 and δ = 0.8. Note that the predictions
based on G deviate from the predictions based on C. As the unbroken
string of qi = 0 grows, the marketeer using G picks up on the apparent
regularity and in subsequent days gives higher probability to the prediction
that next days will show the result qt+1 = 0 as well. Further, note that the
exchangeability of the observations within the data e∗

35 is indeed violated
with the use of the alternative partition G. This is because the probability
assignments depend directly on whether the data et show an unbroken
string of 0’s up until t . The partition G thus introduces a sensitivity for
the occurrence of a crash pattern in the data, next to the usual attention that
is given to the relative frequencies of 0’s and 1’s.

It must be stressed that using the partition G in no way violates the
Bayesian framework developed in Section 3. First, strict conditioning on
new observations, as expressed in Equation (6), invariably holds. In the
above example, the probabilities p[et ](G0

γ λτ ) are adapted according to it
just as well, causing them to be turned to zero at every time i > τ for
which qi = 1, or immediately if i = τ and qi = 0. Second, it is not prob-
lematic to assign nonzero priors to hypotheses in the alternative partition
which had negligible or zero probability in the original partition. Assigning
nonzero probabilities to hypotheses on specific patterns has been proposed
in a similar way by Jeffreys (1939). Hintikka systems (1966) also use
nonzero probabilities for general hypotheses. More in general, as reviewed
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in Howson (1973), many have argued against the contention that giving
nonzero priors to generalizations is inconsistent. Finally, note that parti-
tions cannot be altered during an update. Such a move is in disagreement
with Bayesian updating.

Before drawing the morals of the above examples, let me briefly pause
over the alteration itself in light of the preceding remarks on hypotheses
schemes and prediction rules. It is clear that in altering a partition in
the above way, I change more than just a prior probability assignment
over hypotheses. Introducing new hypotheses into a partition changes
the predictions. In particular, the Carnapian C〈1/2,1/2〉2(et , q), which was
generated by the partition C with uniform prior, becomes some other pre-
diction rule Gαδ(et , q). Put differently, the probability assignment p[e0]
over the field Q, initially determined by the partition C and some prior over
it, now encodes a different prediction rule, determined by the partition G
an a prior. The added hypotheses of G focus on a crash pattern in the data,
and the resulting predictions will therefore not in general be exchangeable.
They depend on the occurrence of consecutive observations of q = 0. This
also means that the convergence results alluded to in Section 2 are not
applicable anymore. In sum, I have defined a different prediction rule by
choosing a different partition in the hypotheses scheme.

5. PARTITIONS AS INDUCTIVE ASSUMPTIONS

Several conclusions may be drawn from the example with the partition G.
First, the example shows that inductive predictions based on hypotheses
can be adapted to model pattern recognition, and in this particular case,
hasty generalization. This can be done by adding hypotheses that pertain
to the relevant kind of pattern. Following Putnam’s critical remarks on the
Carnap–Hintikka tradition in (1963a) and (1963b), this may already be a
useful extension of that tradition. Secondly, and as I also discussed above,
the modelling of hasty generalization may convince those who consider
updating on generalizations impossible due to the negligible measure of
these generalizations in the observation field.

Thirdly, the example may be taken to nuance the fact that Bayesian
updating is not suitable for modelling ampliative reasoning, as is argued
by van Fraassen (1989). It is true that Bayesian updating cannot capture
reasoning that decides between hypotheses with the same observational
content, which therefore have the same likelihoods in the hypotheses
schemes. But the above reasoning can nevertheless be called ampliative
on the level of predictions: hasty generalization is a typically ampliative
inferential move. Note that the ampliativeness is then implicit in the choice
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of the partition G. Thus, even though Bayesian updating is itself not amp-
liative, the predictions resulting from a Bayesian update can in a sense
model ampliative reasoning.

The main conclusion concerns the use of partitions in both examples,
and the function of choosing a partition in general. Note that in the above
examples, the influence of the observations is encoded entirely in the parti-
tion. We first determine a posterior probability over the partition, using the
prior probability and the observations. The predictions are subsequently
derived from this posterior probability and the likelihoods. These likeli-
hoods are determined prior to the accumulation of observations, so the
posterior probability over the partition is the only term in the predictions
which depends on the observations. The partition mediates the influence
that the observations exert on the predictions. As Niiniluoto (1976) puts it,
a partition defines a closed question, which has a limited set of possible
answers, for the observations to decide over. So partitions do not provide
an impartial or completely general view on the observations. Rather they
are a pair of glasses for looking at the observations in a particular way.

Let me characterize how partitions limit the view on observations. Re-
call the statistical partition C. The posterior probability over this partition
can be computed from the prior and the observations. However, we do not
need to know all the details of the observations for this computation. In
fact, it suffices to know a specific characteristic of the observations: for
all q we must know the number of times that it occurred within the data
et . These numbers were denoted as tq in the above. They can be called
the sufficient statistics for computing the probability over C at time t , and
thus for generating the predictions based on C. The statistics tq express
those characteristics of the observations which are taken to be relevant
for the predictions. Note that the exchangeability of the predictions based
on C follows from the fact that the sufficient statistics are independent
of the order of observations. This can be seen easily from the equations
determining the probability over the partition: none of the terms in the
product of Equation (10) depends on the order of the qi in et .

The partition with crash hypotheses G limits the view on the observa-
tions in a different way. As with the statistical partition, we can identify
a set of sufficient statistics for it. This set includes not just the numbers
tq , but also the length of the time interval [τ, t] within which all results
are 0. The numbers tq and the number t − τ are employed together in a
full determination of the probability over G at time t , and therefore in the
generation of the predictions based on G. It is notable that, because the
value of t − τ depends on the order of the observations et , the resulting
predictions are not exchangeable.



354 J. W. ROMEYN

The above examples suggest how partitions limit the view on observa-
tions: partitions determine a set of sufficient statistics, and these statistics
represent the characteristics of the observations which are taken to be rel-
evant for further predictions. Put differently, by choosing a partition we
focus on a particular set of patterns in the data, and by making predictions
based on the partition we deem these patterns relevant to future observa-
tions. However, from the above it is not clear what the exact function of
this limitation is, or more specifically, what the nature of this relevance is.
As Skyrms suggests in (1996), the answer to this is that sufficient statistics
determine the so-called projectable characteristics of data. The function of
partitions then is that they determine the projectable characteristics of the
observations. They are a tool in controlling the projectability assumptions
that are used in inductive predictions.

Now let me explicate in general terms how the use of a partition relates
to the assumption of a projectable pattern in the observations. Recall that
the hypotheses in a partition are all associated with a likelihood function.
These likelihood functions may be in accordance with the actual observa-
tions to differing degrees: hypotheses that have high overall likelihoods for
the observations are said to fit the data better than those with low overall
average likelihoods. An update over a partition can thus be viewed as a
competition among the hypotheses in the partition, in which hypotheses
that fit the observations best acquire most probability. Note further that
the likelihood functions associated with the hypotheses describe probabil-
istic patterns in the observations. An update over a partition is thus also a
competition between probabilistic patterns in the observations. Choosing
a particular partition thus limits the range of possible patterns that are
allowed to compete in the update.

Furthermore, if we go on to employ the results of such a competition for
the generation of predictions, we implicitly assume that those probabilistic
patterns that fitted the observations better in the past are more likely to
perform better in the future as well. This is because predictions of future
observations are mainly based on the hypotheses which, relative to the
chosen partition, were most successful in predicting the past observations:
those hypotheses gain more probability in the update. This is exactly where
the assumption on the uniformity of nature, with respect to a specific set
of probabilistic patterns, is introduced into the hypotheses scheme.

The above shows in what way the partitions are assumptions on the
projectability of patterns in the observations: a partition determines a
collection of probabilistic patterns, all of them patterns which may be em-
ployed for successful predictions, or projectable patterns for short. A prior
probability over the hypotheses expresses how much these respective pat-
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terns are trusted with the predictive task at the onset, but the observations
eventually determine which patterns perform this task best on the actual
data. The predictions are subsequently derived with a weighing factor, the
probability over the partition, which favours the patterns that perform best.
However, it must be stressed that the projectability assumption concerns
not just these best performing patterns, but the partition as a whole, because
the patterns perform better or worse only relative to a collection of pat-
terns. The projectability assumptions are therefore implicit in the common
features of the hypotheses involved. Limiting the collection of patterns
to a collection with some general feature comes down to the assumption
that the observations themselves exhibit this general feature, and that this
general feature can therefore be projected onto future observations.

Finally, let me illustrate the projectability assumptions as general char-
acteristics of the partitions, and link them with the sufficient statistics
alluded to above. Consider once again the examples of Section 4. Choosing
the statistical partition C means that we limit the possible probabilistic
patterns to those for which the observations occur with specific relative
frequencies. The projectability assumption is therefore exactly that this
characteristic of the observations, namely the relative frequencies, are in
fact exhibited in the observations. This is quite naturally related to the suffi-
cient statistics for this partition, which are the observed relative frequencies
tq . Similarly, choosing to include hypotheses on crashes means that we
include this particular set of crash patterns in the set of possible patterns.
The projectability assumption is therefore exactly that this characteristic
of a crash may be exhibited in the observations too. This additional focus
of the partition is reflected in the additional statistic t − τ .

The main conclusion is that choosing a partition functions as a pro-
jectability assumption, by focusing on a set of sufficient statistics and by
specifying how these statistics are used in the predictions. In the remainder
of this section, I draw two further conclusions which derive from this
main one. The first concerns the difference between predictions based on
hypotheses schemes on the one hand, and Carnapian prediction rules or
Carnap–Hintikka logic on the other. The upshot of this is that the former
provides much better access to the projectability assumptions underlying
the predictions. The second concerns the range of the predictions based
on hypotheses schemes. I argue that there is no restriction on possible
partitions, and that, when it comes to induction, the restrictive character
of updating by conditioning is overrated.

As shown in Section 4, any update over the statistical partition C results
in exchangeable predictions. This section further indicates that updates
over this partition that start with a Dirichlet distribution as prior probab-
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ility result in predictions which are equivalent to those produced in the
Carnapian γ λ continuum. As discussed in both sections, these results have
sometimes been taken as a reason to refrain from using underlying chance
processes or hypotheses, and to use the simpler prediction rules instead.
But in both sections I also claimed that there are good reasons for adhering
to the complicated hypotheses schemes after all. Recall further that even
while Hintikka systems did employ universal statements in the construc-
tion of inductive prediction rules, I claimed that these systems did not make
full use of the possibilities that universal statements seem to offer. I can
now make explicit the reasons for adhering to the hypotheses schemes as
opposed to Carnapian prediction rules, and also the way in which these
schemes offer more room for using universal statements than the Hintikka
systems.

First, note that any inductive method must be based on some kind of
projectability assumption. This can be concluded from the abundant liter-
ature on the Humean problem of induction, and the further literature on
projectability, as in Stalker (1996). In this context inductive means that the
method allows for learning from past observations: dogmatic prediction
rules, which are completely insensitive to incoming data and predict con-
stant chances, are not inductive. So any inductive method must assume that
past observations are somehow indicative of future observations, and this
comes down to a projectability assumption. Inductive Carnapian prediction
rules employ such projectability assumptions just as well as hypotheses
schemes. A first advantage of hypotheses schemes over Carnapian rules
then is that they provide direct insight into these projectability assump-
tions, as is argued in the above. But the advantage of hypotheses schemes
is not just that they provide insight into the projectability assumptions.
It may be argued that the Carnapian γ λ continuum provides this insight
just as well, because the prediction rules of this continuum also depend on
the data et only through the corresponding sufficient statistics tq . The more
discriminative advantage is that hypotheses schemes provide better control
over the projectability assumptions.

Let me illustrate the control over inductive assumptions with the ex-
ample of Section 4. Imagine that we already model a focus on relative
frequencies, and that we want to model an additional focus on a crash
pattern in the observations. Now if we employ prediction rules for the
original model, we must incorporate the statistic t − τ into the current
rule of the γ λ continuum. But it is unclear how exactly to incorporate it,
because we do not have insight in the projectability assumptions implicit to
the form of that computation. This problem appears for Hintikka systems
as well, because there is no room for alternative universal statements next
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to the generalizations on the number of possible observations. By contrast,
modelling an additional focus on a crash pattern with hypotheses schemes
is straightforward: just add the hypotheses that pertain to the patterns of
interest. Therefore, the hypotheses schemes may be more complicated, but
in return they offer a better control over the projectability assumptions
which are implicit in the predictions.

The final conclusion concerns the freedom in choosing partitions. It
is related to the philosophical status of Bayesianism. As argued above,
a partition determines the projectability assumptions that are implicit to
the predictions. Furthermore, the partition is entirely under the control of
the inductive agent, and in particular, Bayesianism gives no directions as
to what partition to choose. So there is no restriction on projectability as-
sumptions that stems from Bayesianism. Just like we can choose a partition
which focuses on relative frequencies and crash patterns, we can choose a
partition that expresses the gambler’s fallacy, so that with the piling up of
0’s in the crash the observation of 1 is predicted with growing confidence.
The hypotheses schemes are in this sense a very general tool: any inductive
prediction rule, as long as it is based on the assumption of projectable pat-
terns, can be captured in predictions generated with a hypotheses scheme.
This suggests that Bayesianism is not a particular position on inductive
predictions at all, but rather an impartial tool for modelling predictions.

6. THE PROBLEM OF INDUCTION

It is instructive to confront the predictions based on hypotheses schemes
with the Humean problem of induction, according to which we cannot
justify any kind of prediction, certain or probable, on the basis of observa-
tions only. The following shows that hypotheses schemes do not suggest
anything towards solving the problem of induction, but rather that they
reveal the need for inductive assumptions.

The predictions based on hypotheses schemes, if considered as an at-
tempt at solving the problem of induction, employ the following strategy:
use past observations to determine the probability over a partition of
hypotheses, and then use the probability over these hypotheses in a com-
putation of probabilities for future observations. It is tempting to say
that, in choosing a partition as part of such a strategy, we do not make
any substantial assumptions, because the hypotheses in a partition ex-
haust the space of logical possibilities and therefore constitute a tautology.
Moreover, in the case of the statistical partition, it can be argued that the
prior over the partition does not present an assumption either: according to
the aforementioned convergence results of Gaifman and Snir (1982), any
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prior eventually leads to the same predictions. In this way the hypotheses
schemes can be seen as a fruitful cooperation of past observations with a
completely innocent partition of hypotheses.

However, as I have argued in the above, the predictions based on par-
titions are made at the cost of similar inductive assumptions. Whereas
for deductive purposes the partitions are indeed innocent, for inductive
purposes they introduce an assumption of projectability. Therefore the pre-
dictions using hypotheses schemes do not solve the problem of induction
simpliciter. Rather they reveal the assumptions needed to justify induct-
ive predictions: assumptions of projectable characteristics, as expressed
in a partition. These projectability assumptions are stronger than the un-
qualified assumption of the uniformity of nature. Assuming the general
uniformity of nature leaves unspecified the kind of pattern with respect to
which nature is uniform, while the use of a particular partition comes down
to the assumption of uniformity with respect to a specific set of patterns.
The predictions based on partitions bring to the fore the specific, stronger
assumptions of inductive predictions. This neatly ties in with Goodman
(1955, pp. 59–81). The present paper can in fact be seen as a formal ex-
pression of the fact that employing probabilistically valid inference rules
reduces the Humean problem of induction to that of Goodman.

Let me consider some ways of justifying or at least weakening the pro-
jectability assumptions. The first concerns the possibility of an impartial
partition, which does not preselect any kind of pattern in advance. If such
a partition is possible, it can be argued that the predictions based on this
partition assume just the overall uniformity of nature, or even perhaps no
uniformity at all. The second concerns the possibility of considering all
projectable patterns simultaneously.

To assess the first possibility, consider again the example of the stat-
istical partition C. Intuitively this may have seemed a modest partition,
one in which there is no assumption. But as can be seen from the fact that
there are sufficient statistics for this partition, predictions based on it focus
on some pattern in the observations, and thus assume the projectability
related to this pattern. Now we can easily generalize this way of identify-
ing projectability assumptions: any partition that has sufficient statistics,
as long as they do not at all times coincide with the complete ordered
sequence of observations et , focuses on some pattern in the observations,
and therefore must employ some kind of projectability assumption. There
is only one partition for which the sufficient statistics in fact coincide with
the complete sequence of observations. In this partition, here denoted with
E , the hypotheses He consist of the singletons {e}. With this partition I deal
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below. The conclusion thus far is that, apart from the limiting case E , there
is no partition that is impartial with respect to projectability assumptions.

Another way of weakening the strong uniformity assumption is to gen-
eralize it, by simultaneously using all possible partitions. An ambitious
Bayesian may argue that a partition must encompass all hypotheses that
can be formulated in the current language, because as long as nothing is
known of the observations, none of the possible patterns can be excluded.
Such a partition focuses on all possible patterns, corresponding to the gen-
eral uniformity assumption that there is some unspecified pattern in the
observations. However, given the observation field Q, we can always find
some observation qi which tells apart any two infinite sequences e and e′.
Therefore, it seems that the partition which encompasses all hypotheses
that can be formulated in the given language is again the limiting case
mentioned in the preceding paragraph, the singleton partition E . I now
fully concentrate on this limiting case.

Note first that the predictions resulting from E are determined entirely
by the prior over the partition, p[e0](He). This is because the likelihoods
of all the separate singleton hypotheses is either 0 or 1. With every new
observation qi , conditioning over E therefore means that all singleton hy-
potheses He for which e(i) �= qi are discarded, and all other singleton
hypotheses stay in. Because of this, conditioning over the hypotheses in E
does not in itself give any comprehensible information on future observa-
tions, so that the singleton partition does indeed not carry any projectability
assumption. However, it can also be noted that the task of determining the
prior over the singleton partition is very similar to the task of deciding
over the prior by means of a Carnapian prediction rule, as in expressions
(16) and (17). The singleton partition also requires us to specify the prior
p[e0] directly and as a single function over the whole of Q. But now it
seems that we are back where we started. As I remarked in the above,
inductive Carnapian prediction rules employ projectability assumptions
just as well as hypotheses schemes do. In the limiting case E , it seems
that these assumptions remain completely implicit to the probability over
E . In an attempt at finding some partition which expresses an impartial or
generalized projectability assumption, we have pushed this assumption out
of sight.

The above suggests that the tools provided in the hypotheses schemes
do not offer any help in solving the problem of induction. The schemes
express the assumptions needed for predictions, but they do not suggest
any natural or minimal assumption. However, we may be able to find in-
dependent reasons for certain inductive assumptions. Central to finding
such independent reasons is the question what it means to assume the
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projectability of certain patterns in the observations. For a realist, such
assumptions will indicate the fixed properties of an underlying process
that generates the observations. They may be based on assuming natural
kinds or essences in reality. In the case of the statistical partition C and
the stock market, a realist may suppose that some bidding process with
fixed stochastic properties underlies the formation of stock price. For an
empiricist, by contrast, the inductive assumption implicit in the use of C
is probably no more than the empirical generalization on the constancy of
relative frequencies itself, and can perhaps be based further on a natural
axiomatization of the observation language. I do not exclude that there are
good and independent, realist or empiricist, reasons for adhering to certain
assumptions. For now it is important to note that these reasons are not
implicit in the tools which are offered by the hypotheses schemes. That
is, conditioning over partitions provides useful insight into the problem of
induction, but we cannot solve the problem with an appeal to the formal
aspects of partitions.

The above conclusions are very much in line with what I like to call
the logical solution to the problem of induction. This solution has recently
been proposed by Howson in (2000), but it has its roots already in Ram-
sey and De Finetti. The same solution is in fact implicit in many papers
arguing for local as opposed to global induction in Bogdan (1976) and, in
a sense, in Norton (2003). The negative part of this solution is that, taken
on itself, the problem of induction cannot be solved. Predictions must be
based on inductive assumptions, and there is no way of deciding over these
assumptions by formal or other aprioristic means. Rather more prosaically,
we cannot build a house just by buying nice tools, because we also need
bricks, planks and mortar. The positive part of the logical solution is that
once the inductive assumptions are made, a Bayesian logician can tell how
to deal with the observations. Bayesian updating functions as a consistency
constraint, and generates predictions from the assumptions and observa-
tions together. Note that it is implicit to this that there is nothing inductive
about Bayesian updating itself. It merely links inductive assumptions with
observations to render the consistent inductive predictions.

As for the role of the present paper, it shows how partitions provide
access to inductive assumptions in a Bayesian framework. It can therefore
be seen as a further elaboration of the logical solution to the problem of
induction. Moreover, in this guise it is a starting point for dealing with
a host of other philosophical problems. For example, ordinary life and
science show that humans and other animals can be quite skillful in making
inductive predictions. The suggestion of Peirce, that we guess efficiently,
is deeply unsatisfactory as an explanation of this. The above suggests that
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in a logical picture of these skills, choosing a partition is the essential
component. That is, the logical picture brings the puzzle of predictive skills
down to the puzzle of how we choose partitions. Admittedly, this is only
a small step further. As is nicely illustrated by Chihara (1987), the com-
plexity of actual inductive practice leaves us with little hope for a unified
theory of choosing partitions. But nevertheless, it may be a comfort that
the hypotheses schemes allow us to isolate the overall validity of reasoning
from the specific truth or falsity of the assumptions of that reasoning.

7. CONCLUSION

Sections 1 to 3 have introduced inductive predictions, and the use of parti-
tions in defining such predictions. The examples of Section 4 illustrate how
partitions determine the resulting predictions. In Section 5 I argue that a
partition in fact expresses inductive assumptions concerning the projectab-
ility of particular characteristics of the observations. Partitions thus come
out as a useful tool in defining the predictions. Section 6 further shows
that the partitions themselves do not offer any directions for solving the
problem of induction. Finally, this is seen to be in line with the so-called
logical solution to the problem of induction.

This paper has three main conclusions. The first is that inductive pre-
dictions can be determined by choosing a partition in a hypotheses scheme.
The second, more general conclusion is that a partition expresses in-
ductive assumptions on the projectability of particular characteristics of
observations. A third conclusion is that we are entirely free in choosing
these projectability assumptions, and that no such assumption is naturally
suggested by the hypotheses schemes themselves.

Further conclusions were seen to follow from these main ones. One
specific conclusion concerns the range of prediction rules covered by
hypotheses schemes. The example shows that the schemes enable us to
model predictions typical for hasty generalization. But because there is no
restriction on choosing partitions, it seems that any prediction rule can be
formulated in a hypotheses scheme. The use of Bayesian updating is there-
fore not restrictive over possible prediction rules. Hypotheses schemes
simply provide a way of modelling predictions, not of restricting them to a
specific class. Another specific conclusion is that the hypotheses schemes
offer a better control over inductive predictions than the prediction rules
from the Carnap–Hintikka tradition. In part, this tradition has focused on
the properties of prediction rules only, and in part it has not fully exploited
the use of underlying chance processes. The above shows how partitions
provide control over projectability assumptions. This suggests that in the
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construction of prediction rules, there are good reasons for employing
hypotheses on chance processes after all.

A different set of conclusions concerns the hypotheses schemes in re-
lation to the Humean problem of induction. As said, hypotheses schemes
bring out the inductive assumptions underlying predictions. In the hypo-
theses schemes, the assumptions show up in a more specific form than
the general uniformity of nature, as it was suggested by Hume. This latter
uniformity concerns any possible pattern in data, while partitions limit the
uniformity of nature to a particular set of probabilistic patterns. Moreover,
the hypotheses schemes do not suggest a partition representing some min-
imal uniformity assumption. There is no impartial or preferred partition
which flows naturally from the hypotheses schemes themselves. We are
thus forced to choose the set of patterns that deserves focus solely by our
own lights.

The general tendency in all this is to view inductive logic as a proper lo-
gic: any prediction must be based on inductive assumptions, or premisses,
and given these assumptions, the predictions follow from the observations
by conditioning, which functions as the only inference rule. The work of
induction is not done by an inference rule that implicitly contains uniform-
ity assumptions, but by partitioning logical space and fixing the likelihoods
and priors on the basis of that. In making inductive predictions, choosing
partitions thus occupies a central place.
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