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Glass Patterns and Artistic Imaging

Giuseppe Papari and Nicolai Petkov

Institute of Mathematics and Computing Science, University of Groningen
g.papari@rug.nl, n.petkov@rug.nl

Abstract. The theory of Glass patterns naturally combines three essen-
tial aspects of painterly artworks: perception, randomness, and geometric
structure. Therefore, it seems a suitable framework for the development
of mathematical models of the visual properties that distinguish paint-
ings from photographic images. With this contribution, we introduce a
simple mathematical operator which transfers the microstructure of a
Glass pattern to an input image, and we show that its output is per-
ceptually similar to a painting. An efficient implementation is presented.
Unlike most of the existing techniques for unsupervised painterly render-
ing, the proposed approach does not introduce ’magic numbers’ and has
a nice and compact mathematical description, which makes it suitable
for further theoretical analysis. Experimental results on a broad range of
input images validate the effectiveness of the proposed method in terms
of lack of undesired artifacts, which are present with other existing meth-
ods, and easy interpretability of the input parameters.

1 Introduction

Computer aided generation of painting-like images is an interesting subfield of
image processing and non-photorealistic rendering (NPR). The classic approach
consists in generating a set of possibly overlapping brush strokes, which are ren-
dered in a certain order on a white or canvas-textured background. There is a
large variety of available painterly rendering algorithms (PRA), both unsuper-
vised [1, 2, 3] and interactive [4, 5, 6]. Much effort has been made in order to
model different painting styles [7, 8, 9] and to design efficient interactive user
interfaces [5, 10], some of which deploy special-purpose hardware [10]. For a
survey of these techniques we refer to [11].

One limitation of the aforementioned PRA is that they are not derived from
general principles [9], due to the lack of a universally accepted mathematical
model of the visual properties that distinguish paintings from photographic im-
ages. Consequently, many ’ad hoc’ computational steps are deployed, and several
’magic numbers’ need to be introduced (such as, for instance, the threshold of
the Sobel edge detector deployed in [1] or the mixture parameter introduced in
[12]). Moreover, as admitted in [6], these PRA may fail as soon as one of the
intermediate operations does not perform well for some particular input image.

In contrast, considerable improvement can be gained if one abstracts from
the imitation of classical tools and focuses on the visual properties of the desired
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output. In this paper we consider three important aspects of painterly artworks:
perception, randomness and geometric structure. The former stems from the
fact that artists put in their paintings their personal interpretation of a given
natural scene [13, 14]. Randomness is important because artists never make two
identical paintings of the same scene. Geometric structure plays a central role
in visual arts because people perceive geometric dispositions of objects in the
space [15]. Moreover, artists may deliberately align brush strokes according to
the principle of good continuation in order to enhance the perception of forms
and to make their paintings more vibrant.

A mathematical framework on which these concepts meet each other naturally
is the theory of Glass Patterns (GP). A GP is defined as the superposition of
two random point sets, one of which is obtained from the other by means of a
small geometric transformation. Examples of such patterns are shown in Fig. 1.

GP have drawn the attention of many researchers from different disciplines.
Direct measurement of the neural activity in the V1 and V2 areas of the brain
of primates indicates that, when GP are presented, neurons of the visual cortex
strongly respond to the local orientation of dot pairs [16, 17]. Such responses
are then processed by means of association fields, thus extracting long chains of
collinear segments [18, 19]; such chains determine the geometrical structure per-
ceived in GP. Circular and spiral structures in GP are the most salient geometries
[20, 21, 22], indicating that the contour integration process that is performed by
the visual system is more sensitive to closed structures [23]. This might be the
basis of the gestalt principles of closure and praegnanz [23, 24]. Several compu-
tational models of the perception of GP have been proposed [23, 25, 26].

GP have also been studied from a purely mathematical point of view in terms
of their macro and microstructure. The former concerns local dot density, which
turns out to be lower in the center of the pattern. The related phenomenology
has been exhaustively studied [27, 28], and it can be explained by the gen-
eral theory of moiré effects [29]. On the other hand, microstructure concerns
the orientation field that is induced by the strong correlation between the two
superposed point sets that compose a GP. Microstructural properties of GP
can be studied naturally in the framework of the dynamical systems theory
[30, 31] and algorithms able to synthesize any microstructure have been pro-
vided [31].

Fig. 1. Glass patterns obtained by several geometric transformations. From left to
right: rotation, isotropic scaling, expansion and compression in the horizontal and ver-
tical directions respectively, combination of rotation and isotropic scaling, and trans-
lation. Note that translational GP are the least salient.
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In this paper, we propose a simple mathematical operator which transfers
the microstructure of a GP to a natural image, thus resulting in a nice artistic
effect. The method is validated by a wide range of experimental results and
comparisons with well-estabilished PRA.

2 Mathematical Formalism

In this section we review the mathematical formalism related to classic discrete
GP (Section 2.1), then we extend it to the continuous case (Section 2.2), and we
show how to transfer their microstructure to a photographical image (Section 2.3).

2.1 Discrete Glass Patterns

Let v(r) be a vector field defined on IR2 and let us consider the following differ-
ential equation:

dr
dt

= v(r) (1)

We indicate the solution of (1), with the initial condition r(0) = r0, by r(t) =
Φv(r0, t). For a fixed value of t, Φv is a map from R

2 to R
2, which satisfies the

condition Φv(r, 0) = r.
Let S = {r1, ..., rN} be a random point set and let be Φv(S, t) � {Φv(r, t)|r ∈

S}. Using this notation, we define the Glass pattern Gv,t(S) associated with S,
v, and t as follows:

Gv,t(S) � S
⋃

Φv(S, t) (2)

Examples of GP generated by linear differential equations are shown in Fig. 1.
More general vector fields give rise to more sophisticated geometries, which are
related to the streamlines of v(r) (Fig. 2).

2.2 Continuous Glass Patterns (CGP)

In order to extend the GP formalism to the continuous case, we first represent
a point sets S with a binary fields bS(r) which, by definition, takes the value 1

Fig. 2. From left to right: vector field v(x, y) = [y2 − 1 + 1
3xy, 1

3 (y2 − 1) − xy]ᵀ,
the trajectories which solve the corresponding differential equation ṙ = v(r), and a
corresponding GP
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for r ∈ S and is equal to 0 for r /∈ S. It is straightforward to see that the binary
field associated with the superposition of two point sets S1 and S2 is equal to
the maximum of bS1(r) and bS2(r). Therefore, from (2), we see that the binary
field associated with a GP is equal to:

bGv,t(S)(r) = max{bS(r), bS [Φv(r, t)]} (3)

The generalization of (3) to the continuous case is straightforward: first, a
continuous set of patterns bS [Φ(r, τ)], with τ ∈ [0, 1] is considered, instead of
only two as in (3); second, any real valued random image z(r) can be used instead
of a Poisson process bS(r). Specifically, a continuous Glass pattern (CGP) Gv,z(r)
is defined as follows:

Gv,z(r) � max
τ∈[0,1]

{z[Φv(r, τ)]} (4)

We indicate by Av(r) the arc of streamline r(t) = Φv(r, t) with t ∈ [0, 1], i.e.
Av(r) � {Φv(r, t)|t ∈ [0, 1]}, and rewrite (4) more compactly as:

Gv,z(r) = max
ρ∈Av(r)

{z(ρ)} (5)

Examples of CGP are shown in Fig. 3, first row, where z(r) is random noise, in
which the histograms of all images have been equalized for visualization purposes.
These patterns are related to the vector fields v(r) = [y, −x]ᵀ (rotation) and
v(r) = [x, y]ᵀ (isotropic scaling) and, as we see, CGP exhibit similar geometric
structures to the corresponding discrete GP.

2.3 Cross-CGP

Finally, in order to transfer the structure of a CGP to a color image I(r), we
define the cross-CGP Cv{z(r), I(r)} as follows:

Cv{z(r), I(r)} � I {ρ0(r)} , ρ0(r) � arg max
ρ∈Av(r)

{z(ρ)} (6)

In other words, instead of directly considering the maximum of z(r) over Av(r),
we first identify the point ρ0(r) which maximize z(ρ), and we take the value of
I(r) at that point. It is easy to see that if the input image I(r) coincides with
z(r), cross-CGP coincide with CGP:

Cv{z(r), z(r)} = Gv,z(r) (7)

Examples of cross-CGP are shown in Fig. 3, second row, for a natural image
I(r). As we see, both randomness and the geometric structure of a GP are present
in a cross-CGP.

Given v(r), z(r), and I(r), cross-CGP can be computed in a straightforward
way by integrating (1) numerically, and by taking the maximum of z(r) over
Av(r), as indicated in (5). We implemented (5) by means of an optimized version
of the Euler algorithm whose pseudo-code is shown in Fig. 4. Our algorithm starts
with a cross-CGP computed over a 1-pixel-long arc Av(r), and doubles the length
of Av(r) at each iteration. Therefore, the computation time is logarithmic with
the length of Av(r).
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Fig. 3. Examples of CGP and cross-CGP. First row: random image z(r) and CGP
obtained from it, by means of the vector fields v(r) = [y, −x]ᵀ and v(r) = [x, y]ᵀ re-
spectively. Their geometrical structure is analogous to the discrete case. Second row: an
input image and cross-CGP related to the same random image z(r) and the same vector
fields v(r). Cross-CGP succeeds in transferring randomness and geometric structure of
a GP to an image.

3 Proposed PRA

In this section, we describe a simple approach to add artistic effects to a photo-
graphic image I(r), as depicted in Fig. 5. The idea is to compute the cross-CGP
Cv(z, I) of I(r), where z(r) is random noise and v(r) is a vector field extracted
from the input image.

In order to determine v(r), we first compute the orientation θσ(r) of the color
gradient of I(r). Following [32], we define θσ(r) as the direction of the eigenvector
associated with the maximum eigenvalue of the following matrix:

Kσ(r) =
3∑

i=1

[
∇σI(i)(r)

] [
∇σI(i)(r)

]ᵀ
(8)

where I(i)(r) is the i − th color component of I(r) and ∇σI(i)(r) is the result of
the convolution of I(i)(r) with the gradient of a Gaussian function with standard
deviation σ. Then, the vector field v(r) is chosen to have constant length a and
to form a constant angle θ0 with the direction θσ(r) of ∇σI, where a and θ0 are
input parameters:

v(r) = a[cos (θσ(r) + θ0) , sin(θσ(r) + θ0)]ᵀ (9)
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SubRoutine FastCrossCGP(I, z, Vx, Vy, N iter, h)

% I = Input image I(r)

% z = Random noise z(r)

% Vx, Vy = x and y components of v(r)

% N iter = Number of iterations

% h = Step size of the Euler algorithm

For i = 1 : N iter {
I1 = evaluate(I, Vx, Vy, h);

z1 = evaluate(z, Vx, Vy, h);

For each (x,y) {
if z(x,y) ≤ z1(x,y)

I(x,y) = I1(x,y);

}
z = max(z, z1);

Wx = evaluate(Vx, Vx, Vy, h);

Wy = evaluate(Vy, Vx, Vy, h);

Vx = Vx + Wx;

Vy = Vy + Wy;

}
Return I;

Fig. 4. Pseudo-code of the proposed implementation of cross-CGP. The subroutine
’evaluate’, which is not detailed here, takes in input three real valued functions I(x, y),
Vx(x, y), and Vy(x, y), with (x, y) ∈ ZZ2, and a scalar h, and returns the function
U(x, y) � I [x + h · Vx(x, y), y + h · Vy(x, y)], which is computed by means of bilinear
interpolation.

Fig. 5. Scheme of the proposed PRA

The value of θσ(r) is undefined on points r for which the eigenvalues of Kσ(r)
are equal. For such points we take by definition v(r) = 0.

Finally, the output y(r) of the proposed operator is simply the cross-CGP
associated with the input image I(r), the vector field v(r) defined in (9), and a
random noise z(r):

y(r) = Cv{z(r), I(r)} (10)

An example of the output of the proposed operator is shown in Fig. 6 for
the input image of Fig. 3, second row (921 × 660 pixel), for σ = 6, a = 18 and
θ0 = π/2. As we see, the output presents curved brush strokes oriented along
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Fig. 6. Output of the proposed operator for the input image of Fig. 3, second row

(a) (b)

(c) (d)

Fig. 7. (a) Input image, (b) output of the proposed operator, (c) noisy input image and
(d) output of the proposed operator. Adding a small noise to the input image makes
impressionist whirls visible on texture-less area too.
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Table 1. Values of the parameters used for the studied approaches, with each color
component of the input image ranging between 0 and 1

Algorithm Parameter values
Proposed approach a = 16, σ = 6, λ = 0.3, θ0 = π/2
IR [1] l = 5, w = 1, Δr = Δg = Δb = 0.06, ΔI = 0.15
AV [6] Segm. levs. = 48, Enh. levs. = 96, Brush. Art. lev. = 40, α = 50%

the object contours. It is easy to prove that for θ0 = π/2 the streamlines of v(r)
are closed curves, thus, the brush strokes tend to form whirls which are typical
of some impressionist paintings.

The proposed operator does not introduce new colors to the input image. Con-
sequently, brush strokes are not visible on non-textured areas (Fig 7b). However,
this problem is solved by simply adding a small monochromatic random noise
to the input image before computing the cross-CGP (Fig. 7c-d).

Concerning the input parameters, a determines the length of the brush strokes,
σ influences the smoothness of the lines traced out by the brush strokes and the

(a) (b)

(c) (d)

Fig. 8. (a) An input image and outputs of (b) the proposed algorithm, (c) AV [6], and
(d) IR [1]
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size of the impressionist whirls, and θ0 controls the angle between each brush
stroke and the nearest edge.

4 Results and Comparison

In this section, some experimental results are presented and commented. Our ap-
proach is compared with two of the most popular PRA, namely the impressionist
rendering (IR) proposed in [1] and the NPR technique called artistic vision (AV)
presented in [6]. IR consists in rendering overlapping rectangular brush strokes
of a given size and orientation. In AV, curved brush strokes of different sizes

(a) (b)

(c) (d)

Fig. 9. (a) An input image and outputs of (b) the proposed algorithm, (c) AV [6], and
(d) IR [1]
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(a) (b)

(c) (d)

Fig. 10. Illustration of the influence of the parameter θ0. (a) Input image and outputs
of the proposed operator for (b) θ0 = π/2, (c) θ0 = π/4, and (d) θ0 = 0.

are rendered by means of a more sophisticated segmentation approach. We show
some results in Figs. 8-10; a larger set of examples is available online1. Unless
differently specified, we use the parameter values according to Table 1.

The output of the proposed operator for the input images of Figs. (8-9)a is
shown in Figs. (8-9)b. As we see, our operator effectively mimics curved brush
strokes oriented along object contours, and the whirls that are present in con-
tourless areas resemble some impressionist paintings. In Figs (8-9)c, the outputs
of AV are shown for the same input images; though simulation of curved brush
strokes is attempted, several artifacts are clearly visible, especially on flat ar-
eas. IR (Figs. (8-9)d) does not produce artifacts, but it tends to produce blurry
contours and fails in rendering impressionist whirls.

In Fig. 10, the output of the proposed operator is shown for different values
of the parameter θ0 (θ0 = π

2 , π
4 , 0), which controls the angle between the brush

strokes and the nearest object contour. As we see, different artistic effects can be
achieved by varying the value of θ0. Specifically, for θ = π/2, the strokes follow
the object contours and form whirls in flat areas, while for θ = 0, the strokes are
orthogonal to the contours and build star-like formations in flat regions.

1 http://www.cs.rug.nl/˜imaging/PSIVT2009
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5 Summary and Conclusions

We use the theory of GP for unsupervised automatic painterly rendering. Specif-
ically, we show that transferring the microstructure of a GP to a photographical
image results in a nice artistic effect. The proposed algorithm is simple, can be
implemented very efficiently, does not introduce ’magic numbers’ and, unlike
many other methods, is expressed by a compact mathematical expression, which
makes it suitable for further theoretical analysis. Due to its simplicity, input
parameters are easily interpretable, and undesired artifacts that affect some ex-
isting algorithms are avoided. Moreover, the possibility to achieve considerably
different artistic effects by simply changing the values of certain input parame-
ters (such as θ0, see Fig. 10) makes the method versatile and promising. This
work improves a previous work of us presented in [33] in terms of a smaller
amount of computational steps and input parameters. Experimental results on
a broad range of input images validate the effectiveness of the proposed method.
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[29] Amidror, I.: The theory of the Moiré phenomenon, volume 1: periodic layers.
Springer, Heidelberg (2000)

[30] Glass, L.: Looking at dots. Math. Intell. 24(4), 37–43 (2002)
[31] Amidror, I.: Dot trajectories in the superposition of random screens: analysis and

synthesis. Journal of the Optical Society of America A 21(8), 1472–1487 (2004)
[32] Cumani, A.: Edge detection in multispectral images. CVGIP 53(1), 40–51 (1991)
[33] Papari, G., Petkov, N.: Continous glass patterns for painterly rendering. IEEE

Transactions on Image Processing (to appear)


	Glass Patterns and Artistic Imaging
	Introduction
	Mathematical Formalism
	Discrete Glass Patterns
	Continuous Glass Patterns (CGP)
	Cross-CGP

	Proposed PRA
	Results and Comparison
	Summary and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




