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Samenvatting (NL)

Populatiedynamica beschrijft hoe het aantal individuen in een
populatie verandert in de tijd. Er bestaan veel verschillende
modellen het proces van populatiegroei beschrijven. Eén van
de doelen van dit proefschrift is om een aantal van die mod-
ellen samen te brengen in één simpel algemeen model. Hoewel
het concept “carrying capcity” of draagkracht vaak wordt ge-
bruikt als mechanisme van dichtheidsafhankelijkheid (de regu-
latie van groeisnelheid afhankelijk van populatiegrootte), is het
algemene model onafhankelijk van dit concept. Maar onder
bepaalde condities is draagkracht toch een uitkomst van het
model. Onder andere omstandigheden onstaat juist explosieve
groei. Het blijkt ook dat bepaalde random fluctuaties de dy-
namiek zo kunnen beı̈nvloeden dat het lijkt alsof er dichthei-
dsafhankelijkheid is. Dit geeft een alternatieve verklaring voor
de demografische diversiteit in natuurlijke populaties.

De evolutie van kwantitatieve eigenschappen hangt af van
veel genfrequenties die zelden gemeten kunnen worden. Een
benadering wordt ontwikkeld gebaseerd op methoden uit de
statistische mechanica om de dynamiek te voorspellen van meet-
bare variabelen, zoals gemiddele en variantie van een kwanti-
tatieve eigenschap. Er wordt aangetoond dat populaties
evolueren naar een maximale entropie, afhankelijk van bepaalde
statistische randvoorwaarden aan de eigenschappen in kwestie.

xv



Deze neiuwe methode voorspelt evenwichtstoestanden exact en
is zelfs accuraat onder plotselinge veranderingen in directionele
of stabiliserende selectie. Toepassingen op selectie voor meedere
eigenschappen worden bestudeerd, alsmede een analyse van
evolutie in de kikker Rana temporaria. Tenslotte, ter discussie
komt in hoeverre entropiein een evolutionair perspectief gezien
kan worden als informatie gecreëerd door natuurlijke selectie.



Summary (EN)

Population dynamics is a temporal description of the number
of individuals in a population. Many models exist that quantify
the process of population growth. In this thesis, the subject is
approached with the goal of bringing together several of these
models into a simple general one. Although carrying capacity is
often invoked as a mechanism for density dependence (the reg-
ulation of growth rates according to the population’s size), the
general version does not resort to this mechanism. For certain
conditions, however, carrying capacities emerge. Other condi-
tions lead to populations that explode in size. However, certain
kind of random perturbations can drive the dynamics of the
population in a way that they mimic density dependence. This
provides alternative testable explanations for the demographic
diversity in natural populations.

The evolution of quantitative traits depends on the frequen-
cies of many alleles involved, which can rarely be measured.
An approximation is developed borrowing methods from statis-
tical mechanics to predict the dynamics of observable quanti-
ties, such as the mean and variance of a trait. Populations are
shown to evolve to an entropy maximum, subject to constraints
on the expected values of observable quantities. The method
gives the equilibrium state exactly and is accurate even when
there are abrupt changes in directional or stabilizing selection.

xvii



Applications to selection for multiple characters are also stud-
ied, and data of evolving traits of the common frog Rana tem-
poraria is analyzed in order to gain insights on the limitations
of the method. We also initiate a discussion on the interpreta-
tion of entropy in evolution as information created by natural
selection.



Resumen (ES)

La dinámica poblacional es una descripción temporal del núme-
ro de individuos en una población. Existen varios modelos
que cuantifican el proceso de crecimiento poblacional. En esta
tesis, el tema se aborda con la finalidad de unir varios de es-
tos modelos en uno más general pero simple. Aunque la ca-
pacidad de carga es frecuentemente empleada como parte del
mecanismo de denso-dependencia (regulación de las tasas de
crecimiento según el tamaño poblacional), el modelo general-
izado no acude a este mecanismo. En ciertas condiciones,
sin embargo, las capacidades de carga emergen del modelo.
Otras condiciones resultan en poblaciones cuyo tamaño “ex-
plota” (crece al infinito). Sin embargo, existen cierto tipos de
perturbaciones aleatorias que imitan procesos de denso- depen-
dencia. Estos proveen alternativas plausibles de la diversidad
demográfica en poblaciones naturales.

La evolución de rasgos cuantitativos es dependiente de las
frecuencias de muchos alelos, los cuales raramente son medi-
bles. Una aproximación es desarrollada para predecir la diná-
mica de variables observables, como la media del rasgo o la var-
ianza genética, utilizando métodos de mecánica estadı́stica. Se
demuestra que las poblaciones evolucionan hacia un máximo
de entropı́a, restringida a los valores de las esperanzas de las
variables observables. El método concuerda exactamente con

xix



los estados de equilibrio, y es preciso incluso cuando hay cam-
bios abruptos de presiones selectivas, direccionales o estabi-
lizadoras. También se estudian aplicaciones para selección so-
bre múltiples rasgos, y se aplican al análisis de datos de rasgos
en evolución de la rana común Rana temporaria, para com-
prender las limitaciones del método. También se inicia una
discusión de la interpretación de laentropı́a en evolución como
información creada por selección natural.
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General Introduction
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Life, as such does not exist. This was Szent-Gyorgy’s (1972)
perspective about what is life; The question, in itself its

wrong, he wrote. The view nowadays, is that we cannot actu-
ally define life, since there is no physical or intrinsic component
that makes it happen, and rather is conceived that life itself is
a process (Mayr, 1982). Lwoff (1965) stated life is a state of the
organisms, which at first read does not say too much, since or-
ganisms are those capable of being alive. However it sets the
question in such a way that we can have a working definition of
life, that is, listing the properties that we associate with ‘living
entities’ (Maynard-Smith and Szathmáry, 2000, p. 3). These
properties are (Maynard-Smith and Szathmáry, 2000): (i) mul-
tiplication, (ii) variation, and (iii) heredity (MVH). This defini-
tion, as more specific ones, suffers from Sagan’s “fundamental
handicap of biologists” (Sagan, 1973; Emmeche, 1998), that is
that we define life only on basis of the organisms that we know,
and that are subject to the same “laws” of evolution, ecology,
physiology, genetics, chemistry, etc. Ernst Mayr’s (1982) list
of properties that define life, picture it as an evolutionary and
dynamic process, rather than as an intrinsic property of or-
ganisms. Notice that the notion of variability and growth are
fundamental elements, as well as that the several definitions of
life apply to populations, not to individuals (although of course
we can extend the definition that an individual is alive if it de-
scends or belongs to a population that has those properties;
Maynard-Smith and Szathmáry, 2000).

These definitions, in particular the above mentioned ones,
are a reflection of our conception on how the process of life
is. Multiplication (population growth) and variability in popula-
tions -the two main subject of this thesis- are fundamental in
evolutionary biology, and is no coincidence that they constitute
-at least in part- the definition of life. Thus somehow (and this
is an existentialist argument) the questions that we ask in evo-
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lutionary biology, contribute to build an approximation to this
unanswerable question. The abstractions of the vital processes
that are used to model biological evolution (in this thesis, math-
ematically), help to slightly widen our handicapped notions.

For example, what we conceive as a replicator (or for these
matters, a reproducer), need not to be as physical as we re-
gard it in an organism, or its hereditary material need not to
be genes, nor their composition be of DNA (e.g. memes). The
evolutionary models and the modern evolutionary synthesis as-
sume certain properties and explain in terms of processes that
do not depend on these biological details. Thus the handicap
becomes less pronounced (although it is still there).

Part of this flexibility on our re-interpretation of the evolu-
tionary processes out of our own formulation, is because we
are modernly regarding the evolving systems as transducers of
information (from a generation to another). Hence the limits of
our abstract interpretations can be widened without tormenting
ourselves with mechanistic details of a high level of complexity,
which is to some extent and from this evolutionary perspective,
unnecessary. Essentially, in studying evolutionary processes,
we are abstracting what life is by addressing the question how
can this evolve? in both instances: of a particular biological
aspect (e.g. a particular mechanism, a particular trait, etc.), or
of a system as a whole (without neglecting the environment, of
course). In answering this question, (how can this evolve?) we
are forced to invoke MVH (plus other things).

Motivation for this research
Putting aside the philosophical aspects, there are of course
more specific question or subjects that we (me and co-authors)
will deal with. There are also practical needs to understand
how populations adapt to new environments. We will disect

4



MVH into separate processes. This is still another simplifica-
tion, perhaps not the most natural, but the most historically
parsimonic.

On the one hand, the techniques for studying population
dynamics have improved, and in consequence have improved
their applications. We do not consider all populations as lo-
gistic and exponential any more. But along developments in
non-linear dynamics, and stochastic processes, as well as ad-
vances in classical and Bayesian statistical tools for estimation
and forecasting, we have had a more comprehensive view of
population growth.

On the other hand, a great deal of the approaches to prob-
lems in genetics, specially in the age of molecular biology came
from the Neutral Theory of Molecular Evolution (Kimura, 1985).
Much of the ongoing process of constructing the evolutionary
synthesis was halted by the arrival of the neutral theory. Along
with the central dogma of molecular biology, neutrality ruled
the view of world. In the last two decades, with access to so
much genetic data, along with the development and application
of bioinformatic tools and the study of epigenetic factors, we
have found that the molecular world is not neutral, and that
there is no linear relation between the genetics and the pheno-
types.

So its time to get back to the basics. We need to under-
stand the dynamics of populations in a better -perhaps more
fundamental- approach. Not necessarily to construct more com-
plicated models (although why not!), but to understand what
the simple models have given and why, and how this relates to
the genetic structures in a population. These are not separated
problems. We just view them like that. The study of the roles
of selection in natural and artificial populations has also been
of great importance in the last years, since have given further
insight in the processes of evolution.
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Nowadays biologists are more prepared for integrative and
fundamental questions, since the use of mathematical and com-
putational tools have (fortunately) permeated to even the most
practical aspects of biology, and even triggered the creation of
new mathematical tools.

This thesis aims to complement the theories of population
dynamics and quantitative genetics. Seeking a synthetic ap-
proach to each of these two subjects, where there is plenty of
research to discover new facts but not so much to bring them
together.

The first subject: Population dynamics (PD) is among the oldest
subjects in theoretical and mathematical biology, dating back
to Malthus (1798); Gompertz (1825), and Verhulst (1838), and
originated in the study of demography. We don’t concisely know
how to ‘derive ’ population dynamics from first principles. But
nowadays it conforms to one of the central elements of the the-
ory of evolution, both as a subject to study and as a tool to
study other subjects.

As Gilpin and Ayala (1973) put it: “Biology is at a Keplerian
stage”; this was more than three decades ago, and much ad-
vance came until today. We could say that nowadays it is rather
at a Newtonian stage4: there are many ways populations grow,
or “growth laws”; some of them have mechanistic explanations,
some of them only phenomenological justifications. But the ap-
plications of these dynamics is widespread in biology. However
there is not a consistent theoretical background that leads to
the understanding why populations grow in particular ways.

This is of course not coming as a surprise. If we give it a
thought, there are so many factors that determine growth that
it is hard to think where to start. For the sole purpose of exer-

4Although I. Pen suggests is rather a Laplacian stage.
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cising I made a mind map of the factors that I would consider
to directly affect growth. The result, was a long list of factors
which besides growth, affect each other in a fully connected
network fashion. Not too good for a start. But it reflects that
distinct disciplines have considered the action and effect of bi-
otic and abiotic factors on growth, so there are several pieces
of the puzzle. But how growth has been tuned by the under-
going evolutionary process, is not a question with a trivial an-
swer. There are two classes of hindrances in the search for
this answer. From a perspective, and to the main concern in
this thesis, the way in which we model population growth is to
some extent arbitrary. This has resulted in having a battery of
models (Henle et al., 2004a) that are ‘adapted’ to their use in
particular problems. This is interesting, in that it might reveal
that the diversity of growth strategies is big. Often these mod-
els are chosen by distinct criteria, and do not necessarily reflect
biological factors that might be of relevance. Furthermore, it is
common to find distinct models that result in very similar –or
identical– growth patterns, but which have radically different
biological implications. But there is no criterion that suffices
for a choice of biological significance. Even if we were to apply
statistical methods for model selection, a set of hypotheses is
likely to be biased by mathematical easiness. Between lines, I
am assuming a reductionist position. The problem might well
be how to better ‘explain’ a growth pattern with minimal set of
parameters. But I am referring first, how to understand the fac-
tors determining growth, and second, how evolution can shape
these factors to result in an evolutionarily stable growth strat-
egy.

There is plenty of work on the evolution of population growth,
and how populations adapt to particular conditions.I identified
five main trends in the study of the evolution of growth strate-
gies. I am considering models that do not take into account
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competition (e.g. Lotka-Volterra types are excluded), and these
may or may not comprise age structure. I will briefly go over
them, and bear in mind that this classification is arbitrary and
the classes are not exclusive. First, following the unexpected re-
sults that the simple discrete logistic equation shows complex
(chaotic) behaviours (May, 1976), there was a rush to study
this new phenomenon, and its consequences. To the big re-
gret of many, studies revealed that in most cases, evolution
would tend to tune the dynamics in such a way that they re-
sult in a stable equilibrium (Doebeli and Koella, 1995; Eben-
man et al., 1996; Schliekelman and Ellner, 2001), although
some special conditions would allow the chaotic dynamics (Fer-
riere and Gatto, 1993; Gatto, 1993; Doebeli and Koella, 1995;
Gonik et al., 2005). Second, the influence of stochastic fac-
tors on population growth has been a stereotypic model with
vast applications (Tuljapurkar, 1990; Lande et al., 2003). In
this context, it has also been studied how distinct strategies
would evolve to cope with these fluctuating realms (Tuljapurkar
and Orzack, 1980; Tuljapurkar, 1982; Orzack and Tuljapurkar,
1989; Yoshimura and Jansen, 1996). Third, the most biologi-
cally comprehensive approach is of optimizing growth rates that
are determined by life-history traits. To begin with, the proper
fitness measure has been debated (Murray, 1997; Metz et al.,
1992; Rueffler et al., 2006), and it seems that optimizing the
Malthussian parameter (exponential growth rate) is the most
consistent option. To follow, the dynamics are coupled to the
evolutionary benefits of individuals that maximaze their fitness
(Metz et al., 1992; Mylius and Diekmann, 1995; Coulson et al.,
2006; Pelletier et al., 2007). This approach is very versatile, and
allows to modeling of specific situations for which biological de-
tails are included with easiness (Orzack and Tuljapurkar, 1989;
Charnov, 1993; Shertzer and Ellner, 2002; White et al., 2006).
Fourth, ecological variables and the spatial structure also de-
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termine growth rates of populations (Lion and van Baalen, 2008).
Fifth, there are genetic determinants to growth (Travis and Green-
wood, 1990; Hastings and Harrison, 1994; Doebeli, 1996b; Doe-
beli and de Jong, 1999) which may be assumed to act directly
on growth rates, or indirectly on any other life-history traits.

Most, if not all of these approaches employ specific growth
models, parameters of which are tuned by evolution. A classical
example, is the logistic model, and the notions of r and K se-
lection. This analysis presumes that growth is logistic, and the
evolutionary reasoning sets the details on the values of these
parameters (MacArthur and Wilson, 1967; Pianka, 1970). But
any alternative strategy that would result in growth dynamics
different from logistic, is of course disregarded. A synthetic ap-
proach, is missing (though see Metz et al., 1992; Meszéna et al.,
1992; Page and Nowak, 2002). Thus we need a way to under-
stand the growth of populations from a wider view. That is to
understand what do the different growth patterns have in com-
mon. There are two common assumptions, which are (i) growth
at low densities is approximately exponential, and (ii) growth at
high densities is limited. From the mathematical side, this is
equivalent as considering the first two terms in a series approx-
imation of the growth law. So naı̈vely we could adopt the third
term, and so on. Surely we can do better than that. Indeed
a notable advance was initially achieved by Ayala et al. (1973);
Gilpin and Ayala (1973); and Gilpin et al. (1976). They intro-
duced a model that accounted for the internal competition of a
population. This has been later applied to study global patterns
of growth (Sibly et al., 2005). Although not yet in the evolu-
tionary context, this application of a generalized model reveals
another dimension of evolutionary possibilities. How much can
we extend this, without invoking more parameters or artificial
models? This is the research subject of the first part of this
thesis.
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The second subject: the theory of quantitative genetics (QG)
aims to explain the evolution of quantitative traits and char-
acters based solely on measurable quantities. That is, without
making reference to variables that we can not measure, like al-
lele frequencies, genetic effects, or number of loci. The theory
of population genetics (PG), on the other hand, studies the evo-
lution of the frequency of alleles, and of the genetic effects of
allelic substitutions over phenotypic traits. Still, the relation
between both approaches is obscure. Whether it is possible or
not to bridge both, we still don ’t know, but quantitative genet-
ics relies on the ansatz or conjecture that it is.

Mechanistic approaches from population genetics have, in a
sense, failed to achieve this bridge. Only some approximations
have been fruitful for specific situations. Still it looks from the
experimental and empirical perspective that it is indeed possi-
ble. Thus the subject persists.

Why do we need at all the integration of both sub-disciplines
of genetics? In The Origin of Species Darwin (1859) recognized
that the mechanisms of natural and artificial selection were es-
sentially the same. Artificial selection is applied on phenotypic
traits, and in a sense ignores what is behind it, in the genetic
composition (whose nature was at the time unknown to Dar-
win). This points out the primary role of understanding the
nature of selection. Even when mathematical tools started to
be applied to compute the response to selection, the approach
was entirely phenotypic (Pearson, 1896), and to certain degree,
it has remained like that. It was not until Fisher (1918) when
the relation between the Mendelian nature of phenotypic traits
under selection was addressed.

But Kimura’s (1985) Neutral Theory of Molecular evolution
went totally in the opposite direction. It required molecular
data, and assigned the major evolutionary cause to point mu-
tations and random drift, rather than to natural selection. As
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the saying goes, the truth is the intersection of two independent
lies, hence given that these three factors, selection, mutation,
and drift (SMD) are potential causes for the evolution of virtu-
ally any trait, we are thus interested in their relative importance
to generate and maintain the diversity that nowadays exists in
populations.

It is actually not possible that phenotypic traits change with-
out consequent evolution of their genetic composition. But as
breeders have shown, it is possible to predict –to a certain
degree– the average values of the offspring’s traits of breeding
individuals selected for a trait. Thus it is clear that there are
immediate applications. Yet, this will only work for some gener-
ations, thus for purposes of understanding and explaining bi-
ological diversity, these predictive capabilities are not enough.
This is because the predictability of the trait values in a pop-
ulation depends on the amount of variation that is available
at breeding time. And this variation is changing. How is this
change? That is the question.

Predicting this change of the genetic variance is not a trivial
matter, since it depends on several biological factors, many of
which are not measurable quantitatively. PG plays a role here,
indicating the factors that influence the evolution of the genetic
variance. The down side, is that it necessarily depends on these
non-obervable elements (Barton and Turelli, 1987).

A somewhat more realistic situation is the various traits co-
evolve. Lande (1979) studied this scenario, showing how the
genetic co-variances (G -matrix) are influenced by pleiotropy
(Lande, 1980). In general, linkage, epistasis, (Turelli and Bar-
ton, 1994), environment, sexual selection (Barton and Turelli,
1991; Turelli and Barton, 2004), and other genetic and ecologi-
cal causes (Arnold et al., 2008) will affect the co-variant struc-
ture of any trait.

It is possible to study this situation in a bottom-up fashion,
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that is considering the evolution of allelic effects, and how it
leads to a change in the traits. But it is not easy to identify
these elements form quantitative data alone, in order to give a
fulfilling explanation of evolutionary response from a QG ap-
proach alone. Thus we are in need of a way to relate the non-
observable factors to the observable variables. Then it might
be possible to predict the long term evolution of quantitative
variables with accuracy.

Although this remains an important subject, which we will
address in the second part of the thesis, we might still wonder
why the question of the integration of PG and QG is important,
given the advances in molecular biology techniques, which al-
low us to screen the genetics effects over any kind of trait.

First, of course is the fact that these empirical analysis have
certain limitations. Recent theoretical studies (Sella and Hirsh,
2005) have shown that even if an equilibrium between SMD is
maintained, the rates of molecular substitution are equal. This
is a result which was reserved to, and interpreted as, neutral-
ity. The implications are not yet studied. But clearly we might
be missing something. The easiness with which sequence data
is analyzed under a neutral model assumption (Li, 1997) might
prove misleading, compared to the view where selection is con-
sidered.

Second, the identification of quantitative trait loci (QTL) is
of major relevance to quantitative genetics. It gives an idea of
the amount of loci that might be contributing to the quanti-
tative trait and its variation, as well as their effect. However,
QTLs have resolution to discern only those loci of major effect.
Furthermore, the technique is able to identify only two alle-
les. Thus we still are uncertain of the number of loci which
are actually contributing, and the overall effect of the contri-
bution of those loci with smaller effect over the quantitative
variables. This is critical, since many models assume a contin-
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uum of alleles and/or infinite number of loci (Kimura, 1965a;
Bulmer, 1972; Lande, 1975; Kingman, 1978; Bulmer, 1980, all
reviewed by Turelli, 1984 ). In these cases, the distribution of
the trait will be essentially Gaussian (Turelli and Barton, 1994).
Although this situation in practice is that with few di-alleilc loci
(say five to eight, as will be shown in chapter 5) normality is
already a good approximation. In addition, the estimation of
the QTL effects are a statistical matter. Xu (2003) has shown
that the sampled population size might substantially bias the
estimation of the effects (the Beavis effect Beavis, 1998), and
its likely that many QTLs that have been reported suffer from
this oversight. We know that the distribution of genetic effects
is highly skewed, as stated above, with many QTLs of small ef-
fect and few with large effect. The problem of underestimating
the variation contributed by the many loci with small effect, is
that these will actually compensate the variation that is rapidly
lost by selection on those loci of high effect (Barton and Turelli,
1989; Barton and Keightley, 2002), so forecasting of evolution-
ary response is dependent on these underestimated genetic el-
ements.

Third, the architecture of the trait, that is how the allelic ef-
fects affect simultaneously and non-additivelly different traits,
plays a crucial role in the response to selection (Orr, 2000;
Cheverud, 2006; Wagner et al., 2008). For simplicity, most
works assume that the contribution of the genetic effects over
a trait can be decomposed into the additive and non-additive
factors. The former just adds the effects of all the genes con-
tributing to the trait, whereas the latter comprises the interact-
ing factors among all these (or other) genes. With this division
in mind, it is possible to make appropriate design to identify
QTLs not only for the traits, but also for their interaction (Lynch
and Walsh, 1998; Cheverud, 2000). Yet the nature of these in-
teractions is uncertain (Hansen, 2006). Theoreticians typically
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assume the influence over the traits comes out of pairwise epis-
tasis (Kondrashov and Turelli, 1992; Turelli and Barton, 1994;
Carter et al., 2005). In any case, the issue is that the complex
essence of evolving traits, or alternatively, the complex back-
ground on which additive or non-additive traits evolve, will by
all instances affect the change of genetic variation (Gavrilets
and de Jong, 1993; Goodnight, 1995; de Brito et al., 2005), and
the knowledge on how this variation will change, is by no means
obvious even when knowing pleiotropic and epistatic QTLs.

Fourth, from the genetic point of view it is ambiguous to
gauge the evolutionary causes of quantitative characters. Not
only for the reasons above, but also because the action of se-
lection at the level of phenotypes might be of a distinct nature
than selection at a given locus (for example, selection for a spe-
cific amino acid in a protein, Yang and Swanson, 2002; Yang
et al., 2005; promoter regions, Haygood et al., 2007; Kawabe
et al., 2007; or any other specific molecular unit Rand, 2001;
Hoede et al., 2006; Haddrill et al., 2008; Kim and Wiehe, 2008).
If selection is acting over these genetic elements, or if self-
ish genes are inducing genetic conflict (Werren et al., 1988;
Hatcher, 2000), at the same time as they are affecting traits
under selection, then the net effects of selection over each of
these two units will be hard to discern on a particular locus.
This kind of effects, consonant with the theory of multilevel se-
lection (Okasha, 2006), have not been studied for the evolution
of polygenic traits. Nevertheless, it will not be long before this
happens.

To conclude, personally I think that this issue should be
interpreted in the opposite direction. That is, how can this
genetic information help us to refine the synthesis of PG and
QG. Combining these two fields in one thinking seems to give
much more than what each field give on its own. The availabil-
ity of genetic and molecular data helps to refine the quantitative
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studies, since it allows a clear view of the assumptions that we
can actually make in achieving a successful quantitative theory
that can support the empirical facts.

It is recognizable that these are two classical subjects of the
‘modern evolutionary synthesis’ which are still debated and re-
quire completion, and it is desirable that their foundations are
solid, so they can support the study of complex interactions in
the micro and macro scales. subjects to which in the meantime
we are moving further.

Guide to this thesis
The thesis is divided into two parts and a synthesis. Each
part contains some chapters with the original results. These
are published or (almost) submitted for publication in peer-
reviewed journals. They are followed by perspectives chapters
that includes research that has not yet been published for dis-
tinct reasons, and speculations about the future prospects of
the results. I will end with a synthesis, which builds the ‘big-
picture ’ of my results for both the specific subjects, as well as
the integrative view of them.

Part I. Population dynamics As discussed above, in PD we find
a variety of models that typically describe various phenomenolo-
gies, yet a full integration of these models is absent. We pur-
sue such an integrative theory, for a class of growth patterns
which are common in the literature of PD, and that describe
non-interacting populations. This consolidation is achieved by
following the dynamics not only of population size, but also of
the per-capita rate. Surprisingly, at least for the class of density
dependent patters that are studied in Chapter 1, the per-capita
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growth rate is independent of the population size and carry-
ing capacity, yet describes patterns of density dependence. The
carrying capacity is determined by the initial growth rate of the
population, thus it is rather a consequence of a population’s
trait, rather than a purely environmental property. (Needless
to say, the initial rate is by no means independent from the
environment!).

In Chapter 2, environmental stochastic effects on the growth
rate are considered. A first prediction is that even those growth
patterns that would lead to a population explosion are con-
trolled by the stochastic effects. Infinite-sized population are
thus avoided without the need to invoke, but not excluding the
presence of, carrying capacity. But there is a second prediction,
much more quantitative. The patterns of growth will result
in a logistic form, irrespective of the deterministic properties.
The equilibrium will be attained at random population densi-
ties. Even if the deterministic population is logistic, its carrying
capacity will not be a predictor of the equilibrium density.

Part II. Population Genetics PG describes the mechanisms of
QG, but it is not entirely clear whether the phenomenological
framework of QG can be derived from PG. The subject is full
with fuzzy results, with few (or limited) final statements. In
Chapter 3 this question is undertaken. This is achieved by con-
sidering not the quantitative variables themselves but expecta-
tions of these. The distribution used to compute the expecta-
tions is obtained through the maximization of entropy (ME), re-
stricted to the quantitative observable variables. This distribu-
tion coincides with the exact solution to the diffusion approxi-
mation in equilibrium, and approximates very well the distribu-
tion when evolution is taking place.(This method is equivalent,
or analogous to the coupling of statistical mechanics between
microscopic and macroscopic variables). The main applications
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in this chapter is to polygenic traits of arbitrary number of di-
allelic loci with distinct effects, but the applications to other
situations, like stabilizing selection and other schemes induc-
ing epistatic effects is also addressed.

But polygenic traits tend to be correlated among each other.
In Chapter 4 the results of the previous one are extended to in-
clude pleiotropic effects. Under these circumstances, the evo-
lutionary dynamics involve the genetic co-variances matrix, G ,
which contains in every entry the genetic covariance between
any pair of co-evolving traits. We can thus, as above, calculate
the expectancies of the genetic co-variances. In this chapter
the analyses are not restricted to theoretical constructs, but are
employed to analyse previously published data on Rana tempo-
raria, for which differences of G have been quantified across
two different locations on four covariant traits. We contrast the
results to the scenarios where we assume that directional or
stabilizing selection is maintaining the observed genetic vari-
ability.

These specific results from the ME method, are accompanied
by an interesting conceptual system. These ideas are explored
in Chapter 5. The evolution of expected values are of a different
nature and we must think of them in different terms than of the
quantitative (which are stochastic) variables themselves. These
are of course not unrelated. We discuss and apply the concepts
above in relation to fitness landscapes, and how to retrieve in-
formation of n genetic variables (allele frequencies) using only m
quantitative variables, where n � m. Another result concerns
an extension of Fisher’s Fundamental Theorem of Natural Se-
lection in the expected values of mean fitness, which will always
increase, under the effects of selection and drift. This is an ex-
tension that appears only at a statistical level. We also discuss
the possibility of employing the ME framework to test distinct
hypotheses of the mutation-selection-drift circumstances that
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determine the structure of the G matrix. In particular we ap-
ply it to contrast the scenarios where directional and stabilizing
selection are determining observed empirical G’s

In Chapter 6, I come back to correlated evolution, but from
the genetic side. The ME estimations show that the G matrix
is very much constrained by pleiotropic effects. Although se-
lection will induce change in the mean trait, the changes in the
G matrix are delayed to latter stages, perhaps hundreds of gen-
erations (for typically low mutation rates), remaining practically
constant until then. The effects of apparent stabilizing selection
and of the amount of pleiotropic loci over G’s evolution are also
studied.

As a last pivotal example, the extension of the theory to sta-
bilizing selection (SS) is presented in detail (chapter 7). The sit-
uation is more complicated in that SS is inherently non-linear
over the trait under selection. Thus introducing mathematical
complications that are limiting. We investigate ways on how
to overcome these technical difficulties. The case of directional
selection is revisited, with allelic effects with dominance, which
can be viewed as stabilizing (or disrupting) selection over each
locus.

In the appendices it is shown that maximizing entropy with
constant fitness is equivalent to maximize fitness at constant
entropy. A discussion about the analogy between statistical
mechanics in physics and the ME methods herein presented, is
addressed. And finally a battery of the most important formu-
las for the quantitative variables, in all the above situations is
provided.
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Population Dynamics
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Chapter 1

Density Dependence as a
Size-Independent Regulatory
Mechanism

I know it is the fashion to
talk about groups, the
mass, the race, as though
the individual had no
importance at all, but in
any creative action it is the
individual who matters.

Jiddu Krishnamurti
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1. GENERALIZED PER CAPITA GROWTH RATES

Abstract

The growth function of populations is central in bio-mathe-
matics. The main dogma is the existence of density depen-
dence mechanisms, which can be modelled with distinct
functional forms that depend on the size of the popula-
tion. One important class of regulatory functions is the
θ-logistic, which generalises the logistic equation. Using
this model as a motivation, this paper introduces a sim-
ple dynamical reformulation that generalises many growth
functions. The reformulation consists of two equations,
one for population size, and one for the growth rate. Fur-
thermore, the model shows that although population is
density-dependent, the dynamics of the growth rate does
not depend either on population size, nor on the carrying
capacity. Actually, the growth equation is uncoupled from
the population size equation, and the model has only two
parameters, a Malthusian parameter ρ and a competition
coefficient θ. Distinct sign combinations of these param-
eters reproduce not only the family of θ-logistics, but also
the van Bertalanffy, Gompertz and Potential Growth equa-
tions, among other possibilities. It is also shown that, ex-
cept for two critical points, there is a general size-scaling
relation that includes those appearing in the most impor-
tant allometric theories, including the recently proposed
Metabolic Theory of Ecology. With this model, several is-
sues of general interest are discussed such as the growth
of animal population, extinctions, cell growth and allome-
try, and the effect of environment over a population.
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1.1. INTRODUCTION

1.1 INTRODUCTION

The logistic equation is a paradigm for population biology.
This simple model, in its continuous (Verhulst, 1838; Pearl,

1927) or discrete (May, 1976) versions describes two funda-
mental issues of population biology, which are (i) the initial
exponential rates of growth, and (ii) density-dependent effects,
like competition under limited resources, indicated by satura-
tion values. The discrete logistic equation, in itself opened a
new and broad field in biology related to chaotic behaviours,
and for which some empirical evidences exist (Hanski et al.,
1993; González et al., 2003). The continuous version of logis-
tic growth, although sharing properties with its discrete analog,
differs in some aspects. It does not show intrinsic bifurcations
as the discrete version does, and is much more simple to treat
analytically.

Gilpin and Ayala (1973) and Gilpin et al. (1976) introduced a
model that “slightly” generalises the popular logistic equation.
Their model, consists on modifying the term corresponding to
the density-dependence with an exponent θ. Compared to the
logistic equation, their “global model” describes a population
that converges in time to the same size as the logistic growth,
i.e. to the carrying capacity. However, the exponent θ gives
new interpretations to this sigmoid model of growth. If θ >

1 then intra-specific competition is high, and the population
takes more time to reach its asymptotic value, termed carrying
capacity. If 0 < θ < 1 then competition is lower and the carrying
capacity is reached earlier than in the corresponding logistic
dynamics (Gilpin and Ayala, 1973; Gilpin et al., 1976).

The θ-logistic model, as it has been termed afterwards, in-
troduced a new concept on population ecology that is the θ-
selection strategies(Gilpin and Ayala, 1973; Gilpin et al., 1976).
Originally, they proposed the model to explain data from com-
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1. GENERALIZED PER CAPITA GROWTH RATES

peting Drosophila systems after failure to use a Lotka-Volterra-
like model (Ayala et al., 1973). Afterwards, non-competitive ver-
sions of the system (i.e. one “allele” or one “species” model) has
been used in conservation ecology to model avian population
dynamics and calculate extinction times (Saether et al., 2000),
and also to estimate the effects of environmental stochastic-
ity on population growth (Saether and Engen, 2002). Other
population models have included stochasticity to aid parame-
ter estimation and study the effect of environmental changes
in caprine populations (Saether et al., 2002). This model, has
also been employed in community ecology to estimate species
abundance (Diserud and Engen, 2000). The θ-logistic equation
is a “slightly more complicated model [that] yields significantly
more accurate results”, using the original words of Gilpin and
Ayala (1973).

There are, however, other kinds of regulation terms that
have been successfully employed to model other kinds of pop-
ulations and growth. Sigmoid curves in particular are attrac-
tive for biologists, but are not necessarily described by θ-logistic
equations. The von Bertalanffy (1966) equation, for example, is
a sigmoid curve that is frequently used in allometric and onto-
genetic modelling, as well as the recently proposed (and contro-
versial) curve derived from bioenergetic considerations by West
et al. (2001). Another kind of sigmoid is given by the Gompertz
equation (Gompertz, 1825), which was originally formulated to
model human demographic data. The Gompertz equation has
become an important tool in modelling tumour growth (Norton
et al., 1976), although applications include a wider range of
topics.

Among non-saturated growth for population, there is the
classical exponential growth, typically employed to describe bac-
terial clonation (Hershey, 1939), or simply as descriptors for
non-regulated conditions of growth. However, a “general ver-
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1.2. “MECHANICS” OF SIZE REGULATION

sion” of the exponential is potential growth, appearing in tu-
mour biology (Hart et al., 1998), life history theory (Calder,
1984; Roff, 1986; Day and Taylor, 1997; Stearns, 2004), as well
as in allometry (Peters, 1983; Calder, 1984; Brown and West,
2000), and has been used also to model the growth of popula-
tions of prebiotic replicators (Szathmary, 1991; Scheuring and
Szathmary, 2001) and simple approaches to sexual reproduc-
tion (Szathmary, 1991).

The form of the θ-logistic model is actually more general than
it seems if it is interpreted from a “wide perspective”. This paper
introduces an alternative way to interpret and formulate pop-
ulation dynamics models. Although it is strongly motivated by
the θ-logistic equation, the description explained through out
this paper reduces exactly to most common population mod-
els, including the above-mentioned growth dynamics. This for-
mulation provides a very simple way to manipulate dynamical
equations, and it depends only on two parameters.

Another important feature is that with this formulation it is
possible to derive general scaling behaviours of populations to
their initial sizes and carrying capacities, in a similar but more
general way than that of West et al. (2001).

1.2 “MECHANICS” OF SIZE REGULATION

One of the central issues in population dynamics is to deter-
mine the growth function that describes a particular popula-
tion. Growth dynamics is in general of (or can be expressed in)
the form

dx

dt
= xr(x) . (1.1)

The growth rate r(x) is an explicit function of x. Depending
on the nature of the self-regulation, r(x) has different functional
forms, the most common continuous time functions are listed
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1. GENERALIZED PER CAPITA GROWTH RATES

in table 1.1. For a wide review of density dependence functions,
including (mainly) discrete dynamics, the reader can refer to
Henle et al. (2004b).

Natural choices for r(x) are functions that include two terms,
one describing replication, usually of first order in x, and an-
other one describing interaction and/or growth inhibition, of
higher orders in x.

The logistic model, for example, describes growth inhibition
with a second order term, i.e. x2. The θ-logistic generalises
this second order term to one of an arbitrary order greater than
one, expressed by xθ+1. In a biological sense, this non-linear
term is proportional to the frequency of contacts that an indi-
vidual must have in order to produce population growth inhibi-
tion –anergy– or promotion –synergy– (Szathmary, 1991; Ruef-
fler et al., 2006).

The idea in this paper is simply to express the dynamics of
a population not anymore using its size, x, as the variable of
interest, but rather studying a decomposition of it considering
the rate r at which the population grows as a separate vari-
able, that is focusing in how each individual is contributing –in
average– to the population number (Rueffler et al., 2006)

1.2.1 Exponential Growth
In general the methodology consists of studying a two dimen-
sional dynamical system (x, r) ∈ R+ × R describing the popula-
tion size and replication velocity, respectively. In the case of the
exponential growth, because r = const = α, its time derivative
is zero. Thus the following trivial system:

ẋ = xr , (1.2a)

ṙ = 0 , (1.2b)

26



1.2. “MECHANICS” OF SIZE REGULATION

T
ab

le
1
.1

:
C

om
m

on
re

gu
la

ti
on

fu
n

ct
io

n
s

fo
r

d
if

fe
re

n
t

p
op

u
la

ti
on

gr
ow

th
m

od
el

s.
In

al
l
th

es
e

eq
u

at
io

n
s
ρ

is
th

e
M

al
th

u
si

an
p
ar

am
et

er
,
θ

is
th

e
co

m
p
et

it
io

n
co

ef
fi
ci

en
t,

an
d
α

is
a

p
ar

am
et

er
d
et

er
m

in
ed

fr
om

en
vi

ro
n

m
en

ta
l

co
n

d
it

io
n

s.
W

h
en

p
op

u
la

ti
on

s
gr

ow
to

a
sa

tu
ra

ti
on

,
α

is
re

la
te

d
to

th
e

ca
rr

yi
n

g
ca

p
ac

it
y.

M
od

el
G

ro
w

th
R

at
e,
r (
x

)

M
al

th
u

si
an

P
ar

am
et

er
,

ρ

In
te

ra
ct

io
n

P
ar

am
et

er
,

θ

In
it

ia
l

R
at

e,
r (

0
)

E
xp

on
en

ti
al

α
0

0
6=

0
L
og

is
ti

c
ρ
(1
−
α
x

)
>

0
1

>
0

θ-
L
og

is
ti

c
ρ θ
(1
−
α
x
θ
)

>
0

>
0

>
0

G
om

p
er

tz
ia

n
−
ρ

lo
g(
α
x

)
>

0
0

>
0

H
yp

er
b
ol

ic
α
x

0
1

>
0

P
ar

ab
ol

ic
α
x
−

1
/
2

0
−

1 2
>

0
vo

n
B

er
ta

la
n

ff
y

−
3ρ

(1
−
α
x
−

1
/
3
)

>
0

−
1 3

>
0

W
es

t
et

al
.

(2
0
0
1
)
−

4ρ
(1
−
α
x
−

1
/
4
)

>
0

−
1 4

>
0

27



1. GENERALIZED PER CAPITA GROWTH RATES

is equivalent to exponential growth.
Note that the original expression in terms of one variable,

i.e. ẋ = xα, can be obtaining simply integrating Eq. (1.2b)
and substituting it into Eq.(1.2a) . Integration of the second
equation simply gives the constant α, which is determined by
the initial conditions of the system (x(0), r(0)).

1.2.2 Logistic Growth
For the logistic growth, it is necessary to define the new variable
r as

r(x) = ρ(1− αx) , (1.3)

where ρ is the Malthusian parameter, and α > 0 is the inverse
of the carrying capacity. Thus the rate equation again is ex-
pressed implicitly as ẋ = xr, and the time derivative for r is:

ṙ = −ραẋ = −ραxr ,

Regrouping, and then summing and subtracting 1 in the paren-
thesis, it is possible to write:

ṙ = ρ(1− αx− 1)r = (ρ(1− αx)− ρ) r .

The inner parenthesis of the last expression has the explicit
form of r. After replacing it with Eq. (1.3), the rate equation
becomes:

ṙ = (r − ρ)r . (1.4)

Therefore, to solve the dynamical system equivalent to the
logistic equation only one parameter and an initial condition
are needed. Actually, the initial condition automatically defines
the carrying capacity of the population.
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1.2. “MECHANICS” OF SIZE REGULATION

1.2.3 θ-Logistic Growth.

The rate for the θ-logistic is defined as

r(x) =
ρ

θ
(1− αxθ) . (1.5)

Following the same methodology as with the logistic growth,
it is not difficult to demonstrate that the the implicit form for
the rate equation is:

ṙ = (θr − ρ)r . (1.6)

Although derived from the θ-logistic, this last equation is
general. In the limit θ → 1 the logistic equation is recovered,
and taking jointly the limits θ, ρ → 0 Eq. (1.6) reduces to the
simple form of exponential growth. Note that from Eq. (1.4) it is
not possible to formally take the limit to the exponential, since
it does not show an explicit dependence on θ (= 1). To recover
exponential growth from the explicit form of the logistic, the
limit would have to be taken as α→ 0. But then the rate of the
exponential growth will be ρ instead of α. In this formulation α

and ρ have distinct properties. On the one hand, ρ is defined as
a parameter of the system, and as such may have a role in bi-
furcations and global stability, while on the other hand α is de-
fined as an initial condition, so it does not play any role in local
or global stability. Also a particular population grows following
a predefined replication constant ρ, which is considered to be
determined by intrinsic factors, while α is determined extrin-
sically by environmental conditions which define the carrying
capacity of the system (MacArthur, 1962). Thus in this mech-
anistic interpretation where r determines growth response, the
environmental issues play no dynamical role unless they are
explicitly and dynamically affecting growth rate.
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1. GENERALIZED PER CAPITA GROWTH RATES

1.3 GENERALIZED RATES OF GROWTH

The three versions of the model studied above, namely expo-
nential, logistic and θ-logistic, conform just a part (in fact a
minority) of the possible outcomes of the system. They were
generated by some non negative combinations of parameters
θ and ρ. These, and other dynamics admitting also negative
values for θ and ρ, conform a dynamical system that gener-
alises most classic types of population growth (Table 1.1). In
other words, the model presented herein is a unification of sev-
eral growth dynamics. Resuming, population growth can be
described in a general form by the two equations:

ẋ = xr , (1.7a)

ṙ = (θr − ρ)r , (1.7b)

refereed to from now on as growth equation and rate equation,
respectively.

Although these two equations entirely describe the dynamics
of a population, the rate equation (1.7b) is not coupled to the
growth equation (1.7a), thus the entire dynamic is determined
by the rate equation - actually this is true even considering the
explicit form of r(x) . The growth equation (1.7a) can be written
in a per capita form:

1
x
ẋ = r . (1.8)

It is straightforward that the per capita growth is a function
only of the rate equation (1.7b), which determines solely and
entirely the individual reproduction.

Although the rate equation (1.7b) indicates that regulation
mechanisms are independent of population size, Per capita re-
sponse is a contribution of both, individual reproduction (re-
lated to the parameter ρ) and interaction with other individuals
(related to the parameter θ).
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1.4. STABILITY ANALYSES

The units of the parameter ρ are inverse of time (frequency),
and it gives the characteristic time scale at which individuals
down-regulates the reproduction rate when, for example, the
population approaches an equilibrium state like carrying ca-
pacity or extinction.

The parameter θ, is non-dimensional, but it sets the density
scale at which the interaction of an individual with the popula-
tion affects its reproduction rate.

1.4 STABILITY ANALYSES

The rate equation (1.7b) encloses all the information of the fixed
points of the population dynamics. The rate equation has two
fixed points, namely, r0 = 0 and r1 = ρ/θ. Intuitively r0 corre-
sponds to the non-trivial equilibrium point of the growth equa-
tion, i.e. when the rates become zero the population is in a sta-
tionary equilibrium between reproduction and mortality. This
means that r0 is a steady state under balanced regulation.

Take for example the explicit form of the rate for the θ−logistic
equation

r0 = 0 = r(x∗) =
ρ

θ

(
1− α(x∗)θ

)
that implies x∗ = α−1/θ, and which corresponds to the carrying
capacity. In this case, the population has a finite size, regu-
lated by reproduction (replication at the individual level) and
mortality (competition at the population level).

The biological meaning of the second equilibrium point, r =
r1, is not so obvious. From well-known cases, like the θ−logistic
equation, it is possible to realise that the population has a fixed
point in x∗ = 0. However, the fixed point given by the rate
equation (Eq. 1.5) means that

r1 =
ρ

θ
= r(x∗) =

ρ

θ

(
1− α(x∗)θ

)
(1.9)
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1. GENERALIZED PER CAPITA GROWTH RATES

which implies directly x∗ = 0. Thus r∗ = r1 is equivalent to
x∗ = 0

The system (2.1) suggest a third fixed point: (x∗, r∗) = (0, 0).
This point, however is a paradoxical point, since both, the rate
and the population size cannot be simultaneously zero, unless
ρ, θ, and α are zero.

The stability of these fixed points, can be studied with the
eigenvalues method. The Jacobian matrix of the system (2.1) is

J(x, r) =
(
r x

0 2θr − ρ

)
(1.10)

Evaluating the Jacobian in the first fixed point, P0 = (x0, r0) =
(x∗, 0) (where x∗ is the asymptotic value obtained by equating
x∗ = r−1(0)), leads to the eigenvalues:{

λx0 = 0
λr0 = −ρ (1.11)

Now, evaluation of the Jacobian matrix in the second fixed
point, i.e. P1 = (x1, r1) = (0, ρ/θ) gives the eigenvalues:{

λx1 = ρ/θ

λr1 = ρ
(1.12)

The notation for the eigenvalues, λji refers to the eigenvalue
associated with the j (= x, r) coordinate of the fixed point Pi (i =
0, 1).

Since ρ and θ can take any real value, the stability of the
fixed points P0 and P1 depends on the signs of these two pa-
rameters.

However, some properties are already evident. On the one
hand, none of the fixed points can be foci, since the eigenvalues
cannot take imaginary values. The first fixed point, P0, has
a null eigenvalue, λx0 , indicating that there is a invariant set
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1.4. STABILITY ANALYSES

xinv ∈ (x, r) that has “null” stability. The meaning is that every
trajectory that intersects xinv, (a) depends entirely on the initial
conditions (x(0), r(0)), and (b) is fixed. Actually, the dynamical
equations imply this invariant set corresponds to xinv = 0.

In the growth dynamics, the explicit rate equations involve
a constant α which does not appear in the implicit form of the
dynamical system (2.1). Integrating the growth equation leads
naturally to the constant α, as it did in the previous calcula-
tions of the exponential and θ-logistic equations. The value of
α is related to the carrying capacity in sigmoid dynamics. By
itself α plays no particular role in the stability of the system.
It is a consequence of the dynamics of r rather than its cause,
and thus it depends on the extrinsic factors that determine the
initial conditions of the rate equation. The point at which the
trajectories intersect xinv correspond to the carrying capacity of
the system, and it is a function only of α and θ.

According to the signs of ρ and θ, equations (1.11-1.12) in-
dicate that there are four distinct possible sign combinations
for the eigenvalues. For each of these combinations, termed
regimes, particular patterns in the trajectories occur. This sug-
gests several types of equilibria, convergence to equilibrium
(which corresponds to growth dynamics) and transitions be-
tween the distinct regimes or types of equilibria (bifurcations).

Figure 1.1 shows how P1 varies in the parameter space (ρ, θ).
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1. GENERALIZED PER CAPITA GROWTH RATES

Figure 1.1: (Left) The value of the fixed point r1 (shown as a density) as a
function of the parameters ρ and θ. The four dots in the four quadrants, are
the main four regimes, and the four dots over the axes are bifurcation points.
The arrows follow the explanation in section 1.4. In quadrant I, r1 is an un-
stable node; the point at θ = 0, following the arrow, is a bifurcation point (r1
is at infinity). In quadrant II, r1 is a saddle, with the stable variety in the x

coordinate. Following the arrow to ρ = 0 another bifurcation point is found.
The invariant set xinv also changes from attracting to repulsive in this point.
Continuing to quadrant III, r1 continues to be a saddle, but the stable variety
is now at the r coordinate. Following the arrow to the point at θ = 0 another
bifurcation is found. The stability of this point changes in quadrant IV to a sta-
ble node. Finally, returning to quadrant I, another bifurcation a ρ = 0 changes
the stable node to an unstable node, and xinv changes to be again attractive.
Particular examples of the growth rates listed in table 1.1 are represented with
white dashed lines Potential growth comprises parabolic (|θ| < 1) and hyperbolic
(|θ| > 1) replication.
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1.4.1 Stability when ρ, θ ≥ 0

Beginning with ρ and θ both positive (first quadrant in fig 1.1),
the phase space in this regime shows that P1 is an unstable
node. The line xinv, termed stable manifold, attracts the trajec-
tories close to it.

Figure 1.2 represents the phase space for this regime. Orbits
with initial conditions such that r(x0) < ρ/θ are attracted to
xinv. As discussed above, the point at which the orbits intersect
xinv correspond to the equilibrium value of x, i.e. the carrying
capacity of the population.

This selection of parameters correspond to the θ-logistic equa-
tion. Population description based in this kind of growth range
from flies (Gilpin and Ayala, 1973) to mammals (Saether et al.,
2002), and also includes the classical version of the logistic
growth.

If the initial conditions are such that r(x0) > ρ/θ, then the or-
bits are upper unbounded, and growth is unlimited. The growth
for these region of the phase space is faster than exponential
and any potential growth.

The line (x, ρ/θ) is the separatrix for the two possible dynam-
ics.

Maintaining ρ > 0 and decreasing θ → 0, the systems shows
a discontinuous (i.e. first-order) transition (Fig. 1.1). The value
of the fixed point P1 increases as θ decreases, and at θ = 0 the
fixed point disappears at infinity. This is a bifurcation point: on
its right (positive perturbation to θ), the fixed point becomes an
unstable node, and at its left (negative perturbation to θ), the
point becomes a saddle (this will be discussed in the following
sub-section).

When θ = 0 the stable variety xinv still remains and retains
its stability (note that the eigenvalues associated to xinv, λx0 does
not depend on θ). All orbits in the system, converge to xinv.
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1. GENERALIZED PER CAPITA GROWTH RATES

Figure 1.2: This regime of the phase space corresponds to the first quadrant
in fig 1.1, where ρ, θ > 0. There are two types of growth. If the initial conditions
are below the separatrix at r = ρ/θ, then the population grows as a θ-logistic.
The intersection of the orbits at r = 0 correspond to carrying capacities. If the
initial conditions are above the separatrix, then the growth shows synergistic
interactions between individuals which are improve population increase.

This bifurcation point, for any initial condition, corresponds to
Gompertzian growth.

This kind of growth, has been widely applied in tumour bi-
ology to investigate distinct aspects of tumour response and re-
gression (Norton et al., 1976; Norton and Simon, 1977), as well
as microbiological models (Kozusko and Bajzer, 2003). Molski
and Konarski (2003) demonstrated that the Gompertz equation
can be interpreted as the result of self organisation (cooperativ-
ity), in such a way that the individual response is correlated to
the state of the whole population. This scale-wide correlation is
a signature of criticality (Kadanoff, 2000).
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1.4.2 Stability when ρ ≥ 0, θ < 0

If θ < 0, and maintaining ρ > 0 the properties of the system
change. In this regime (quadrant II in fig. 1.1), P1 has one
negative and one positive eigenvalue (Eq. 1.12) , meaning that it
is a saddle. The invariant manifold xinv still retains it attracting
stability for the x coordinate (Fig. 1.3).

If the initial conditions r(x0) > −ρ/γ, then the orbits corre-
spond to a saturated growth and intersect xinv at the carrying
capacity.

It can be shown (see “Discussion”) that ontogenetic growth
laws, like van Bertalanffy’s equation (von Bertalanffy, 1957), or
the model by West et al. (2001), are included in this regime of
parameters.

If the initial conditions are r(x0) < −ρ/γ, the rate decreases
r → −∞ asymptotically (fig. 1.3) and the convergence to x → 0
is in a finite time tc given by

te =
1
ρ

log
(

r(x0)
r(x0)− ρ

θ

)
.

This extinction happens because the regulation decreases hy-
perbolically in time to an asymptote at te.

Returning to the phase diagram, from this point in the sec-
ond quadrant (fig. 1.1), decrease ρ to zero while maintaining
θ < 0. The transition to ρ = 0 is continuous (or a second order
transition). The stable varieties xinv and r1 collapse onto each
other.

Because at this point λx(1) = λr(1) = 0, we cannot infer about
the dynamical properties of the nullcline at r = 0. However, with
a perturbation on each side of the fixed point, it is possible to
determine the stability.

If ∆r is the perturbation (a trajectory slightly displaced from
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Figure 1.3: In this regime, corresponding to quadrant II in figure 1.1 with
ρ > 0 and θ < 0 two types of growth are possible. The initial conditions above
the separatrix at r = ρ/θ(< 0) reproduce sigmoid growth curves which converge
to a carrying capacity that corresponds to the intersection of the orbits at r =

0. If the initial conditions are below the separatrix, then the interactions are
anergistic and the population decreases hyperbolically , and become extincted
in a finite time.

zero), the rate equation for the point at ρ = 0 and θ < 0 is

∆̇r = −|θ|∆r2 ,

thus the system always responds diminishing the rate. Because
rates can be negative (decreasing) the result is different if ∆r > 0
or if it is ∆r < 0. Consider the solution to the perturbation to the
rate equation (note that there is no “first order” approximation
in the rate equation):

r(t) =
∆r

1 + ∆r|θ|t
.

If the perturbation is positive, the rate will be damped to
zero asymptotically. This means that the population will grow
potentially. If the perturbation is negative, the rate will decrease
to −∞, in a finite time given by te = (∆R|θ|)−1.
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Thus the stable variety repels the orbits on its left (initial
conditions r(x0) < 0, and asymptotically attracts the orbits on
its right (initial conditions r(x0) > 0).

Potential growth has been one of the corner stones of allome-
try (Peters, 1983; Calder, 1984), where pre-repro-
ductive growth is assumed to potential (Roff, 1986; Day and
Taylor, 1997, and references therein). Also, certain types of tu-
mours have been inferred to grow potentially (Hart et al., 1998).

This kind of growth law has been sub-clasified into parabolic
growth (if |θ| < 1) and hyperbolic growth (|θ| > 1). These situ-
ations describe different phenomena. The former models very
well the dynamics of prebiotic replicators, as DNA self-replicators
and quasi-species (Szathmáry and Demeter, 1987a; Szathmary,
1991; Scheuring and Szathmary, 2001). The hyperbolic case,
well models the need of several (more than one) individuals in
order to produce offspring. Such is the case of sexual reproduc-
tion, and also of hypercicles (Eigen and Schuster, 1979; Szath-
mary and Gladkih, 1989; Szathmary, 1991)

1.4.3 Stability when ρ, θ ≤ 0

In the phase space at the third quadrant, still maintaining θ < 0
and now making ρ < 0, implies that r1 is again positive. In
this regime r1 is a saddle point. It attracts trajectories from
both sides in the r coordinate, but at the same time, repels the
trajectories to x→∞.

The stable variety xinv is a separatrix, which repels the orbits
on its neighbourhoods. Figure 1.4 shows several trajectories for
this regime.

Proceeding in direction to the fourth quadrant, maintaining
ρ < 0 and decreasing θ → 0, once again a first order (discon-
tinuous) transition is found, where r1 → ∞. xinv still repels
the trajectories from each side. This dynamic corresponds to
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Figure 1.4: An invasion-extinction regime, corresponding to quadrant III of Fig.
1.1, where ρ, θ < 0. This regime represents dynamics that show threshold be-
haviour. If r(0) > 0 the population can invade asymptotically-exponential with
rate ρ/θ. If initial conditions are not appropriate, i.e. r(0) < 0 the population
may go extinct in finite time with the rate decreasing hyperbolically .

a functional form similar to Gompertzian growth, but with a
negative rate.

1.4.4 Stability when ρ < 0, θ > 0

This last regime is characterised by being the only one having
the point r1 stable (fig 1.5). For those initial conditions such
that r(0) < 0 (i.e. negative rates), the population decrease to
zero sigmoidally.

If the initial conditions are r(0) > 0, then the population
increases hyperbolically to x→∞.

The last two regimes are difficult to identify in real life data
from their qualitative behaviours. They both comprise two dif-
ferent types of invasion and extinction dynamics, which may
have different consequences in ecological contexts. The regime
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Figure 1.5: An invasion-extinction regime corresponding to quadrant IV in Fig.
1.1 with ρ < 0, θ > 0. This regime is of threshold type. Invasion occurs in
a synergistic way when r(0) > 0, although when the conditions are met for
extinction, i.e. r(0) < 0 the population vanishes decreasing exponentially.

in quadrant III of Fig. 1.1 include invasions that are asymp-
totically exponential, but in quadrant IV, invasions are faster
than exponential. The extinctions for quadrant III are in finite
time, since they accelerate violently, while the extinctions in
quadrant IV are slower, decreasing exponentially.

1.5 SCALING LAWS

Because the rate equation is not coupled to the growth equation
(Eqns. 2.1), it is possible to find a general form for the solution
to the rate equation (1.7b). It is convenient to replace r → θr,
which gives

ẋ =
1
θ
rx , (1.13a)

ṙ = r(r − ρ) . (1.13b)

41



1. GENERALIZED PER CAPITA GROWTH RATES

Denoting the solution for the rate equation as R(t), then the
solution for the growth equation then becomes

x(t) := x(0) exp
(

1
θ

∫ t

0

R(s)ds
)
, (1.14)

where x(0) is the initial condition for x(t). Rearranging this
system, we get (

x(t)
x(0)

)θ
= exp

(∫ t

0

R(s)ds
)
. (1.15)

The right-hand side of the last equation is independent of
θ. Thus populations described by the system (2.1) are always
scalable to their initial sizes, and interaction exponent θ.

Further rescaling is possible for the right-hand side. The
solution to the rate equation can be written in the form

R(t) := ρ

[
1 + eρt

(
r(0)
ρ
− 1
)]−1

, (1.16)

and changing the time variable as

T → ρt− log
(
r(0)
ρ
− 1
)
, (1.17)

and also changing properly the differential in the integral in
equation (1.14) to dT ′ = ρdt, then the result of the integral is, in
scales of T (

x(t)
x(0)

)θ
=

1 + eT0

1 + eT
. (1.18)

The variable T depends on the initial condition r(0) whose
meaning is not so obvious.

Suppose that the population achieves a carrying capacity
x∞:

x∞ = α−1/θ , (1.19)
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using the explicit form of r(t) given by equation (1.5), it results
that the term in the rescaled time:

r(0)
ρ
− 1 =

(
x(0)
x∞

)−θ
− 1 . (1.20)

Using the last result in the transformation (1.17) and rear-
ranging terms:(

x(t)
x∞

)−θ
= 1−

((
x(0)
x∞

)−θ
− 1

)
e−ρt . (1.21)

To conclude, define the new scaled variables as:
χ =

(
x(t)
x∞

)−θ
τ = ρt− log

(
1−

(
x(0)
x∞

)−θ) , (1.22)

with which the general scaling law obeys

χ = 1− e−τ . (1.23)

Scaling at the bifurcation points
For the critical points, the scaling law above does not directly
hold. As it will be shown at the end of this section, there is
a clear relation between the scaling law (1.27) and the scaling
laws at the critical points. However, it is first necessary to derive
the scaling laws for Gompertzian and Potential growths from
the solution of their growth rates.
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Potential Growth

The solution for the growth dynamics for the potential growth is
given also by equation (1.14). Consider then, that the solution
to the rate equation is

R(t) := r(0) (1− r(0)t)−1
. (1.24)

In this case, the initial condition r(0) is not expressed in
terms of a carrying capacity x∞, but only on the integration
constant α. Upon integration and rearranging of terms, the
following form is found:(

x(t)
x∞

)−θ
= 1− αt . (1.25)

The scaled variables can then be defined as χ =
(
x(t)
x∞

)−θ
τ = αt

, (1.26)

with which the general scaling law obeys

χ = 1− τ , (1.27)

that is simply a decreasing line.

Gompertzian Growth

Consider now the solution to the size equation for the Gom-
pertzian Growth

x(t) = x(0) exp
∫ t

0

R(t′)dt′ . (1.28)

The main difference between equation (1.14) and the last equa-
tion is that the former can be scaled with the exponent θ, which
for the Gompertzian Growth case is zero.
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Consider then the solution R(t) to the rate equation:

R(t) := r(0)e−ρt . (1.29)

Thus the general solution for Gompertzian Growth is

x(t) = x(0) exp
[
log
(
x(0)
x∞

)(
e−ρt − 1

)]
, (1.30)

where the initial condition r(0)is expressed as:

r(0) = −ρ log
x(0)
x∞

. (1.31)

Equation (1.30) can be rearranged to give

log
x(t)
x∞

= exp−ρt+ log log
x(0)
x∞

. (1.32)

Thus, defining the dimensionless variables:{
χ = log x(t)

x∞

τ = log log x(0)
x∞

, (1.33)

then the scaled dynamics results as

χ = e−τ , (1.34)

that is a decreasing exponential.
Although the complete scaling behaviour is completely de-

fined for all the dynamics in the phase space, there is still an
interesting question to be asked: Is it possible to derive the scal-
ing behaviour for the critical points from the “general” scaling
form (1.27) and its non-dimensional variables?

Direct evaluation of ρ = 0 or θ = 0 does not give the scaling
laws for Gompertzian or Potential Growth. However, Taylor ex-
pansion on the parameters ρ and θ to the linear term around the

45



1. GENERALIZED PER CAPITA GROWTH RATES

critical values, do give the scaling laws. Note that in order to
give a precise meaning to the transformations (1.22), the initial
condition for the rate equation was transformed to its explicit
form. It is necessary, however, to make this transformation
after the limits are taken in the scaled variables (1.22).

1.6 DISCUSSION

The simple model derived in this paper is rich in qualitative so-
lutions since it resumes several growth rates that often appear
in the literature, which include several levels of biological or-
ganisation. Several examples were alluded to in the text. These
examples range from the origins of life, cellular populations of
procariots, cellular populations in eucariots, in ontogeny and
cancer, to population biology of mammals and birds, to commu-
nity ecology. It is a nice result that all of these kinds of growth
can be described by such simple equations that resumes the
main features of populations, in the traditional sense of show-
ing density dependence, and in the distinct interpretations in-
troduced in this paper.

The θ-logistic equation has become a paradigm in ecology.
Modelling populations with it has been an important tool to
confront actual problems about density-dependent ecology. The
transformation introduced in this paper gives a good insight
into the meaning of the quantities appearing in the equations,
namely ρ, θ, and α (either in its interpretations as carrying ca-
pacity or not).

Population growth, as proposed in Eqns. (2.1), represents
carrying capacity as an initial condition for the rate equation.
However, the regulation mechanism is independent of α, mean-
ing that it is dynamically independent of the environmental con-
ditions, and therefore making it a mechanism that is completely
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intrinsic of a population. The actual size of the population is
then result of both, the environment -determining the initial
conditions-, and the growth rate -intrinsic mechanism-. This is
a new result in the sense that previous formulations included
the carrying capacity as a predefined constant, which was of
course assumed to be environment-dependent, but which was
not totally separated from the dynamics of the population as
(MacArthur, 1962) pointed.

This property of the populations –to have a size-independent
regulatory mechanism– can give new insights to evolutionary
biology, because it makes population models adaptive, while
the mechanism for regulation remains robust against environ-
mental changes.

1.6.1 Extinctions and Invasions
Suppose that a population is in (or fluctuating around) a fixed
point of xinv. Environmental changes, are know to “unbalance”
some populations. An environmental change can be traduced
in translating the dynamics, formerly in a fixed point, to a lower
(or higher) value of r, but maintaining the same value for x. As
a consequence, the dynamic is placed in another orbit out of
equilibrium, and the response is to decrease (or increase) pop-
ulation size to a lower (or higher) carrying capacity. However,
if the perturbation is strong enough, then the orbit where the
dynamics is placed could be part of a basin of attractions that
does not include the stable population size, and which leads
either to extinction or invasion.

As an example, consider global warming. This has become
an important issue in the last years. There is the open ques-
tion about how temperature increments may affect populations.
With the results of this paper, it is possible to evaluate the con-
sequences of temperature increase on a population.
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Brown et al. (2004) proposed a theory in which the carrying
capacity of a population is temperature-dependent through a
Boltzmann factor. This dependence can be expressed as K =
K0 exp(E/kT ), where K0 is a parameter depending on mass, re-
sources, etc., E is the energy of the limiting metabolic reaction,
k is Boltzmann’s constant, and T the absolute temperature.

Consider a population that is in its carrying capacity at a
temperature T0. Then x∗ = K0 exp(E/kT0), and the rate at equi-
librium is r∗ = 0. If suddenly the temperature increases to T1,
the rate will change to

r =
ρ

θ

[
1− exp

(
θE

kT0T1
(T1 − T0)

)]
< 0 .

This means that the population is taken out from equilibrium.
Its response is to relax to a new (smaller) carrying capacity.
However, from this equation it is straightforward that temper-
ature alone, cannot induce a change such that the population
goes to extinction. This is because to induce an extinction,
the exponential term would have to change sign, thus to have
new initial conditions in a basing of attraction decreasing to
(x, r)→ (0,−∞), which is not possible for any temperature.

Similar examples exist with laboratory cultures of proto-
zoans, fungi, and procariots which are limited by available nu-
trients. These are examples of external factors that determine
the values of α.

It is always possible however, to consider such changes that
although they theoretically do not imply extinctions, numeri-
cally are so small that in real life populations could disappear.

The saturated dynamics, comprised in quadrants I and II of
Fig. 1.1, have other co-existing behaviours. In the case of quad-
rant I, there is the possibility of invasion (Fig. 1.2). To make
this possible, it is necessary that external perturbations induce
cooperativity among individuals, rather than competition for re-
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sources, and would be indicated by α < 0.

On the other hand, to induce an extinction in quadrant II,
it is necessary that individuals become aggressive and any in-
teraction results in mutual annihilation (Fig. 1.3), indicated by
α > 0.

The conditions for these situations (i.e. in which basin of
attraction are the initial conditions) have a similar interpreta-
tion to Hamilton’s rule for kin selection (Hamilton, 1963, 1964).
Hamilton’s rule points out that if the cost of an altruistic be-
haviour is such that it benefits a genetically related individual,
then the strategy can be selected. In this way, a population
consisting of cooperative individuals can spread faster than ex-
pected by exponential models (Fig. 1.2). However, Hamilton’s
rule has another “solution”. This is that aggressive behaviours
can also be selected, provided that damage is induced to “neg-
atively related” (i.e. unrelated) individuals.

Recently, Gardner and West (2004) reported an example of
this aggressive behaviours in wasps. It would not be surprising
if local populations self-annihilate under certain demographic
conditions.

Another example, mentioned in the text above, is the ex-
tinction of sparrows (Saether et al., 2000). In order to have
the risk of finite-time extinctions from previously stable popu-
lations, it is necessary that (a) the population dynamics belongs
to quadrant II of Fig. 1.1, and (b) there is a perturbation such
as mentioned above. The estimated mean value for the pop-
ulation of sparrows is θ̂ ' 1, indicating that the population is
logistic. However, the estimated distribution allows a small but
not negligible probability for −1.5 < θ < 0. If this is the case,
then a real risk of finite time extinction exists.
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1.6.2 Life histories
In life history theory, the central problem is the allocation of
resources for adaptive strategies. Survival and reproduction in
distinct stages are the determinants of the growth function (Day
and Taylor, 1997; Stearns, 2004).

Resource allocation in non-reproductive stages of life, i.e.
before maturity, are greatly devoted to growth. However, how
much energy is allocated depends on the size of the body. This
dependence is typically described by a potential growth func-
tion, where the exponent θ is indicative of some length scale
of the physiological processes allocating the energy devoted to
growth (Calder, 1984; Stearns, 2004).

According to the rate equation, initial stages in growth have
to be dominated by the term θr2. In order to allow this term to
be dominant at low densities, the exponent has to fulfil θ < 0.
Actually, this condition is met in in the von Bertalanffy (1957)
and West et al. (2001) equations, and well as in most allometric
growth relationships (Calder, 1984).

However, when reproduction becomes a priority in the life
history, the energy income has to be partitioned according to a
survival-reproduction compromise. In this case, that is when
the term ρr is not negligible, individuals are distributing the
energy between reproduction and survival.
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1.6.3 Allometry and scaling
Other important results are the scaling laws derived in section
1.5. These general formulas show that scaling is not a particu-
larly eccentric result. It is rather a rule than an exception that
growth can be scaled. This of course does not invalidate the
underlying theories of resource allocation, at any level, bioen-
ergetic, or ecological. However it rather gives an broader view to
the open discussion of whether the West et al. (2001) equation is
legitimate or not (Kozlowski and Konarzewski, 2004). In terms
of these formulations, although numerically different, West’s
equations and its classical competitor, van Bertalanffy’s equa-
tion, have the same qualitative behaviour.

The model (2.1) reproduces the famous von Bertalanffy (1966)
equation. This equation can be written in the following form:

ẋ = ax2/3 − bx . (1.35)

It is possible to rearrange this equation, to express it as the
system (2.1), for which the parameters are then:

ρ = b
3 , θ = − 1

3 . (1.36)

The exponent −1/3 follows from the hypothesis that mass is
proportional to the third power of length, and the parameter b is
related to individual reproduction. The parameter a is related to
the carrying capacity of the population, thus it does not appear
in the transformations.

Another example in this regime is West’s ontogenetic growth
equation (West et al., 2001), given by

ẋ = am1/4

[
1−

(
x

x∞

)1/4
]
, (1.37)

The parameters for the rate equation are then:

ρ = a

4x
1/4
∞

, θ = − 1
4 . (1.38)
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The exponent −1/4 derived from fractal patterns of fluid trans-
port systems like circulatory system or plant vascularisation
(West et al., 1997; Brown et al., 2004) and is also supported
by empirical data (West et al., 2001). The parameter ρ in this
case depends explicitly on the carrying capacity x∞. This sug-
gests that in ontogenetic growth, these two quantities could be
correlated.

If this is the case, then there would be further important im-
plications for allometry, because it would imply that the macro-
scopic growth i.e. the cell population, is “transmitting” infor-
mation to the microlevel, i.e. single-cell dynamics. and thus it
could imply existence of self-organisation. This however should
be verified from experimental data, and theoretical models.

Both cases, von Bertalanffy and West equations, are used
to model ontogeny. Although they are derived with distinct as-
sumptions, under proper scaling, they follow exactly the same
law (Eq. 1.27).

1.6.4 Cancer and Diseases
Cancer research is a particular subject in which mathematical
models are applied (Wheldon, 1988). The growth of tumours
have been very well studied directly in vitro and in experimental
frameworks. Solid tumours grow according to a Gompertzian
Law, as it was shown by Norton et al. (1976). This determinis-
tic description of growth has been of great impact in medicine,
and has even lead to important conclusions about treatment
scheduling.

The Gompertzian law is a sigmoid curve that grows toward
a carrying capacity. In the rate-based scheme the orbits are
attracted to the invariant set xinv for any initial condition. Thus
the dynamic of solid tumours comprises only growth towards
carrying capacity, since all the resources in a tumour are de-
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voted to reproduction, as indicated by θ = 0. However, the rate
equation admits another Gompertzian solution for ρ < 0. In this
case, there is regression of the tumour size for initial conditions
r(0) < 0. This condition is fulfilled if a strong enough therapy is
applied (González et al., 2003; de Vladar and Gonzalez, 2004).
The analysis of the Gompertzian model by Molski and Konarski
(2003) supports this regression solution.

1.7 CONCLUDING REMARKS

There are, of course, more examples for each of the growth
types described in this paper. However, more interesting is
that there are regimes that have not been reported. This is
not surprising, because they conform distinct types of indeter-
minate growth, which usually is assumed to be “exponential”.
However, these distinct types of explosions, can have important
consequences in disciplines like biotechnology, where a strict
control of growth is necessary. If by some reason, a population
is wrongly manipulated, such that it spreads “indeterminately”
then the distinct types of growths should be managed distinctly.

However, in the opinion of the author, the most important
result is that the rate equation is explicitly independent of the
population size. The results presented in this paper, are derived
from a simple mathematical transformation, which surprisingly
result in a very broad class of regulatory mechanism. Although
this is a result that may apply only to the simple systems in-
cluded in this work, it is puzzling why and how the regulatory
mechanisms act.

Actually, the two terms of the rate equation (1.7b), from a
more abstract perspective, correspond to two processes that
constitute regulation: reproduction, which comes from an in-
dividual level, and sensibility to population interaction.
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Depending on the context, the sensitivity to the population
can be of synergistic or anergistic nature. Actually, the two
regulation processes, could be thought of as fragmentation and
condensation reactions (Fontana and Buss, 1994; Szathmary,
1995):

x
ρ−→ 2x (reproduction)

Nx −→ Mx (population sensibility)
(1.39)

If M > N then the population experiences synergy in growth
(i.e. population interaction promotes growth). If M < N then
the population experiences anergy in growth (i.e. population
interactions avoids growth).

The term −ρr in the rate equation indicates that the popu-
lation is growing or “relaxing” to a fixed point. Since ρ is the
inverse of the relaxation time for the rate, then the bigger ρ is
the smaller the time to let the mechanism to relax, and thus
the fastest to reach limiting population size at P1.

The second term of the rate equation relates to the interac-
tion between individuals in the population. The square in the
term means that the rate is auto-catalysed. Thus the param-
eter θ indicates the level of this auto-catalysis. This term can
be compared to a “potential” indicating some kind of resource
potentiating (either synergistically or anergistically) from the in-
teraction. The kind of interaction, is given by the sign of θ and
by the environmental conditions, i.e. by α.

The relationship between ρ and θ determining the distinct
types of growth rates, gives distinct types of behaviours for dis-
tinct initial conditions. The auto-catalysed reaction can result
or cooperative, competitive, or aggressive strategies. These are
strategies that can be sought directly from the rate equation.
If a population is behaving cooperatively, then it means that
the rate begins over a threshold such that it grows unlimited,
because there is a benefit improving growth resulting from the
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interaction. In this case, the resources have to be unlimited, so
cooperativity improves resource allocation for reproduction. In
the case of competition, usually the scenario is that where a re-
sources are limited, and there must be an equilibrium between
reproduction and survival. But if the population presents ag-
gressive behaviours, then the initial rate of the population is
below the threshold where it goes extinct in finite time or expo-
nentially.

The exponential growth is a particular case in which no reg-
ulation mechanism (thus interactions) is present in the popu-
lation. Increase is based only in individual reproduction, and
the per capita response is totally independent of the state of the
system.

The distinct qualitative solutions (regimes) for population
growth have an important underlying symmetry. The regres-
sion equation for a population shrinking is in general obtained
by inverting the time arrow. In other words, changing t → −t′
is equivalent to write the equations at which he population
shrinks. However, time-inverting the rate equation does not
produce the desired result. In order to obtain the regression dy-
namics from the size-rate decomposition, besides inverting the
time arrow, it is necessary to invert the rate variable r → −r′.
Thus a time reversed equation results in the transformed sys-
tem

ẋ = xr′ , (1.40a)

ṙ′ = (θr′ + ρ)r′ , (1.40b)

where it becomes obvious that, in order to obtain a time-re-
gressed equation, we simply need to change the sign of the
Malthusian parameter ρ. This same result is obtained changing
the sign of ρ in any of the population dynamics equations where
density dependence appears explicitly as a function of size x.
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This transformation for population shrinking, can be regarded
as a reflexion of the parameter space (Fig. 1.1) with respect to
the θ-axis. Thus, although most of the relevant population dy-
namics are in quadrants I and II in fig 1.1, their corresponding
regression dynamics are in quadrants III and IV.

The decomposition presented in this work, is a change in
the paradigm of population dynamics. The equations (2.1) are
very general, but still simplistic because there are many biolog-
ical aspects left aside. Take for example the Allee effect (Allee,
1931). This density dependent growth mechanism, is not repre-
sented in the rate equation in the form presented in here. Actu-
ally, including Allee effect in population growth, leads to a poly-
nomial equation for the rate equation (1.7b) that is in general of
higher order than 2. There is however no general law that can
be derived. It remains to investigate based on life history theory
for which kind of resource allocation the density-independent
rate equations can be derived. This is a work currently under
development that is expected to help to drive conclusions about
other biologically relevant aspects not included in this work.
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Chapter 2

Determinism, Noise, and
Spurious Estimations in a
Generalized Model of
Population Growth

Let us therefore agree that
the idea of eternal return
implies a perspective from
which things appear other
than as we know them:
they appear without the
mitigating circumstance of
their transitory nature

Milan Kundera
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Abstract

In this chapter we study a generalised model of population
growth in which the state variable is population growth rate
instead of population size. Stochastic parametric perturba-
tions, modelling phenotypic variability, lead to a Langevin
system with two sources of multiplicative noise. The sta-
tionary probability distributions have two characteristic
power-law scales. Numerical simulations show that noise
suppresses the explosion of the growth rate which occurs
in the deterministic counterpart. Instead, in different pa-
rameter regimes populations will grow with “anomalous”
stochastic rates and (i) stabilise at “random carrying capac-
ities”, or (ii) go extinct in random times. Using logistic fits
to reconstruct the simulated data, we find that even highly
significant estimations do not recover information about
the deterministic part of the process. These results have
implications for distinct model-aided calculations in bio-
logical situations because these kinds of estimations could
lead to spurious conclusions.
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2.1 INTRODUCTION

Population dynamics are frequently modelled with simple
equations that mimic some aspects of replicating biological

entities, such as division (in cells), fission (in modular organ-
isms) or reproduction (in eukaryotes), competition, and popu-
lation size limiting (saturation). These and other properties are
represented by various models. Frequently the validity of these
models is a matter of statistical goodness of fit with a specific
data set. However, these biological properties are not entirely of
intrinsic nature to the individuals, or to the populations them-
selves, but rather emerging ecological properties, i.e. the inter-
action between “individuals” and “environment”. The models of
population growth simplify (whenever it is possible) the poten-
tial complexity of a detailed ecological description into simple
equations.

Recently we showed that a variety of biological growth mod-
els can be unified using a phase-space decomposition using
two dynamical variables, population size x and growth rate r

(de Vladar, 2006) (analogous to a particle’ s position and mo-
mentum, respectively):

ẋ = xr , (2.1a)

ṙ = r(θr − ρ). (2.1b)

The constant ρ is the Malthusian parameter, and θ is the
intraspecific interaction coefficient. By varying these two pa-
rameters it is possible to reproduce exactly a wide family of
growth laws including exponentials, logistics (Ayala et al., 1973;
Sibly et al., 2005), Gompertzian (Kozusko and Bajzer, 2003),
Potential (Roff, 1986; Szathmáry and Demeter, 1987a), as well
as allometric growth laws like Von Bertalanffy’s (von Berta-
lanffy, 1966; Roff, 1986) and West’s (West et al., 2001) equa-
tions, among others (de Vladar, 2006).
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Although the deterministic behaviours can be associated with
distinct biological scenarios (de Vladar, 2006), populations are
often influenced by some source of noise. Biologically, random
“forces” are often related to environmental and demographic
fluctuations, as well as to intrinsic complex factor like genetic
architecture, mating system, recombination, mutation, segre-
gation, etc. These environmental and genetic factors (and their
interaction) can be thought to be the determinants of the pa-
rameters that describe the growth of a population. This conjec-
ture means that they are (complicated) measures of phenotypic
expression. Thus to a first approximation we can model the
effect of phenotypic variation as noise over these parameters.

We can consider two sources of noise ηρ (t) and ηθ (t) affecting
respectively the parameters θ and ρ. The rate equation (2.1b)
linearly perturbed with ρ→ ρ+ ηρ (t) and θ → θ + ηθ (t) results in

ṙ = r(θr − ρ) + r2ηθ (t) + rηρ (t) , (2.2)

where the ηi (t) have the usual properties of white noise:

〈ηi (t)〉 = 0, 〈ηi (t)ηi (s)〉 = δ(t− s)ε2i
〈ηθ (t)ηρ (t)〉 = γ

with 〈. . .〉 denoting expectations, and i = ρ, θ.

Figure 2.1: (Right) Potential solutions for the stationary diffussion equation.
(A) When 0 < θ2

0/8 < ε20(ρ0 + 1), the distribution shows an exit barrier at r = 0;
in this example ρ = 2, ε0 = 1, θ = 2. (B) When 0 < ε20(ρ0 +1) ≤ θ2

0/8, besides the
exit barrier, the distribution also shows an analytic maximum; in this example
ρ = 2, ε0 = 1, θ = 6. The abscise is in scaled by 104 are in (C) When ε20(ρ0 + 1) <

0 ≤ θ2
0/8, the exit barrier disappears, and the distribution is unimodal with

an analytic maximum; the parameters are ρ = −2, ε0 = 1, θ = 2. The insets
plot the distributions in log-log scale, showing that there are two characteristic
scales. The left tail scales with an exponent of −2(1 + ρ0) whereas the right tail
scales with an exponent of −4. The inflection points are close to the maximum.
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Here, εi are the intensities of the noise sources, γ is the cor-
relation between the two noise sources, and δ(t) is Dirac’s delta
function.

The resulting system is a stochastic differential equation
(SDE) where ρ is the drift term and θr2 can be thought as
the force of an external field, in the mathematical/physical
terminology (Gardiner, 2004, notice that what in biology we
define drift as the random component, whereas mathemati-
cians and physicists refer with this word to the determinis-
tic component). Multiplicative noise, often represents fluctu-
ating barriers or processes of anomalous diffusion (i.e. diffu-
sion where the probability of long steps is higher then in the
normal case) (Fleming and Hänggi, 1993; Hänggi, 1994; Kani-
adakis and Lapenta, 2000; Fa, 2003; Biró and Jakovác, 2005).
Also, multiplicative noise is a process that retains memory (i.e.
is non-Markovian), and has been investigated in the context of
population growth and extinctions (Halley and Kunin, 1999; Ai
et al., 2003; Wichmann et al., 2005).

Equation 2.2) remains uncoupled from the size x. This gives
an operational advantage since the analyses of the SDE can be
made in terms of r as a 1-dimensional system that is relatively
simple to handle.

2.2 DISTRIBUTION OF THE GROWTH RATES

To study the effects of multiplicative noise, and make precise
the meaning of “anomalous growth” in populations (in analogy
to anomalous diffusion), first consider the probability distribu-
tion for the rates. In the Itô interpretation of noise the proba-
bility is given by the related diffussion equation (DE, know also
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as Fokker-Plank equation):

∂tP(r,t) =− ∂r
[
r(θr − ρ)P(r,t)

]
(2.3)

+
1
2
∂rr
[
(ε2ρ − 2ερεθγr + ε2θr

2)r2P(r,t)

]
.

Setting the time derivative equal to zero makes it possible to cal-
culate the potential solution of the DE on the stationary regime
P (r) (i.e. equilibrium solution), which gives

P (r) := N
(
r−2
)ρ0+1 (

ε20 − ε0γr + r2
)ρ0−1×

× exp
[
2(εcθ0 − γcρ0) tan−1 (εcr − γc)

]
,

(2.4)

where N is the integration constant, and

ρ0 = ρ/ε2ρ , θ0 = θ/ε2θ , ε0 = ερ/εθ ,

εc = ε−1
0 (1− γ2)−1/2 , γc = γ(1− γ2)−1/2.

Fig. 2.1 shows that there are three distinct kinds of station-
ary distributions for the rates. The first thing that we note, is
that the correlation γ modulates the transition from one distri-
bution to another. Thus, for simplicity for the further analyses
we proceed setting γ = 0.

The first distribution (Fig. 2.1A) is monotonous decreasing,
and the other two (Figs. 2.1B-C) have an analytic maximum at

r∗ =
θ0

4
+

√(
θ0

4

)2

− ε20(ρ0 + 1) .

The condition for having an analytic maximum is

θ2
0

8
≥ ε20(ρ0 + 1) . (2.5)

Fig. 2.2 outlines the regions where the inequality (2.5) holds.
The parabolic curve (i.e. the boundary given by the equality in
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Eq. 2.5) divides the parameter space into three regions with dif-
ferent stationary regimes. The first, when 0 < θ2

0/8 < ε20(ρ0 + 1),
corresponds to the space under the parabola (Fig. 2.2); in this
case the probability density is accumulated at r = 0. The sec-
ond region, characterised by 0 < ε20(ρ0 + 1) ≤ θ2

0/8, corresponds
to the space over or under the parabola region (Fig. 2.2). The
third region, defined by ε20(ρ0 + 1) < 0 ≤ θ2

0/8, is the space on
the left of the parabola. In the two last regions, the probability
mass of rates is distributed along the axis, indicating that the
growth rate can be persistent (i.e. non-zero). In the following of
the paper, we will show that each of these regions have distinct
qualitative solutions in which the deterministic nature of the
process is “forgotten”, but the resulting dynamics of the pop-
ulation size look like exponential or logistic dynamics. We will
demonstrate however, that these two forms are entirely product
of noise, hence fitting these models to the realizations -although
statistically significant- are spurious.

For particular cases of Eq. (2.2) the stationary distribution
has been calculated before. When θ and its noise ηθ term are
absent, the equation recovers the geometric Brownian motion
(Oksendal, 2002), whose stationary distributions were shown
to have power-law tails (Biró and Jakovác, 2005). In this rep-
resentation, the growth corresponds to a Gompertzian growth.
A power-law-tailed distribution is also found for the stationary
distribution of an equation where ρ 6= 0 but which is not per-
turbed (Góra, 2005). Also, a logistic case θ = 1 was analysed by
Morita and Makino (1986) using perturbation techniques for a
time dependent solution. In log-log scale the distribution (2.4)
is kinked near rc = ε0 exp (πθ0/2ε0(1− ρ0)), with a right-tail de-
creasing in a power law fashion logP (r) ∼ −4 log r (insets in Fig.
2.1). This is a result that can be derived directly from the par-
ticular case studied by Góra (2005), because the right tail of
the distribution is independent of the parameters. Moreover,
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2.2. DISTRIBUTION OF THE GROWTH RATES

Figure 2.2: The parameter space (ρ, θ) consists of four quadrants, correspond-
ing to their sign combinations. The dotted lines indicate distinct determinis-
tic growth functions known in the literature: Potential (P) ρ = 0; logistic (L)
ρ > 0, θ = 1; Gompertzian (G) ρ > 0, θ = 0; West (W) ρ > 0, θ = −1/4; von
Bertalanffy (VB) ρ > 0, θ = −1/3; Exponential (E) ρ = 0, θ = 0. The solid curve
represents the noise-transition points between the three distinct regimes of the
distributions of the rate: (a) inside the parabolic region 0 < θ2

0/8 < ε20(ρ0 + 1);
(b) above or below the parabolic region 0 < ε20(ρ0 + 1) ≤ θ2

0/8; and (c) at the left
of the parabolic region ε20(ρ0 + 1) < 0 ≤ θ2

0/8.

there is also a power law behaviour for small values of r which
is given by logP (r) ∼ −2(ρ0 + 1) log r. These power law tails
lead to Tsallis statistics (Anteneodo and Tsallis, 2003; Biró and
Jakovác, 2005). Some relationships between exponents have
been derived for a system related (but not equivalent) to ours
(Genovese and noz, 1999).

65



2. STOCHASTIC PER CAPITA GROWTH RATES

2.3 DENSITY REGULATION BY NOISE

The fast decrease of the right tail has an important conse-
quence, which is the boundedness of the process. In other
words, it means that the fluctuations remain finite. The sim-
ulations of Fig. 2.3A show that when the probability density
is accumulated at r = 0 the rates will stochastically reach zero
and stay there forever. Whenever this happens, the population
freezes at its -random- current size.

Sibly et al. (2005) performed an analysis where they fitted
more than a thousand population time series to the θ-logistic
model. Their analysis was based on the size-dependent per
capita growth rate r(x). The examples they presented, show
comparable patterns to the realizations obtained from our mo-
del (Fig. 2.3A). However, as we can see in this figure, the
stochastic trajectories are notcentredd on the deterministic tra-
jectories, as it is common for multiplicative perturbations. There-
fore, the interpretation of the estimations in Ref. (Sibly et al.,
2005) differ from the deterministic path, at least in the light of
our model. We will return to this discussion later .

Other simulations, using a processes having stationary dis-
tribution with maxima, are shown in figure 2.3B-C. In this
cases the rate does not explode in the time-window, even when
these realizations (the deterministic and the stochastic) have
the same initial conditions which would lead to explosions in
the absence of perturbations.

Figure 2.3: (Opposite page) Realizations of noisy rate dynamics. The dotted
lines show deterministic solutions, while the continuous bold lines show the
stochastic realizations. It can be seen that when the deterministic rates de-
crease to zero, the stochastic dynamics will also decrease to zero. Also, when
deterministic rates explode the stochastic dynamics remain finite. These re-
alizations correspond respectivelyy to the regimes and parameters of Fig. 2.1
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Recently, Mao et al. (2002) demonstrated that the determin-
istic explosions of “positive” logistic equations (e.g. of the form
ẋ = ax(1 + bx)) can be controlled with certain types of multi-
plicative noise sources. When these fluctuations are present,
populations will not diverge in finite time, although their purely
deterministic analogue does.

The rate-representation introduced in this paper is also of
quadratic form, thus the results of Mao et al. (2002) apply to Eq.
(2.2). However, the biological interpretations change, because
explosions are suppressed in the rate rather than in population
size.

As indicated by the distribution of the rates, probability is
accumulated near the maximum, thus the rates will be non-
vanishing, jumping from very slow to high (but finite) values,
making the size of the population increase in bursts, recon-
structing a devil’s staircase pattern (a staircase where all the
steps are of different size and height). Also, because the rate
never reaches zero, the population grows unlimited.

The same distributions of Fig. 2.1 appear for negative rates.
The course of the population is the opposite, i.e. decreasing, al-
though the distribution is the same (in absolute value): (i)if the
distributions have an analytic maximum, the rates will remain
finite and fluctuating, meaning that population will decrease
erratically but monotonously and therefore populations will be-
come extinct in random times; (ii) if the distributions do not
have an analytic maximum, then r reaches zero stochastically
(Fig. 2.3A), and then the populations will stabilise, again at a
“random carrying capacity”.

The distribution (2.4) is not normalisable whenever ρ0+1 > 0,
because it diverges when r → 0. This means that r = 0 is an
exit barrier, and hence once the rate reaches zero it will stay
there. This limit is the same if taken from the left, thus the rate
cannot either jump to a negative value once it reaches zero.

68



2.4. ESTIMATIONS OF GROWTH PATTERNS

For instance the rates maintain their sign or become null, but
never change sign. The meaning is that when the rates are sta-
tionary, an initially growing populations will continue to grow,
or at most, cease growing but they will not suddenly shrink.
Therefore, the converse is also true: populations that started
shrinking, will not suddenly change its course and grow. They
will continue to shrink until extinction, or reach a stable value.

2.4 ESTIMATIONS OF GROWTH PATTERNS

The dynamics results in distinct realizations that can give dras-
tically different solutions, when compared, for example, to the
deterministic solution. Fig. 2.4A show that the equilibrium
value of the populations can be very different from the deter-
ministic carrying capacity. Thus the observed equilibrium value
of the populations is no longer determined by the initial condi-
tions, as in the deterministic case (de Vladar, 2006). Actually,
the carrying capacity is now a random variable. For example,
in Fig. 2.4A the size equation is solved for several realizations
of the process (2.2). For the naive eye, the distinct realizations
could be seen as distinct “noisy logistics” with different carry-
ing capacities. Comparing the realizations to a logistic equation
gives highly significant fits, even when the data come from a
common process having the same values of the parameters.

In order to determine if we can recover deterministic infor-
mation of the processes, we performed simulations of 250 ran-
domly selected values of ρ, θ and for each we performed 30 re-
alizations. To every growth curve we least-squares-fitted a lo-
gistic model, and calculated its parameters ρ̂ and x̂∞. Fig. 2.4B
shows a scatter plot of the estimated vs. the deterministic val-
ues of the Malthusian parameter, showing a poor relationship.
These results show that the reconstructions are totally spuri-
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ous since they do not reflect any information of the generating
process. But because the dynamics resemble a logistic realiza-
tion, accepting a null hypothesis that the biological phenomena
determining growth are of logistic nature is true, statistically
speaking. However, our calculations show that stochastic pro-
cesses can account for the same qualitative and quantitative
description. Therefore, simple analysis like least squares fits
are not enough to confirm the logistic hypothesis.

Figure 2.4: (Opposite page) (A) Integrations for population size for distinct re-
alizations of the same process when θ2

0/8 < ε20(ρ0 + 1) using the parameters
ρ = 1, ερ = 0.5, θ = 1, εθ = 0.5. The bold line shows the deterministic dy-
namics and the thin lines are realization for the population size. The dotted
lines are logistic estimations. In this cases, the estimated Malthusian parame-
ters range between ρ̂ ∈ (0.8, 1.5). Carrying capacities range from x̂∞ ∈ (1, 103),
and the deterministic carrying capacity is x∞ = 10.0. All of the estimations
have a regression coefficient R2 > 0.995 with p-values less than 10−3. (B) Cor-
relation between the estimated and generating Malthusian parameters, from
7500 simulation spanningg 250 distinct pairs of uniformly distributed values
of ρ ∈ [0, 2], θ ∈ ±ε0

p
2(ρ0 + 1), using ερ = 1.0, εθ = 0.1. The radii of the circles

are 10−3 log(SE) (SE = standard error). The continuous line is the linear trend,
which gives ρ̂ = 0.389591 + 0.371044ρ with R2 = 0.2873 (p< 2.2 10−16). The
dotted line is a linear trend weighted with the inverse of the standard error of
each estimation: ρ̂ = 0.91300 + 0.22528ρ with R2 = 0.3393 (p< 2.2 10−16). Com-
paring these two estimations we see that even in the best case (the weighted
regression) the predictive power is poor. (C) Integration for population sizes for
distinct realizations of the process when θ2

0/8 ≥ ε20(ρ0 +1) using the parameters
ρ = −3, ερ = 0.3, θ = 2, εθ = 1.5). The bold line represents the deterministic
dynamics, and the thin lines the realizations for population size. The dotted
lines are estimations for the exponential growth. The estimated values for the
exponential growth parameter are in the range of (21.8, 26.0). All the estima-
tions have a regression coefficient R2 > 0.998 with p-values less than 10−16.
The graph is in semi-log scale.
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There is an analogous effect for the case when the rates are
persistent. Once the stochastic rates are in stationarity, the
resulting population dynamics resembles exponential growth.
In the deterministic exponential growth, the initial condition
of the rate determines the growth parameter de Vladar (2006).
However, under our scheme, the growth process is Markovian,
thus the initial conditions of (x, r) do not affect the stationary
distribution. As a consequence, the expected or averaged rates
are spurious estimators of an exponential dynamic (Fig. 2.4C).
A similar problem was described by Renshaw (Renshaw, 1991)
when demographic stochasticity is present in an exponentially
growing population.

At this point it is necessary to make a distinction between
the outcomes of noise sources coming from demographic or
phenotypic stochasticity. The first has been studied and ex-
perimentally supported (Renshaw, 1991; Lande et al., 2003).
This kind of stochasticity is such that randomness affects the
population through events of accidental mortality or occasional
migrations (and is analogous to energy input coming from a
heat bath.) In these cases, the populations would fluctuate, for
example, close to carrying capacities, and thus information for
the deterministic part of the dynamics can be extracted by av-
eraging. The second type, i.e. parameter stochasticity, is more
related to fluctuations in phenotypes, which results from the
“superposition” of genetic and environmental processes. How-
ever, from the perspective of our model, where carrying capac-
ities are not an intrinsic property of the environment, this av-
eraging might not make biological sense. As we said, an av-
erage of the stochastic trajectory does not recover the deter-
ministic path, like in Figs. 2.4A, 2.4A. Of course, populations
might still be subject to demographic stochasticity, and there-
fore show fluctuations around a stable size. In this case, we
would be presented with an additional noise source ηM , more
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related to the measuring techniques, perturbing the size equa-
tion as: ẋ = xr + ηM , that gives the fluctuating pattern over
the stable size. (This is a problem known as filtering: when the
measuring procedure has additional noise sources, not taking
them into account in the estimations, may bias the interpreta-
tion of the underlying process (Oksendal, 2002).) Considering
this source of fluctuations is more related to time series estima-
tion than to the biological aspects of our model (Siefert et al.,
2003).

2.5 CONCLUDING REMARKS

To summarise, we have presented an analysis of a novel pop-
ulation growth model that is based in fluctuations in the per-
capita growth rate, rather than in the growth variable. The
result, is that the rate always remains finite, either because
rate explosions are suppressed, or because rate is damped to
zero stochastically. As a consequence, and depending on the
relationship between the deterministic parameters and noise,
the model reproduce patterns that resemble exponential and
logistic (sigmoid) growth. It is important to notice that these
behaviours are irrespective on how the deterministic popula-
tion would grow. These forms are determined by the fluctua-
tions and not from the biological processes of birth and death,
at least not in the conventional interpretationn and descrip-
tion. When θ2

0/8 ≥ ε20(ρ0 +1) then the resulting population grows
anomalously, but with bounded fluctuations, and resembles an
exponential growth. When θ2

0/8 < ε20(ρ0 +1) then the populations
grow toward saturation. However, this result challenges the
idea of a carrying capacity, that is supposed to describe self reg-
ulatory processes and an intrinsic property of the environment.
Here, it is an emerging property from the fluctuations. In both
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cases, and more critically in the second (the logistic), statistical
fits to the realizations are highly significant. But since the ef-
fects of randomness override the deterministic forces of the sys-
tem, making these statistical estimations becomes unreliable.
In the context of our formulation, the question about rate esti-
mations looses its sense, because forecasting using the classic
deterministic models proves useless. Thus fluctuation analy-
sis might prove more informative about the stochastic driving
forces. In this way, estimations and forecasting can give other
statistical solutions to classical and new problems, using our
different perspective, that is, when populations are subject to
phenotypic stochastic variability.
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Chapter 3

Statistical Mechanics and the
Evolution of Polygenic
Quantitative Traits

It was a coincidence. The
two fields were entirely
unconnected, except at one
point: Maxwel’s Demon.

Thomas Pynchon
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Abstract

The evolution of quantitative characters depends on the
frequencies of the alleles involved, yet these frequencies
cannot usually be measured. Previous groups have pro-
posed an approximation to the dynamics of quantitative
traits, based on an analogy with statistical mechanics. We
present a modified version of that approach, which makes
the analogy more precise, and which applies quite generally
to describe the evolution of allele frequencies. We calculate
explicitly how the macroscopic quantities (e.g., trait mean
and genetic variability) depend on evolutionary forces, in a
way that is independent of the microscopic details. We first
show that the stationary distribution of allele frequencies
under drift, selection, and mutation maximizes a certain
measure of entropy, subject to constraints on the expec-
tation of observable quantities. We then approximate the
dynamical changes in these expectations, assuming that
the distribution of allele frequencies always maximizes en-
tropy, conditional on the expected values. When applied to
directional selection on an additive trait, this gives a very
good approximation to the evolution of the trait mean and
the genetic variance, when the number of mutations per
generation is sufficiently high 4Nµ > 1. We show how the
method can be modified for small mutation rates 4Nµ→ 0.
We outline how this method describes epistatic interactions
as, for example, with stabilizing selection.
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3.1 INTRODUCTION

Predicting the evolution of quantitative characters from first
principles poses a formidable challenge. When multiple loci

contribute to a quantitative character z, the effects of selection,
mutation and drift are difficult to predict from the observed
values of the trait; this is true even in the simplest case of ad-
ditive effects. The fundamental problem is that the distribution
of the trait depends on the ’microscopic details’ of the system,
namely the frequencies of the genotypes contributing the trait.
In an asexual population, long-term evolution depends on the
fittest genotypes, which may currently be very rare. In sex-
ual populations - the focus of this paper - new phenotypes are
generated by recombination in a way that depends on their ge-
netic basis. If selection is not too strong, we can assume Hardy
Weinberg proportions and linkage equilibrium (HWLE): this is
a substantial simplification, which we make throughout. Even
then, however, we must still know all the allele frequencies, and
the effects of all the alleles on the trait, in order to predict the
evolution of a polygenic trait. In this paper, we seek to pre-
dict the evolution of quantitative traits without following all the
hidden variables (i.e., the allele frequencies) that determine the
course of evolution.

For this purpose, several simplifications have been proposed.
The central equation in quantitative genetics is that the rate of
change of the trait mean equals the product of the selection
gradient and the additive genetic variance (Lande, 1976). This
simple prediction can be surprisingly accurate, since the ge-
netic variance often remains roughly constant for some tens of
generations (Falconer and Mackay, 1996; Barton and Keightley,
2002). However, we have no general understanding of how the
genetic variance evolves, or indeed, what processes are respon-
sible for maintaining it (Falconer and Mackay, 1996; Bürger
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et al., 1989; Barton and Keightley, 2002). Even if we take the
simplest view, that variation is maintained by the opposition
between mutation and selection, the long-term dynamics of the
genetic variance still depend on the detailed distribution of ef-
fects of mutations.

Lande (1976), following (Kimura, 1965b), approximated the
distribution of allelic effects at each locus as a Gaussian distri-
bution. However, this is only accurate when many alleles are
available at each locus, and when mutation rates are extremely
high (Turelli, 1984). Barton and Turelli (1987) assumed that
loci are close to fixation, but again, this approximation has lim-
ited application: in particular, it cannot apply when one allele
substitutes for another. Some progress has been made by de-
scribing a polygenic system by the moments of the trait dis-
tribution (Barton, 1986; Barton and Turelli, 1987; Turelli and
Barton, 1990; Barton and Turelli, 1991). For additive traits, a
closely related description in terms of the cumulants is a more
natural way to represent the effects of selection (Bürger, 1991,
1993; Turelli and Barton, 1994; Rattray and Shapiro, 2001).
These transformations are exact, and quite general: they pro-
vide a natural description of selection and recombination, and
extend to include the dynamics of linkage disequilibria as well
as allele frequencies. A moment-based description provides a
general framework for exact analysis of models with a small
number of genes, and for approximating the effects of indi-
rect selection (Barton, 1986; Barton and Turelli, 1987; Lenor-
mand and Otto, 2000; Kirkpatrick et al., 2002; Roze and Bar-
ton, 2006); for some problems, simply truncating the higher
moments or cumulants can give a good approximation (Turelli
and Barton, 1990; Rouzine et al., 2007). However, results are
sensitive to the choice of approximation for higher moments,
and so the approximation is to this extent arbitrary. The equa-
tions must be truncated “by hand”, guided by mathematical
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Figure 3.1: The frequency of favorable alleles at three loci (left) and the mean
of an additive trait, z̄ (right). Initial frequencies are 10−5, 10−6, 10−7, and effects
on the trait are 1, 2, 1

2
, so that z̄ = p1 + 2p2 + 1

2
p3; the selection gradient is

β=0.01 (i.e. fitness is eβz̄ ).

tractability rather than biological accuracy.

The fundamental problem is to find a way to approximate the
’hidden variables’ (in this context, the allele frequencies), but we
cannot hope to do this in complete generality. Even with simple
directional selection on a trait, the pattern of allele frequencies
depends on the frequencies of favorable alleles that may be ex-
tremely rare (p� 1), and which will take ∼ 1

s log
(

1
p

)
generations

to reach appreciable frequency. Thus, undetectably rare alleles
can shape future evolution, without much affecting the current
state. Fig. 3.1 shows an example where the trait mean changes
as three alleles sweep to fixation at different times and rates. By
choosing initial frequencies and allelic effects appropriately, we
could produce arbitrary patterns of trait evolution. We can only
hope to make progress in situations where the underlying al-
lele frequencies can be averaged over some known distribution,
rather than taking arbitrary values.

We know that particular frequencies of rare alleles can ulti-
mately lead to peculiar outcomes (Fig. 3.1). However provided
that selection does not act directly on individual alleles we ex-
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pect that random drift will cause the distribution of allele fre-
quencies to spread out across the full space of possibilities.

Despite this fundamental difficulty, progress can be made
in two ways. First, we can include random drift, and follow the
distribution of allele frequencies, rather than the deterministic
evolution of a single population. Then, we can hope that the dis-
tribution of allele frequencies, conditional on the observed trait
values, will explore the space of possible states in a predictable
way. Second, we can allow selection to act only on the observed
traits, and assume that the distribution of allele frequencies
spreads out to follow the stationary distribution generated by
such selection. That makes it much harder (and perhaps, im-
possible) for populations to evolve into an arbitrary state with
unpredictable and idiosyncratic properties. There is an analogy
here with classical thermodynamics, in which molecules might
start in a special state, such that after some time they concen-
trate in a surprising way: all the gas might rush to one corner,
for example. However, if all states with the same energy are
equally likely, this is extremely improbable. In this paper, we
use procedures analogous to statistical thermodynamics, but
adapted to population genetics. First, we use an information
entropy measure, SH , which is derived from population genetic
considerations, and which ensures an exact solution at sta-
tistical equilibrium. This measure, which is proportional to
the quantity H, defined by Boltzmann (1872), was proposed by
Iwasa (1988), and independently by Sella and Hirsh (2005), see
Barton and Coe (2009). Second, we choose to follow a set of
observable quantities that include all those acted on directly by
mutation and selection. This reveals a natural correspondence
between the observables, and the evolutionary forces that act
on them, which is analogous to extensive and intensive vari-
ables in thermodynamics (Barton and Coe, 2009). These two
innovations allow us to set out the method in a very general
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way.
Throughout, we will make the usual approximations of pop-

ulation genetics, that populations are at Hardy-Weinberg and
linkage equilibrium (HWLE), and that drift, mutation, and se-
lection are weak. Linkage equilibrium is justified if selection
and drift are not only weak ( s, 1/2 N � 1) but are also weak
relative to recombination ( s, 1/2 N � r). We also assume
only two alleles at each locus. These assumptions allow us to
describe populations solely in terms of allele frequencies at n
loci (~p = p1, . . . , pn), and to use the continuous-time diffusion
approximation.

We begin by analyzing the stationary distribution, showing
the analogy with thermodynamics.Iwasa (1988) showed that
the free fitness, which is the sum of the log mean fitness and
the information entropy SH (log

(
W̄
)

+ 1
2N SH ), always increases

through time, and reaches a maximum at the classic stationary
distribution of allele frequencies under mutation, selection and
drift:

ψ (~p) =
1
Z
W̄ 2N

n∏
i=1

(piqi)
4Nµ−1

, (3.1)

where pi(i = 1, . . . , n) are the allele frequencies at n loci, qi =
1 − pi, N is the number of diploid individuals, W̄ is the mean
fitness, and µ is the mutation rate (Wright, 1937a). The nor-
malizing constant Z plays a key role; it is analogous to the
partition function in statistical mechanics, and acts as a gen-
erating function for the quantities of interest, in the sense that
its derivatives give the expectations of the macroscopic quanti-
ties (Barton, 1989). We then show how the rates of change of
expectations of observable quantities can be approximated by
averaging over this stationary distribution ψ. The crucial as-
sumption here is that the distribution of allele frequencies al-
ways has the form of Eq. 3.1. This is accurate provided that the
system evolves as a result of slow changes in the parameters,
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so that it has time to approach the stationary state. By analogy
with thermodynamics, such changes are termed reversible (Ao,
2008; Barton and Coe, 2009).

After setting out the method in a general way, we apply it to
directional selection on an additive trait. In this simple case,
we can give closed-form expressions for Z, and hence for ob-
servables such as the expectations of the trait mean, genotypic
variance, genetic variability, etc. We then show that our ap-
proximation to the allele frequency distribution gives a good ap-
proximation to the dynamical change in the trait distribution,
even when selection changes abruptly. However, the method
only works for high mutation rates (4Nµ > 1), and breaks down
when 4Nµ < 1. Nevertheless, we show how the method can be
adapted to the case where 4Nµ is small.

3.2 GENERAL ANALYSIS

Defining entropy: The key concept is of an entropy, SH , which
measures the deviation of the population from a base distribu-
tion φ - in this case, the density under drift alone. Entropy
always increases as the population converges towards φ under
drift. With selection and mutation, a free energy- the sum of
the entropy and a potential function - always increases (Iwasa,
1988). We show that the stationary distribution maximizes SH
subject to constraints of the expected value of a set of observ-
able quantities. Thus, the dynamics of these quantities can
be approximated by assuming that the entropy is always maxi-
mized, conditioned on their values.

There is a wide range of definitions, interpretations and gen-
eralizations of entropy (e.g. Renyi, 1961; Wehrl, 1978; Tsallis,
1988); these have been applied to biological systems in vari-
ous ways. Iwasa (1988) introduced the concept of entropy into
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population genetics, for a diallelic system of one locus under re-
versible mutation and with arbitrary selection; he also consid-
ered a phenotypic model of quantitative trait evolution. Iwasa
(1988) used an information entropy, also known as a relative
entropy (Gzyl, 1995, Ch.3, Georgii, 2003), and defined as:

SH [ψ] ≡ −
∫
ψ log

[
ψ

φ

]
d~p . (3.2)

This is a functional of the probability distribution of allele
frequencies, ψ, that evaluates the average entropy of a function
with respect to a given base distribution, φ, integrated over all
possible allele frequencies, denoted by d~p = dp1.dp2 . . . dpn. It can
be thought of as (minus) the expected log-likelihood of φ, given
samples values drawn from a distribution ψ, relative to the base
distribution φ; it has a maximum at ψ=φ, when SH [φ] = 0. We
denote it by a subscript H because it is essentially the same as
the measure introduced by Boltzmann (1872) in his H-theorem.

The variation of SH with respect to small changes in ψ is:

δSH [ψ] = −
∫ (

λ+ log
[
ψ

φ

])
δψd~p , (3.3)

where λ is a Lagrange multiplier associated with the normal-
ization condition

∫
ψ d~p = 1 (Barton and Coe, 2009). Note that

because ψ is normalized,
∫
δψd~p = 0. With no constraints other

than this normalization, setting δSH = 0 implies that the en-
tropy is at an extreme only if ψ = φ; this is a unique maximum.

We are interested in a set of observable quantities, Aj, which
are functions of the allele frequencies in a population. These
might, for example, describe the distribution of a quantitative
trait - for example, its mean and variance. We need to find
the distribution of allele frequencies, ψ, that maximizes the en-
tropy, SH [ψ], given constraints on the expected values of these
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observables, 〈Aj〉:

〈Aj〉 =
∫
Ajψd~p . (3.4)

With these constraints, the extremum of Eq. is calculated
by including the Lagrange multipliers associated with the Aj ’s,
defined for convenience as −2Nαj:∫ λ+ log

[
ψ

φ

]
−
∑
j

2NαjAj

 δψd~p = 0 . (3.5)

At the extremum, the term in parentheses should be zero.
This implies that the distribution that maximizes entropy, sub-
ject to constraints, is the Boltzmann distribution:

ψME =
φ

Z
Exp

∑
j

2NαjAj

 =
φ

Z
Exp

[
2N~α. ~A

]
, (3.6)

where we have expressed the Lagrange multiplier λ as Z = Exp[λ],
and choose Z to normalize the distribution. We show later that
Z is a generating function for the moments of the observables,
Aj. It will play a major role in our calculations:

Z =
∫
φ exp

[
2N
(
~α. ~A

)]
d~p . (3.7)

We will show that under directional selection and mutation
the αj can be identified with the set of selection coefficients and
mutation rates, and the Aj with the quantities on which selec-
tion and mutation act (e.g. trait mean and genetic variability).
The potential function

∑
j Ajαj = ~α. ~A consists of the log-mean

fitness, log
(
W̄
)
, plus a term representing the effect of mutation,

2µ
∑
j log (pjqj). Then, Eq. 3.6 gives the classical stationary den-

sity of Eq. 3.1. (Note that although ~α. ~A must equal the potential
function, which includes all evolutionary processes, apart from
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drift, we still have some freedom to separate this into compo-
nents in a variety of ways. For example, directional selection on
a set of traits could be represented by almost any linear basis.
Nevertheless, there will usually be a natural set of components
that represent different evolutionary processes. In addition, we
are free to include additional observables, that are not neces-
sarily under selection, and so have αi = 0. These extra degrees
of freedom will improve the accuracy of our dynamical approxi-
mations.)

Notice that there is an alternative measure of entropy, SΩ,

defined by the log-density of states that are consistent with
macroscopic variables 〈 ~A〉 (Barton and Turelli, 1989). Barton
and Coe (2009) discuss the relation between SΩ and SH , and
show that these two measures converge when the distribution
clusters close to its expectation.

The generating function, Z: The normalizing constant Z, which
is a function of ~α, acts as a generating function for quantities
of interest. Differentiating w.r.t. 2N~α we find that:

∂ log(Z)
∂ (2Nαj)

= 〈Aj〉 . (3.8)

Differentiating w.r.t. population size:

∂ log(Z)
∂(2N)

=
〈
~α. ~A

〉
. (3.9)

Differentiating again w.r.t. the ~α gives the covariance between
fluctuations in the ~A:

∂2 log(Z)
∂ (2Nαj) ∂ (2Nαk)

= Cov (Aj , Ak) ≡ Cj,k . (3.10)

This covariance matrix, which we denote C, will play an impor-
tant role in the dynamical approximation (Le Bellac et al., 2004,
p. 64).
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Analyzing the dynamics: As the system moves away from sta-
tionarity, it will not in general follow precisely the distribu-
tion that maximizes entropy. (This can be seen by substi-
tuting the maximum entropy from Eq. 3.6 with time-varying
parameters ~α(t) as a trial solution to the diffusion equation).
However, the distribution of microscopic variables may never-
theless stay close to a maximum entropy distribution (Nicolis
and Prigogine, 1977; De Groot and Mazur, 1984; Goldstein and
Lebowitz, 2004). Our key assumption is that the macroscopic
variables change slowly enough that the system is always close
to a local equilibrium.

We will show that the Lagrange multipliers, ~α, correspond
to forces that act on the observables, ~A: directional selection
acts on the trait mean, mutation on the diversity U, and so
on. Crucially, we assume that changes occur solely through
changes in the parameters ~α; arbitrary perturbations that act
directly on the allele frequencies could have arbitrary effects
(as, for example, in Fig. 3.1)

Assume that changes in allele frequency are determined by
a potential function ~α. ~A, which can be written as a sum of
components αkAk. (In physics, energy acts as a potential; in
population genetics, mean fitness plays an analogous role; it
defines an adaptive landscape such that allele frequencies and
their means change at rates proportional to the fitness gradient
Wright, 1967; Lande, 1976). Our method only works for sys-
tems whose dynamics can be described by a potential in this
way (Ao, 2008, though see). In an infinitesimal time δt, the
mean and mean square changes are:

〈δpi〉 =
piqi

2

∂
(
~α. ~A

)
∂pi

, (3.11a)

〈
δpiδpj

〉
= 0 for i 6= j , (3.11b)
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〈
δp2

i

〉
=
piqi
2N

. (3.11c)

The first equation, for 〈δp〉, is just Wright’s (1967) formula
for selection, modified to include mutation. The variance of
allele frequency fluctuations,

〈
δp2
〉
, is the standard formula for

random drift. Under the diffusion approximation, this leads to
the stationary distribution of Eq. 3.1, provided that the base
distribution is defined as:

φ =

(
n∏
i=1

piqi

)−1

. (3.12)

Under the diffusion approximation, the rate of change of 〈Aj〉
is:

∂ 〈Aj〉
∂t

=
n∑
i=1

∂Aj
∂pi
〈δpi〉+

1
2

n∑
i=1

~n
∑
k=1

∂2Aj
∂pi∂pk

〈δpiδpk〉

=
∑
k

Bj,kαk +
1

2N
Vj , (3.13)

where

Bj,k =

〈
n∑
i=1

∂Aj
∂pi

piqi
2
∂Ak
∂pi

〉
, (3.14)

Vj =

〈
n∑
i=1

piqi
2
∂2Aj
∂p2

i

〉
.

This relationship is exact, provided that the matrix B and
the vector V are evaluated at the current distribution of allele
frequencies. Eq. 3.13 can also be derived directly, by making
a diffusion approximation to multivariate observables, where
the deterministic terms are ai =

∑
k
∂Aj

∂pi

piqi

2 αk, and the diffusion
terms are bi =

√
piqi

2N (Ewens, 1979; Gardiner, 2004). If our
system is described by only one observable, we directly recover
the formula derived by Ewens (1979, pp. 136-137).
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3. STATISTICAL MECHANICS IN POLYGENIC EVOLUTION

The local equilibrium approximation: In general, as the system
moves away from stationarity, it will not precisely follow the dis-
tribution that maximizes entropy. (This can be seen by substi-
tuting the maximum entropy form, Eq. 3.2, with time-varying
parameters ~α(t) as a trial solution to the diffusion equation).
However, the distribution of microscopic variables may nev-
ertheless stay close to a maximum entropy distribution if the
macroscopic variables change slowly enough such that the sys-
tem remains close to a local equilibrium at all times (Prigogine,
1949; Klein and Prigogine, 1953; Nicolis and Prigogine, 1977;
De Groot and Mazur, 1984; Goldstein and Lebowitz, 2004).

We now approximate Bj,kandVj by B∗j,k, V
∗
j , assuming the

distribution in Eq. 3.6 evaluated at ~α∗. We know that at the
stationary state, under parameters ~α∗, expectations are con-
stant, and so from Eq. 3.13,

∑
k B
∗
j,kα

∗
k + 1

2N V
∗
j = 0. Therefore:

∂ 〈Aj〉
∂t

≈
∑
k

B∗j,k (αk − α∗k) (3.15)

The matrix Bj,k is closely related to the additive genetic co-
variance matrix. Making the link with quantitative genetics is
not quite straightforward, because the Aj are arbitrary func-
tions of the allele frequencies, and need not be the means of
actual traits carried by individuals. Nevertheless, if we do re-
gard them as the means of some quantity, then ∂Aj/∂pi is twice
the average effect of alleles at locus i. (Since we assume HWLE,
average effect is equal to average excess; Falconer and Mackay,
1996). Therefore, Bj,k is the expected additive genetic covari-
ance between AjandAk, the expectation being taken over the
distribution of allele frequencies. Moreover, if the αk contribute
to the log-mean fitness (rather than to the component of the
potential that describes mutation), then they can be interpreted
as selection gradients in the usual way. Equation 12 thus gives
the rates of change of the expected trait means as the product

90



3.2. GENERAL ANALYSIS

of the expected additive genetic covariance, and the difference
between the actual selection gradient, αk,and the gradient that
would give stationarity at the current expectations, α∗k. This in-
terpretation will become clearer when we consider specific ex-
amples, below.

In thermodynamics, equations similar to Eq. 3.15 are called
phenomenological equations (van Kampen, 1957; De Groot and
Mazur, 1984, Ch. IV). They were postulated as approximations
to processes that are close to equilibrium. In such cases, the
variables α∗ represent the deviation from an equilibrium defined
by α. These equations are valid as long as a local equilibrium
exists, and (as suggested by Eq. 3.13) it holds in general that
Bk,j = Bj,k (Onsager, 1931; Prigogine, 1949). For theoretical
purposes, we can follow either the expectations 〈Aj〉themselves,
or the parameters α∗k that would give those expectations at sta-
tionarity. In numerical calculations, the latter is more conve-
nient, because that avoids calculating the α∗j from the 〈Aj〉 (a
tricky inverse problem). The rates of change of the α∗k are re-
lated to the rates of change of the 〈Aj〉 via the matrix ∂ 〈Aj〉 /∂α∗k.
Now, since 〈Aj〉 = ∂ log(Z) /∂ (2Nα∗k) , we have

∂ 〈Aj〉 /∂α∗k = 2N
[
∂2 log(Z)/∂

(
2Nα∗j

)
∂ (2Nα∗k)

]
= 2NCjk

thus, the relation between the 〈Aj〉 and the α∗k is via the co-
variance of fluctuations, Cj,k (Eq. 3.10). In matrix notation
(equivalent to De Groot and Mazur, 1984, p. 36):

∂~α∗

∂t
≈ 1

2N
C−1.B. (~α− ~α∗) , (3.16)

where C is the matrix of covariances of fluctuations in the ~A,
and B is analogous to the additive genetic covariance matrix.
Both these are evaluated at the stationary distribution defined
by ~α∗. For given ~α∗, we find the

〈
~A
〉

by integrating using the
density in Eq. 3.6, or application of Eq. 3.8.
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3.3 DIRECTIONAL SELECTION, MUTATION,
AND DRIFT

3.3.1 Analysis
The stationary distribution: We now apply this method to a quan-
titative trait under directional selection, mutation, and drift. We
first define a measure of genetic variability (Barton and Coe,
2009):

U = 2
n∑
i=1

log (piqi) , (3.17)

which is 2n times the log-geometric mean heterozygosity across
loci (plus a constant); n is the number of loci. The rate of change
of pi dues to symmetric mutation is µ (qi − pi) = piqi

2
∂(µU)
∂pi

, as
required by Eq. 3.11a. Under our assumption of linkage equi-

librium, the rate of change of pi due to selection is piqi

2

∂ log(W̄)
∂pi

(Eq. 3.11a). The log mean fitness, log
(
W̄
)
, is a natural potential

for the system, and will be expressed as a sum of components
~A.~α, where the ~α are a set of selection coefficients. We deal
with the very simplest case of exponential (directional) selec-
tion, but note that the derivation applies to any form of selection
for which a potential function can be defined - most obviously,
the case where genotypes have fixed fitnesses. If individuals
with trait value z have fitness eβz, then to leading order in β,
the mean fitness is W̄ = eβz̄. Wright’s equilibrium density can
then be written in the form of Eq. 3.6, with ~A = {z̄, U} and
~α = {β, µ}:

ψ =
φ

Z
e2N(βz̄+µU) . (3.18)

Thus, the stationary distribution under mutation, selection and
random drift is given by maximizing the entropy subject to con-
straints on the expected genetic diversity 〈U〉,and the expected
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trait mean, 〈z̄〉. The entropy is defined by Eq. 3.2, with baseline
distribution φ =

∏n
i=1 (piqi)

−1
. Then, Eq. 3.18 is the stationary

distribution, and is equal to Eq. 3.1.
We have shown that a population evolving under mutation,

multiplicative selection and drift will converge to a stationary
distribution that has maximum entropy, SH , given the expected
trait mean and genetic diversity. As we will see below, other
forms of selection can be represented by introducing other ob-
servables. Each constrained observable will be conjugated with
a natural variable: in this example, the expected mean 〈z̄〉 cor-
responds to the strength of directional selection β, and the ex-
pected diversity 〈U〉 to the mutation rate µ. Information about
the full distribution of the observables is contained in the nor-
malizing constant Z, which is a generating function that de-
pends only on the natural variables αj. In the next section, we
calculate an explicit expression for it.

The generating function for an additive trait: We have not yet
made any assumptions about the genetic basis of the trait, z;
in general, there might be arbitrary dominance and epistasis.
We now assume that it is additive, with locus i having effect γi:

z =
n∑
i=1

γi (Xi +X∗i − 1) , (3.19)

where Xi and X∗i represent the allelic states (labelled 0 or 1) of
the two copies of each of the n loci. With additivity, exponential
selection on the trait corresponds to multiplicative selection on
the underlying loci. If we average over the population, where pi
represents the frequency of the Xi = 1 allele, and qi = 1 − pi,
then the mean and genetic variance are:

z̄ =
n∑
i=1

γi (pi − qi) , vz = ~n2
∑

i=1

γ2
i piqi. (3.20)
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More than two alleles could be allowed, but only for special
mutation rates that give detailed balance.

The normalization function Z can now be calculated explic-
itly, using Eq. 3.7. In this simple case of directional selection
on an additive trait, the integrand separates out as a product
over allele frequencies, and so:

Z =
∫

exp [2N (βz̄ + µU)]

(
n∏
i=1

piqi

)−1

d~p

=
n∏
i=1

(∫ 1

0

e2Nβ γi(p−q)(pq)4Nµ−1dp

)
(3.21)

=
n∏
i=1

(√
π21−8NµΓ[4Nµ] 0F1

[
1
2

+ 4Nµ, (Nβγi)
2

])

=
n∏
i=1

(√
π (4Nβγi)

1
2−4Nµ Γ[4Nµ]I4Nµ− 1

2
(2Nβγi)

)
,

where Γ(·) and 0F1(·, ·)are the gamma and the regularized con-
fluent hypergeometric functions, respectively. We have also
given an equivalent form, in terms of the modified Bessel func-
tion of order ν, Iν (·).

Finding the expectations 〈U〉, 〈z̄〉: The expectations, variances
and covariances of z̄ and U can be calculated either by direct
integration, or by taking derivatives of log(Z) w.r.t. β and µ

(Eqns. 3.8, 3.10). Explicit formulae are given in Appendix D.1
(Eqns. D.13 and D.5).

Figure 3.2 shows how the expected values change for a range
of mutation rates and selection pressures, for a population of
individuals with n loci of equal effect, γi = 1. As selection be-
comes strong relative to mutation, the allele X = 1 tends to
fixation, and 〈z̄〉 tends to n (top right of Fig. 3.2 ). As mutation
becomes strong relative to drift, allele frequencies tend to 1

2 ,
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Figure 3.2: Dependence of 〈z̄〉 , 〈U〉 on Nµ,Nβ. The solid curves show the
statistical mechanical approximation, while the dots show exact values for the
Wright-Fisher model with N = 100. The plots against Nµ (left column) show
Nβ = 0.1, 1, 10; those against Nβ (right column) show Nµ = 0.1, 1. Agreement
between discrete and continuous models is close for 〈z̄〉 and for 4Nµ > 1, but
statistical mechanics fails to predict 〈U〉 when 4Nµ = 0.1 (lower series of dots at
lower right). (For the discrete model, 〈U〉 is calculated omitting fixed classes).

and 〈z̄〉 tends to zero (top left of Fig. 3.2 ). The expected diver-
sity, 〈U〉, increases with mutation rate (bottom left of Fig. 3.2
), and decreases slightly with the strength of selection (bottom
right of Fig. 3.2 ). Figure 3.2 compares the statistical mechan-
ics expectations (Eqns. D.13 and D.5 in Appendix D.1) with the
Wright-Fisher model for N = 100. There is close agreement for
〈z̄〉 for all 4Nµ, and for 〈U〉 when 4Nµ > 1. In the discrete mo-
del, 〈U〉 must be calculated excluding the fixed classes, since
U would otherwise be infinite. This has negligible effect when
4Nµ > 1 because fixation is unlikely. However, when 4Nµ < 1,
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there is a substantial probability of being fixed, even when fixed
classes must be dropped. Thus, 〈U〉 depends on population
size, and differs substantially from the diffusion approximation
(compare lower series of dots with lower curve in Fig. 3.2 ,
bottom right). The stationary density is still close to the dif-
fusion approximation for polymorphic classes, and so for very
large N , when the probability of actually being fixed becomes
small

(
∼
∫ 1/2N

0
p4Nµ−1 dp� 1

)
, 〈U〉 in the discrete Wright-Fisher

model does converge to the diffusion approximation. However,
for population sizes in the hundreds, there is still a very large
discrepancy. We consider the implications of small 4Nµ for the
maximum entropy method below.

For an additive trait, and equal allelic effects, the distribu-
tion of allele frequencies is the same at each locus, and so this
simple case is essentially a single-locus analysis. However, this
is no longer the case when we allow unequal allelic effects; more
generally, if there is epistasis for fitness, the allele frequency
distributions at each locus are no longer independent, and if
there is epistasis for the trait, we can no longer treat macro-
scopic variables as sums over loci.

Covariances of fluctuations, C, and additive genetic variance,
B: In order to approximate the dynamics, we need the covari-
ances of fluctuations, C, and the additive genetic covariance,
B, defined above. The matrix C, that gives the variances and
covariance of U and z̄, is calculated by taking derivatives of the
generating function (Eq. 3.10; Appendix D.1, Eqns. D.15 (or
D.39), D.7, and D.22).
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The additive genetic covariance matrix, B, is defined in Eq.
3.13, in terms of the derivatives ∂Aj/∂pi. For the observables
{U, z̄}, these are {2 (qi − pi) / (piqi) , 2}). Using the relation (qi − pi)2

= 1− 4piqi:

B =

〈
n∑
i=1

piqi
2


(
∂U
∂pi

)2
∂U
∂pi

∂z̄
∂pi

∂U
∂pi

∂z̄
∂pi

(
∂z̄
∂pi

)2

〉

=

〈
n∑
i=1

(
2
(

1
piqi
− 4
)

2γi (qi − pi)
2γi (qi − pi) 2γ2

i piqi

)〉
. (3.22)

Note that Bz̄,z̄ =
〈∑n

i=1
piqi

2

(
∂z̄
∂pi

)2
〉

=
∑n
i=1

〈
2γ2
i piqi

〉
is just the

expected genetic variance for the trait z, 〈vz〉, consistent with
our interpretation of B as a genetic covariance matrix. For this
model, B has a simple form:

B =

(
2(2n+4Nβ〈z̄〉)

4Nµ−1 −2 〈z̄〉
−2 〈z̄〉 2(Nµ)〈z̄〉

Nβ

.

)
(3.23)

Remarkably, B depends only on 〈z̄〉, and not directly on the
distribution of allelic effects, γ. Note that the expected genetic
variance, 〈vz〉 is equal to 2Nµ

Nβ 〈z̄〉, even with unequal allelic ef-
fects. This can be understood by seeing that the rates of change
of 〈z̄〉 due to mutation, -2µ〈z̄〉, and due to selection, β〈vz〉, must
balance at statistical equilibrium. In the limit where selection
becomes weak, both 〈z̄〉 and Nβ tend to zero, and the expected
genetic variance tends to a definite limit: all frequencies are at
1
2 , and so 〈vz〉 tends to n

2 .
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The coefficient BU,U includes the expectation of 1 /(piqi) , which
diverges when 4Nµ <1. Because the rate of change depends on
BU,U (µ∗ − µ) (Eq. 3.23), that implies that µ∗ must be held fixed
at its actual value (i.e., µ∗ = µ). In effect, therefore, 〈U〉 can
no longer be included in the approximation. We discuss the
implications of this constraint below.

3.3.2 Approximating the dynamics
Evolution of the expectations: We can now use Eq. 3.15 to
approximate the rates of change of the expectations, 〈U〉, 〈z̄〉:

d

dt

(
〈U〉
〈z̄〉

)
≈

(
2(2n+4Nβ〈z̄〉)

4Nµ−1 −2 〈z̄〉
−2 〈z̄〉 2NµNβ 〈z̄〉

)(
µ− µ∗
β − β∗

)
(3.24)

These equations are proportional to the difference between
the actual parameters {µ, β}, and the parameters that would
give a stationary distribution with the current expectations,
{µ∗, β∗}. To iterate these recursions, we would need to find
{µ∗, β∗} from 〈U〉, 〈z̄〉, which is troublesome. It is more straight-
forward to work with the rates of change of {µ∗, β∗}, which are
found by multiplying the rates of change of the expectations
(Eq. 3.24) by the inverse of the covariance of fluctuations, C
(see Eq. 3.16 and Appendix D.1, Eqns.D.36, D.27, and D.52,
for k = 1). However, because C depends on the allelic effects in
a complex way, the full dynamics do depend on the distribution
of allelic effects, γi.

In the following sections we test the accuracy of this local
equilibrium approximation against two situations: an abrupt
change in β or µ, or a sinusoidal change in µ or β. An abrupt
change seems the strongest test of our approximation, whilst
a sinusoidal change allows us to find how the accuracy of the
approximation decreases as changes become faster. For the
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Figure 3.3: (Top panel) Calculation of genetic variability 〈U〉 (left) and trait
mean 〈z̄〉 (right) and over time, with Nµ = 0.6 as Nβchanges from -2 to +2 at
time t = 0. The horizontal lines show the stationary values. The solid curves
show the approximation, and the dashed curves, numerical solutions to the
diffusion equation; these are not distinguishable on this scale. (Bottom panel)
Changes over time in the parameters µ∗(left)andβ∗ (right), calculated using the
approximation of Eq. 3.16. Time is scaled to 2N generations.

moment, we focus on high numbers of mutations (4Nµ > 1).
We begin by considering the case of equal effects, where the
distributions at all loci are the same. We also discuss results
for the case where most loci have small effect, but some have
large effect: the patterns are similar to the symmetric case of
equal effects, and so we detail them below. Throughout, we
compare the approximation with numerical solutions of the dif-
fusion equation: these are close to solutions of the discrete
Wright-Fisher model provided that 4Nµ > 1 (Fig. 3.3).

Equal allelic effects: If all loci have equal effects on the trait,
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Figure 3.4: The accuracy of the approximation for Nµ = 0.3; Nβchangesfrom
-0.7 to +0.7 at time t = 0. Otherwise, as for Fig. 3.3.

and if selection only acts on the trait, and not on the individual
genotypes, then under directional selection the distribution of
allele frequencies will be the same at each locus, and will be
independent across loci. Thus, we only need follow a single dis-
tribution, whose time evolution is given either by numerical so-
lution of the diffusion equation, or as an expansion of eigenvec-
tors (Crow and Kimura, 1970, p. 396). However, the maximum
entropy approximation is still non-trivial, even in this highly
symmetric case, since it approximates the full distribution by a
few degrees of freedom, such as {〈2 log(pq)〉, 〈p − q〉}. Also, note
that with other forms of selection, the allele frequency distribu-
tion is not independent across loci: for example, with stabiliz-
ing selection populations cluster around states where the sum
of allele frequencies is close to the optimum.
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Abrupt change in Nβ: First, assume that a system is at equi-
librium with evolutionary forces β0 and µ0. These forces are
then abruptly changed to new values β and µ, and the sys-
tem moves towards its new stationary state. Figure 3.3 shows
that for moderately high mutation rates (Nµ = 0.6), and for an
abrupt change of selection from Nβ = −2to + 2, the approxi-
mation is extremely accurate, as compared with theresults of
the diffusion equation. The expected genetic diversity, 〈U〉, in-
creases as the allele frequencies pass through intermediate val-
ues, but returns to its original value as 〈z̄〉 moves from -2 to +2
(top left). This transient increase is mainly due to the change in
mean allele frequencies: there is only a small transient change
in µ∗(bottom left). The distribution of allele frequencies pre-
dicted by the approximation is always close to the actual distri-
bution (not shown).

For a lower mutation rate of Nµ = 0.3, close to the critical
value of 1/4, the effective mutation rate hardly changes: it is
held close to the actual value of Nµ = 0.3 (Fig. 3.4, lower left).
The approximation is still accurate, but there is an appreciable
discrepancy in 〈U〉 (upper left). For a still lower mutation rate
of Nµ = 0.1, below the threshold where BU,U diverges, µ∗ must
necessarily be held equal to the current mutation rate (Fig. 3.5,
upper left). Then, there is a poor fit to the transient increase
in expected diversity, 〈U〉, but the dynamical approximation to
〈z̄〉 remains accurate (Fig. 3.5, upper right). (Because µ∗ must
be held fixed at its actual value when 4Nµ < 1, 〈U〉 is not now
included in the approximation).

Abrupt change inNµ: Figure 3.6 shows the effects of an abrupt
change in mutation rate from Nµ = 0.3 to 1. Here, the approx-
imation does poorly when mutation rate increases abruptly,
even when 4Nµ is always larger than 1 (left of Fig. 3.6). It
does perform better when the mutation rate decreases abruptly,
however (t > 5 in Fig. 3.6).
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Figure 3.5: The accuracy of the approximation for Nµ = 0.1; Nβchangesfrom
-0.7 to +0.7 at time t = 0. The effective mutation rate, Nµ∗, is held fixed at Nµ
(lower left). Otherwise, as for Fig. 3.3.

Unequal allelic effects: So far, we have assumed equal allelic
effects. This ensures that the allele frequency distribution is
the same at each locus, so that we are essentially analyzing a
single-locus problem. This is not entirely trivial, since we are
approximating the full allele frequency distribution by two vari-
ables, {〈z̄〉 , 〈U〉}. However, we now turn to the more challenging
case of unequal allelic effects at n loci: now, we are summariz-
ing n distinct distributions by two variables. We do, however,
assume that the allelic effects are known.

We draw allelic effects at ten loci from a Gamma distribution,
with mean 1 and standard deviation 1

2 :

γi = {1.69, 1.47, 1.15, 1.05, 1.04, 1.03, 1.01, 0.81, 0.500, 0.401} (3.25)

The maximum range of the trait is ±
∑
i γi = 10.15, and the max-
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Figure 3.6: The mutation rate increases abruptly from Nµ = 0.3 to Nµ = 1 at
t = 0, and then changes back at t = 5; throughout, Nβ = 1. The horizontal
dashed lines show values at the stationary states, the dashed curves show
numerical solutions of the diffusion equation, and the solid curves in the top
row show the approximation.

imum genetic variance is vmax = 1
2

∑10
i=1 γ

2
i = 11.66. 25% of this

is contributed by the locus of largest effect, and 54% by the
largest three loci.

Figure 3.7 shows the response of the mean and the genetic
variance, as selection changes from Nβ = −2to + 2, with Nµ =
0.3 throughout: the approximation matches well. There is a
transient increase in the genetic variance as allele frequencies
pass through intermediate values. In Fig. 3.7, the shift is by
3.08 genetic standard deviations.

If mutation rate is not low, then the statistical mechanics
methods apply very well. As in the case for equal effects, as
mutation rate approaches 1/4N there will be deviations from
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Figure 3.7: The accuracy of the approximation with unequal allelic effects, γ,
given by Eq. 3.25. Nβ changes from -2 to +2 at time t = 0;Nµ = 0.5 throughout.
Otherwise, as in Fig. 3.3

the true values, as compared with the diffusion equation. The
accuracy of the approximations diminishes as Nµ approaches
1/4 (Fig. 3.8)

Fluctuating selection: A step towards a realistic scenario is to
consider that the selective pressure is not a fixed quantity, but
that it is subject to fluctuations. Besides abrupt changes in
selection, we have also looked at the effects of oscillating selec-
tion. If fluctuations are sufficiently slow, then the maximum
entropy approximation converges to the exact solution.

We can model this situation considering that selection is
time-varying, for example as:

β(t) := β0 cos[ωt+ ϕ], (3.26)

and study what happens for different frequencies ω. If these
frequencies are low, we expect the macroscopics to respond
smoothly, as it is shown in Fig. 3.9.
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Figure 3.8: Response of the macroscopic variables composed of multiple loci,
for different selective pressures (labels in the panels). Each macroscopic is
determined by 10 loci of effects given by Eq. 3.25. For a sudden change in
Nβ = ±1, and for mutation rates of Nµ = 1, 0.6, and 0.45 we show how the
predictions of the statistical mechanics work. Otherwise, as in Figs 3.3.

On the other extreme if ω is high, the variables would effec-
tively perceive an average intensity. Notice how for high values,
in Fig. 3.10, the dynamics already resemble those of a sud-
den change in the selective intensity from Nβ = −1 to Nβ = 0.
Still, in both examples the amplitude β0 of the oscillations is
the same, but the response of the macroscopics have down-
scaled amplitudes. (Notice that even if ω is small, the trait never
reaches ±β0.) Regardless of the frequency of oscillation of β, the
local equilibrium holds satisfactorily (as long as 4Nµ > 1).
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Figure 3.9: Response of the macroscopics and local variables to a low fre-
quency of fluctuating selection intensity, as in Eq. 3.26 with β0 = −1 and
ω = π/3. The macroscopics are given by 10 loci of different effects, following
Eq. 3.25
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Figure 3.10: Response of the macroscopics and local variables to a fast fre-
quency of fluctuating selection intensity, w= 20 p. Otherwise as in Fig. 3.3.
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3.4 LOW MUTATION RATES: 4Nµ <1

Failure of the maximum entropy approximation: When the
number of mutations produced per generation is small (4Nµ <
1), populations are likely to be close to fixation. The diffusion
approximation still works surprisingly well: it predicts the allele
frequency distribution accurately even adjacent to the bound-
aries

(
p = 1

2N , 1−
1

2N

)
. The maximum entropy approximation

also makes accurate predictions for the change in trait mean,
provided that the mutation rate is kept fixed (Fig. 3.5, top right).
However, the approximation does not allow changes in µ∗ when
4Nµ < 1. Formally, the coefficient BU,U (Eq. 3.22) diverges,
which implies that the effective mutation rate must always be
held equal to the actual mutation rate (µ∗ = µ). Thus we lose
one degree of freedom from the dynamics. What causes this
pathological behavior?

The key point is that near the boundary, the allele frequency
distribution changes on a much faster time scale than in the
centre: the characteristic time scale of random drift is deter-
mined by the number of copies of the allele in question. Thus,
the shape of the distribution at the centre and at the edge is
uncoupled, so that it may be impossible to adequately approx-
imate the whole distribution as being close to the stationary
state. Near the boundaries, selection is negligibly slow rela-
tive to mutation and drift, and the allele frequency distribution
rapidly takes the form p4Nµ−1, even while the bulk of the dis-
tribution remains unchanged (Fig. 3.11). For example, sup-
pose that 4Nµ changes from smaller than 1 to greater than 1.
The density at the boundaries immediately falls to zero, and
the distribution takes on a two-peaked shape that cannot be
approximated by any of the family of stationary distributions.
Conversely, when 4Nµ falls below the threshold, small singular-
ities immediately develops at the boundaries, representing fixed
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Figure 3.11: Failure of the max-entropic distribution of allele frequencies at the
borders for changing mutation rates. Top panel: dotted curves: the genuine
distribution, given by the diffusion equation; solid curves the max-entropic
distribution. The bulk of the distributions is well approximated initially (curves
towards the right; t=0) and close to equilibrium (bell-shaped curves; t=5). Lower
left panel: the max-entropic distribution at different times (from t=0 to t=5, top
to bottom) near the edge p=1, incorrectly predicts that there is no fixation,
compared the diffusion equation solutions at different times (from t=0 to t=5,
top to bottom) near the edge p=1, which shows that some genotype fix (lower
right panel). Numerics as in Fig. 3.6.

populations, but it takes a long time for the bulk of the popu-
lations to approach fixation. This asymmetry explains why the
maximum entropy approximation is much more accurate when
4Nµ falls than when it rises (Fig. 3.6, t > 5).
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We can gain some insight by analyzing the limit of 4Nµ →
0, when populations are almost always fixed for one of the 2n

genotypes. With directional selection, the probability of fixation
of one or other allele is independent across loci, and equals
Pi = 1 /(1 + exp (−4Nβγi)) , where γi is the effect of alleles at
the i′th locus. Populations will jump from fixation for ’0’ to
’1’ as a result of the fixation of favorable mutations, at a rate
4Nµβγi/ (1− exp (−4Nβγi)), and in the opposite direction due to
fixation of deleterious alleles, at a rate that is slower by a factor
exp (−4Nβγi). In this simple case, it is easy to write down the
dynamics at each locus:

dPi
dt

= 4Nµβγi

(
Qi

1 + e−4Nβγi
− Pie

−4Nβγi

1 + e−4Nβγi

)

= 4Nµβγi

(
P̂i − Pi

)
(
P̂i − Q̂i

)whereP̂i =
1

1 + e−4Nβγi
, (3.27)

noting that this does have a sensible limit as β →0: ∂tP =
µ(1 − 2P ) which is correct for neutral alleles. The trait mean
changes as:

d 〈z̄〉
dt

= 4Nµβ
n∑
i=1

2γ2
i

(
P̂i − Pi

)
(
P̂i − Q̂i

) . (3.28)

The maximum entropy approximation simplifies the problem
by assuming that the Pi always follow a stationary distribution,
determined by a single parameter β∗, with Pi =
1 /(1 + exp (−4Nβ∗γi)) . Thus, provided we know the allelic ef-
fects, we can deduce the Pi from the observed 〈z̄〉, without
knowing the distribution at the n loci individually. From Eq.
3.24, assuming that µ = µ∗, we have:

d 〈z̄〉
dt

= 2
Nµ

Nβ∗
〈z̄〉 (β − β∗) . (3.29)
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This can be understood by seeing that at equilibrium, selec-
tion must balance mutation, so that β∗γi 〈piqi〉 =
µ 〈pi − qi〉 at each locus if the Pi follow a stationary distribution
with parameter β∗. The rate of change of the trait mean is∑
i

2
(
βγ2

i 〈piqi〉 − µγi 〈pi − qi〉
)

=

∑
i

2
µ

β∗
γi 〈piqi〉 − 2µ 〈z̄〉 = 2µ 〈z̄〉

(
β

β∗
− 1
)

,

equal to Eq. 3.29.
It is easy to show that the maximum entropy approximation,

Eq. 3.29, converges to the exact solution, Eq. 3.28, for small
Nβγi; this is confirmed by Fig. 3.12, for Nβ = 0.2, in an example
with equal effects, γi = 1. However, for stronger selection (Nβ =
2 (thick lines in Fig. 3.12), the maximum entropy approxima-
tion underesti-
mates the initial rate of increase. That is because the approx-
imation is that the initial state, in which Pi = 0.02 at all loci,
is caused by strong selection against the ’1’ allele; such selec-
tion would necessarily cause low standing variation, and so the
prediction is for a slow response when the direction of selection
is reversed. However, as soon as selection is reversed, popula-
tions fix new favorable mutations at a rate that is independent
of the previous standing variation. Thus, the method that led
to Eq. 3.24, which was developed for polymorphic populations,
fails as 4Nµ→ 0.

Maximum entropy for 4Nµ → 0: When mutation is rare, pop-
ulations are almost always fixed for one of the 2n genotypes,
and an ensemble of populations (or equivalently, the probability
distribution of a single population) evolves as a result of jumps
between genotypes, mediated by fixation of single mutations.
The stationary distribution is proportional to W̄ 2N , multiplied
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Figure 3.12: Comparison between the exact solution (Eq. 3.28) and the max-
imum entropy approximation (Eq. 3.29), in the limit of low mutation rates (4
Nµ→0). Initially, the probability that a locus is fixed for the ’1’ allele is P = 0.02

at all loci, so that 〈z̄〉/n = −0.99; all alleles have effect γ=1. Selection Nβ =0.2
or Nβ = 2 is then applied, and the trait mean shifts to a new equilibrium, in
which a fraction P = 1/(1 + exp(−4Nβ)) of loci are fixed for the ’1’ allele. When
selection is weak (Nβ = 0.2), the maximum entropy approximation is barely
distinguishable from the exact solution. However, when selection is strong
(Nβ = 2), the maximum entropy approximation (dashed lines) underestimates
the initial rate of change.

by a factor that reflects the pattern of mutation rates (Iwasa,
1988; Sella and Hirsh, 2005); this can be derived as the limit of
Eq. 3.1 for small 4Nµ (Barton and Coe, 2009). We can go fur-
ther, and apply the maximum entropy method to this process.
This gives an approximation for the dynamics of macroscopic
quantities such as 〈z̄〉, so that we do not need to follow the full
distribution across the 2ngenotypes. In the simplest case of di-
rectional selection on an additive trait, with equal allelic effects,
this gives no benefit, since the distribution of fixation probabil-
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ity is independent across loci, and moreover, is the same at
each locus: the problem therefore involves just a single vari-
able, P . However, with unequal effects, the maximum entropy
approximation does give a useful simplification, since we do not
need to follow the individual Pi. With epistasis for fitness or for
the trait, the advantage would be greater, since we would then
avoid following the full probability distribution, across the 2n

genotypes. (Note that in the limit of 4Nµ→ 0, the model applies
regardless of the pattern of recombination, because only one
locus evolves at a time).

We now apply the maximum entropy approximation to di-
rectional selection on an additive trait, assuming that 4Nµ→ 0,
but allowing for unequal allelic effects, γi. This is distinct from
the previous section, since we now apply maximum entropy to
the limiting system, rather than apply the limit of 4Nµ → 0
to the full maximum entropy approximation). The system is
described by a single local variable, β∗, defined implicitly by
〈z̄〉 =

∑
i γi tanh [2Nβ∗γi]; the assumption is that at each locus,

(Pi −Qi) =tanh [2Nβ∗γi], as if the ensemble were at a local sta-
tionary state under a selection gradient β∗.

Thus:

d 〈z̄〉
dt

=
∑
i

2γi
dPi
dt

=
∑
i

2γi

(
4Nµβγi

(
Qi

1 + e−4Nβγi
− Pie

−4Nβγi

1 + e−4Nβγi

))
=4Nµβ

∑
i

γ2
i

(
1− tanh [2Nβ∗γi]

tanh [2Nβγi]

)
. (3.30)

It is easier to work in terms of β∗. Multiplying by dβ∗/ dz̄, we
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Figure 3.13: The maximum entropy approximation (Eq. 3.30), made assuming
that populations jump between fixed states, gives an accurate prediction for
the change in mean (left): this is indistinguishable from the exact solution
(Eq. 3.28). The population is initially at equilibrium with directional selection
Nβ = −4; selection then changes sign abruptly. Allelic effects are given by
Eq. 3.25. Predictions for the underlying allele frequencies are less accurate.
The right panel shows allele frequencies at the locus with the strongest effect
(γ1 = 1.69), with intermediate effect (γ5 = 1.04), and weakest effect (γ1 = 0.401),
reading left to right. Solid lines show the maximum entropy approximation, (Eq.
3.30), and dashed lines, the exact solution (Eq. 3.28).

obtain a closed equation for β∗:

dβ∗

dt
= 2µβ

∑
i γ

2
i

(
1− tanh[2Nβ∗γi]

tanh[2Nβγi]

)
∑
i γ

2
i

(
1− tanh [2Nβ∗γi]

2
) . (3.31)

When selection is weak (2Nβ∗γi << 1), Eq. 3.30 simplifies to
4Nµ

∑
i γ

2
i (β − β∗). Since 2Nβ∗

∑
i γ

2
i ∼ 〈z̄〉 in this limit, this

converges to
(
4Nµ

∑
i γ

2
i

)
β − 2µ 〈z̄〉. The exact solution, Eq.

3.28, converges to the same limit with weak selection. This
is as expected, since when selection is weak, the population
approaches a mutation-drift equilibrium, with genetic variance(
4Nµ

∑
i γ

2
i

)
; the trait mean then changes at a rate

(
4Nµ

∑
i γ

2
i

)
β

due to selection, and −2µ 〈z̄〉 due to mutation.
Figure 3.13 shows an example where selection is strong,

changing abruptly from Nβ = -4 to +4. The effects of 10 loci are
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drawn from a gamma distribution, as in Eq. 3.25. The predic-
tions for the mean are indistinguishable (Fig. 3.13, left). There
are substantial errors in the predictions for the underlying al-
lele frequencies, with the rate of change of alleles of small effect
being greatly overestimated (Fig. 3.13, lower curve at right),
and that of alleles of large effect, slightly underestimated. How-
ever, these errors almost precisely cancel in their effects on the
mean.

3.5 DISCUSSION

The maximum entropy approximation: A fundamental aim of
quantitative genetics is to understand the evolution of the phe-
notype, without knowing the underlying distribution of all pos-
sible gene combinations. Assuming linkage equilibrium simpli-
fies the problem, which then depends only on the allele frequen-
cies, rather than on the full distribution of genotypes. However,
if we include random drift, as well as selection and mutation,
a full description of the stochastic dynamics requires the dis-
tribution of allele frequencies - a formidable task. We know
that in general, we cannot predict phenotypic evolution without
knowing the frequencies of all the relevant alleles: the future
response to selection may depend on the frequencies of alleles
that are currently so rare that they have negligible effect on the
phenotype, and so are essentially unpredictable. To avoid this
difficulty, we make the key assumption that selection and mu-
tation act only on observable quantities. Then, the distribution
of allele frequencies tends towards a stationary state that de-
pends only on those forces. If selection could instead act on
individual alleles, it could send the population into arbitrary
states by picking out particular alleles (e.g. Fig. 3.1). Selection
on individual alleles would be analogous to Maxwell’s Demon,

114



3.5. DISCUSSION

which perturbs individual gas molecules so as to generate im-
probable states that violate the laws of classical thermodynam-
ics (Leff and Rex, 2003).

Populations tend towards a stationary state that maximizes
entropy - that is, the distribution of allele frequencies spreads
out as widely as possible, conditional on the average values of
the quantities that are acted on by selection and mutation. The
maximum entropy approximation to the dynamics amounts to
assuming that the allele frequency distribution always maxi-
mizes entropy, given the current values of the observed vari-
ables, even though those variables may be changing. This ap-
proximation converges to the exact solution when changes in
mutation and selection (~α) are slow. However, we find that even
if selection abruptly changes in direction, predictions for the
trait mean are remarkably accurate.

The analogy between the population genetics of quantitative
traits, and statistical mechanics, is intriguing. As well as sug-
gesting methods for approximating phenotypic evolution, it also
helps us to better understand the scope of statistical mechan-
ics, by showing that it does not depend on physical principles
such as conservation of energy (Ao, 2008). Selection can be
seen as generating information, by picking out the best-adapted
genotypes from the vast number of possibilities, despite the
randomizing effect of genetic drift. This is analogous to the way
that a physical system does useful work, despite the tendency
for entropy to increase. Such issues are discussed by Barton
and Coe (2009) and in Ch. 5. Here, we concentrate on the use
of maximum entropy as an approximation procedure.

Provided that the number of mutations, 4Nµ, is constant,
and not too small, the method accurately predicts the evolution
of the trait mean - even when allelic effects vary across loci,
and even when selection changes abruptly. This accuracy even
when parameters change rapidly is surprising, because the un-
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derlying allele frequencies may not be well-predicted (e.g. Fig.
3.13). Indeed, Prügel-Bennett, Rattray and Shapiro make ac-
curate predictions even though they use an arbitrary entropy
measure that does not ensure convergence to the correct sta-
tionary distribution. Although we believe that our entropy mea-
sure is the most natural for quantitative genetic problems, and
it does guarantee convergence to the stationary state, it may
be that the maximum entropy approximation is an efficient
method for reducing the dimensionality of a dynamical system,
even when an unnatural measure is used.

The maximum entropy method predicts the full allele fre-
quency distribution from just a few quantities, such as the ex-
pected trait mean, 〈z̄〉. We do still need to know the genetic
basis of the trait - for an additive trait, we must know the al-
lelic effects. We could hardly expect to predict the evolution of
phenotype without knowing anything about its genetic basis.
However, we could apply the method knowing just the distribu-
tion of allelic effects, which could be estimated in a number of
ways: by detection of QTL, from evolutionary arguments about
plausible distributions (e.g. Orr, 2003) or from the distribution
of allele frequencies at synonymous and non-synonymous sites
(e.g. Loewe et al., 2006).

Extension to dominance and epistasis: We have only analyzed
the simplest case, of directional selection on an additive trait.
An extension to allow dominance is straightforward, since the
loci still fluctuate independently of each other, and the gener-
ating function, Z, can still be written as a product of integrals
across loci. Extension to more than two alleles is also possi-
ble, but only under the restrictive condition that mutation rates
allow for detailed balance, and hence for an explicit potential
function. Similarly, alleles at different loci may interact in their
effect on the trait. If such epistasis involves non-overlapping
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pairs of loci, then calculations can still be made, but require in-
tegrals over pairs of allele frequencies. Though it is beyond the
scope of this paper to present such calculations, it is important
to point out that, despite the technical difficulties, the method
itself is general and as such it does not depend on the selective
scheme, epistatic model, number of alleles, etc.

It is relatively straightforward to allow for stabilizing selec-
tion on an additive trait. In this case, allele frequency distribu-
tions at different loci are no longer independent. However, they
are only coupled via a single variable, the trait mean: if this lies
above the optimum, then all loci experience selection for lower
z̄, and vice versa. This simple coupling allows explicit solutions
for the stationary distribution, and for the rate of jumps be-
tween metastable states. These calculations are given in Bar-
ton (1989) and Coyne et al. (1997, appendix). We outline the
maximum entropy approximation to the dynamics of stabilizing
selection in Chapter 7.

For complex models, involving epistasis between large num-
bers of genes, calculation of the maximum entropy approxima-
tion (i.e., of the matrices B∗, C∗) by numerical integration would
not be feasible. They could still be calculated by a Monte Carlo
method: one would fix the parameters ~α∗, and simulate the
distribution to determine the expectations

〈
~A
〉
. The matrix C

could be found from the covariance of fluctuations, and the ma-
trix B from Eq. 3.13. The two matrices, B (~α∗) andC (~α∗), would
then give the dynamics on the reduced space of ~α∗; this would
be feasible numerically for two or three variables. Of course,
this approach involves the same kind of computation as a direct
simulation. Our claim is that the reduced dynamics will be ap-
proached, regardless of the initial allele frequency distribution:
the system is expected to move close to the lower-dimensional
space defined by the maximum entropy approximation. The
implication is that we could predict the evolution of the expec-
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tations
〈
~A
〉

by a closed set of equations, without knowing the
actual allele frequency distribution. This will require that we
know the genetic basis and mutability of the trait, and that se-
lection acts only on that trait.

Low mutation rates (4Nµ < 1): We describe mutation and se-
lection by using a potential function µU + log

(
W̄
)
, where U

= 2
∑
i log (piqi), and include the variable 〈U〉 together with se-

lected variables such as the expectation of the trait mean, 〈z̄〉.
However, this approach fails to describe the effects of changes
in mutation rate when 4Nµ < 1, because then, populations are
likely to be close to fixation, in which case U diverges. The
fundamental problem is that the distribution at the boundaries
changes rapidly as mutation rate changes, whilst the bulk of
the distribution does not. We can, however, extend the method
to the case where 4Nµ is very small, because then, popula-
tions jump between fixation for one or other genotype, through
the substitution of single mutations. This limit is in fact more
general, in that it applies even with linkage or with asexual
reproduction. It could be extended to give a more accurate ap-
proximation for appreciable 4Nµ, by calculating the probability
of a jump between states of near fixation, taking into account
the polymorphism at other loci (see Barton and Turelli, 1989).

Long-term response to selection

A basic and long-standing puzzle in quantitative genetics is the
success of artificial selection: in moderately large populations,
traits respond steadily to selection for a hundred generations
or more, with little change in additive genetic variance, and
often, with concordance between replicates (Barton and Keight-
ley, 2002). This is surprising, because the genetic variance is
expected to change as alleles sweep through the population.
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However, if the distribution of allele frequencies is proportional
to (pq)4Nµ−1, as we assume, and if 4Nµ is small, then the ad-
ditive genetic variance is expected to stay constant for long pe-
riods under directional selection. This is because the baseline
distribution φ(p) = (pq)−1 is uniform when transformed to a
logit scale (i.e., φ(z) = constantfor z = log(p/q)). Since log(p/q)
increases linearly with time under directional selection, that
implies that the increase in genetic variance due to rare alleles
increasing to become common is precisely balanced by the de-
crease due to common alleles approaching fixation. Thus, the
response to standing variation is expected to continue steadily
at a rate d 〈z̄〉/ dt =4Nµβ

∑
i γ

2
i for ∼ (1/s) log(2N) generations,

whereas if alleles were typically polymorphic (as would be the
case if 4Nµ > 1), it would continue for only ∼ (1/s) generations.
Of course, the response will continue indefinitely as a result of
new mutation, at just the same rate. This is because variation
is initially maintained in a balance between mutation and drift;
the genetic variance is not affected by directional selection, and
so the rate of response stays the same even as it shifts from
alleles that were originally present, to new mutations.

The stationary density under mutation, selection and drift
has been exploited before to help understand the evolution of
quantitative traits (e.g. Keightley and Hill, 1987; Keightley, 1991).
In this paper, we have shown that the dynamics of polygenic
traits can be accurately approximated by assuming that the
underlying distribution of allele frequencies always takes this
stationary form. We are now starting to get detailed estimates
of the distribution of allele frequencies and of allelic effects on
traits and on fitness (e.g. Loewe et al., 2006; Boyko et al., 2008):
it may be that we will soon be able to use such data to apply the
methods developed here to natural and artificial populations.

119





Manuscript in preparation: H.P. de Vladar and I. Pen. – G spotted in Rana
temporaria!

Chapter 4

G spotted in Rana temporaria!

The standard selection
equations have been taken
too literally; and genetic
assumptions with little
empirical support have
gained undue credibility.

Nick Barton and
Michael Turelli
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4. EVOLUTION OF THE G-MATRIX

Abstract

Plenty of work has focused in understanding the evolution
of the genetic covariances (G matrix). Yet this empirical
and theoretical knowledge has not fully merged. Thus we
lack the big picture about G’s evolution. We present a mo-
del that considers how G relates to allele frequencies and
pleiotropic structure. Averaging over these gives estimators
of G that are independent of these variables, but which
depend only on mutation rate, selection differentials, pop-
ulation size and allelic effects. The latter may be approx-
imated by average values. The model thus integrates the
mechanisms of population with quantitative genetics, but
requires only phenotypic (quantitative) information. This
is already a significant achievement. However we apply our
ideas to previous results in experimental evolution of Rana
temporaria, addressing a classical question: which factors
affect the diversification of G ? We give concrete answers
on the role of selection, mutation, and drift in the observed
experimental patterns.
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4.1 INTRODUCTION

Since the pioneering work of Lande (1979) much research
has been done to understand the evolution of genetic co-

variances (Steppan et al., 2002; Blows, 2007; Arnold et al.,
2008). These are essential for understanding the evolution of
metric traits (Barton and Turelli, 1987; Bürger, 1991). Through-
out the evolutionary process, for few generations genetic varia-
tion remains unchanged (Turelli, 1988). As with the breeder’s
equation, the formula ∆z̄ = G.P−1.~β would allow prediction of
the mean of multivariate traits of a population, ~z (Lande, 1979,
1980). G is the genetic covariances (of the traits) matrix , P is
the matrix of phenotypic covariances, and ~β is a vector of se-
lection differentials. Under certain conditions G can be stable
across generations (Brodie, 1993; Roff, 2000; Begin and Roff,
2001, 2003; Nosil et al., 2006; Renaud et al., 2006). However,
other observations show that many factors affect G’s constancy
(Wagner, 1984; Shaw et al., 1995; Roff, 2000; Phillips et al.,
2001; Widen et al., 2002; Cano et al., 2004; Kotiaho, 2007;
Doroszuk et al., 2008), which are also supported by theoretical
understandings (Turelli, 1988; Reeve, 2000; Jones et al., 2003,
2004, 2007). But the theories on the evolution of G are in-
complete (Arnold et al., 2008), hence employing measurements
of the G at one given time, might not be enough to explain or
predict phenotypic variation and diversification in ecological or
evolutionary times (Steppan et al., 2002; Blows, 2007; Kotiaho,
2007). Selection aligns G to evolve in a particular direction
(Reeve, 2000; Roff, 2000; Steppan et al., 2002; Jones et al.,
2004), but random drift make it wobble unpredictably gener-
ation after generation (Roff, 2000; Jones et al., 2003; Arnold
et al., 2008). Mutation, depending on the degree of pleiotropy
and linkage, and migration will act like a torque inducing or
reducing the correlations among the traits (Jones et al., 2003,
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4. EVOLUTION OF THE G-MATRIX

2004; Guillaume and Whitlock, 2007; Arnold et al., 2008). De-
spite this knowledge on how different factors affect G , the quan-
titative predictions are raw (Arnold et al., 2008). Hence, empir-
ical quantifications of G are hard to relate to the theoretical
knowledge.

Our first brass ring is to develop a theory that comprehends
population and quantitative genetics, that is applicable for mul-
tivariate response to selection, mutation, and drift (SMD). A
previous approach predicted the evolution of a quantitative char-
acters subject to SMD, considering the influence of the genetic
states (allele frequencies), but without making direct reference
to them (Barton and de Vladar, 2009; Barton and Coe, 2009).
We extend these methods to the multivariate case, with ple-
iotropic effects. A given trait is affected by a set of genetic
variables (e.g. allele frequencies), whose distribution can be
described by the Wright-Fisher SMD equilibrium distribution
(Crow and Kimura, 1970, pp. 442-445). From this distribution,
we can calculate a generating function, which considers all ge-
netic states and averages over them. Thus it is implicitly depen-
dent on the genetic variables, but depends explicitly only on the
selective gradients over each trait ~β, mutation rate µ, popula-
tion size N and the additive effects of each locus over the trait,
γ. The expectancies of the mean traits ~z, genetic co-variances
matrix G = {νij}, phenotypic covariances, etc. can be calcu-
lated from the generating function. Ergo, we offer a method to
calculate quantitative aspects of a population’s traits in such
a way that genetics is not disregarded, but the knowledge of
its details is dispensable for the quantitative description of the
population. This merging of the genetic with the quantitative
variables has been a riddle for decades, and its failures imbued
the understanding of the G’s stability. Although we have by no
means solved all questions regarding the evolution of G , our
results are opportune to address some of the relevant aspects
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about quantitative evolution.
Much is to be done in the theorety of G , but at this point

we are encouraged to formulate our questions by empirical mo-
tivations. We seek a marriage between the practical needs and
the theoretical capabilities. Specifically, we chose to re-evaluate
the experimental results of Cano et al. (2004) see also Laurila
et al. (2002); Palo et al. (2003); Ovaskainen et al. (2008) from
which the non - constancy of G has been verified for four corre-
lated traits in Rana temporaria: development time, mass, body
length, and tail length. Employing suitable experimental design
and statistical analyses the authors verified that the G matrices
of two populations were statistically different (Cano et al., 2004;
Ovaskainen et al., 2008). However Jones et al. (2003), identified
that drift is a major source of fluctuations of G . Whilst selec-
tion effectively affects G , it would have lamer and predictable
repercussions than drift (Roff, 2000). Our second goal is to ap-
praise the roles of selection and drift from the data of Cano et al.
(2004). Employing the proposed theoretical construct we will
characterize from the trait data the conditions maintained at
two distinct selection-mutation-drift (SMD) equilibria. Then we
will predict the corresponding G-matrices, which we compare to
the empirical estimations. Randomly sampling the distribution
of allele frequencies and computing G for these, illustrates the
variability that the genetic convariances can show, and whether
it is (or not) a plausible explanation for the observed diversifi-
cation in G, instead or along with selection.

4.2 THEORETICAL BACKGROUND

Throughout this paper, we will assume that the populations are
in Hardy-Weinberg equilibrium. Consider M autosomal traits,
affected by N independent loci (i.e. in linkage equilibrium), each
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4. EVOLUTION OF THE G-MATRIX

traitof them is determined by the contribution of the diploid set
at each locus x

♀
` and x♂` , zm =

∑n
`=1 γm`

(
x
♀
` + x♂` − 1

)
, where

x
♀
` and x♂` are either 0 or 1 (unfavorable or favorable copies of

the alleles). Averaging x` over the population, and calling p (q)
the frequency of x = 1 (x = 0) in a population, the mean trait
results in

z̄m =
n∑
`=1

γm` (p` − q`) ,m = 1, 2, . . . ,M (4.1)

where γm` is the effect of locus l over the trait m. We consider
only additive on all traits (there is neither epistasis nor domi-
nance), but pleiotropic effects are present (unless γm` = 0). We
consider selection over all traits to be directional and of expo-
nential nature (Kingsolver et al., 2001; Hoekstra et al., 2001):
W̄ = exp

[
~β.~z
]
, ~β.~z = β1z̄1 + β2z̄2 + . . . βM z̄M . The gradient of log-

mean fitness is ∂
∂p`

log
[
W̄
]

= βmγm`, where βmis the intensity of
selection over the trait m. The rate of change of the frequency
p at every locus, including SMD is given by the Wright-Fisher
model (Wright, 1938; Kimura, 1955):

∂ψ

∂t
=Mδp

∂ψ

∂t
+

1
2
Vδp

∂2ψ

∂t2
(4.2)

Mδp = pqβ︸︷︷︸
selection

+µ(2p− 1)︸ ︷︷ ︸
mutation

(4.3)

Vδp =
√

pq

2N︸ ︷︷ ︸
drift

(4.4)

where q = 1 − p, µ is the mutation rate, and ζ represents the
drift, as a normal distribution with variance pq

2N , and N the
size of the population. This leads to the classical equilibrium
distribution of joint allele frequencies (Wright, 1938; Crow and
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Kimura, 1970, pp. 442-445)

ψ =
Z−1

Vδp
exp

[∫
Mδp

Vδp
dp

]
(4.5)

Here Z is the normalizing constant:

Z =
∫

exp
[
2N~β.~z + 2NµU

]
/
n

Π
`=1

p`q`d~p. (4.6)

where with U = 2
∑n
`=1 log (p`q`), the contribution by mutation of

all loci to the quantiative evolutionary potential. Notice that be-
yond just normalizing, it is a generating function; taking deriva-
tives of Log(Z) with respect to βm and µ, leads to the expected
values of the trait, and of the mutation effects U :

∂ log Z
2N∂βm

≡ 〈z̄m〉 (4.7)

=
1
Z

∫
z̄m exp

[
2N~β.~z + 2NµU

]
/
n

Π
`=1

p`q`d~p

∂ log Z
2N∂µ

≡ 〈U〉 (4.8)

=
1
Z

∫
U exp

[
2N~β.~z + 2NµU

]
/
n

Π
`=1

p`q`d~p

The angle brackets 〈. . .〉 indicate statistical expectation over drift.
The reader can check that the second derivatives correspond to
variances and covariances of the population means. The inter-
esting issue is that if there is an algebraic expression for Z, the
expectations can be calculated explicitly. Indeed, Z is:

Z =
n∏
`=1

Z`
(
µ, ~β.~γ`

)
, (4.9)

Z` =
√
π21−8NµΓ(4Nµ) 0F̃1

(
4Nµ+ 1/2;N~β.~γ`

)
where ~γ` = (γ1`, γ2`, . . . γM`) is the vector of effects of locus `

over each trait. In the last expression, Γ is the Gamma func-
tion, and 0F̃1 is the regularized hypergeometric of order (0,1)
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(this can also be written as Bessel functions, see Barton and
de Vladar (2009)). Explicit formulas for the values of the mean
traits follow from the derivatives:

〈z̄m〉 =
n∑
`=1

γml
I4Nµ+1/2

(
2N~β.~γ`

)
I4Nµ−1/2

(
2N~β.~γ`

) , (4.10)

The elements of G are,

νmr = 2
n∑
`=i

γm`γr`p`q` , (4.11)

whose expectations are can also be given explicitly:

〈νmr〉 = 2Nµ
n∑
`=1

γm`γr`

N~β.~γ`

I4Nµ+1/2

(
2N~β.~γ`

)
I4Nµ−1/2

(
2N~β.~γ`

) . (4.12)

We point out for the reader, that beyond the mathematics,
the relevance of the expressions (4.10 and 4.12) is that they
consider the genetic states by construction, but the expressions
themselves are not explicitly dependent on the allele frequen-
cies. Thus the expectations embed the genetic variables with
the quantitative traits, merging both levels of description.

If the algebraic equations above are not of much insight,
the reader may still notice that they can be used for making
estimations from the data. We presented only those formulas of
immediate interest for this study, but any other statistic can be
calculated from direct integration (at worse numerically), or by
derivatives of log(Z) (hints: covariance, higher moments of the
trait, like skewness or kurtosis, etc. see Barton and de Vladar
(2009)).

The dynamics of the expectations of the trait, can be calcu-
lated substituting the formulas of z̄m and U in Eqns. 4.7 and
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4.8 and using the rule of chain with Eq. 4.2 to calculate the
rates of change. Details are presented in Barton and de Vladar
(2009). In short:

d

dt

〈
~z

U

〉
=
〈
G ~z

~z H

〉
.

(
~β

µ

)
(4.13)

U is included because together with log-mean fitness (in this
case, the traits) couple the eeffects of mutation to the change of
G at all time points (Eq. 4.2), and H is the genetic variance of the
mutation effects U . This treatment of the effects of mutations is
somehow different to the mutation matrix M (e.g. Jones et al.
(2007)). We are for the moments uncertain about the relation-
ship between M and U and H. However we know that Eq. 4.13
faithfully leads to long-term predictions Barton and de Vladar
(2009). We approximate the genetic variances G and H, by
the corresponding expectancies (e.g. Eqns. 4.10 - 4.12). No-
tice that the parameters ~β and µ (Barton and de Vladar, 2009;
Barton and Coe, 2009), are not bound to be constant, but are
allowed to change in order to keep the distribution of allele fre-
quencies coupled to the evolutionary dynamics. Details on this
method can be found in (Barton and de Vladar, 2009).

4.3 MATERIALS AND METHODS

Summary of the Data

In the original study, Laurila et al. (2002), collected female and
male frogs from two Swedish populations of Rana temporaria.
The Kiruna ‘Northern’ population lives in a stream that rarely
(if ever) experiences desiccation. The Lund, or ‘Southern’ pop-
ulation, is situated in a pond that dries up frequently (Laurila
et al., 2002). For each location, eggs of four females were ar-
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tificially fertilized with sperm of five males for total of 45 full-
sib families. Once the tadpoles reached certain developmental
stage, 18 of them from each cross were individually dispensed
to vials with 0.75 L of water and allowed them to develop until
metamorphosis. In the meantime, each tadpole was exposed to
one of the three desiccation treatments: control (constant wa-
ter level), slow (reduction of water level by 15% at each water
change), and fast (reduction of water level by 30% at each water
change). At metamorphosis the tadpoles were weighed and the
body and tail length of the individuals were measured. Their de-
velopment time (days elapsed from the start of the experiment
until metamorphosis) was also measured. To avoid scaling ef-
fects and to homogenize variances, the natural logarithm of the
trait values was used in the analyses (Further details can be
found in Laurila et al., 2002; Cano et al., 2004).

To estimate G the authors fitted a linear animal model (Lynch
and Walsh, 1998, pp. 755-758) that considered the additive ge-
netic effects of the pedigree structure, additive genetic effects,
maternal identities in the pedigree, and nonadditive genetic ef-
fects (i.e., dominance and epistasis). T-tests were employed
to verify whether the estimations of the heritabilies and ge-
netic correlations were significantly different from zero. The
G -matrix values (and other estimations) are reported in Cano
et al. (2004) study (but see also Ovaskainen et al. (2008)).

Quantitative Estimations

Typically inbreeding experiments are used to estimate the num-
ber of loci and their effect over the traits (Wright, 1968; Lande,
1981; Ollivier and Janss, 1993). But we proceeded by a differ-
ent method, since these experiments are at the moments not
available. We calculate the minimal number of loci and their
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average effect over a trait to be respectively:

n
∼

=
(z̃)2

2ν̃
, γ̄ =

2ν̃
z̃
.

Where z̃ and ν̃ are the maximal meant trait and genetic vari-
ance. We pooled all the data of the populations, and performed
a bootstrap analysis to estimate z̃. Also assuming the pool-
ing of data, the maximal genetic variance was calculated as
Vartot = Mean(ν) + Var (z̄). Both quantities were compared to
the actual occurring maxima in the individual samples. See
Supplementary information for further details on these estima-
tions.

There can be many possible patterns of pleiotropic interac-
tions affecting the traits for a given number of loci and their
effects. We performed a random Monte-Carlo generator to sam-
ple the space of pleiotropic architectures (see Supplementary
Material). For each of these architectures, we numerically com-
puted the solution to 〈~zm〉(~β|N,µ) = ~̂zm, to obtain the variables ~β

(one selection differential for each measured mean trait). For
this we assumed a population size N and mutation rate µ. The
left side of the equation is derived from the generating function,
Eq. 4.10, and the right hand side are empirical estimations
from Laurila et al. (2002).

To asses the effects of drift, we resampled the distribution
of allele frequencies Eq. 4.5 to generate a hypothetical popu-
lations for each of the estimated scenarios. For each of these
samples of the allele frequencies, the G matrix was calculated
and plotted. Each element of G is computed from the definition
of ν, Eq. 4.11.

A similar procedure was employed to estimate the effects of
sampling within a population (simulating a field sampling pro-
cedure), but instead of randomly choosing values with the dis-
tribution 4.5, we resampled one particular p̂ (which we assumed
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as the expectancy 〈~p〉 = 1
2 (〈~z〉+ 1)). Each iteration simulated the

effects of sampling a particular population, in which we end
up with an array of ‘measurements’ for particular hypothetical
individuals. For each of these populations we re-estimate the
allele frequencies (i.e. ˆ̂p), and computed and plotted G.

4.4 RESULTS

Table 4.1 reports the results for the maximum values of the
mean traits and genetic variances, effective number of loci, and
average effect of the alleles. The reader is deferred to the Sup-
plementary Material for details on the results of the bootstrap
analyses analyses, and Monte Carlo search in patterns of ple-
iotropic interactions. For each of the 444 resulting pleiotropic
architectures, we calculated the values of ~β that match the em-
pirical mean traits with Eq. 4.10. Pleiotropic architectures that
were not compatible with the observed values, at a mutation
rate of 10−3 and population size N=300 (following Palo et al.
(2003)), were discarded. The distribution of ~β was different
for different treatments and specially for different locations (see
Supplementary Material). Incidentally, not all pleiotropic struc-
tures allowed solutions for the given empirical values. Thus
solving Eq. 4.13 not only resulted in the identification of the
SMD conditions, but also discriminated the possible pleiotropic
structures which that are consistent with the data. We found 57
pleiotropic overlaps that are consistent with data (see Supple-
mentary Material), and which in turn happened to be common
for the estimations at both locations and all treatments.

Then we forecasted the G -matrices for each estimations of
~β and their pleiotropic structures, and averaged over the lat-
ter. The eigenstructure of these averages are in good agree-
ment with those of the empirical G’s (Table 4.1), specially for
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the leading eigenvalues, although some deviations are obvious,
specially in the third eigenvalue (see Supplementary Material).

The expectancies of the genetic covariances, according to our
theory, show little difference between the two populations, at
most 0.8% in one of the genetic variances (Fig. 4.1, middle
panel), although the expectancies for the traits are actually dif-
ferent (by construction, since they were fixed in the estimation)

Then, for each estimation, we randomly sampled the distri-
bution of allele frequencies generating 10 populations per pleio-
tropic structure (4440 choices in total). We assumed a sample
size of 300, as in the experimental design (and coincidentally,
the population size). The resulting G matrices are shown in
Fig. 4.2.

In this way it was revealed that the differences in G across
the populations might be attributable to sampling effects and
drift. The following sections dissect this conclusion according
to our logic.

Figure 4.1: (Opposite page) Evolution of genetic variances with distinct mu-
tation rates. (A) µ = 10−2 (B) (µ = 10−3) (C) (µ = 10−4). In all cases, time
is scaled as t = 2Nµtg where tg is the time in generations. Solid lines: de-
velopmental time; large dashes: mass; short dashes: body length; dots: tail
length. Selection is weak, starting from the conditions estimated for the North-
ern population (Kiruna), N~β ' (−0.11, 0.99, 0.07, 0.004), and evolved towards an
equilibrium defined by the conditions estimated for the Southern population
(Lund) N~β ' (0.025, 14.1,−0.73, 0.037). Population size is 300. The dynamics
are based on Eq. 4.13 and Barton and de Vladar’s (2008) method.
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4.5 DISCUSSION

Mutational Variance

Based on neutral microsatellite diversity FST, Palo et al. (2003)
estimated that the mutation rate in R. temporaria is 6 · 10−3

with a population size (estimated form capture-recapture field
studies) of 141 individuals, but they also point out that this
number might be biased by local migration (Ellegren, 2000).
Thus another possibility they discuss is that keeping the same
value of FST, assuming that µ = 10−3 and absence of migration,
the size of the populations is of 300 individuals; this is the
scenario we have used, since we still did not develop the theory
to include migration effects. In any case at the moments it
seems that there is no decisive argument to precise neither N
nor µ. Estimates for the other mutational scenario awaits for
an extension of the theory to migration factors. Nevertheless,
since the effects of mutation is an open question, we can give a
brief theoretical account on its effects over G .

The expected time to achieve changes in G increases when
diminishing the mutation rates. Assume for the moments that
mutation rate is 10−4. One generation in R. temporaria takes
about 4 yrs, which is equivalent to t = 0.0015 (time is scaled
as 2Nµt). At this rate, about 1700 generations (6.7 millennia)
would be needed to reach MSD balance in G (Fig. 4.1, top
pannel). Contrast this result at mutation rates of 10−3, when we
should about 17 generations (less than 70 years) of continuous
selection are needed to reach a SMD equilibrium in G (Fig.
4.1, middle pannel). Actually, these mutation rate scenarios
(Ellegren, 2000) fit very well to the range of time that Laurila
et al. (2002) suggest for the divergence of the two populations,
which had to happen during the last 10 millenia.
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However, notice that for low mutation rates, the overall change
in the genetic covariances is very low. The predictions of 〈G〉 in
both populations differ in at most 0.8%, which is a difference
too small to be detected. Nevertheless, phenotypic changes are
conspicuous between the traits of both populations of R. tem-
poraria. But even when these phenotypic changes have indeed
taken place, they are not accompanied by a big change in the
covariances. This is what raises our doubts in that selection is
the responsible factor for the observed differences in G .

Action of Selection

The original study about the evolution of the G -matrix in R. tem-
poraria reported that the index of quantitative variation (QST)
deviated significantly from FST, the index of differentiation at
neutral genetic markers (estimated by microsatellite analyses
Palo et al., 2003). This shows that selection is acting, and in-
ducing phenotypic diversification. The empirical estimations of
the G -matrices for different treatments and locations were an-
alyzed statistically (Cano et al., 2004) to reveal that the additive
genetic co-variances, for most traits, are non-equal between the
two locations. This lead to optimism that selection is the cause
for such variation.

The distribution of selective gradients ~β (estimated from the
data, for each pleiotropic structure) between both populations
is different, supporting that the diversification between the two
population was driven by selection. Yet the expectancies of 〈G〉
do not show such contrasting differences as the reported empir-
ical G -matrices. The eigenstructures of 〈G〉 in both populations
are highly similar (Supplementary Material; Table 4.1 and Fig.
4.2). Even though our theory supports that selection has acted
to shift the phenotypic values, it reveals has not acted strongly
enough to shift the genetic covariances.
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If selection for a character proceeds in the opposite direction
as in the natural equilibrium conditions that maintain SMD,
there can be a transitory increase in the genetic covariances,
due to pleiotropic effects. This seems to have happened in the
recent diversification of the two populations (Fig. 4.1, middle
panel). We presume that this happened during the first two or
three centuries after the populations separated, provided that
the ecological conditions were such that selection and popula-
tion size remained, in average, constant.

Effects of Genetic Drift and Random Sampling

The estimations based on our theory indicates that the observed
changes in G are most likely attributable to drift, rather than to
mutation or selection. The amount of individuals employed in
the experiments allow for significant deviations by genetic drift.
Each locus contributed to the variance of drift σ2 by an amount
of pq(2p−1)2/2N , which has a maximum value of (32N)−11.210−4.
If we account for all loci, and for a population of size 300, we
can have a range of percentile standard error (σz/z̄) from 8% to
220%. Thus the power to discern selection from drift can be
rather low.

This should not be confused with the power of the statisti-
cal analyses in Cano et al. (2004). Their analyses have enough
power to discern differences in the G -matrix structures, sup-
ported by a good experimental design (Lynch and Walsh, 1998).
Our argument is that the cause of G’s differentiation is genetic
drift.

To assess this possibility, we sampled the distribution of al-
lele frequencies. For each sample of allele frequencies, say p̂,
the covariance matrix, Ĝ was calculated. Figure 4.2 (top panel)
illustrates that the variation pattern on G . Notice how G is
distributed in a bimodal fashion. Furthermore, the empirical
G for both populations seem to fit well in these distributions.
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Figure 4.2: Drift and sampling on G (two principal components: development
time and tail length) in two Swedish populations of Rana temporaria. Top row:
effects of genetic drift on G evaluated by randomly sampling the allele frequen-
cies (gray ellipses). Black ellipses: expectancies 〈G〉. Bottom row: effects of
sampling individuals from a particular population (gray ellipses). Dotted black
ellipses: ‘empirical’ Gs (Cano et al., 2004). Samples include the 10 realizations
of each pleiotropic combination of genetic effects, along with their respective
β. Mutation rate is µ = 10−3. Population and sample sizes are 300 for the
expectations, and 72 for the drift samples. The representations of G follow the
conventions by Arnold et al. (2008): the semi-axes of the ellipse are eigenvec-
tors of the components, with length 1.96

√
λ, where λ is the eigenvalue of the

component.
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4. EVOLUTION OF THE G-MATRIX

But on top of this stochasticity, there is also randomness
due to experimental sampling. One population is in itself a
sample , p̂, of the distribution of allele frequencies. Thus the
genetic states of an individual follows a Bernoulli distribution
(assuming two alleles at each locus) with certain probability p̂.
Hence the G matrix associated to a population, is restricted to
a particular realization of the distribution of allele frequencies.
Figure 4.2 (lower panel) shows the sampled genetic covariances
along with the empirical G’s. It is clear to our eyes, that the
differences in G from both populations are attributable first to
drift, and second to sampling, rather than to selection.

How far are we?

The details that affect the evolution of G are vast. The quantita-
tive trait loci, and the effect that each of these can have over the
traits, are in general a real puzzle. We are able to access so lit-
tle information about the genetic and epigenetic effects, that we
are unable to predict how G will respond in their presence. We
have assumed very restrictive conditions, like Hardy-Weinberg
equilibrium, which thanks to the appropriate experimental de-
sign of the data herein used, can safely be assumed. Also, selec-
tion was assumed to be directional and the estimations show it
is fairly weak. This allows the possibility that, to some extent,
the effects of linkage can be disregarded (Barton and Turelli,
1991; Kirkpatrick et al., 2002). But other factors with potential
consequences in our predictions were left out. Namely recom-
bination, epistasis, and dominance, to mention popular ones.
Still, the specific model we have herein introduced allowed us
to blur much of the information that is experimentally tedious
to obtain. The technical details of the method are discussed by
Barton and de Vladar (2009), some of which are subtle. But
essentially we have shown that we can dispense of many de-
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grees of freedom, which were thought to be required to forecast
evolution.

The theories on the evolution of G , and its empirical stud-
ies have remained separated. We have merged some facets of
population and quantitative genetics. We still have some degree
of uncertainty, with respect of biological factors. If, for exam-
ple, we were able to precise N and µ, our estimations would
lead to predictions of the G matrix, which are testable. Thus
appropriate experimental design in line to the assumptions of
our calculations can properly help to discern what precisely is
affecting G’s evolution.

This work is an exercise illustrating that the line of modeling
that we are following, that is to study the evolution of the ex-
pectancies of the quantities of interest, can be rewarding. This
is still to be done for realistic eco-evolutionary scenarios; but so
far so good.
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Chapter 5

Evolution of Polygenic Traits:
Adaptation at Maximal
Entropy.

It is a very sad thing that
nowadays there is so little
useless information.

Oscar Wilde
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5. EVOLUTION OF INFORMATION

Abstract

We review models that aim to predict quantitative evolution
in a bottom-up derivation from population genetics theory
when the allele frequencies are under the effects of muta-
tion, selection and drift. Up to now the problem remains
largely open, since the existing approaches require restric-
tive assumptions and many approximations to be success-
ful. However, recent works have addressed the problem
from a top-down approach. Based on the fact that maxi-
mizing an appropriate measure of entropy — constrained
to quantitative measurable quantities — recovers the mi-
croscopic distribution of allele frequencies, it is possible to
predict evolution in a deterministic way, at least for the ex-
pectations of quantitative characters. We point out what
the simplifications with respect to the other approaches
are, and give a comprehensive view of the possible pre-
dictions. We explain both aspects of entropy maximiza-
tion: the technical advantages, as well as their interpre-
tation in the evolutionary process. We highlight some key
aspects of this approach, and its relation to fitness land-
scapes, Fisher’s Fundamental Theorem of Natural Selec-
tion, and the evolution of the G-matrix of correlated quanti-
tative characters. We also point out some examples, show-
ing the potential of this approach.
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5.1 INTRODUCTION

Is genetic variability maintained by selection-mutation bal-
ance, or by neutral mutations? Perhaps by pleiotropy? How

does drift affects variability? These are typical questions that
population genetics (PG) and quantitative genetics (QG) ask.
These disciplines describe the evolution at the levels of allele /
genotype frequencies and phenotype frequencies, respectively.
The mathematical foundation of each is solid (Ewens, 1979;
Lynch and Walsh, 1998), and the relationship or equivalence
between these two exists, but relies on labyrinthine compli-
cated mathematics. Thus understanding the mechanisms that
maintain or induce genetic polymorphisms can give insights to
predict and understand phenotypic quantitative evolution. The
resulting traits after selection at every time point depend on the
current values of genetic variability, whose change cannot be
predicted from quantitative measurements alone (Turelli, 1988;
Barton and Turelli, 1989).

If infinitely many loci and/or infinitely many alleles with dif-
ferential effects segregate, genetic variance remains unchang-
ing in time, which is enough to account for short term pre-
dictions even in multivariate traits (Lande, 1979), but not for
long term predictions (Turelli, 1984; Barton and Turelli, 1989).
Alternatively, allowing for notable effects of each mutation in-
duces asymmetry (e.g. non-normality) in the distribution of al-
lele frequencies, which in turn induces a change in genetic vari-
ance (Kingman, 1978; Turelli, 1984; Barton and Turelli, 1987).
Provided that new alleles remain rare in the population good
approximations for the change in genetic variance can be found
(Kingman, 1978; Bulmer, 1980; Turelli, 1984; Barton, 1986;
Barton and Turelli, 1987).
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5. EVOLUTION OF INFORMATION

The general theory to predict quantitative evolution
solely in terms of measurable metric characters has been rely-
ing on the mapping of the allele frequencies to moments (Barton
and Turelli, 1987; Frank and Slatkin, 1990; Bürger, 1991) or
cumulants (Bürger, 1991, 1993; Rattray and Shapiro, 2001). Al-
though elegant mathematically, the applicability of the results
is highly shadowed by the fact that the space of the trait in-
volves infinite moments or cumulants. Even if we have criteria
to choose some of them, in general the equations still depend on
the allele frequencies (Barton and Turelli, 1987; Bürger, 2000).

For practical reasons, this is too cumbersome to be useful,
because of technical limitations on genetic measurements. DNA
can be screened to identify which regions, genes, or generally
speaking which alleles can have effects on different traits. But
these polygenic states are rarely screened in the whole popula-
tion or through time, at least with enough accuracy to comply
with predictions from PG. We typically do (or can) not know in
detail how many loci contribute to an evolving trait (quantita-
tive trait loci, QTL), except for the few that contribute with a
large effect (Barton and Keightley, 2002; Roff, 2007).

Other lines of work have studied different theoretical as-
pects of the distribution of allele frequencies. Namely, Iwasa
(1988) found that measuring entropy with respect to the equi-
librium frequency distribution, leads to a non-negative increase
of this quantity. Yet other work (Prugel-Bennett and Shapiro,
1994, 1997; Rogers and Prugel-Bennett, 2000) truncated the
system of trait moments, and maximized an entropy measure
to account for the remaining information not included in the
truncated dynamics. This had notable success. Other articles
have recently reported an analogous structure of the coupling
of PG and QG with statistical mechanics in the physical sci-
ences (Sella and Hirsh, 2005; Ao, 2005, 2008; Saakian et al.,
2008; Barton and de Vladar, 2009; Barton and Coe, 2009). Par-
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ticularly, this approach has been successful in eliminating the
explicit dependence on the allele frequencies, and the need to
truncate arbitrarily the macroscopic space (mean trait, genetic
variance, etc, thus we could say that it is successful in explain-
ing and complementing some aspects of QG theory. This raises
the hope that we can actually make long term predictions of
the evolutionary dynamics, still considering the ‘microscopic’
factors (allele frequencies and their effects over the trait), but
making minimal use of this information.

But how much evolutionary chance can we predict with-
out directly addressing microscopic information? This is the
main question with which we will deal in this article, and to
which entropy maximization gives some solutions. Although
previous works on this subject were mostly of a theoretical na-
ture, to show the potential of the approach we apply it to se-
lected examples, such as the Fundamental Theorem of Natural
Selection (Fisher, 1930, 1958), Wright’s adaptive Landscapes
(Wright, 1967, 1988), Quasispecies, and the evolution of the
covariance among characters (the G-matrix).

5.2 MECHANISMS OF QUANTITATIVE
EVOLUTION: BOTTOM-UP THEORIES

If the polygenic basis of a trait would consist of infinite alleles of
infinitesimal Gaussian effect (Fisher, 1918; Kimura, 1965a) the
genetic variance would remain constant under the action of se-
lection, and at equilibrium the quantitative trait would be nor-
mally distributed (Kimura, 1965a). This is the basis for Lande;
Lande’s (1979; 1980) extension to the evolution of multivariate
traits, and a common assumption in quantitative genetics. In
general, selection induces asymmetry in the distribution of al-
lele frequencies, followed by a change in genetic variance, which
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is widened by frequent mutations of finite effect (the “house of
cards model”, Kingman, 1978; Turelli, 1984). But mutations
are typically infrequent (rate of about 10-3 per locus per gen-
eration) thus we expect that the fittest alleles fixate at equi-
librium, depleting all standing genetic variation (Fisher, 1930;
Bulmer, 1971; Kingman, 1978; Turelli, 1984). Interestingly, the
predictions for finite numbers of alleles, say two (Wright, 1935;
Bulmer, 1972), three or more (Turelli, 1984) are the same as for
infinite alleles; hence the genetic variance is independent of the
number of segregating alleles, as long as they remain rare in
the population (Turelli, 1984; Barton, 1986).

Despite the fact that the above models are valid only close to
fixation, they are not suitable for a quantitative approach, since
only the allele frequencies at every locus, denoted by the vector
~p, evolve. A possible solution would be to track the genotypes,
which is actually convenient for a multi-allelic situation, since
the problem can be reduced to a 2-allele equivalent (Szathmary,
1993). The problem is that counting the number of genotypes
for many loci involves even more variables than the allele fre-
quencies. The desirable alternative is to make a change of vari-
ables ~p→ ~A where ~A is a vector of (only) macroscopic variables.
It turns out that ~A consists of the moments of the distribution
of the trait. This change of variables has been characterized to
describe the evolution of the macroscopics (Barton and Turelli,
1987):

d ~A

dt
= B.β̃ (5.1)

where B is the covariance matrix (or Jacobian matrix) of ~A and
~p (typically non-trivial moments of the distribution of ~p and al-
lelic effects), and ~β = ∂ ~A log(W̄ ) , the (multivariate) gradient of
the log-mean fitness. But there are two unfortunate hindrances
with Eq. 5.1. First, a standard result of statistics (Karlin and
Taylor, 1975, Ch. 1) is that to represent a probability distribu-

148



5.2. MECHANISMS OF QUANTITATIVE EVOLUTION

tion in terms of moments or cumulants, we need to specify all of
them, that except for special cases the number is infinite. Thus
~A(and hence B and ~β) are of infinite dimension. The second
hindrance is that B still depends on the genetic frequencies. To
approach Eq. 5.1 in a tractable way two approximations can
be made. For the first, we can decide which of the predictors
in ~A are the most important, and neglect the rest (Barton and
Turelli, 1987; Bürger, 1993; Rattray and Shapiro, 2001). The
second is to assume an underlying distribution of ~p to explicitly
calculate the terms in B. Then the dimensionality of the system
is reduced and the allele frequencies are averaged-out.

As a simple, first example approximate ~A = z̄, then B= ν, the
additive genetic variance. This is basically results in a version
of the breeder’s equation. Note that the breeder’s equation in tis
canonical form, ∆z̄ = h2s, employs heritability h2 = ν/σ2, and
the difference ∆z measures changes from the parental traits,
resulting from directional selection with intensity s. The dif-
ference that we are speaking about is ∆z̄ = νβ measures the
change on the mean trait between generations, and the selec-
tive gradient β is the correlation between fitness and the trait.
Both differences, ∆z and ∆z̄ measure the average response of
the traits to selection, the meaning is slightly different.

Likewise, assuming that ~A = (z̄,ν) we obtain in addition that
∆ν = ν/neff where neff is the effective number of loci (Barton and
Turelli, 1987). Essentially the last equation is Bulmer’s (1971)
equation for a Gaussian model, which unfortunately underesti-
mates the change in ν (Barton and Turelli, 1987; Bürger, 1993),
and requires an estimate of neff that is both experimentally un-
available and changing in time.

Keeping the first three terms, ~A = (z̄, ν,m3) (where m3 stands
for the third central moment of ~p), and assuming the house of
cards model, the evolutionary dynamics are to some extent well
predicted when many alleles are included, approximating the
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situation that each mutation leads to a rare allele.
Instead of employing the moments of the trait as macro-

scopics, the cumulants have been also proposed (Bürger, 1991,
1993; Rattray and Shapiro, 2001) as descriptors. But this de-
scription suffers from the same pathologies. For directional se-
lection, a house of cards model with an initial distribution of
allele frequencies, using four cumulants (mean, variance, skew-
ness and kurtosis of z) provide a fairly good agreement on long
term predictions when mutation rate is low enough (< 10-2),
the allelic effects are small and thus the initial variance is also
small. Otherwise, the long term predictions are not reliable
(Bürger, 1991, 1993).

Perturbation analysis (analysis of a system in terms of an-
other one that is closely related) over neutrality can lead to good
approximations for weak directional selection. Furthermore,
low mutation rates allow approximate closed solutions, if on
top it is assumed that the higher moments reach equilibrium
much faster than the lower ones (Rattray and Shapiro, 2001).
Whether this is also true for other selection schemes like stabi-
lizing, unequal effects, epistasis and linkage disequilibrium, we
still don’t know (Bürger, 2000).

These mechanistic theories have given some insight into how
the micro-macroscopic levels are related, but the theory as a
whole has remained wide open in predicting, or fully explaining
QG theory. In particular, how the additive genetic variance is
changing in time.
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5.3 ENTROPY MAXIMIZING THEORY:
TOP-DOWN APPROACH

Iwasa (1988) studied some population and quantitative genet-
ical problems from a rather uncommon approach for the field.
He calculated the rate of change of the entropy of the distri-
bution of allele frequencies, ψ, motivated and justified only by
its use in statistical physics as the H-Theorem (see Reif, 1965,
Appendix A.12, pp. 624-625). As presented by Iwasa, entropy
measures the proximity of ψ(~p) with respect to its equilibrium
state. At maximal entropy, ψ(~p) would correspond to the one
dictated by equilibrium between selection, mutation, and drift
(SMD) balance.

Aita and collaborators (Aita and Husimi, 1998, 2003; Aita
et al., 2004, 2005) chose a similar way of studying evolution un-
der directional selection and mutation. They also have shown
how entropy increases during a fitness hill-climbing process as
evolution leads to its maximum, thus employing it to monitor
the optimization process rather than directly the microscopic
variables.

In an analogy to this kind optimization procedures Prügel-
Bennet and Shapiro (1994; see also the further works of Prugel-
Bennett and Shapiro, 1997; Rogers and Prugel-Bennett, 2000)
studied the evolution of the mean fitness of a population with
polygenic basis, under the influence of directional selection and
mutation. Naturally they were confronted with the problem of
infinite recursion of the moments of mean fitness.
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Thus they decided to track only mean fitness and fitness
correlation (proportional to the additive genetic variance), and
assumed that all remaining moments would follow a distribu-
tion that maximizes an entropy measure. The method proved
successful in the sense of describing the quantitative evolution
(mean fitness and its correlation in his case) without directly
addressing the microscopic variables. Related works applied
this methodology for variants of the problem (although focused
on genetic algorithm dynamics Rogers and Prugel-Bennett, 2000)
also including the effects of recombination (Prugel-Bennett and
Shapiro, 1994).

These works introduced a very interesting approach, but
most of them neither considered central biological questions,
nor paid too much attention to the biological assumptions. The
price for this is actually that most of these models are incon-
sistent with population genetics theory, and therefore the pre-
dictions are not entirely reliable for the purpose of quantitative
geneticists.

SELECTION-MUTATION-DRIFT EQUILIBRIUM

Given the evidence that entropy, rather than fitness (though see
Metz et al., 2008, and also Appendix A) is maximized at equi-
librium, and that it allows to close the moments and average
over the microscopic variables, Barton and de Vladar (2009) re-
considered these ideas in a more biologically-consistent frame-
work. The entropy measure S is (Barton and de Vladar, 2009;
Barton and Coe, 2009):

S[ψ(~p)] := − 1
2N

∫
ψ(~p) log

(
ψ(~p)

φ(~p)

)
dn~p (5.2)

What makes this entropy measure relevant for population
genetics is the prior distribution φ. S would be maximum only
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Figure 5.1: Distribution of the favorable allele under: (A) No selection, (B) di-
rectional selection, (C) stabilizing selection. Dotted lines: distribution under the
effects of drift; solid curves: distribution under the effects of drift and mutation.
Notice that in the absence of mutation, some of the alleles fixates, irrespective of
the action and type of selection. Therefore the dotted curve on the left panel is
the ’base’ distribution of the drift component. These distributions are the same
if we calculate by maximum entropy, or by diffusion approximation. The thin
line in the middle panel, corresponds to Prügel-Bennett’s (1997) assumptions
(uniform prior in the max-entropic measure).

whenψ(~p) = φ(~p); in physics, as well as in Prügel-Bennet’s work,
φ is a constant and thus any state is equally probable. We know
from population genetics that this is not the case, since in the
absence of other evolutionary factors, drift drives the alleles to
fixed states p` = {0, 1} at all of the n loci (Crow and Kimura,
1970, pp. 327-329). This distribution, following Kimura (1955,
pp. 147 Eq. 9) is φ(~p) =

∏n
` [p(1− p)]−1 (Fig. 5.1a).

Other evolutionary effects can be included if in the maxi-
mization of S we include certain variables ~A (termed observ-
ables, in the same sense as Prugel-Bennett (1997) see also (Bar-
ton and de Vladar, 2009; Barton and Coe, 2009). Then Eq. 5.2
leads to

ψ(~p) =
φ(~p)

Z
e~α.

~A . (5.3)

The quantity Z =
∫
φe~α.

~Adn~p normalizes the distribution, and
the vector of parameters ~α determines the evolutionary pro-
cesses maintaining equilibrium between the macroscopics ~A;
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if all these constants are zero, then the distribution is dictated
by genetic drift, as we discussed above.

Barton and Coe (2009), setting α0A0 = log(W̄ ), recovered
Sella and Hirsh’s (2005) results for low mutation rates and drift.
If selection is directional over an additive mean trait (aka Sella &
Hirsch’s additive fitness), then α0 would be the selective gradi-
ent, and A0 = z̄ (see also Ao, 2005, 2008). This reduces the dis-
tribution of allele frequencies to the distribution of fixated geno-
types, and the conditions of selection-drift equilibrium reveal
that mutations need not to be nearly neutral in order to main-
tain a constant substitution rate. Sella and Hirsh (2005) re-
discovered one of the special cases of Iwasa’s (1988) free fitness,
that is a function which balances “the evolutionary tendencies
in finite populations to increase both fitness and entropy” (quot-
ing from Sella and Hirsh, 2005). Barton and Coe (2009) comple-
mented the theory finding that the macroscopic that describes
processes at high mutation rates and which dovetails with the
Wright-Fisher model would be U = 2

∑
` log[p`(1 − p`)], that is a

log-measure of heterozygosity, and its conjugate process is mu-
tation, quantified by the rate µ. In this case, the free fitness
would be exactly that of Iwasa (1988). We will return to the
free fitness when discussing Fisher’s fundamental theorem of
natural selection.

Maximizing a genuine entropy measure avoids an arbitrary
moments truncation, but how does it ‘hide’ the microscopic
variables? The quantity Zaverages over the allele frequencies ~p,
and depends explicitly on population size N and ~α, which define
the factors maintaining SMD equilibrium. In fact derivatives of
the form (∂/∂αi) log(Z) = 2N〈Ai〉 yield the statistical expecta-
tions of the macroscopic variables, and the cross derivatives
the covariances among the macroscopics, (∂2/∂αi∂αj) log(Z) =
4N2cov(Ai, Aj).

These expectations do not depend on the allele frequencies,
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but like Z they depend on N and α which are in principle ex-
perimentally measurable.

Defining different macroscopics will describe different selec-
tion schemes. Consider three important examples. (i) If the only
observable is ~A = U , we will recover neutrality: mutation-drift
equilibrium. (ii) If the only observable is ~A = z̄ then the result-
ing distribution is that of directional selection (Sella and Hirsh,
2005; Barton and Coe, 2009), and if we define ~A = {z̄, U} then it
is directional SMD (Iwasa, 1988; Barton and de Vladar, 2009).
(iii) If we include ~A = {z̄, var(z̄), ν} then we will obtain stabilizing
selection, and further inclusion of U will add mutation to the
evolutionary scheme (Fig. 5.1).

Furthermore, to have concrete numbers for the estimators,
we can assume a genetic architecture, e.g. the way in which
the genotype maps to the phenotype. Works on diallelic loci
have, for simplicity, often assumed equal additive effects (Bul-
mer, 1972; Bürger, 1991, 1993; Prugel-Bennett and Shapiro,
1994, 1997; Rattray and Shapiro, 2001; Saakian et al., 2008).
Barton and de Vladar (2009) relaxed the equal effects assump-
tion and provided explicit solutions for directional and stabi-
lizing SMD of an additive trait, as well as the framework for
dealing with certain classes of epistasis. Although the predic-
tors do not depend on the allelic frequencies, they still depend
on the number of loci and their effects. But it is striking that
the system is not only well defined by just a few macroscopics,
~A, but also that they define the whole microscopic distribution,
even when the microscopic degrees of freedom is much bigger
than the macroscopic degrees of freedom.

It is notable that we can recover and predict results for SMD
by direct calculation from the function Z. A pertinent example
is the maintained equilibrium genetic variance. At high muta-
tion rates, the expected genetic variance maintained by MSD
would be
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〈ν〉 = 〈z̄〉2Nµ
Nβ

+ cov(ν, z̄) ,

under stabilizing selection (if selection is directional, the covari-
ance vanishes). This is the same prediction that arises form the
Wright-Fisher model. The assumptions behind, are not too re-
strictive; it allows for arbitrary number of loci of distinct effects,
as long as there is no pleiotropy, or linkage disequilibrium.

EVOLUTIONARY DYNAMICS

Since the descriptors that are needed to track evolution are well
defined, the evolution equations would be resumed by the rate
of change of these variables, instead of infinite moments or cu-
mulants, thus eliminating the need to arbitrarily truncate the
macroscopic space. But there is more to learn from the pre-
vious approaches. If the distribution of allele frequencies is
initially concentrated (like a Gaussian, Gamma, or at an equi-
librium maintained by and initial MSD balance that later chan-
ges), even under random drift, its path towards the new equilib-
rium is not arbitrary, but evolves as a travelling wave (Bürger,
1993; Rattray and Shapiro, 2001; Rouzine et al., 2003, 2007),
smoothly morphing from the initial distribution to the final one,
that is dictated by the max-entropic MSD equilibrium. Actually,
a good approximation for the dynamics results from assuming
“local equilibrium” which means that out of equilibrium the en-
tropy is still maximized, constrained to the same observables
as in equilibrium, but with virtual selective value and mutation
rate such that they match the expectancies. These virtual vari-
ables are not necessarily the actual selective gradient or mu-
tation rate, but they are forged and changing in time in order
to keep (a) entropy maximized, and (b) the observables at their
genuine macroscopic values at all times (Barton and de Vladar,
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2009). Only at equilibrium these virtual variables match with
the real selective gradient and mutation rate.

This would work as long as selection is stabilizing, or is di-
rectional with mutation rates that are high or very low. The dis-
tribution of allele frequencies will remain far from the borders
of fixation (pl = 0, 1) when 4Nµ > 1, and the changes towards
the new equilibrium are smooth. Similarly, when 4Nµ ∼ 0, se-
lective sweeps induce changes in the proportion of fixed states
in a smooth way. In both cases the max-entropic distribution
remains accurate. However in the middle regime, close to the
critical rate µc = 1/4N , both effects are present, but the time
scale for selective sweeps to occur is lower than the time for
a change due to standing genetic variation. The max-entropic
approach fails to recover the evolutionary paths either of the
microscopic or the macroscopic variables, since local equilib-
rium is disturbed (Barton and de Vladar, 2009). Away from µc
every given locus and its copy evolve independently, but close
to µc these microscopic changes are correlated. Although the
equilibria will be well described by the two observables z̄ and
U , the dynamics will require an extra degree of freedom that
accounts for that correlation, k̄. This correlation is proportional
to the excess of the genetic variance k̄ = 2(νmax − ν), where νmax

is the maximal possible genetic variance. The evolution of this
quantity happens to follow from the dominance of the allele that
is being selected, with strength η over fitness. The dominance,
set initially to η = 0 will transiently evolve, and vanish again
when MSD is consummated. This means that at these inter-
mediate mutation rates, dominance will effectively appear and
affect the relative fitness of the alleles, even when the effect is
not present ad hoc.
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5.3.1 Adaptive landscapes and adaptive
potential

(Fisher, 1941) never accepted Wright’s ideas about fitness land-
scapes (Wright, 1967, 1988). He found the surfaces of selec-
tive value an artificial construct appearing only in very specific
cases. Artificial as it might be (Provine, 1986), it has been a
paradigm to think about evolution, and yet as a generally ap-
plicable concept it remains unjustified. But it is a good aid to
understand the connection between the distribution of micro-
scopic with the macroscopic descriptors (Arnold et al., 2001).

The max-entropic approach can contribute with a concept: a
landscape is induced rather than assumed. It is based on quan-
tities that are measurable that lead to an adaptive landscape,
the golden child of Wright’s conceptualism of the evolutionary
process.

Contrary to the fitness landscape, the max-entropic induced
landscape is the actual potential for evolutionary outcomes in
the presence of mutation and drift effects, and not just naı̈ve
expectations deduced only from fitness arguments. As seen in
Fig. 5.2a, a landscape in the allele frequencies indicates that
the optimal region in equilibrium is not fixation of the fittest
alleles (since there is also mutation and drift). Furthermore, we
are able to reconstruct the landscape in terms of the macro-
scopic variables. Examples with several numbers of loci of ei-
ther equal or unequal effects are given. Notice in particular that
with some distributions of effects only those that contribute the
most can be enough to reconstruct the phenotypic landscape in
good approximation (Fig. 5.2b).

Furthermore, we can predict for a given value of the mean
traits (or for any other quantitative measurement) the distri-
butions of allele frequencies at a locus. This is a posterior
distribution, and it differs from that of the one-locus distri-
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5. EVOLUTION OF INFORMATION

bution (Fig. 5.2c) that results when no further information is
defined (in analogy to Bayesian estimation of distributions, see
e.g. Shoemaker et al., 1999). This difference appears because
the allele frequencies are not entirely free to wander in the geno-
type space. In analogy with Wright’s shifting balance process
(Wright, 1932) where selection would lead to maximal fitness,
if drift introduces a deviation in the population’s allele frequen-
cies, selection and mutation would induce a net response of
the allele frequencies in the direction that maximises entropy.
Thus the allele frequencies are all coupled and obliged to fit the
observables that maximize entropy. This reasoning in terms
of entropy might sound abstract but actually it is very consis-
tent, because maximal entropy is a macroscopic measure of the
equilibrium between SMD.

5.3.2 Fisher’s fundamental theorem of
natural selection in a max-entropic
context

Fisher’s Fundamental Theorem of Natural Selection gives the
rate of change of mean fitness that is due to selection (Fisher,
1930). Although the conditions under which the theorem holds
are broad, Fisher’s derivation (1930) of his theorem is obscured
by his cryptic explanations, although later authors have elu-
cidated what the author meant (Frank and Slatkin, 1992; Ed-
wards, 1994; Fisher, 1999; Edwards, 2002; Grafen, 2003). The
FTNS states that the change in mean fitness of a population due
to selection is proportional to the variance in fitness. Math-
ematically, we write this as ∆W̄ = var(W )/W̄ ; since the vari-
ance is always positive, then mean fitness always increases.
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Figure 5.3: The change in the expectance of mean fitness, as predicted by
Fisher’s fundamental theorem (dashed line, red on-line), the predictions includ-
ing finite size-effects for distinct population sizes N only showing the component
due to selection (solid lines).

This equation is very general and the scope of its applications
reaches more than PG and QG (for some generalizations, ap-
plications and extensions see Ewens, 1969, 1976; León and
Charlesworth, 1976, 1978; Frank, 1997; Vlad et al., 2005).

In finite populations drift will also influence the genetic vari-
ance, producing an indirect change in W̄ , such that in a partic-
ular stochastic realization it may actually decrease (Nagylaki,
1993). But we can compute Fisher’s principle as statistical ex-
pectation on the universe of possible realizations. A general
equation for the change in mean fitness is possible, but we con-
sider now only directional selection over the fitness. We find,
applying the max-entropic calculations, that:

ds
dt
〈W̄ 〉 = β2

(
1 +

1
2N

)
〈νW̄ 〉 ≥ 0 (5.4)

where we denoted by ds the change in fitness due only to the se-
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5. EVOLUTION OF INFORMATION

lection component, as in Fisher’s interpretation. The term 1/2N
arises from the effect of drift, and can be obviated if we want
to be sharper with Fisher’s statement. (We choose to include
it since it always appears, extending the theorem to the effect
drift: the change in expected mean fitness due to selection and
drift, will always increase.) The expected mean fitness chan-
ges proportionally to the expected covariant change between
the genetic variance and the mean fitness, but this expectation
is always positive, contrary to the individual realizations. (It
should not to be confused with Price’s (1970) equation, whose
covariance term would be in level of averaging within a popula-
tion; the expectancy that we speak here is with respect to the
universe of possibilities of population realizations). The evolu-
tionary components that don’t act directly on a trait (or fitness)
still deform the adaptive landscape (or in general, potential),
and have an indirect effect over the genetic variance.

We evaluate Eq. 5.4 as well as the deterministic version
(Fig. 5.3). The max-entropic approach preserves the FTNS in
a statistical sense, but the quantitative trajectories are actu-
ally different: they are initially delayed, and accelerate at latter
times. Still as N → ∞ we would recover the deterministic ver-
sion. This is because the fluctuations by drift have variance
proportional to (2N)−1, which vanishes for big population sizes,
and the evolutionary trajectories become entirely deterministic.

5.3.3 The G Matrix and the Evolution of Cor-
related Characters

As a last example, we consider a more practical and and useful
model: the correlated response to multivariate traits. A classi-
cal way to handle this problem, is assuming that the evolution
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5.3. ENTROPY MAXIMIZING THEORY

of a vector of trait means ~z, can be described by d~z/dt = G.P−1.~β,
where G is the genetic variance-covariance matrix, and P is
the matrix of environmental variances (Lande, 1979). Conse-
quently quantitative genetics pays huge attention to the evolu-
tion of the G matrix (Steppan et al., 2002; Blows, 2007; Koti-
aho, 2007). If it were constant, there would be no major predic-
tive problem (Lande, 1979). However, we know from theoretical
studies (Lande, 1980; Turelli, 1988; Lynch and Walsh, 1998),
and from empirical estimates (Wilkinson et al., 1990; Paulsen,
1996; Phillips et al., 2001; Cano et al., 2004; Ovaskainen et al.,
2008), that G changes. Still, there is no consensus: the change
in G might be slow, and effectively constant (Björklund, 2004),
or fast (Cano et al., 2004; Doroszuk et al., 2008). Depending
on the selection intensity and the genetic structure of the traits
(e.g. allelic effects), pleiotropic effects (Lande, 1980; Barton,
1990; Keightley and Hill, 1990; Slatkin and Frank, 1990; Kon-
drashov and Turelli, 1992; Turelli and Barton, 2004; Tanaka,
2005; Jones et al., 2007; Albert et al., 2008), genetic drift (Roff,
2000; Jones et al., 2003, 2004), migration (Guillaume and Whit-
lock, 2007), etc, G
will effectively change across generations in an unpredictable
way. Even after identifying experimentally that the genetic co-
variances have changed, estimating the rate of these changes is
still an experimental and theoretical challenge.

Since G is basically a set of macroscopic descriptors, and
is influenced by the microscopic hidden variables, we can esti-
mate the max-entropic expectation for 〈G〉. We will only high-
light some results on the subject, and an application. The com-
plete analysis is a subject on itself and will be published else-
where.

When mutation is small and compensated by drift
(4Nµ � 1) most loci will have an allele very near to fixation. A
change in selection will proceed only by standing genetic vari-
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ation, that is proportional to mutation rate. This predicts that
there are many generations of latency before a change in ge-
netic variance is observed. After selection acts, the eigenvalues
would be severely shrunk. Conversely, the change of G when
mutation rate is big (4Nµ > 1) will proceed by both, standing ge-
netic variation and newly produced mutational variation. But
the observable that quantifies mutation, U , also needs to be
considered to take into account how G responds. This means
that the rate of change of genetic variability U , needs to be in-
cluded in and extended version of G. In doing so, the latency
periods are much shorter, but G’s eigenvalues suffer much less
change. Thus the max-entropic theory advises how to include
the effects of mutation.

As a practical example, in the previous chapter we compared
the predicted values of the G matrix with the experimental data
for Rana temporaria reported in Cano et al. (2004). We made
rough approximations of average effect, effective number of loci
and pleiotropic structure, summarized in Table 4.1. The muta-
tion rate µ is estimated to be on the order of 10-3 (Palo et al.,
2003). Thus we proceeded to fit the selective values that explain
the measurements of the traits, according to the theoretical pre-
dictions (Cano et al., 2004, with n=300, that is the sample size
from the real population, but at the same time, the size of the
experimental population). From these fits the G-matrices were
predicted before and after selection (see chapters 4 and 6). The
deviations from the empirical G are not big (Table 4.1) and en-
tirely attributable to drift. The orientations (eigenvectors) of the
theoretical expectancies are in good agreement, before an after
selection (Fig. 4.2).

We are assuming that factors like epistasis and dominance
are negligible. Yet the estimations are still satisfactory. Much
can be improved, but for our purpose -showing the advantages
of the our approximation- the example is just adequate.
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5.4 CONCLUDING REMARKS

To what extent can we predict evolution? The answer to this
question is hidden in both the degrees of freedom at different
evolutionary levels, and on the mathematical complexity that
relates these levels.

While PG considers loci as unit of selection, QG considers
the quantitative characters as units of selection. Neither of
them is more fundamental; they conform to two different co-
ordinate systems to model evolution (Barton and Turelli, 1987),
each one is blazing trails to different aspects of the evolution-
ary process (Orr, 2005). The max-entropic tool clarifies certain
issues, showing how distinct aspects of PG and QG that were
considered dead ends match together.

The conceptual convergence by different groups to the max-
entropic and statistical mechanics-like approaches (Iwasa, 1988;
Prugel-Bennett and Shapiro, 1997; Sella and Hirsh, 2005; Ao,
2005, 2008; Saakian et al., 2008; Barton and de Vladar, 2009;
Barton and Coe, 2009, as well as several other works) indicates
that it can play an important role in understanding evolution.

We have explained and exemplified for evolution under SMD
that we can drastically reduce the amount of information that
we need to infer microscopic aspects of an evolving polygenic
trait from quantitative measurements. But also the other way
around: we may use minimal information of the microscopic
variables to make quantitative predictions. This raises the op-
timism with respect to empirical counterparts, as for example,
the QTL which are able to give only a rough idea of factors re-
sponsible for genetic variation. Indeed this information might
actually be enough to have a richer predictive power, contrary
to what is expected by the bottom-up models, which suggest
the need for detailed genetic properties. This is great news,
since we don’t really need to know the whole degrees of free-
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dom of the hidden variables, as required by other bottom-up
approaches and which are subject to huge limitations.

We have dealt however, with very specific and convenient
conditions. Among others, linkage equilibrium, absence of epis-
tasis and diallelic sub-dominant multiple loci. Indeed, includ-
ing these other factors would change the predictions that can
be drawn from the model. But the approach in itself does not
change.

The effects of recombination have been studied in a simple
model of additive and equal effects (Prugel-Bennett and Shapiro,
1994; Saakian et al., 2008), from which we can also extend
the analyses. We know that although selection might induce
linkage among recombining loci (Bulmer, 1971) weak selection
justifies a quasi-linkage equilibrium at all times, partially un-
coupling of the loci in a tractable way (Kirkpatrick et al., 2002).
The way to approach epistasis, has also been sketched by Bar-
ton and de Vladar (2009), although explicit solutions depend
on specific architectures of the genotype-phenotype map, about
which we currently know little (Hansen, 2006). The extensions
to multiple alleles is actually straight-forward, only introducing
a higher dimension at each locus in the genotype space. In-
tuitively, the consequences are not expected to be big. Under
selection and drift with low mutation rates, only one allele is
expected to be maintained at each locus, if selection is direc-
tional, and two if it is stabilizing (Turelli, 1984; Barton, 1986;
Bürger and Gimelfarb, 2004; Schneider, 2006), a result that of
course is not necessarily valid at high mutation rates. But for
practical purposes there might be little need to introduce more
alleles at every locus. Besides, under low mutation rates, the
predictions for maintenance of genetic variance are insensitive
to the number of alleles that are segregating at each locus. Also,
extension to dominant effects can easily be included when con-
sidering separate effects of each copy of a locus in the diploid
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individual from which we can also extend the analyses.
Notably, all these changes will affect the results and predic-

tions, but do not interfere with the philosophy of the top-down
approach. These other factors, define the way in which fitness
affect the microscopic space, and evidently it affect the way
allele frequencies evolve. Although these are functional con-
straints that determine the patterns of evolution of the pheno-
types, they do not change the fact how selection and drift are
acting over the macroscopic space. On these lines, we might
point that several examples that we brought assume weak di-
rectional selection. Still there is consensus -mainly theoretical
arguments- that stabilizing selection is among the main forces
maintaining diversity in nature (Charlesworth et al., 1982). For
example extreme phenotypes are more likely to produce delete-
rious mutations. Stabilizing selection has also been formulated
and worked out for single polygenic traits with unequal effects
(Barton and de Vladar, 2009). However, recent meta-analyses
over empirical estimations have found that most quantitative
traits are maintained by weak directional selection (Hoekstra
et al., 2001; Kingsolver et al., 2001). This adds to our raised op-
timism about the possibility of predicting evolution, and allows
waiving many complications. The max-entropic theory does not
solve them all, but is a step further in our ability to predict
evolutionary change in the long term.
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Chapter 6

Perspectives: Pleiotropic
effects on the G-matrix
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6. PLEIOTROPY IN THE G-MATRIX

6.1 STANDING AND MUTATIONAL VARIATION

The amount of variation maintained in populations is the
source of evolutionary change as a response to natural or

artificial selection. When per-locus mutation rates are low -
as is typically the case- the predicted amount of genetic vari-
ance that is maintained is also low, at least to account for the
levels observed in natural populations (Turelli, 1984; Barton
and Turelli, 1989). However increased genetic variance can be
maintained even at low mutation rates if the effects of selec-
tion is pleiotropic over various traits (Keightley and Hill, 1990;
Barton, 1990; Kondrashov and Turelli, 1992; Zhang and Hill,
2005). In such a case, the pattern and rates of evolution of
the characters is compromised to the joint effects of multivari-
ate selection at every given locus. At which rate are the genetic
(co)variances, the G matrix, changing? Naturally that depends
on (i) the amount of loci, (ii) their effects, and (iii) the pleiotropic
constitution of the traits, or in general, the genetic architecture
including epistatic effects. If we were to account for directional
selection mutation drift (SMD) balance under pleiotropy, even
with a simple bi-allelic system of non-interacting loci (i.e. link-
age and Hardy-Weinberg equilibrium), at least we need to recur
to a distribution of effects that weights few loci of big effect and
many of small effect, consistent with QTL observations (Otto
and Jones, 2000), since the genetic attributes are not entirelly
negligable.

Fisher proposed a model, known as the geometric model, to
argue that most mutations affecting the phenotypic space have
a small effects (Fisher, 1930), and analyzed the consequences
of the shifting of the phenotype -a vector of traits- away from
the optimum state. From that perturbed state small mutations
will have nearly 50-50 chance to bring the phenotype closer to
the optimum, whereas mutations with big effects will increase
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the chances to drive the phenotype away from the optimum.
Actually, these calculations are naı̈ve and oversimplified. As
discussed by Orr (2005), this model only explains how a trait
responds by mutational variance, and is a flawed picture when
evolution proceeds by standing genetic variation.

In average mutation will decrease the trait value propor-
tional to µ 〈z̄〉 (Eq 3.24), restoring the equilibrium value expo-
nentially, in line with Fisher’s predictions. Even if the mutation
rate is high this would be true, although not obvious from the
geometric model. To picture it in quantitative terms, consider
as an example the number of ovarioles and thorax length, two
traits of Drosophila melanogaster (Bergland et al., 2008). Sup-
pose that these traits are displaced 10% above from their opti-
mal value, for example (which are taken to be about 25 ovarioles
and 1 mm. resp.) and assume 5 and 7 loci of exponentially dis-
tributed effects (expectancies averaged over 1000 realizations
of effects). With a mutation rate of Nµ = 10−3, it will take about
1150 generations to restore at least the .99% of the optimum
values. In contrast, if Nµ were increased to 1.0, it would only
take one generation. In the former case, the trait means will
show standard errors of about ±{0.02,1.7}, whilst in the sec-
ond case it will be of ±{0.16,12.5}. For instance higher fluctua-
tion steps will keep the traits scattered from the optimum value.
Even when the time to attain equilibrium is much lower at high
mutation rates, the standard error is enormous, so an accurate
equilibrium at the optimum will not be typically attained. This
can be seen as the impossibility to reach the optimal state in
selected realizations of stochastic trajectories.

These neutrality calculations are only one part of the story,
showing how evolution would proceed by the variability gener-
ated only by mutation, and where at each generation the new
alleles might be fixated by drift, as in Fisher’s model. The stand-
ing variability, over which selection acts, will give very different
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Figure 6.1: Genetic effects. In general, we don’t know the distribution that the
effects of each locus has over a trait. Thus for simplicity an exponential dis-
tribution with mean 1 is assumed, from which the effects of the first trait are
randomly selected. For the second trait, the effects are the same, but the posi-
tions shuffled. Thus but the total variation they contribute over each trait is the
same. These effects will be considered to remain constant during the process of
evolution. Numerically random choices are: ~γ1 = (1.79, 0.74, 0.72, 0.33, 0.23, 0.21)

and ~γ2 = (0.23, 1.79, 0.74, 0.21, 0.33, 0.72)

outcomes.
Assume a converse scenario as before, where selection in

the absence of mutation, is applyed. The initial genetic varia-
tion will be depleted, and drift will favour fixation, the optimal
state (in potential terms, not in fitness terms) in the absence of
mutation (or at very low mutation rates).

But the response is more difficult to evaluate if mutation
generates variability at the same time as selection uses it. We
can study this situation comparing the response to selection at
different mutation rates. First, variability is generated propor-
tionally to the mutation rate.
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A straightforward conclusion is then that the time for chan-
ges to be noticeable are larger for lower rates (Figs. 6.2-6.3).
We might further assume that before selection effectively acts,
the population is at an initial equilibrium (as discussed in Ch.
3), thus the initial standing genetic variation will be low under
low mutation rates, for which the speed of change of the traits
would be also slow. Since selection acts stronger on the alleles
of bigger effect, change in the frequency of alleles at each lo-
cus will proceed in a hierarchical fashion. Since most loci have
small effects, G will remain in a period of stasis and its change
is delayed to future generations. This is because the genetic
variance is more sensitive to rarer (i.e. infrequent) alleles. Only
after the major-effecting loci approach close to an equilibrium,
a cascade of loci with minor effects flows, inducing the change
in the G matrix. At this point, the impact over the traits is low
because -contrary to G- they are mainly influenced by loci with
big effects. In conclusion, we expect to observe the changes in
genetic (co)variances only at late generations, when the mildest
loci begin to change.

Although taking much less time, the situation is similar for
high mutation rates. This accelerated differences are mainly
due to mutational variation. Even when we would start from
low genetic variances, mutation will generate enough of it ev-
ery generation, thus response to selection is fast. Notwith-
standing, the changes in G are much more dramatic at low
mutation rates. The orientation and specially the eigenvalues
change considerably at low Nµ. The mutational load is larger at
large Nµ, which is reflected in that the eigenstructure of G (Fig.
6.2-6.3), in an ellipse graphical representation) are much more
similar before and after selection, whilst at low Nµ they differ
considerably.
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Figure 6.2: Indirect Selection. Response of the traits and genetic (co)variances
under pleiotropic effects, subject to selection over the first trait (Nβ1 = 2, black
dashed lines) while the second trait is not selected (Nβ2 = 0, gray solid lines).
The initial state is neutral for both traits (Nβ1 = Nβ2 = 0 with constant low
mutation rates (leftmost panels, Nµ = 0.01) and high mutation rates (rightmost
panels, Nµ = 1.0). The thin dotted lines in the genetic variance plots indi-
cate the genetic covariances. The lower row show a graphical representation
of snapshots of the G matrices. The length of the semiaxes are given by the
1.96λ1/2, where λ are the eigenvalues of G. The orientation of the ellipses are
given by G’s eigenvectors. This representation follows the convention of Arnold
et al. (2008). The genetic effects are given in Fig 6.1. The time axes are in logit
scale.
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6.2 SOME CONSEQUENCES OF PLEIOTROPY

Even in the absence of epistasis and in linkage equilibrium, the
effects of a locus over different traits can account for more ex-
centric versions of the above, and to that of univariate traits.
Beware that the core of the distribution of allele frequencies of
a mutivariate trait is equivalent to that of a single trait evalu-
ated -at every locus- by the product ~β.~γl (Eq. 4.5, and Appendix
section D.1.2). Thus the selective strength experienced at a lo-
cus with univariate effect over a trait, can be equivalent to that
when the a locus has an effect over arbitrary many (lit. infinite)
traits in the multivariate case. Despite how equivalent the dis-
tribution of the allele frequencies might result, the patterns of
evolution are severely constrained (as exemplified above). Two
major sequelae are indirect selection and apparent stabilizing
selection, which I will shortly address now.

Indirect selection. When selection is shifted for only one char-
acter (say, the first), other characters (the second) will indirectly
also experience selection. The shifted allele frequencies will
pleiotropically have an effect over other traits. In the exam-
ple of Figs. 6.2 the values of the trait are very similar (we chose
the total effects to be the same 6.1). The pairwise product of the
effects will determine the values of the covariance, thus also the
speed of change of the trait that is indirectly selected.

Delayed responses. Notice in Fig. 6.2, that genetic variance
increases first for the trait under selection (and hence the trait
under selection also increases more rapidly than the other).
Since loci with high effects respond first, the appreciable in-
crease on the second trait will be registered only when its ma-
jor contributing loci change, because these loci will not typically
have the highest effects over first. In particular, as in Fig. 6.1,
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Figure 6.3: Aparent Stabilizing Selection. Response of the traits and genetic
variances under pleiotropic effects, subject to selection in opposite directions
(Nβ1 = 2, black dashed lines, and Nβ2 = −2, gray solid lines). Otherwise as
Fig. 6.2.

locus 1 would be the first to change when selection acts over
trait 1, but the effect of this locus over trait 2 is actually min-
imal, thus any change in the latter would be practically unde-
tectable (as happens in Fig. 6.2)
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Table 6.1: Maintenance of genetic variance by pleiotropic effets. Under co-
directional selection over two traits, mutation, and drift, the variance main-
tained is lower than when selection is acting in opposing directions, thus cre-
ating the effect of apparent stabilizing selection. The effect is dimmed as the
number of pleiotropic loci diminish. Low mutation rates (4Nµ < 1) are as-
sumed.

Selection: Co-directionala Apparent stabilizingb

Pleiotropy: 6c 6c 3d 0e

ν1/2µ 1.245 2.647 1.954 1.911
ν2/2µ 1.245 3.392 2.116 1.911
ν12/2µ 0.751 2.220 0.411 0.000

aNβ1 = Nβ2 = 2
bNβ1 = 2, Nβ2 = −2
c Full pleiotropy. Effects as in Fig. 6.1.
d The first three loci of both traits are uncoupled.
e All loci are uncoupled.

Notice finally that the genetic variance is more critically de-
pleted for the trait under selection, contrasted to traits indi-
rectly selected, which have a milder depletion.

Apparent stabilizing selection. If pleiotropic loci have oppos-
ing effects over two traits, then patterns that remind those of
stabilizing selection are retrieved (Barton, 1990). Selection of
opposed directions over each trait will result in low fitness for
the extreme traits. Increased metrics for a trait induce a reduc-
tion of the metrics of the other. As a response to selection the
second trait tends to restore its value. Conversely, this restor-
ing force induces reduction of the first trait, also restoring its
value. Hence, a compromise among both traits is a stable situ-
ation. The outcome is similar as in stabilizing selection, where
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the extremes are the lowest in fitness. An interesting feature,
is that the amount of variability that is maintained by aparent
stabilizing selection is higher than when selection acts only over
one character, and even higher than when it favours both char-
acters in a common direction (see Table 6.1 and Fig. 6.3).

Degree of pleiotropy. In the examples above I assumed that all
loci have pleiotropic response to selection and mutation. But
this is not necesarily the case. QTL experiments have shown
that the number of loci conveying an additive effect over the
traits is not the same, and not even necessarily a superset, of
those with pleiotropic effects (Mackay, 2001, 2004; Kalisz and
Krishnamurthy, 2007; Albert et al., 2008; Kenney-Hunt et al.,
2008; Ma et al., 2008). Therefore my curiosity was awakened by
how much variation can be induced by indirect selection under
distinct degrees of pleiotropy.

To investigate these effects, I proceeded to systematically
uncouple the amount of loci which convey pleiotropy. I ran-
domized the effects of the loci with a exponential distribution
(λ=1) and averaged over 104 replicas. The results show that
the amount of genetic variation in MSD equilibrium linearly de-
creases with the amount of pleiotropic loci. This trend is par-
ticularly strong at low mutation rates because mutational load
is -in average- lower. At high mutation rates, the trend is so
soft that it would hardly noticeable in experimental observa-
tions (Fig. 6.4)

I proceeded then to see the effects of the uncoupling on the
evolutionary rates. Under aparent stabilizing selection, pleio-
tropic responses does not seriously compromise the velocity of
change of neither the traits nor the G matrix. The structure of
G, however, as well as the trait values, is affected by selection.
Under high levels of pleiotropy, G has higher eigenvalues, and
is more ‘bulky’ than at low levels, as explained above (Fig. 6.5).
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Figure 6.4: Effects of pleiotropy over selection-mutation-drift balance. The
equilibrium is maintained by selection only over the first trait (black dots, Nβ =

2), while the second trait (open dots) is not under selection. The number of
pleiotropic loci is increased systematically (ordinate axes). Each point (and
G matrix) is an average of 104 values of the expectations of the mean trait and
genetic variances with distinct genetic effects. Each trait consists of 10 loci,
whose effect was sampled form an exponential distribution of mean 1. The
bars at each point represent half the standard deviation of the samples of the
genetic effects. The leftmost panels assume low mutation rates (Nµ = 0.01),
and the rightmost panels high mutation rates (Nµ = 1.0). The lower plots are
ellipse representation of the averaged G matrices (see Fig. 6.2).
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Figure 6.5: Effects of pleiotroy over G’s evolutionary dynamics. Response of the
G matrix of two traits subject to selection in opposite directions, with varying
degrees of pleiotropic effects. From top to bottom the amount of pleiotropic
loci increase systematically from 0 to 6. Selection proceeds from neutral states
(Nβ1 = Nβ2 = 0) to Nβ1 = 2 and Nβ2 = −1, and Nµ = 0.01. The horizontal
direction is the time (in log-scale). G representations as in Fig. 6.2.
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6.3 MOVING ON WITH THE G MATRIX

Pigliucci (2006) has criticized the quantitative genetics
approach, and the overall efforts to understand quantitative
variation using controled experimental designs on the basis
that estimations of G are local measures and change along with
the change of allele frequencies, and thus does “not provide a
useful measure of the long-term capability of traits to respond to
selection” (his emphasis). This in a sense is true. But, from my
perspective, these critiques are to some extent as narrow as the
measures of the heritabilities, or of G. Naturally, a measure is
just a (set of) number(s), and the predictive capabilities of any
measurement are only meaningful when supported by a theory.
If a theory is limited, that might just be the state of the art, and
it does not imply that the theory cannot be extended. In fact,
the theory behind the G matrix is still at an early stage, and
the predictions that we can make are limited precisely because
of that. But in this chapter and the previous, I provided some
calculations that allowed long-term predictions of G. We still
require refinements in the theory, and maybe a better experi-
mental support in order to really make predictions from mea-
surements of G. I have shown that it is possible to predict the
course not of G itself, but of its expectancy. Yet, these are two
different things: an empirical measurement of G will in general
be deduced from a set of offsprings, that is just a realization
of the process (this is one of Pigliucci’s arguments against the
use of G). As we saw in the previous chapter (Fig. 4.2), the
deviations induced by genetic drift can be very big. This would
redirect the course of the populations away from the theoretical
expectancies. But how much? We can calculate the variance of
the estimators of G (Appendix D.1.2, Eqns.D.51), from which
we can compute the standard deviation, an expectancy of the
error. In Fig. 6.6 an example is presented, along with a real-
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Figure 6.6: Error in the G-matrix’s evolution. Left panel: apart from the ex-
pectancy of G’s component (genetic variances, solid black lines), we can esti-
mate the expected standard deviation (shaded region between the dashed lines).
This measurement is consistent with particular realizations (gray line, from a
Wright-Fisher model). The dynamics of G correspond to Fig. 6.2. Right: the
solid ellipse is the equilibrium G , and the dotted ellipses are G± half of the
standard deviation. The gray ellipses are distinct realizations.

ization. We can clearly see that the expectancies agree with the
Wright-Fisher model. Naturally, an accurate measurement of
G requires sufficient replicas in order to determine confidently
the range of variation. Fig 6.7 shows that averages over real-
izations coincide accurately with the expectations. I have done
this for the whole trajectories, but it naturally can be done for
a single point in time.
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Figure 6.7: Averages and expectancies of G. The left panel shows the evolution
of the expectancies of the traits (black dashed lines), over which directional
selection is acting, along with averages over 200 stochastic realizations (gray
lines). Right: idem, but for the genetic co-variances.

6.4 CONCLUDING REMARKS

The question whether G evolves or not, is nowadays obsolete.
The modern debates are related to the velocity and direction of
change in G’s evolutionary course. The answer varies depending
on the biological nature of the traits. Still, the formal aspects
have remained dim.

I have introduced an application of the statistical mechanics
formulation to address several of these questions, at least for
the limited interpretation of purely additive traits, under ideal
biological conditions. Specific questions remain to be answered,
but the general ideas herein introduced, along with those of the
previous chapter, indicate that there are good prospects to un-
derstand the subject of the evolution of G, and its evolutionary
consequences.
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But there is another possible way of predicting the course
of G. In fact in the calculations of Figs 6.2-6.7 I have not com-
puted the evolution of G itself, but of the local variables deter-
mining the max-entropic distribution. Thus it might be possi-
ble to turn the problem around: to determine with accuracy the
observables, 〈z̄〉 and 〈U〉. Then G can be just evaluated. But
would this work? Actually, it is what I have been doing. The
observables ensure the coupling of the micro and macro-states,
and knowing the local variables other quantities are computed
straightforward. Notice however, that computing G is necessary
but not enough, because the evolution of the local variables –
or of any other macriscopic– requires computing the matrix of
correlations between the observables and genetic effects, which
contains G but also other entries (Eq. 4.13). Nevertheless, if
we have some measurements of the genetic effects, we can, in
principle forecast evolutionary response.

Although this is in principle a valid approach, how much the
theory can be literally applied to natural populations is obvi-
ously a sensitive question. There are many assumptions about
the genetics. But although these assumptions can be relaxed,
with some technical effort, the applicability of the statistical
mechanical theoretical framework can be misleading. In this
sense, my main concern is about the fitness landscape: we are
assuming very convenient representations. Although we could
quantitatively identify if selection is (or not) acting directionally
(Hoekstra et al., 2001; Kingsolver et al., 2001), the net effect
might not need to be described by a multiplicative effect as we
have done; or if its stabilizing, by a Gaussian landscape. Fur-
thermore, even if we could make the simplifications to these
simple functions, it is hard to know a priori what the selective
gradient is, and whether it will remain constant. Long term
evolution might comprise very long times, and is unlikely that
we can safely assume that selection will act in an homogeneous
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way. In this sense even knowing the genetic details of an organ-
ism, and the observables, the direction of evolution will be only
dictated by the action of selection. Thus the uncertanties over
how selection might change direction under ecological varying
circumstances would impair a safe forecasting.

On the other hand, we can employ the method for compar-
ative analyses. This is a direction over which I have not devel-
oped, and that remains open and promising. Comparing popu-
lations, and using the information of the observables, we could
perform hypotheses tests to determine and identify the nature
of selective processes that have drive the divergence between
two populations, a bit on the direction of the calculations of
the previous chapter on the Rana temporaria populations. This
could be a way of falsifying certain approaches, as that of the
local equilibrium as an evolutionary forcast method.
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Chapter 7

Perspectives: The evolution of
quantitative characters under
stabilizing selection, mutation,
and drift.
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7.1 INTRODUCTION

In getting to understand the nature of selection, some con-
tradictions arise, at least from the classical theory of popula-

tion genetics with respect to maintenance of genetic variability.
Not only that we know, empirically and theoretically, that se-
lection depletes genetic variance, and that mutation, with the
aid of recombination induce it, but also that the levels that we
expect from theory are in most cases lower than those experi-
mentally observed (Maynard-Smith, 1983; Charlesworth et al.,
1982, and references therein). But the question is not only
one of the matter of scale, but also of logical thought. A stan-
dard argument is that extreme phenotypes tend to be less viable
than intermediate ones. Examples (a) giraffes with too short
necks are dissadvantaged in that they cannot reach the food
composing their main diet, and the blood pressure might be
too high in their head’s vascular system when they bend to
drink. Conversely, giraffes with too long necks may not have
enough blood pressure in their heads and brains at normal
postures; thus intermediate sizes are of higher viability. (b)
The amount of chlorophyll in higher plants when too low, can-
not account for enough energy transduced for the individual’s
vital processes; too much chlorophil requires an even bigger
amount of energy investment for creating cellular, anatomical
and physiological structures that are neither compensated by
the energetic gain, nor useful because it would imply an in-
creased metabolic rate that might not be sustainable by size
and CO2 intake rates, and inability to dissipate heat. We can
build this kind of argument untill the (z) with most phenotypic
characters of any species. For instance, the stabilizing selec-
tion hypothesis seems a widespread possibility in natural pop-
ulations.
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Where is then, the contradiction? Although we would ex-
pect this kind of selection to be observed frequently, studies
on patterns of selection in the wild have revealed that it is
scarcely present, and that directional selection is the conspicu-
ous choice (Kingsolver et al., 2001; Hoekstra et al., 2001). If this
is the case, there is excess of genetic variability attributable to
mutation and linkage. But mutation and recombination rates
are not high enough as to account for such levels of variability.

A sound hypothesis is that most characters are under pleio-
tropic effects, and that these characters have opposing effects
to the traits under selection. This alternative, apparent stabi-
lizing selection, was explored in chapter 6.

Another reasonable alternative is that indeed weak stabiliz-
ing selection is acting. If the mean phenotype is displaced from
the optimal state, directional selection effectivelly acts towards
the new optimum. In this case genetic variability can be more
easily argued to be maintained at higher levels, as explained
above. Notice that the response of genetic variance to selec-
tion over a trait tends to be delayed in prolonged application of
selection, in particular if there are pleiotropic effects. Unless
deviations would be very far from the optimum in one specific
(genetic) direction, for example if drift would introduce an irra-
tionally large deviation, genetic variance is unlikely to be (sta-
tistically speaking) changed. The return to the optimum would
proceed with a linear rate, with variance essentially unchanging
at noticeable scales, and experiencing directional selection.

This second alternative, is compatible with the experimental
observations (Hoekstra et al., 2001, although with secondary
importance after directional selection following meta-analyses))
and with the logical argumentations about the lowered fitness
of the extreme phenotypes.

The evidence and arguments for the stabilizing nature of se-
lection, thus demands a dedicate analysis. The approach of the
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statistical mechanics theory developed in the previous chap-
ters, will be extended to this situation. First to be able to quan-
tify the course of evolution, and second to make available the
quantitative tools for a comprehensive comparative evaluation
of the possible evolutionary forces in action.

But the stabilizing selection situation, in inherently compli-
cated. Any given equilibrium between stabilizing selection, mu-
tation, and drift (SSMD) would have many possible microscopic
equilibria (Barton and Shpak, 2000; Turelli and Barton, 2004).
The dynamic of two or more loci coupled through a trait under
stabilizing selection leads to a range of possible dynamics, that
are far from entirely characterized (Barton and Shpak, 2000;
Willensdorfer and Bürger, 2003; Gavrilets and Hastings, 1993).
Although at the moment we are not directly concerned with
these dynamics, and the characterization of the local equilib-
ria, it is clear that perturbations to the allele frequencies (e.g.
by drift) can induce metastability in these states Barton and
Rouhani (1987); Rouhani and Barton (1987). Thus continously
perturbating the equilibrium states, leads to an ever chang-
ing microscopic dynamics that show increased genetic variance
from quantitative measurements approach.

The situation is not as trivial as in directional selection.
There are non-linearities in the dynamics, because selection
occurs over the squared mean trait, which among other con-
sequences, it fully couples the loci. Hence a decomposition of
a polygenic trait as a many independent one-locus problems is
not possible, as it was in the case of directional selection. Yet
there are stratagems to be victorious in averaging out the mi-
croscopic variables. Maximum entropy could work if we find
appropriate macroscopics. In short, the question is whether
the local equilibrium approximation holds. If it does, we would
be free to track evolutionary dynamics, like moving optima, en-
haced (or relaxed) strength of selection to the extremes, etc.
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7.2 MAX-ENTROPIC APPROACH

In the chapter 3, the methodology inspired by the analogy with
statistical mechanics in physics was derived and applied in de-
tailed analyses to directional selection, to study the evolution
of quantitative characters in univariate traits. In chapters 4-6
this methodology was extended for multivariate polygenic traits
with unequal effects.

We employed maximal entropy as a starting point, cons-
trained by the macroscopic variables that are maintained by
the evolutionary processes. That is the trait -or fitness- (main-
tained by selection), and genetic variability (maintained by mu-
tation), if the selective scenario is directional over an additive
trait.

Stabilizing selection over a quantitative character removes
from the population those genotypes whose traits are far from
an optimum. This is equivalent to have directional selection
against the genetic variance. But this is not enough, since we
would get for equilibrium a single point at trait zero, without
any variance. So we must also include genetic variability (to
account for mutations, if the rate is µ > 1/4N , and directional
selection over the trait, towards an optimum. Intuitively, this
should be enough. But since selection is assumed over the
mean trait, then fitness of the mean trait is not the same as
mean fitness, so a second order term would appear (variance of
the mean trait). Mathematically, we typically choose to model
stabilizing selection as a gaussian landscape of fitness:

Wz := exp
[
−β(z − zop)2

]
(7.1)

We first average over the frequencies of the traits (P (z) to get
the mean fitness, W̄ =

∫
WzdP (z). Now if β is sufficiently small

(selection over the trait is weak) we can expand to get

W̄ ' exp
[
−βνz − β(z̄ − zop)2

]
. (7.2)
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Notice that when expanding the square in the parenthesis, three
terms appear: a constant (βz2

op), βzopz̄ that is directional selec-
tion towards the optimum, and −βz̄2 that is selection against
the squared trait. The stationary distribution of the allele fre-
quencies is recovered from entropy maximization (Eq. 3.6, Ch.
3) constraining the expectations of the above quantities, i.e.:

• Normalization of the distribution.∫
(0,1)n

ψ(p)dnp = 1 ; λ ; Z (7.3)

• Selection of the mean trait towards the optimum∫
(0,1)n

z̄ψ(p)dnp = 〈z̄〉; 2Nβ (7.4)

• Selection against genetic variance.∫
(0,1)n

νzψ(p)dnp = 〈νz〉; 2Nσ (7.5)

• Selection against the variance of the mean trait∫
(0,1)n

z̄2ψ(p)dnp = 〈z̄2〉; 2Nα (7.6)

We know that maximizing entropy leads to the distribution
3.6, that in this case of SSMD case it would be

ψ(p) =
φ

Z
exp

[
2Nβz̄ + 2Nαz̄2 + 2Nσνz + 2NµU

]
(7.7)

with φ ≡ φ(p) =
∏n
`=1(p`q`)−1, as explained before, and if we

are able to compute the integral Z, we will have a macroscopic
description of the system, that is supported by and consistent
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with the microscopic stationary dynamics. But more interesting
than finding the closed form expression (if possible at all) is to
be able to predict, also from this macroscopic point of view, the
dynamics. Microscopically, this is given either in a stochastic
version, or probabilistically by the corresponding Wright-Fisher
process, and its diffusion equation, respectivelly. Actually those
will be our points of comparison.

The partition function can be explicitly written if we define
how the trait relates to the genetic variables. As before, we as-
sume an additive trait of n loci, each with constant effect γ`
(constant in the sense that they do not evolve, but each ef-
fect is in general different at every locus). As treated in previ-
ous chapters (see also appendixes) the mean trait and genetic
variance are functions of the allele frequencies. However, the
squared trait introduces some tricky properties that complicate
the computation of Z, since it cannot longer be expressed as
the product of the partition functions of independent loci. So,
for reasons that will be obvious later, I will express any power
of z̄ implicitly. Thus the partition function is

Z =
∫

(0,1)n

dnp
n∏
`=1

(p`q`)−1× (7.8)

× exp

[
2Nβz̄ + 2Nαz̄2 + 2Nσ

n∑
`=1

γ2
` p`q` + 4Nµ

n∑
`=1

log(p`q`)

]
,

which cannot be computed in a closed analytical form. Before
dooming the expression 7.8 to numerical computations, we can
do something about it. The reason is that as it is, its compu-
tation is n−dimensional, thus prone to slow convergence, and
since the allele frequencies might be clustered, the integrals
might be close to zero. Also, there are some simplifications that
can be made. The whole point, is that if we are able to com-
pute Z, we can as well compute any statistic. Hence we are
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able to test the local equilibrium as a model for the polygenic
evolutionary dynamics.

The trick, following Barton (1989, p. 64), is to transform the
n−dimensional integral into a complex-valued 1-dimensional
integral, which if not anallytically solvable, at least simplifies
(a) the calculation of the expressions of the traits, and (b) their
numerical computations.

I will give only a sketch on how to proceed with the calcula-
tions. The intermediary steps should be straightforward. Lets
calculate a function F (z̄). It can be expressed as an integral of
a Dirac delta function as:

F (z̄) =
∫ ∞
−∞

F (ζ)δ(ζ − z̄)dζ

=
∫ ∞
−∞

∫ ∞
−∞

F (ζ) exp [−iω(ζ + z̄)] dζdω . (7.9)

where the second expression employed the (inverse) Fourier
transform of an exponential function to express Dirac’s delta. If
the last expression is not disregarded by the reader, the advan-
tages are clear: the function F is evaluated in a mute variable,
ζ and the dependence of z̄ are segregated to the exponential fac-
tor, which avoids cross terms (like pipj ) of the allele frequencies.
Following this formula 7.8,

exp
[
2Nβz̄ + 2Nαz̄2

]
=√

π

|2Nα|

∫ ∞
−∞

exp [−iωz̄] exp
[
− (2Nβ − iω)2

8Nα

]
dω

This expression can be substituted into Eq. 7.8, which after
some calculus it gives

Z =
√

π

|2Nα|

∫ ∞
−∞

exp
[
− (2Nβ − iω)2

8Nα

] n∏
`=1

Z` (µ;− iω
2N γ`;σγ2

` )dω

(7.10)
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where the per-locus partition functions are given by:

Z` :=
∫ 1

0

exp[2Nβ(2p` − 1) + 4Nµ log(p`q`) + 2Nσp`q`](p`q`)−1dp`

(7.11)
Admittedly, the expressions are not too simple, and lack

general solutions1. Even if each Z` is to be integrated numer-
ically, these are independent among each other. Thus origi-
nally, there were n fully coupled integrals (big problem), and
now there are n+1 integrals, one of which depends on the other
n integrals, but which are independent among each other (small
problem).

The general partition function. Eq. 7.10 can be dissected
into two terms, generally of the form∫

F1 (ω|α,β)F2 (ω|µ,σ)dω

that is, it is separable into two terms which depend on non-
overlapping (intensive) variables. This is a very useful property
when calculating the macroscopics.

Take notice that solving a one-locus problem for stabilizing
selection might sound as a trivial exercise. But there are three
reasons why at the moments it is desirable to do it. First, the
polygenic expectations can be represented (exactly) as convolu-
tions of the one-loci corresponding formulas (see appendix D.2);
thus it is a necessary move. Second, the Fourier-representation,
being equivalent to the n-loci representation of the partition
function (and of the expectations), can be checked for one locus
problems; this is just a control of the numerical experiments.

1The per- locus partition function, however can be expressed in Taylor se-
ries over σ = 0, in which case the formula for directional selection is recovered.
The terms for σk, k > 1 involve derivatives of this partition function at σ = 0,
and thus are the single-locus-directional-selection expectations.
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Third, the one-locus SS problem has implications for the DS
case, with respect to the boundary problem that appear near
Nµ = 1/4, and makes the local equilibrium fail. One locus SS
might provide a subterfuge for this collapse.

7.3 SINGLE LOCUS DYNAMICS

In order to solve the general case of the multi-locus dynamics,
we need to have a complete characterization of the statistics
of single locus model. Among virtues of a mean trait affected
by only one locus is that the variance of such mean trait is
proportional to the genetic varince, since

z̄2 = γ2[2p− 1]2

= γ2 − 2νz ,

Because the effects γ are non-evolving parameters, the sta-
tistical mechanics in this case does not require constraints in
both z̄2 and νz; it rather requires constraints in one of them.
Yet the general locus formula 7.8 applies. For one locus, we
will end up with only one of these two quantities, say genetic
variance, and the multipliers to the constraints over entropy
maximization will be reduced as

σ 7→ σ − 2α

λ 7→ λ− αγ2 (7.12)

Z 7→ e−αγ
2
Z .

Hence, a single-locus model of SS requires only three macro-
scopics. We could say that this case is a small extension to the
directional selection case, where we took a second order ap-
proximation to mean fitness (which would result in including
genetic variance as a second order correction term in the mean

196



7.3. SINGLE LOCUS DYNAMICS

fitness term). But his extended model gives whole new proper-
ties, and is more than a small quantitative correction. First, on
the technical side, including selection against the variance does
not allow the privilege of having closed form solutions of the
partition function (or of the expectances), so we must proceed
numerically and/or with some approximations. Notwithstand-
ing, the integration procedures are not too demanding compu-
tationally, since most integrands are well-behaved, even near
the point µ ∼ 1/4N . Second, including selection against (or
for) genetic variance breaks the symmetry that exists in direc-
tional selection with respect to 〈z̄〉, where this function is odd
with respect to β and 〈νz〉 is even. Directionally selecting for a
favorable allele is -from the point of view of genetic variance-
equivalent to selecting for the contrary allele. Also the measure
〈U〉 would be unaffected. However, if selection over genetic vari-
ance is included all these symmetries disappear. Selection will
still deplete genetic variation, but on one direction (favoring an
allele) will in general be higher than when favoring the contrary
allele. The same is true for generic variability 〈U〉.

The evolutionary dynamics of this one-locus system under
SSMD can be computed through the local equilibrium approxi-
mation (Section 3.2). That is to calculate the rate of the effective
parameters (µ∗, β∗, σ∗) that correspond to the quantitative mea-
surements (〈U〉, 〈z̄〉, 〈νz〉) at every time-point during transient
(i.e. non-equilibrium) evolution. Mechanistically, this is deter-
mined by the change of the allele frequencies in the population,
averaged over the drift realizations. This is described by the dif-
fusion equation (Crow and Kimura, 1970, Ch. 8). The change
in the observables (the quantitative variables required for the
max-entropic restrictions) follows Eq. 3.13. Thus in addition
to the mutational variability U and the mean trait 〈z〉, we also
need to include as observable the expectations of the genetic
variance. To proceed in local equilibrium analysis (Eqns. 3.15
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and 3.16), the matrices of genetic co-variances B and of fluctu-
ations C are required.The matrices are, respectively:

B =

〈 H −2z̄ 2z̄2

−2z̄ νz −z̄ν
2z̄2 −z̄ν z̄2ν

〉
(7.13)

C ={Cov(AiAj)}i,j∈{U,z̄,νz} , (7.14)

where each of the terms can be found in the appendix D.2, and
the dynamics are given by

dα∗

dt
= C−1.B.(α− α∗) . (7.15)

Here α = (µ, β, σ)> (> stands for transpose, since the formu-
las require a column vector). Beware that even if this equation
seems to ‘include’ Eq. 3.24 (for directional selection) in that
there is an extra column with respect to that, the explicit forms
of the statistics are different. Implicitly there is a resemblance,
although the specific forms of the expectances would be very
much different, because -as can be noticed from Eq. 7.11 and
the formulas in the Appendix D.2-, the same statistics will have
different quantitative values in directional and stabilizing selec-
tion.

Now it is possible to proceed for some case studies. Compare
to directional selection, where only two intensive variables ex-
isted: mutation rate and selective value of the trait. Now there
is another one, selective value of the genetic variance. Thus it
is possible to have a bigger scope of possibilities in the evolu-
tionary dynamics. Only a handful will be investigated here.

Evolution towards directional selection, mutation and drift. This
single locus model, would reduce to that of directional selection
if we let σ = 0. How would be the response to this situation?
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Figure 7.1: Evolutionary dynamics from an initial equilibrium maintained by
selection for the trait, selection against the variance, mutation and drift, evolv-
ing towards a state without selection against the variance. This is parametrized
by (Nµ,Nβ,Nσ) = (4, 5,−1) → (4, 5, 0). Black curves: local equilibrium calcu-
lations; gray dashed curves: diffusion equation integrations; dashed thin lines:
equilibrium values.

Fig. 7.1 shows this experiment. As we would expect, the ge-
netic variance increases (since there is no selection against it
anymore). Other consequence is increased mutational variabil-
ity and reduced mean traits. But notice that even when the
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Figure 7.2: Evolutionary dynamics responding to a shift in the optimum.
Starting at an equilibrium state where the optimum value is at the origin, the
system evolves towards an equilibrium at a higher optimal value. The system is
parametrized by (Nµ,Nβ,Nσ) = (4, 0,−1)→ (4, 5− 1). The thin gray lines, are
averages over 600 realizations of solutions to the Wright-Fisher model, with the
above parameters with a population size of N = 10. Otherwise as in Fig. 7.1.

traits are (in average) reduced, they are more widely spread, so
we would expect to find bigger and lower extremes.
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Shifted Optimum. Many problems in stabilizing selection as-
sume that there is a shifting optimum that motors the evolu-
tionary dynamics. This situation can be modeled by a sudden
change in this optimum, to which the response will smoothly
described by the local equilibrium. The trait will experience
directional selection. As regarded in Fig. 7.2, the response
is comparable to that of directional selection (Figs. 6.2 -6.3):
increase in the trait, and depletion of genetic variance and mu-
tational variability.

Although at first sight no major qualitative difference is no-
ticed with respect to the DSMD, recall the problem near the
border µ ∼ 1/4N (Fig. 3.11, and section 3.4) where allele fixa-
tion suddenly becomes abruptly likely and makes local equilib-
rium inapplicable. If genetic variance is ’controlled’ (i.e. prone
to selection), the problem seems to disappear. Figure 7.3 shows
that shifting the optimum at different mutation rate, closer
to 1/4N works out well. The statistical mechanical approach
does not fail like in DSMD. (Actually, although only a matter
of numerical methods, the differential equations of the local
equilibrium approach behaves better than the partial differen-
tial equations of the diffusion equation which has, under many
methods, a leak of probability density mass. This was corrob-
orated through averaging 600 realizations of the corresponding
Wright-Fisher process; Figs. 7.2 and 7.3.)

Deaccelerating the mutation rate. The ‘4Nµ-boundary-problem’
in the DSMS formulation with statistical mechanics limits the
case studies that we can address with this method. That is
unfortunate because the effects of lowering (or increasing) the
rates of mutations or studying bottlenecks, for example, can-
not be analyzed. However, this problem seems to be absent
under SS. Fig. 7.4 shows how evolution, using the top-down
approach, is accurately described. Mutation Nµ was switched
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Figure 7.3: Evolutionary dynamics responding to a shift in the optimum at
low mutation rates, with Nµ = 0.3. Otherwise as in Fig. 7.2

down to 0.3 without apparent discordance in any of the macro-
scopics. Notice that the local variables show curious paths as
Nµ→ 1/4.

Revisiting directional selection. The paragraphs above
show that as Nµ → 1/4, where statistical mechanics fails un-
der DSMD, evolution is authentically traced. Moreover, when
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Figure 7.4: Evolutionary dynamics when mutation is slowed down (a) Nµ = 1,
(b) Nµ = 0.5 and (c) Nµ = 0.3. Legends as in Fig. 7.2. Regard that for (c)
integrations using the diffusion equation have a leak of probability density (

a
! ).

σ → 0 the statistics of DSMD are recovered. Thus there is a new
prospect: if at equilibrium we constrain σ = 0, but we allow it
to evolve, we could predict the dynamics of DS near the critical
mutation rates. I performed this experiment considering the
SSMD statistics at Nµ = 0.3. Naturally at equilibrium DS and
SS produce the same results. But in the course of evolution,
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Figure 7.5: Evolutionary dynamics after shifting the optimum at low mutation
rates. The solutions are compared to the Wright-Fisher process. Parameters of
the system: (Nµ,Nβ,Nσ) = (0.3, 0,−1)→ (0.3, 5,−1). Otherwise, as in Fig. 7.2

as shown in Fig. 7.5, the predictions match that of the Wright-
Fisher model. Surprisingly, the method is robust: calculation
at the critical point (setting Nµ = 1/4) still give propitious pre-
dictions, Fig. 7.6 (curiously, the computing time for the numer-
ical solution is considerably higher than in other cases, roughly
an hour, at least two orders of magnitude higher than for the
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Figure 7.6: Evolutionary dynamics after shifting the optimum at the critical
mutation rate. The solutions are compared to the Wright-Fisher process. Pa-
rameters of the system: (Nµ,Nβ,Nσ) = (1/4, 0, 0)→ (1/4, 5, 0). Otherwise, as in
Fig. 7.2

previous ones, between one and two min.)
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Summary. The one-locus model has shown that (i) the SM
method is not limited to simple directional selection descrip-
tions, (ii) the point at 4Nµ = 1 is not a limitation for the macro-
scopic dynamics when including genetic variance as constrained
macroscopic, (iii) there is a smooth limit from stabilizing selec-
tion to directional selection when σ → 0 and (iv) that evolution
under directional selection might have stages where the effec-
tive forces out of equilibrium are of stabilizing nature.

7.4 FORMULATING POLYGENIC DYNAMICS

Much of the work for polygenic systems under stabilizing se-
lection has been achieved using a 2-locus model or a haploid
approximation (Bürger, 2000, Ch.VI). Weak (Gaussian) stabiliz-
ing selection is unable to maintain variability, provided that the
contribution of all loci over the trait is the same (Wright, 1935,
unless linkage is strong Karlin and Feldman, 1970). However,
if the allelic effects at each locus are different, then it is possi-
ble to keep elevated genetic variance Nagylaki (1989); Gavrilets
and Hastings (1993). In any case, there are many microscopic
equilibria. For a system as simple at two loci, there are at
least 18 equilibrium points (Willensdorfer and Bürger, 2003).
All of these are able to maintain distinct degrees of variability.
Yet they do not account for the levels observed in quantitative
traits, for typical allelic mutation rates.

The other extreme, which is also a common approach, is
the infinite alleles model. As we mentioned before, the House
of Cards (Kingman, 1978; Turelli, 1984) and the Gaussian ap-
proximations (Kimura, 1965a; Lande, 1976) can give an idea
on the amount of quantitative variation that is maintained by
mutation-selection drift. But as Slatkin and Frank (1990) point,
“neither model can be regarded as being typical”. The amount

206



7.4. FORMULATING POLYGENIC DYNAMICS

of variation that is predicted curiously depends very slightly on
the amount of loci (Turelli, 1984). This is a consequence that
the distinct loci have alleles are close to fixation, and variability
is maintained in only one of them.

The exact model (hypergeometric), on the other hand, con-
sists of many genes of equal effects, and allows to identify many
possible combinations of microscopic equilibria (Barton and Sh-
pak, 2000). Essentially, all genotypes with the same amount of
favorable alleles have the same fitness (although not all of them
are stable).

We thus see, that to analyze the composition of the alleles
in the population requires a thorough characterization. Yet the
macroscopic states to which these states correspond are much
more simpler. As mentioned above, and seen from the partition
function 7.10, the polygenic statistics are not simple ‘superpo-
sition’ of the effects of each locus. Yet the polygenic framework
for SSMD relies on the properties of single loci, although in in
a non-linear way. Since we need four macroscopics to define
the SSMD equilibrium, then the matrices B and C require also
an extra dimension, the statistics for z̄2. The problem is more
than just calculating the necessary parameters in these matri-
ces. Not only that we need to calculate for each locus these
quantities, but we need to convolve them with the trait distri-
bution in a complex space. To my big regret there is little hope
that analytic expressions are possible; although perhaps ap-
proximations will be workable, which certainly would enlighten
our understanding of evolutionary quantitative genetics. For
the moments the goal is to set up the problem. Extensive in-
vestigation of the macroscopic solutions is needed, since the
microscopic dynamics have a wide range of solutions whose
consequence over the macroscopics’ we don’t know.

For this purpose we can apply the theory stated above, which
accounts to extend the matrices 7.13 to include the effects of
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the variable 〈z̄2〉. This leads to

B =

〈 H −2z̄ 4(νmax − νz) −4z̄2

−2z̄ νz µz 3 2νz z̄
4(νmax − νz) µz 3 µ4 z 2z̄µz 3

−4z̄2 2νz z̄ 2z̄µz 3 4νz z̄2

〉
(7.16)

C ={Cov(AiAj)}i,j∈{U,z̄,νz,z̄2} (7.17)

where each of the terms can be found in the appendix D.2.
The reader may notice the following difference with respect

to 7.13. Besides the above mentioned extension, the column
and row corresponding to νz have been written in different way.
The reason is that some identities do not apply for multilocus
formulas. For example, the term 2γ2pqγ(1 − 2p) for one locus
corresponds to −νz z̄ however the term

∑
` 2γ2

` p`q`γ`(1−2p`) is not
the same as −νz z̄, but rather the third moment, µ3 z of the trait
within a population. For one locus is then true that µ3 z = −νz z̄
in the same way that it is true that, as we saw, z̄2 = 1−2νz. But
these identities are not extendable to the polygenic formulas. In
other words, the statistics for the mean trait are not necessarily
a lumping of the statistics of the individual loci, as in the case
of the mean trait or of DS.

We need to calculate these macroscopics numerically. There
are some tricks to calculate them, from the Fourier-space inte-
grals, as given in Appendix D.2. In short, separating the parti-
tion function as indicated above leads to some ways of express-
ing the polygenic statistics as a function of the single-locus
statistics. These calculations are much simpler than those in
the space of genetic frequencies, essentially because these are
1-dimensional calculations. Still, the amount of time they take
to compute is enormous , making it impractical to compute for
many loci (see below). Thus further work is needed to advance
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in this direction. But for the moments, we are able to make
some equilibrium predictions.

If we set d〈Aj〉/dt = 0 then we obtain the conditions for
mutation-selection-drift equilibrium. For the sake of simplic-
ity, lets assume that the trait distribution is normal. In that
case µz 3 = 0 and µz 4 ∝ ν2 (as in Barton and Turelli, 1987,
following Lande, 1976). We can then obtain some expressions
which we are able to interpret. For the genetic variance we have
that

〈νz〉 =
2µ
β
〈z〉 − 2α

β
〈νz z̄〉 . (7.18)

The last term is absent in the case of directional selection. No-
tice that even if µ → 0 the variance is still maintained by selec-
tion. Thus it is possible to increase the genetic variance with-
out increasing the rate of mutation. This effect was identified
by Gavrilets and Hastings (1993) for a two locus model. But we
find here for arbitrary number of loci. The relation between the
expectancies presented here and previous estimates of genetic
variance, like those mentioned above, is that the expectancies
discussed here is comprised of all those microscopic equilibria.
Since drift is present, there will be shifts between those micro-
scopic equilibria, and we are averaging over those.

Figure 7.7 shows that without changing the mutation rate, ge-
netic variance can be maintained, and even increased by other
factors. The observables are intrinsically pleiotropic, thus the
change of a given factor results in the change of all observables.
This is what is show in Fig. 7.7: when we select for the trait
(A,B), for the genetic variance (C,D) and for the variance of the
trait (E,F) we still get a response of the genetic variance, in the
last two cases, an increase. These changes however, are lamer
when more loci are present (even if most of them are of small
effect), also indicating a stronger pleiotropic effect.

Although at the moments the efficiency of the algorithms are
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Figure 7.7: Expectancies of the genetic variance of polygenic traits under
stabilizing selection as a function of (A,B) Nβ, (C,D) Nσ, (E,F) Nα. Left column:
traits composed of 4 loci of effects (0.15, 0.76, 1.09, 1.73). Right column: traits
composed of 10 loci of effects: (0.03, 0.12, 0.36, 0.50, 0.68, 0.80, 0.83, 1.01, 1.38, 2.6).
Unless the parameters are changed as indicated in the axes, these are Nβ =

Nσ = −Nα = 0.1 and Nµ = 0.5.

limiting the numerical analyses, I calculated the evolutionary
response for a two locus system after shifting the optimum 7.8.
Here we recover the classical result that selection depletes ge-
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Figure 7.8: Evolution of a tri-locus trait under stabilizing selection. Evolu-
tionary response of (A) genetic variability (inset: local mutation rate Nµ∗), (B)
mean trait (inset: local selection Nβ), (C) genetic variance (inset: local selection
Nσ), (D) square of the mean trait (inset:local selection Nα). The initial state is
given by Nµ = 1.0, Nβ = −1.0, Nσ = 0.6, Nα = −1, (equivalent to the optimum
at zo = −1/2), and Nβ is changed to 2.0 (equivalent to a shift in the optimum
to zo = −1). The loci have equal unit effects.

netic variance. However, we re not imposing any restriction on
whether specific combinations of the loci should match the op-
timum, or that the mean trait itself is at that point. In general,
z̄ 6= zo, and also 〈z̄〉 6= zo.

At the moments, I have found hope to be able to predict
the evolution of quantitative characters. The pieces seem to be
coming together to answer the fundamental question in quan-
titative genetics: how is genetic variability maintained? and
its related dynamics counterpart: how does genetic variability
evolves? I have given only partial answers but the trend is set,
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and hopefully sooner than later conclusive answers will come,
for which only some details have to be worked out, as explained
in the following sub-section.

7.4.1 Overcoming numerical limitations
Unfortunately for the problem dealt with, the numerics are dif-
ficult. The main reason for this is that the integrals that we
need to perform to compute the observables, involve the prod-
uct of the per-locus partition functions. These products are
often falling in the limits of numerical zero. Of course, since
all macroscopics involve the ratio of an integral with the parti-
tion function, although each term in itself is small, their ration
converges to a finite number. But numerically this is problem-
atic. Most of the time, even such calculations can actually be
performed, but the amount of time that the integrator takes to
compute them, is enormous. And this grows with the amount
of loci. Second, the calculations involve the inversion of the ma-
trix of covariances, which even numerically is very time costly.
One stem on the computation can take (depending on the re-
quired precision and on the precise values of the parameters)
more than an hour. Thus computing a whole trajectory is for
practical terms, impossible. Third, if the step for integrating the
trajectory are not small enough, then the computations simply
diverge.

This can (and will) be solved. There are two methods that
can be combined at this point. On the one hand, we can per-
form a Monte Carlo simulation to perform the integration, us-
ing a variant of the Metorpolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970). (Notice that a Monte Carlo simu-
lation with the Metropolis-Hastings method is not the same as
the Monte Carlo method for integrating a function, Press et al.,
2007, Ch. 7 p. 397-402) The virtue of this method is that we

212



7.5. POSTSCRIPT ON STABILIZING SELECTION

do not need to compute the normalization constant of the dis-
tribution (i.e. the partition function) so many of the numerical
issues are avoided. Notice here two hindrances. First, the inte-
grals are complex, so the methods needs to be adapted for this
situation. For this we can expand the macroscopics in their real
and complex part and evaluate them separately. But this sep-
aration involves further algebra, which at the moments I have
not explored.

The second way to solve it, is representing the integrals in
terms of a series expansion with respect to Nσ. Then the result-
ing terms are statistics of directional selection with dominance
effects. These statistics are easier to compute, as shown in the
previous section. The problem there is that we must include
multinomial terms, whose sums are also hard to compute. A
possible solution is to sample randomly the multinomial distri-
butions (which is actually faster!) and evaluate the macroscop-
ics at these points.

I have advanced with both method, although there is still
some tailoring to be done and implement working versions. For
the moments, further insights are disguised in the complexities
of the analytic results and in the hindrances to unveil them
from the respective numerical computations.

7.5 POSTSCRIPT ON STABILIZING SELECTION

In the mean time between the culmination of this thesis and a
day before of sending to print, there has been substantial ad-
vance in the statistical mechanics theory regarding stabilizing
selection. AS mentioned above, the main limitations are with
respect to the computing times. There is a way to approximate
the integrands of the partition function in terms of a Gaus-
sian distribution. This approximation is based on the fact that
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the partition function of directional selection, is the product of
several independent per-locus partition functions (Eq. 7.10).
Since these partition functions are in essence characteristic
functions, their product is in the limit of large n a Gaussian
function, as a consequence of the central limit theorem. The
problem is complicated enough, and we are proceeding step by
step. So far we have developed the method for arbitrary many
loci of equal effects. Following this reasoning, we obtain that
the partition function for the polygenic system is

Z =

(
Z̃0
)n

√
1 + 4Nαf0

exp
[

2f0Nb
2

1 + 4Nαf0

]
. (7.19)

From this formula, all the pertinent statistics follow. That
is, the observables {〈U〉, 〈z̄〉, 〈z̄2〉, 〈ν〉}, and the other macroscop-
ics of the matrices C and B (Eq. 7.16). All the formulas are
expressed in terms of simpler statistics of single locus of a trait
without selection, but for which the genetic variance is selected
for, namely the statistics generated by the partition function:

Z0 =
∫ 1

0

exp
[
4Nµγ2pq

]
(pq)4nµ−1dp . (7.20)

and for whichf0 = 〈z̄2〉0 = 2nγ(1− 〈ν〉0).
Figure 7.9 shows how well the approximation is even for as

few as for three loci, when compared to the exact integrations
of the Fourier method.

The most radical test for our approximation is that when se-
lection changes abruptly. For example a sudden shift of the
optimum would trigger a quick response of the trait, and a rad-
ical reconfiguration of the genetic states. The prediction of the
change of the trait mean and of the genetic variance is thus not
a trivial task. In turn, our approximation allows to estimate
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Figure 7.9: Comparing the exact Fourier integration (dots) with the Gaussian
approximations for different mutation rates ranging from Nµ = 0.3 (dashed
lines), 0.5, 0.7 (solid lines), 1.0 (thick solid line). Nα= -1, Nσ = 1. The trait
consists of 3 loci of equal effects = 1

the change of their expectancies, which give robust predictions
of their evolutionary course. Figure 7.10 presents a compre-
hensive analysis of this situation. We compare this response
with intensive calculations from the Wright-Fisher model, for
distinct numbers of loci. Naturally, the response is quicker for
more loci. Unlike the numerical effort required to compute the
dynamics, it is reassuring that the precission of the approxima-
tion does not seem to depend critically on this number, except
for very low number of loci (n between 3 and 5), where the co-
variances in the matrix C have significant deviations resulting
from the Gaussian approximation (results not shown). These

215



7. STABILIZING SELECTION

deviations are insignificant for higher number of loci (n > 10).
Yet the predictions of the macroscopics are in very good agree-
ment with the numerical expectations fromt he Wright-Fisher
Model, even for n as low as 4.

However, the change in the genetic variance is very low. In
most cases, this change would be so tiny that it would pass
inadverted in any practical situation. As it is shown in the pre-
vious figure, even when there are conspicuous changes in the
mean trait, the changes in the genetic variance are minimal,
less than 1% in all cases. (This by the way makes it not only
hard but to some extenct pointless to attempt to have an accu-
rate averaging from numerical realizations, and more critically
from experiments). This should be compared with the variance
from genetic drift fluctuations. Thus it is safer to compare the
variance measures of the genetic variance (Var(ν) in an ensem-
ble of populations (realizations) because these are more robust,
and is a much more clear cut predition from the SM approach,
and thus a way for falsification. After all, there it is meaning-
less to aim to predict such small changes in genetic variance
when we would need an unrealistic number of populations to
observe it. For the examples of Fig. 7.10, the fluctuations by
drift are so big compared to the range of change of genetic vari-
ance, that (a) they completely mask these changes even when
averaged for 104 realizations, a number of population replicas
that is not only unrealistic to achieve even in experiments with
micro-organisms, but barely enough to reveal that there is a
change, with still an elevated degree of uncertainly, most spe-
cially for many loci (Table 7.1).

We can think also of examples where the strenght of selec-
tion changes, but without shifting the optimal phenotype. That
is, deviations from the optimum become more critical. We can
think for example of populations finely adapting to exploiting a
particular resource, where a phenotype deviating from the opti-

216



7.5. POSTSCRIPT ON STABILIZING SELECTION

0.1 0.2 0.3 0.4
t

-1.0

-0.5

0.0

0.5

1.0
Xz\

0.00 0.05 0.10 0.15 0.20
t1.0

10.0
5.0

2.0

20.0

3.0

30.0

1.5

15.0

7.0

XΝ\

0.0 0.1 0.2 0.3 0.4
t1.00

1.05

1.10

1.15

1.20
NΜ

0.1 0.2 0.3 0.4
t

-2

-1

0

1

2
NΒ

0.1 0.2 0.3 0.4
t-1.4

-1.2

-1.0

-0.8

-0.6

NΣ

0.1 0.2 0.3 0.4
t-1.04

-1.03
-1.02
-1.01
-1.00
-0.99
-0.98
-0.97

NΑ

Figure 7.10: Evolution of a polygenic trait under stabilizing selection. Evo-
lutionary response of the trait and genetic variance (top row), and of the local
variables (mid and bottom row). Approximations for 4 (solid lines), 20 (dashed
lines) and 50 (dot-dashed lines) are shown. The thin lines are averages of the
Wright-Fisher model employing 500, 1000, and 5000 replicas respectively. The
initial state is given by Nµ = 1.0, Nβ = −1.5, Nσ = −1.0, Nα = −1.0, (equivalent
to the optimum at zo = −1/2), and Nβ is changed to 1.5 (equivalent to a shift
in the optimum to zo = −1). The loci have equal unit effects.

mum (e.g. beak size in the Darwin finches) has less success in
exploiting their main resources. The strength of selection would
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Table 7.1: Fluctuations in the genetic variance. Traits with distinct numbers
of loci (n, first column) show considerable fluctuations in the genetic variance
due to drift. Second column, Vν : statistical mechanical variance of the genetic
variance. Third column, V̂ν : numerical variance form the genetic variance (as
in Fig. 7.10). These fluctuations are typically higher than the range of change
of the genetic variance (fourth column).

n Vν V̂ν Range
2 2.210−2 1.910−2 (a) 210−2

20 1.010−1 1.010−1 (b) 610−3

50 2.610−1 2.510−1 (c) 310−3

a) Variance from 500 replicas.
b) Variance from 2,000 replicas.
c) Variance from 5,000 replicas.

be mediated by a long number of factors, competition, preda-
tors, availability of the resource, time allocated to harvest, etc.
Any of these factors coul alter the strength of selection with-
out modifying the optimum in a significant way. In such cases,
genetic variance changes radically. Some situations that we
have successfully tried are when selection becomes disruptive,
when selection ceases, or when it is intensified, in all cases
without affecting the optimum. The range of change of 〈ν〉 is
beyond fluctuation by drift and hence the statistical mechani-
cal method predicts accurately the evolutionary trend (data not
shown).

As a last point, I would like to briefly comment on the rel-
evance of the previous results. Although it might seem that
dealing with the problem of equal effects lacks realism, it pro-
vides on the other hand a good tool to understand evolutionary
mechanisms. A first example is to understand the dynamics of
the microscopic reconfigurations (e.g. following a moving op-
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timum; Bürger (2000, pp. 324–331);Jones et al. (2004); Kopp
and Hermisson (2007). The allele combinations that are best
fit to a given optimum are very sensitive and not linear with
the value of such optimum. A small change in that optimal
value may involve very different genetic states. The process
that allow these changes are the jumps from peaks to peaks
in the allele frequencies space (often confused with the fitness
landscape, see Ch. 5). The properties of these jumps are
in itself a complicated research subject (Barton, 1989; Nagy-
laki, 1989; Gavrilets and de Jong, 1993; Gavrilets and Hast-
ings, 1993; Coyne et al., 1997; Rogers, 2003; Willensdorfer and
Bürger, 2003). Treating the case of equal allelic effects allows
to simplify very much the microscopic configurations and dis-
entangle the details of the mechanisms. Because the statistical
mechanics allows to have a relatively simple description of the
evolutionary dynamics, we can then analyze these situations.
A second example that is benefited from assuming equal effects
is the contribution of genetic drift to the quantitative variation.
Genetic variance evolves erratically due to (a) the rough path in
the allele frequencies space, and (b) very unfrequent alleles that
sweep in the population. Under unequal effects, these paths
are smoothed, thus the contribution due to drift is entangled.
Hence assuming equal effects allows to focus on the effects in-
troduced only by drift (Barton et al., 2004; de Brito et al., 2005).
A third example is epistatic effects. Again, the complications
that epistasis introduce in the response to selection are on the
one hand obscure with respect to their contribution to (cryptic)
genetic variance (Kondrashov and Turelli, 1992; Gavrilets and
de Jong, 1993; Carter et al., 2005; Beerenwinkel et al., 2007;
Yukilevich et al., 2008), and on the other hand present a strong
non-linear component that is amplified by the presence of al-
leles evolving due to distinct effective selective strength (Wang
et al., 1998; Barton et al., 2004; Roff et al., 2006).
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There are of course more examples to be listed, and these are
a handful of relevant problems that we are willing to tackle on
the framework of statistical mechanics. It is, however not an ar-
gument to forget the unequal effects situation. It is not as hard
as it might seem on the first look. The Gaussian approximation
leading to Eq. 7.19 is just using the central limit theorem. This
does not require that the variables (allele frequencies) are iden-
tically distributed, only independent. Thus it is only a minor
complication to extend the analyses for this more realistic situ-
ation, which -as that of equal effects- depends on the fact that
linkage is not strong. That is the last point which needs to be
considered in order to overcome the most stringent limitations
between theoretical approaches, and biological reality.
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Chapter 8

Synthesis

My specific goal is to
revolutionize the future of
the species. Mathematics is
just another way of
predicting the future.

Ralph Abraham
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8. SYNTHESIS

8.1 AN OVERVIEW OF THE CONCLUSIONS

8.1.1 Population dynamics
• An integration of population dynamics models was achieved.

The per capita growth rate does not depend on the popu-
lation size. Still it recovers determinate and indeterminate
growth patterns such as: exponential, potential (hyper-
bolic and parabolic), logistic, θ-logistic, and Gompertzian.
It also includes models of ontogenetic growth. It has other
regimes consistent with several ecological and evolution-
ary models (although this needs further work to make a
formal statement).

• The carrying capacity is not invoked as as a fundamen-
tal concept for density dependence. It arises from cer-
tain initial conditions and combination of parameters. The
conditions not leading to carrying capacity (i.e. models of
indeterminate growth) are still biologically plausible. Fur-
thermore, assuming a carrying capacity might limit our
understanding of the ecological processes.

• General patterns of scaling laws were found, which con-
cerns not only population dynamics but also ontogenetic
growth laws. This broadens our view on the question and
usefulness of scaling as a tool.

• There are further ways in which populations can be ran-
domly affected, more than just environmentally or demo-
graphically: perturbations affecting the inter-specific in-
teraction parameter θ, depending on the ”noise to signal”
relation, will result in populations that resemble either
(a) logistic growth, or (b) exponential growth. On the one
hand, this provides a further explanation for the ubiquity
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of these growth laws. On the other hand it compromises
mechanistic explanations for these patterns. Mechanis-
tic explanations would have little use, in contrast with an
understanding of the sources of the fluctuations. In the
logistic cases, the stable size is uncorrelated with the de-
terministic carrying capacity. This is further evidence that
threatens the idea of carrying capacity.

8.1.2 Population Genetics
• The idea of entropy was formalized for population genet-

ics. It is a measure that is maximized at equilibrium, and
accounts for the expected contribution to the evolutionary
potential by selection, mutation and drift.

• Based on the previous, a coupling between population and
quantitative genetics was achieved through an analogy with
statistical mechanics. The methodology is general, but ex-
plicit results were performed for additive traits (including
dominance effects) under directional or stabilizing selec-
tion, and for multivariate traits with pleiotropic effects,
subject to directional selection.

The coupling is not restrictive on the effects and number
of the loci, dominance, pleiotropy, or epistasis. It depends
however on Hardy Weinberg and linkage equilibrium, di-
allelic loci, and constant population sizes. It is essentially
frequency-independent.

• This method avoids the arbitrary choice of the quantitative
variables that are needed to track evolution. It gives a neat
way to choose the variables needed to track evolution.

• Knowledge of the allele frequencies is not required to make
predictions. Alternatively the predictions are for the ex-
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pectancies of the quantitative variables, which only de-
pend on macroscopic quantities.

• It is possible to make long-term predictions of evolution,
provided that we know the breeding values, the mutation
rates, the size of the population, and the strength of selec-
tion. But we do not require to know the allele frequencies
at any locus. This is particularly true for the values of
the traits in an ‘average’ population, but also for the ge-
netic variance, the G-matrix, and any other quantity that
depends on the allelic effects.

• Specific results:

– For directional selection, high mutation rates (4Nµ >
1) and drift, the quasi equilibrium dynamics assump-
tion and the statistical mechanical approximation are
accurate in predicting the evolutionary course of poly-
genic traits.

– The statistical mechanical method has to be modified
for very low mutation rates (4Nm� 1). For intermedi-
ate mutation rates (4Nm ' 1) and directional selection
, the inclusion of dominance effects allow a correct
coupling between the micro and macro states.

– The extension to multivariate traits was achieved by
including several traits as observables. This allows
pleiotropic effects to be included.

– The change in the G-matrix can be computed follow-
ing the statistical mechanics methodology, and it in-
cludes the action of selection, and mutations, aver-
aged over drift.

– G is much more sensitive to drift effects than to selec-
tion. Mutation does not change the direction of evolu-
tion, although it affects the rates of change of G. The
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pleiotropic effects over G’s eigenstructure are more
noticeable at high mutation rates; strong pleiotropism
has only a minute effect over G if mutation rates are
low.

8.2 FURTHER EVOLUTIONARY IMPLICATIONS

The most pervasive trait of populations –in the broadest sense–
is that their sizes dynamically change and adapt to specific eco-
logical conditions. In itself population growth is a cornerstone
of the evolutionary theory. It is so conspicuous that the evolu-
tionary mechanisms responsible for fixating a given strategy of
growth pass inadvertent, and typically these patterns are often
assumed as an intrinsic property of an organism. For exam-
ple, the concept of Malthusian rate of growth is typically used
in several evolutionary theories in order to evaluate whether a
mutant will invade a population or not. Typically, this approach
goes in hand with the assumption that populations remain in
their carrying capacity along the evolutionary process. In this
sense, the question of quantity is deferred, focusing on the
question of quality, that is whether the mutants perform better
than the residents. This is the view from the game theoretical
and adaptive dynamics theories. A second field that employs
equivalent assumptions is population genetics. The difference
can be on the recursive nature of the mutants. But when these
mutants are rare, the evolutionary analysis is equivalent to that
of adaptive dynamics. Life history theory on the other hand,
provides explanations on what determines this Malthusian rate
of growth, rmax, interpreted as the maximal rate of increase of a
rarified population on ideal ecological conditions (Fisher, 1930;
MacArthur and Wilson, 1967; Stearns, 2004; Charnov, 1993).
Thus these three theories -adaptive dynamics, population ge-
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netics, and life history theory- seems to build a fairly rounded-
up picture of evolution.

The mathematical models of population dynamics often em-
ploy carrying capacity as a mechanism to regulate populations,
modeling the ecological constrains on growth. The canonical
model, the logistic equation, predicts that the population will
attain equilibrium at the carrying capacity. When growth is
determined, “equilibrium” and “carrying capacity” become one
and the same. However, the notion of carrying capacity, de-
fined in terms of the equilibrium of a population can often be
misleading and ill-defined. With ill-defined I mean that carry-
ing capacity ambiguously takes as equivalent (i) the equilibrium
size of the population and (ii) the maximum number of individ-
uals sustained in the environment, determined by ecological
factors. This, although a common practical equivalence, can be
regarded as non-scientific. Defined as above, we cannot distin-
guish whether the population reaches equilibrium because the
environment is saturated, or the environment has been satu-
rated because the population has reached equilibrium. There
are obviously numerous examples against my statement, where
it is well determined how the ecological constraints determine
a population’s carrying capacity (e.g. life history theory ap-
proaches the problem in several ways). But the concept, be-
ing a cornerstone of population dynamics and genetics, tends
to be more phenomenological than mechanistic. I consider that
it is possible to study some general properties that determine
not only carrying capacity, but also other traits that determine
growth.

To start, the Malthusian rate of growth, since the seminal
works of Sir Ronald Fisher (1930, Ch. 2), has been conveyed
with genetic structure. But other descriptors of growth –like
carrying capacity– are not so easily equated into evolutionary
and genetic terms. The Malthusian fitness is a very natural
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measure of growth, and under fixed population size it links the
genetics to a phenotype’s rate of growth in simple terms. Other
traits involved in growth regulation have to invoke more spe-
cific mechanisms in order to be equated to genetic variables
in a coherent way. Otherwise, we might work in terms that are
very general, but give little evolutionary insight. To follow, since
the decomposition of the population growth dynamics into pop-
ulation size and growth rates involves only two parameters in
a linear way, it immediately provides a simple set-up to con-
sider evolutionary implications. (Not that a different formula-
tion would not allow it, but the simplicity and generality of the
model opens the possibility for simpler evolutionary analyses.)

The question in general terms, is which evolutionary and
genetic properties are present in a reproducing system, which
determine a growth pattern. The idea can be approached from
distinct sides of the evolutionary theory. I will digress in three
directions: life-history, invasion analysis (game theoretical ap-
proach), and population genetics.

Life history

To begin with, I will give an example on how we can set-up
the growth equations in an independent way of the carrying
capacity. The first step has already been achieved in the size-
rate decomposition, where an explicit dependence on the car-
rying capacity N∞ has been achieved1. We could say that N∞,
the equilibrium size, is ‘hidden’ in the initial conditions or the
per-capita rate –as I showed in Eq. 1.20, but beware that this
equation is not general, since there might not be a carrying ca-

1Note that I changed the notation with respect to Ch. 1: I will use now
N to denote population size, rather than x, in order to give a more intuitive
association to the symbol, and which hopefully avoids miss-understandings in
the following equations.
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pacity at all. But we can take a different route, and relate the
initial growth rate to life-history parameters. For instance, at
very low population sizes where the density dependence is the
weakest, the rate will be maximal (that is a perturbation of r
form the fixed point ρ/θ, Eq. 1.9). Instead of equating the ini-
tial rate of growth to a carrying capacity as in Eq. (1.20), we
can borrow the interpretation form life history, an equate it to
rmax, which for textbook examples we can take as a function of
other life history parameters (e.g. rmax ' log(R0)/Tc, where R0 is
the lifetime reproductive success, and Tc the generation time;
Charnov (1993) Eq. 6.6, pp.118). Hence, equating the initial
rate of growth as r(0) = rmax, then it follows from Eq. 1.5 that

−α =
(
θrmax

ρ
− 1
)
N−θ0 = (θ log(R0)− 1)N−θ0 (8.1)

Now, introducing into 1.5, we get:

r(t) =
ρ

θ

[
1 + (θ log(R0)− 1)

(
N

N0

)θ]
(8.2)

Thus mutants with distinct strategies of ρ, θ and R0, might
exploit the ecological constraints in different ways allowing dis-
tinct patterns of growth can be evolutionarily stable, and which
may –for example– show different limiting sizes N∞. Consider
the point N∗ at which the maximal change of speed of the per-
capita rate is attained, that is d(Nr)/dN = 0 → r∗ = ρ/(1 + θ).
Introducing this into Eq. 8.2, we get that

1 = (1 + θ) (θ log(R0)− 1)
(
N∗

N0

)θ
(8.3)

I assumed that the product ρTc –the average number that a
female would produce in a rarified condition– is of the order of
1. The last expression has some implications. First, if we fix θ,
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then we have a relationship between R0 and N∗. It is convenient
to measure N∗ relative to the carrying capacity: η = N/N∞, so
that the term N∗/N0 = η∗/η0. If we introduce and re-arrange
Eq. 8.3, we have that

η∗ = η0 [(1 + θ)[θ log(R0)]]−1/θ (8.4)

If we map to a semi-log scale, we can express this relationship
as

η∗ = A−B log log(R0). (8.5)

This relationship is known in life-history theory as Fowler’s
rule, explaining that species that share anR0 will also share
η∗ (Fowler, 1988). Fowler identified this relationship in an em-
pirical way, and to my knowledge it has not been related to
θ-logistic models in the way I have presented. This is relevant,
because Sibly et al. (2005) analyzed a substantial data set of
population dynamics in order to measure the distribution of
the intra-specific competition coefficients, and have shown that
the parameter is distributed over a large range (±100) for dis-
tinct taxa: mammals, birds, fish, and insects. The distribution
is different across taxa, and remains to be explained. Yet it sug-
gests that Fowler’s rule is a coarse-graining of a more detailed
version as the one I have presented. Thus, if we plot different
curves with different values of θ in the range reported by Sibly
et al. (2005), and superimpose Fowler’s data (listed in Charnov,
1993, pp.), we can see that considering additional information,
that is the value of θ, can give more precise explanations of the
data (Fig. 8.1 A). In other words, the competition parameter can
explain the deviations from the main trend.

Second, if we fix the point of inflection N∗, then there is
an inverse relationship between the degree of competition and
the life-time reproductive success. If R0 is increased, then θ

is diminished (intra-specific competition decreases). As a by-
product then, the amount of individuals that are maintained
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in the population is also increased (the limiting size is bigger).
If on the contrary, competition is high, the life time reproduc-
tive success decreases, and there is, in equilibrium a smaller
population size. But, is there any invariant involved in this
relationship? Indeed, some algebra leads to the relationship

log log(R0) = A2 − log(θ) . (8.6)

Formally A is between 0 and log(2). The choice A = 0 gives
a perfect fit for big values of θ (as the trend shown in Fig 8.1
B), whilst the choice A = log(2) fits better the lower values. In
any case, the deviations are not big in the log-log scales, and
an unbiased survey of data would give probably A ∼ log(2)/2 =
0.35. I am enthusiastic and eager to go forward to check my
predictions!

Game-theoretical approach

The common approach to density dependence is that it is deter-
mined by the ecological conditions. Because the environment
would itself be able to support only a maximal amount of in-
dividuals, then a carrying capacity would be established. This
could well be in many (or even most) situations. But I would
like to speculate in a different direction. If a population that
does not have a density dependence mechanism that leads to
a limit size “consistent” with ecological constraints, then this
population would eventually go extinct. This can be most easily
pictured with an island model as a proxy (MacArthur and Wil-
son, 1967), allowing study the evolution of growth rates. For ex-
ample if mutant individuals that are able to adapt their growth
response to the ecology in a coordinated and coherent way in-
vade a resident population, then these new variants would (by
definition) be better adapted, and their extinction would be less
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Figure 8.1: Life-history invariants related to growth parameters. (A) Fowler’s
rule points an inverse relationship (in semi-log scale) between life-time repro-
ductive success, and the point at maximal growth rated. His fit (dark line) to
the data (black dots) is given by Eq. 8.5 with A1 = 0.633 and B = 0.187. The
thin lines show the same relationship but with A1 computed explicitly with dis-
tinct values of θ in the range (3, 8) (spaced every 0.5 units). (B) A predicted
invariant between the intra-specific competition parameter θ and life-time re-
productive success, in log-log scale. The invariant relationship is surprisingly
simple, and independent of any other parameter. The dark dashed line is a
simple approximation (Eq. 8.6), whereas the thin lines are the exact values
employing a range of inflections N∗/N0 in the range (1, 16). In this case A2 = 0

(see text for explanations).

likely. Also, they would out-compete any new invader, and dis-
persing to other island, they would be established.

Thus, to evaluate if the mutant will invade, we can compare
their Malthusian rates (Maynard-Smith, 1999). If for example
the density dependence affects the mutant equally as any other
resident, then the invasion analysis reduces to compare the
ratios

ρM
θM

>
ρR
θR

(8.7)

where M refers to the mutant strategy, and R to the resident
strategy.

An interesting feature, is that if a mutant appears that has
θ close to zero (a mutant that is not strongly competitive, or
cooperative, with its mates), then it will most likely invade. That
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mutant, will of course have a Gompertzian growth rate (because
θ = 0 corresponds to this strategy, see Ch. 1). If that is the case,
the question is why Gompertzian growth is not conspicuous
in populations? Basically, I am just saying that the mutant
can invade, which does not mean it can actually replace the
resident. That would depend on how the mutants and residents
interact. But also, there might be constraints that keeps θ fixed,
like strong selection to maintain some degree of competition
(e.g. sexual selection, or limited resources).

Gompertzian growth implies that there is no intra - specific
competition, yet there is density regulation. At this stage, it
matters little what the Malthusian rate of growth is: a Gom-
pertzian growth will outcompete any other determinate popula-
tion growth strategy. What happens once a Gomperzian strat-
egy has invaded? Naturally then, evolution will favor larger
Malthusian parameters. I am of course assuming that there
are no trade-offs between ρ and θ. It is not difficult to develop
in such direction, but under linear trade-offs it is easy to see
that still a Gompertzian strategy will invade, and the Malthu-
sian rate would be maximized.

The analyses of Sibly et al. (2005) have sown that the com-
petition parameter θ has a broad distribution. Although there
is a substantial proportion of strategies with θ ' 0, other values
are frequent. Thus my analysis is clearly missing something.
First of all, I have computed only the probability of invasion,
and not really analyzed whether the mutant will fix, and reach
an evolutionarily stable strategy. Also I have ignored other eco-
logical factors. As simple analysis shows that inclusion of other
factors will not lead to distinct results. For example, in an is-
land model, where there is certain probability Px of becoming
extinct, then the fitness has to be weighted by these chances.
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Figure 8.2: Evolution of population patterns. 100 random populations strate-
gies, (ρ, θ) were allowed to evolve for 6000 ecological episodes (events of extinc-
tion, re-colonization, or invasion). (A) Dynamics of the initial founder popula-
tions. (B) Dynamics of the evolved strategies (after 6000 ecological episodes).
In both cases, time is in generations. (C) Sizes of each population once they
hay reached equilibrium after an episode –i.e. “carrying capacities” of each
population– (gray lines), and the average size of the whole pool of populations
(black line), time is measured in ecological episodes.

In short, the invasibility is determined by

(1− PxM )rMR ≥ (1− PxR)rRR (8.8)

The chances of survival (1 − Px) are related to the size of the
population, life-time reproductive success, etc. An thus we can
expect that consideration of a more structured model account-
ing for these factors, can give predictions on how the patterns
of growth can be fine tuned. In Fig. 8.2 I performed a simple
simulation, where a population has a given chance of becoming
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extinct if it is below a certain size, or above a limiting environ-
mental sustainable capacity. The populations are able to evolve
their strategies every generation, and if the mutant is able to
invade, then it replaces the resident. The value of rmax is fixed,
but together with the strategy (ρ, θ) determines the value of N∞.
The survival is decided only after populations have achieved
equilibrium. Some combinations of these parameters will lead
automatically to extinctions or to explosion, as explained in Ch.
2. In both cases extinction is certain. The results show that (a)
the populations do not typically evolve to have a carrying ca-
pacity that matches the maximal ecological sustainable density,
but rather reach a state of mutation-selection balance, and (b)
the populations tend to diminish their intra-specific parameters
quite close to zero.

A substantial deal of work is required to gain a clear under-
standing of the evolution of patterns of growth. Most critically,
the way how the mutant and the resident interact will most
surely change the Gompertzian outcome.

Genetics

Regarding a growth strategy as a quantitative character can be
a complicated matter. Naturally, the distribution of the charac-
ters are determined by the frequency of the alleles. But since
the evolution of a structured population is driven by its pheno-
typic distribution, its change feeds back into the distribution of
allele frequencies. Ignoring mutation, linkage and drift, Slatkin
(1980) studied the effect of population competition on the dis-
placement of a quantitative character. The replication rates
(fitness) depended directly on the fitness of the character. In
this model the genetic variables were not tracked, but instead
it was assumed that both the trait and the genetic variance
were changing in time, and thus determining the broadness
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and position of the distribution of the trait. Doebeli (1996b) ex-
tended the model to include the genetic variables, showing that
the distribution of genetic effects will be neither Gaussian, nor
in demographic equilibrium. This of course raises the ques-
tion on how robust is the assumption in population genetics
(taken along this thesis) that populations are at a demographic
equilibrium. But perhaps most important is the question on
how sensitive are the conclusions of population genetics with
respect to the demographic equilibrium assumption.

It is possible to extend the Wright-Fisher model studied be-
fore to the case where population size is changing. For instance,
calling n the number of favorable alleles, then the frequency is
given by p = n/2N . If we compute the rate of change then we
obtain

ṗ = p

(
W

W̄
− 1
)
− pr (8.9)

where r is the per-capita growth rate of the population, as
above. Thus a quantitative trait that does not affect the growth
rate directly will still have some transmission bias due to the
effects of population growth. At demographic equilibrium the
growth rate vanishes (r = 0), and the dynamics would pro-
ceed normally through a Wright-Fisher model. If population
size changes slowly, then obviously there will be no big devia-
tions from the condition of demographic equilibrium, because
the genetic variables mix quickly. However, the situation is typ-
ically the contrary: populations tend to change faster than the
rate at which mutants appear.

If the dynamics of the population are stochastic, then we can
study the joint distribution of allele frequencies and population
size. This is not so far from the previous situation, so no partic-
ular deviation is expected. In principle, we can easily propose
a quasi-equilibrium model, where the local variables Nµ∗ and
Nβ∗ follow a continuous change in N . This should work fine
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unless Nµ∗ falls below 1/4. As we saw in Ch. 3, fluctuating
selection intensities will still give allow a good approximation
from the statistical mechanics methodology. Thus from that
side, there is a wide margin for confidence on the demographic
equilibrium assumption.

Most interesting is the case where the traits involved in growth
(Malthusian and intra-specific competition parameters, as well
as “carrying capacity” or any other associated life-history trait)
are affected by many genes. As Slatkin (1980); Doebeli (1996b)
did, we can define the growth rate of the population as the
mean fitness, and then confer it with genetic structure. Equa-
tion 8.9 is suggestive of this situation, since from the gene’s
point of view, selection and growth rates are two kinds of the
same. Defining growth rates directly as mean fitness will de-
termine certain patterns of growth, but it will not provide self-
regulation. There is still an effect of population size, because
it plays a role in the transmission of alleles to the next gener-
ation. Nevertheless, the demographic path will depend only on
the nature of the selective process triggering evolution.

But to conclude the analysis of the evolution of population
dynamics, we can consider the genetic effects over the param-
eters of growth. In that case the rate equation (1.7b) has some
extra terms, because its rate of change would be influenced
by the rate of change of ρ and θ. In that case, it is not easy
even to separate the time scales, because there are two factors
affecting r’s rate of change. First the density dependent com-
ponent, which has been studied in the first part of this thesis,
and in the above sections of this synthesis. Second, the quan-
titative rates of change. As indicated by Eq. 8.9 there is a
directional effect. This mutual feedback is the source of many
complications. So questions about variability maintained by a
density dependence term, are not trivial to deal with, but have
an interesting richness of properties (see Bürger and Gimelfarb,
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2004, for an example of stabilizing selection over a quantitative
character mediating competition, and even leading to specia-
tion; Nagylaki, 1979 ).

For a moment, we can forget about selection, and consider
only mutation and drift. This not quite a neutral process, be-
cause there is the selective effect of the population dynamics:

dz̄

dt
= −(2µ+ r)z̄ + ”drift” .

Where ”drift” is Gaussian and has variance proportional to 1/2N .
If the dynamics of the population size is slow (e.g. close to an
equilibrium), and the mutation rate high enough (µ� r/2), then
the rate of change of the trait would be a stochastic process with
a stationary Gaussian distribution2:

z̄ ∼
√
µ/π

2N
exp[−µz̄2/2N ].

If the trait in question is the parameter θ, then these fluctu-
ations would be of the kind studied in Ch. 2. Then genetic
effects over the intra-specific competition parameter are a par-
simonious explanation for this kind of stochastic effects leading
to density regulation. Of course, if the character is entirely neu-
tral, then there is no mechanism to control population equilib-
rium size. We would expect, on the other hand, that if selection
for this parameter exists, then the mechanism of density de-
pendence would be genetically determined, and given the noise-
suppression nature of the dynamics, and would not require a
fine tuning. Unfortunately, the regime µ � r/2 is not a biologi-
cal paradigm. Rather the contrary is expected to happen. There
is a situation, however, where we expect to find a high mutation
rate, which I analyze in the following section, and that is on the
evolution of prebiotic replicators.

2This would be essentially what is called an Ornstein-Uhlenbeck process.
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Replicators: density dependence in the origins

In the early stages of life’s origin, the proto-organisms would
lead the prebiotic world in a democratic way. Virtually any
possible mutant that appeared would survive (Szathmary and
Gladkih, 1989). These prebiotic entities, essentially replicat-
ing RNA molecules, would need of each other to replicate, but
in a way that any variant molecule would be able to catalyze
the replication of any other molecule. Eigen (1971) has argued
that these replicators could not have grown exponentially, be-
cause the diversity required for maintaining the evolution of a
primitive population of replicators, would simply collapse. This
lead to the ideas of hypercycles Eigen (1971) and the stochastic-
corrector (Szathmary and Demeter, 1987b), which provide so-
lutions to the information collapse problem, but themselves are
liable to other problems of invasion of selfish mutants.

Nevertheless, although these ideas are alive and explain the
transition from replicators to protocells (Maynard-Smith and
Szathmáry, 1997, Ch. 4), a solution to the replicator informa-
tion collapse came from a simpler idea. Based on experimen-
tal models –or ‘artificial replicators’–, (von Kiedrowski, 1986;
Scheuring and Szathmary, 2001) found that the rate of growth
of the RNA population would be parabolic. Under this assump-
tion of parabolic growth, Szathmary and Gladkih (1989) showed
that diversity of RNA molecules would be attained and sus-
tained.

However, although suitable for experimental essays, the sys-
tem is assumed to be in demographic equilibrium (Eigen, 1971).
That is that the total size of the population is constant. It is un-
likely, however that there were mechanisms of density depen-
dence in such a primitive world. This assumption of constant
population size relies on the fact that the building blocks were
a limiting factor. There are reasons to think that this could
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have been if the rate of abiotic production of building blocks,
i.e. nucleotides, would be slow. But the contrary situation is
also plausible, that the building blocks were not a limiting step,
specially if the population sizes were rather small and the envi-
ronment was rich.

Irrespective on the competition details of the replicator sys-
tem (it might well apply with changing population sizes), in-
determinate growth would not be viable. Parabolic growth is
indeterminate. Given that reaction catalysis times (on the or-
der from seconds to days) are much faster than evolutionary
time, then an explosion of the population size would have oc-
curred practically instantaneous. This sound unlikely, since
we would have to explain the transitions to compartmentaliza-
tion and emergence of mechanisms of density regulation within
such a short period. The rate of abiotic production of nu-
cleotides would have been to slow as to allow evolution for very
quick reactions if parabolic replicator were to grow to high den-
sities. Here there are two possibilities. Either the dynamic
would be driven by the decay and sequestering of the compo-
nents of unreplicated decaying molecules (Scheuring and Sza-
thmary, 2001), or a mechanism to regulate the growth rate had
to be present (or of course both). The former case has been an-
alyzed under the typical population-genetical assumption that
the size of the evolving population is constant. Now, I try to
give some insights on how this constant size could have been
achieved. I argue that the effect studied in Ch. 2, that noise
in the parameter θ would stabilize the size of the populations,
could have played a role. The question of course is what is the
source of this noise. My argument is simple. Although we can
assume that in average the order of the replication reaction is
1/2, we can also think that this value is determined by inter-
mediate states of the replication reaction. Thus distinct RNA
mutants might have different values of θ, which depends in a
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complicated way on the specific sequence. Thus treating this
parameter as a quantitative character, then the expected ge-
netic variance would be, following Eq. D.46, 〈νθ〉 = 2θµ/β. As
shown in Ch. 5, if fixation of alleles is unlikely, then the char-
acter would be normally distributed. Therefore, the strength of
the population-genetical fluctuations over the growth rate (the
genetic variance of θ) would allow a moderate rate of growth and
even an equilibrium if the rate of decay of the molecules would
show significant fluctuations.

Now, if two parabolic replicators are competing, the new mu-
tant is able to invade only if θM < θR. The later course (whether
there is coexistence or displacement of the resident) depends
on further details on the density dependence (Mylius and Diek-
mann, 1995; Metz et al., 2008). Nevertheless, in general terms,
selection would favor lower values of θ. A parabolic replicator
of exponent α < 1 has a per-capita growth rate with exponent
θ = α− 1 (Ch. 1), so in general θ < 0.

For parabolic replicators we would need a genetic variance of
less than one. In this way, the exponent would be kept between
0 and 1 in average. Otherwise the replicators would cease to
be parabolic and we would incur in the domain of the error
threshold.
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For example, if we were to assume that (1) there are ne nu-
cleotides which actually affect the value of θ, (2) the mutation
rates were relatively high, say µ ∼ 10−3, (3) that selection is
weak |β| ∼ 10−2, and (4) that θ ∼ 1/2 then the genetic variance
would be on the order of 10−1. This means that ε0 = 50 (in Eq.
2.2). The rates of decay of the RNA molecules are assumed to be
low, but with enough fluctuations (assumed to be environmen-
tal), then stabilizing the size of the population would require a
variance in the decay rate of the molecules on the order of 102,
which is too big. On the other hand, if mutation is higher, and
or selection lower, the genetic variance can be increased to at
about 0.4, which would require a variance on the decay rate of
the molecules of about 0.1, even for low decay rates. This is
consistent with the co-existence of multiple replicators.

If the genetic variance of θ were too low, for example because
selection is strong, then the replicators would not be in a de-
mographic equilibrium. Still, the population as a whole would
grow exponentially, rather than exploding in short time.
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8.3 RESEARCH PERSPECTIVES

The mechanisms that drive evolution in the wild –natural and
sexual selection as well as mutation and drift– are of the same
nature at the micro and macro-evolutionary scales. Neverthe-
less, population and quantitative genetics aim to understand
and predict the diversification of populations into two lineages,
that is speciation. One of the problems, which I have addressed
since the beginning of my dissertation, is that of variability. The
state of the art in understanding genetic variability is to some
degree, embarrassing. Theoretical models predict much less
variability of what is observed in the wild, and the predictions
of the evolutionary course are limited to a few generations. Yet
we are attached to our current frame of mind, where we con-
tinue to use the very same tools that keep failing. If we compare
how difficult is to detect selection at a locus with how easy is
to measure molecular substitution rates we find that The Neu-
tral Theory of Molecular Evolution (Kimura, 1985) has provided
much more pragmatic use than evolutionary and quantitative
genetics, even when we are certain that natural selection is the
main cause of diversification in the tree of life. This is excit-
ing, because it reveals that even when our current knowledge
accounts for micro-evolutionary processes in an accurate way
for artificial selection and experimental evolution, the “natural
versions” of evolution seem to be hiding something to us. This
is not a trivial subject. There are many lenses between the stars
that we want to observe, and the light that gets to our eyes.

The amount of assumptions that we make in order to de-
scribe an evolutionary response, or to detect natural selection
is not negligible.

1. First of all, we typically assume that populations and species
are at evolutionary and demographic equilibrium. This
translates into a huge bias in what we are able to mea-

244



8.3. RESEARCH PERSPECTIVES

sure. We saw in the second part of this thesis that during
transient evolution, we might describe the evolving dis-
tribution by local parameters. This means that if at a
given moment of time we sample a population and intend
to characterize evolutionary factors (mutation rates, effec-
tive population size, selective gradients, and even breeding
values) then we might have a very wrong picture. For ex-
ample, we might find dominance effects that are not really
there, or miss-estimate the size of a population from ge-
netic markers.

2. Density and frequency dependent effects, as discussed
above, non only may have selective consequences that have
not been considered in typical quantitative genetical em-
pirical studies, but also coupling selection to population
dynamics has major impact on the quantitative measures,
affecting the rate of change of quantitative characters.

3. The breeding system, which I have not addressed in this
thesis, and sexual selection will entirely change the pic-
ture of what we are measuring in quantitative genetics.

4. We are assuming that the genetic effects are constant.
The theory of reaction norms have provided clear cut ev-
idence that the distribution of phenotypes change with
the environment. There is of course possibility to include
genotype-environment interactions that could account for
the reaction norms. Nevertheless, whether these interac-
tions are the source of the phenotypic changes across en-
vironments has not, to my knowledge been shown. There
might be an analogous effect as with the genetic co-varian-
ces: because there are statistical associations in the evo-
lutionary response to selection it does not imply that there
is at all a genetic association. Interestingly, because the
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way how we can identify the pleiotropic QTL’s is employ-
ing correlated responses, if the genetic effects are not con-
stant across environments the genetic associations could
be a by-product of the covariant effects.

This essentially translates in that the effects in the wild
environments might actually respond in a totally different
way than in the lab, or under controlled experimental con-
ditions. Thus there is little that we can say for the long-
term evolutionary response out from association analysis
derived form captive populations, experimentally derived
estimations (populations that are back-crossed, randomly
mated, developed under controlled conditions, etc.) QTL’s
are part of the optimism for modern quantitative and pop-
ulation genetics, since they give a concrete meaning to the
reification of the concepts of locus and allele. Not that
these are mistaken, but by their phenomenological nature,
they are certainly limited, and often need to be narrowed
down (in the best of the cases) to single nucleotide substi-
tutions, in order to have a mechanistic understanding of
their effects.

Simple mendelian traits behave very well, and there the
concepts of loci and allele work very well. Also the nu-
cleotides in molecular genetics fit very well these ideas.
Still, polygenes is a very abstract entity. Sometimes their
segregation will be reducible to several Mendelian loci, but
sometimes not. The number of loci might be very vari-
able, and the number of alleles might as well not be a
fixed trait. If their effect is infinitesimal, we are in a safe
place, since we can model the effects in a simple and con-
venient way. Yet in that case the predictions don’t go be-
yond micro-evolution. If the effects, on the other hand are
not infinitesimal, the population’s course will be sensitive
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to the number of alleles and loci. This is rarely taken into
consideration.

The effects of modifier loci, although they provide a good
theoretical aid, are seldom used empirically to predict and
forecast consequences on long term evolution.

In general, most components of the genetic architecture
tend to be neglected at the time of quantitative estima-
tions. Although these architectonic elements are invoked
often in the practice, they are mostly viewed form the molec-
ular perspective and in a neutral context.

5. There is an underestimation on the meaning of selection
differentials. A clear understanding of its meaning is not
only essential, but also necessary. A selection differen-
tial, relies essentially in another statistical association:
the correlation between fitness and the trait. For example,
so much work is done on the G-matrix, trying to under-
stand its response to selection, mutation, drift, migration,
etc. But not only the knowledge of G is of limited inter-
pretation (Pigliucci, 2006), but also in the absence of a
concrete measure of selective gradient, G would say little.
From the empirical side, the gradient of selective values
is never computed independently of G (or H2, for these
matters). In theoretical terms, except in controlled exper-
iments of truncation selection, it is unlikely that we know
anything except the local gradient. The result, is that we
can only make qualitative predictions. But if we are to
be happy with qualitative predictions, then it would make
little sense to invest big efforts in accurately determining
the genetic structure of a population, if we intend to infer
anything about evolution.

6. The last two arguments point to something. If the genetic
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effects were constant and the reaction norms would en-
tirely be explained by the genotype-environment interac-
tion, and the micro-evolutionary mechanisms would suf-
fice to explain in the long run macro-evolution, then we
would expect to find certain degree of correlation in speci-
ation rates in the bio-geographical gradient. Perhaps this
correlation exists, but it is hard at the moments to predict
at which (taxonomic) level they should be observed. There
are conspicuous cases, like the glaciation periods, where
major ecological changes have taken place. But smaller
ecological episodes should have not only a notable effect
over speciation processes, but also promote it in several
lineages.

I would expect this to be so in the case of fixed genetic
effects in part because of the universality of the genomic
content, in the sense that there are so many genes com-
mon (even at distant phylogenetic distances), that at least
in traits which are conformed by common genes (e.g. FOX1)
there should be correlated responses, at least in particular
geographic locations. Honestly I doubt that this would be
so. But only because I doubt that these micro-evolutionary
mechanisms can be extrapolated to long term under the
assumption of fixed genetic values.

Nevertheless, with the local equilibrium approach, we have
been able to predict the long term evolutionary response of the
genetic co-variances. But these are relying on a constant ar-
chitecture, a constant population size, and that we know where
selection is pointing to. Even with the limitations, this in any
case is an improvement, and a constructive methodology, and
for which of course I stand. Yet, pointing the failures above is
at most useful as a progressive method to see where the limita-
tions are.
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These limitations are at best conditions for artificial selec-
tion. But if we are to ground the mechanisms of the evolution-
ary theory only on micro-evolutionary insights, then we might
be leaving the back-door open for intelligent absurdities of de-
sign, which is a door that we need to close for good.
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A. FITNESS MAXIMIZATION

A.1 MAXIMUM ENTROPY

Here, it is shown that the stationary distribution, ψ0, maximizes the
entropy, SH , subject to constraints on the expected values of a set of
observables (see Le Bellac et al., 2004, p. 64), for a treatment in a
physical context). We write the potential function in the form log

`
W̄
´

+

U = ~α. ~A, where the vector ~A is a function of the allele frequencies ~p,
and ~α is a vector of coefficients. Crucially, the observables ~A may be a
nonlinear function of the microscopic variables, ~p. The simplest choice
would be to set α1 = µ, α2 = s, as measures of the rates of mutation
and selection. Then, A1 = ~n2

P
k=1

(θk log [pk] + (1− θk) log [qk]), where

θk = µP,k/ (µQ,k + µP,k), and A2 = log
`
W̄
´‹
s determines the form of

selection. We might further separate log
`
W̄
´

into separate sources of
selection: for example, with stabilizing selection of strength s towards

an optimum at zopt, log
`
W̄
´

= −s v
2
− s(z̄−zopt)

2

2
= −s v

2
− s z̄

2

2
+ sz̄zopt −

constant. Thus, we can set

~A =

(
~n2
X

k=1

(θk log [pk] + (1− θk) log [qk]) ,−v
2
,− z̄

2

2
, z̄

)
;

the coefficients ~α = {µ, s, s′, szopt} then represent mutation, selection
to reduce variance in the trait, v, stabilizing selection to reduce de-
viations in the mean, z̄2, and directional selection on the trait mean,
z̄. We might also add observables that do not affect fitness, but are
nevertheless of interest, by setting their αk to zero. Likewise, setting
s = s′ = 0 but szopt ≡ β we recover directional selection.

Generalizing the definition of SH given below Eq. 3.6 we write:

SH [ψ] ≡
R
ψ log

“
φ
ψ

”
d~p

where φ is a measure which we take here to be φ =
Qn
k=1 (pkqk)−1.

To find the distribution PME that maximizes SH subject to constraints

on the expectations,
D
~A
E
, we use the method of Lagrange multipliers,

setting these multipliers to be proportional to 2N~α. We also require
the constraint that

R
ψME d~p = 1, with associated multiplier denoted by
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2Nγ:

0 =δSH + 2Nγδ

„Z
ψ d~p

«
+ 2N~α.δ 〈〉

=

Z
(log(ψ)− 1)δψd~p+ 2Nγ

Z
δψ d~p+ 2N

Z
~α.δψd~p

=

Z „
log

„
φ

ψ

«
+ (2Nγ − 1) + 2N~α.

«
δψd~p

Rewriting the normalization as Z = Exp(1 − 2Nγ), we find that

the distribution ψME that maximizes SH , for given values of
D
~A
E
, is:

ψ = 1
Zφe

2N~α.

where Z =
R
φe2N~α.d~p

The coefficients ~α determine the values of the expectations through
the constraint:D

~A
E

= 1
Z
R
φ e2N~α.d~p

They can also be found by differentiating the normalization:
D
~A
E

=

1
2N

∂ log(Z)
∂~α

, (c.f. Le Bellac et al., 2004, Eq. 2.66).

A.2 MAXIMUM FITNESS

The second part of this thesis seems to be relying on the fact that a
mysterious function, the entropy, is maximized at selection-mutation-
drift equilibrium. Despite that Iwasa (1988) exemplified that this is
so, and as also proven in this thesis, there can be some skepticism
in that entropy and its maximization is not a property which is actu-
ally realized in nature, but rather a mere mathematical convenience.
Perhaps it is, but no less than the mathematical conceptualization,
axiomatization, and parametrization of fitness functions, for exam-
ple. We have seen that each macroscopic (extensive) quantity that we
constrain, brings along a corresponding (non-extensive) macroscopic
quantity, emerging mathematically form the Lagrange multipliers in
the maximization of S. In this sense we have that there is a couple of
variables, one intensive and one extensive, that determine the effects
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of a given effect which define the evolutionary process, for example
under directional selection we have seen that

Process Extensive Intensive
Selection over a trait ; 〈z̄〉 β

Dominance ; 〈νz〉 σ

Mutation ; 〈U〉 µ

Genetic Drift ; S 2N

Between lines, the variables corresponding to genetic drift are ac-
tually entropy and population size. But why the effects of drift have
to be maximized, why should it have any phenomenological priority
over fitness, for example, given that selection is the cornerstone of the
evolutionary process?

As a matter of fact, entropy bears no priority, except because it
measures the stochasticity allowed by the superposition of evolution-
ary effects. But this is far from being so fundamental as to ascribe
to it all evolutionary causation in quantitative genetics. Nevertheless,
knowing that entropy is a necessary variable to include the effects of
drift, we still need to take it into consideration. Hence, maximizing the
expectancy of log mean fitness over the possible allele frequencies:

〈log(W̄ )〉 =

Z
(0,1)n

log(W̄ )ψdnp)

subject to the constraints

S =

Z
(0,1)n

log(ψ/φ)ψdnp

〈Aj〉 =

Z
(0,1)n

Ajψd
np j = 1, . . .K

on any necessary set of macroscopics Aj. Variation with respect to
ψ leads to the equation
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0 =

Z
(0,1)n

0BBBB@ log(W̄ )| {z }
Maximization

− λ|{z}
Normalization

− α0 log(ψ/φ)| {z }
Constraint on S

−
KX
j

αjAj| {z }
Other constraints

1CCCCA δψdnp ,

that implies the distribution:

ψ = φ exp

»
1

α0
log(W̄ )− λ

α0
− αj
α0
Aj

–
.

Applying the normalization condition and rearranging we get

ψ =
φ

Z
W̄ 1/α0 exp

»
−αj
α0
Aj

–
.

Naturally, we need to solve the Lagrange multipliers. But to make
it short, we can identify already that α0 = 1/2N , and the αj depend on
which macroscopics Aj were defined.

To summarize, I briefly showed that the principle of maximal en-
tropy is neither artificial nor arbitrary, and furthermore it is compat-
ible with the idea of fitness maximization, that is at the core of the
theory of evolutionary biology.

Nevertheless, the function we have employed as entropy is to some
extent arbitrary. We were able to properly define it because we know
from the mechanistic theory (Wright-Fisher process, and its diffusion
equation) how the distribution looks like. A counter-example, is Prugel-
Bennett (1997); Rogers and Prugel-Bennett (2000) approach where the
definition of entropy, although functionally similar, differs from the
genuine measure by the prior φ, hence leading to a wrong microscopic
distribution. Similarly, we could choose virtually any Lyapunov func-
tion and constrain the macroscopics of interest. As a result we will
always have a quantitative description that, by construction, matches
our expectations, and couples them with the microscopic variables.
This distribution however, as in Rogers and Prugel-Bennett (2000)
would lead to an incorrect microscopic distribution, and those vari-
ables that were not constrained would necessarily be incorrect estima-
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tors, from which it would be possible to falsify the arbitrary Lyapunov
measures as descriptors of genetic drift.

Another approach to the maximization idea. The procedure stated
above is only one way to show the equivalence between maximizing
entropy and log-mean fitness, or as a matter of fact, any other macro-
scopic constrained to couple the macro and microscopic variables. The
entropy is averaging the evolutionary potential (in the sense of chapter
5), which requires k macroscopics. Thus any choice of k variables be-
tween the k+ 1 extensive variables (the constrained macroscopics plus
the entropy) would lead to the same distribution, because maximiza-
tion reduces the k+1 degrees of freedom to k, and the choice is related
by a change of variables.

Assume that entropy S is maximized. In general, calling the inten-
sive variables αi, i = 1, . . . , k the differential of entropy is

dS =
∂S

∂α1
dα1 + . . .

∂S

∂αk
dαk = 0|{z}

at eq.

.

Let φm be other extensive variable, e.g. 〈log(W̄ )〉. Its total differen-
tial would be

dφm =
∂φm
∂α1

dα1 + . . .+
∂φm
∂αk

dαk

The internal derivative is required to explicitly write the change in
variables with respect to our original measure, the entropy: ∂φm

∂αj
=

∂φm
∂S

∂S
∂αj

, thus

dφm =
∂φm
∂S

„
∂S

∂α1
dα1 + . . .+

∂S

∂αk
dαk

«
And the quantity in parenthesis is dS. Notice that ∂φm

∂S
= α−1

m which
is in general a well defined quantity, thus

dφm = ∂φm
∂S

(dS)

= α−1
m (0) = 0 .
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A.2. MAXIMUM FITNESS

Therefore, if entropy is at a maximum, so it is the mean fitness
subject to the constraints of entropy and the other extensive variables.
Furthermore, this also applies to any other extensive variable, like 〈U〉,
for example, or genetic variance, under stabilizing selection.
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B. ANALOGY WITH PHYSICS

The max-entropic school of statistical mechanics maintains the
view that the ensembles in statistical physics show a distribution of
energy levels that follows from maximization of entropy. This has been
taken as a fundamental principle. However, it is clear that maximiza-
tion of entropy under constant energy is equivalent as minimization of
energy under constant entropy, and they simply conform two differ-
ent but equivalent and consistent representations of thermodynamics.
This is true because a set of known variables of states is uniquely
defined by a microscopic distribution. The statistical mechanics for-
mulations had their origins in physics, but the theoretical structure
described by these methods (microcanonical, canonical, grand canon-
ical, etc.) have been not only applied to several fields, but proven
general for markovian stochastic processes.

Our main concern in this paper, the evolution of quantitative char-
acters under distinct evolutionary forces, has been studied from a
max-entropic point of view. This is not the first time that a statistical-
mechanics-like approach has been used in the evolutionary context.
As mentioned before, we root our ideas in the previous work of PBRS;
all of these works, took the statistical mechanics analogy too literal,
without taking care of important biological details. Also similar ap-
proaches were taken by Iwasa (1988); Kondrashov and Turelli (1992);
Barton and Shpak (2000).

Prior distribution, and non equipartition Perhaps the most criti-
cal issue, is the choice of the prior distribution. In the hypergeomet-
ric model (Kondrashov and Turelli, 1992; Doebeli, 1996a; Shpak and
Kondrashov, 1999; Barton and Shpak, 2000), as in PBRS’s models,
the averages of the ensembles are taken with a uniform weight for
any allelic configurations resulting in the same phenotype. Comparing
the distribution obtained form the stationary Wright-Fisher model (Eq.
3.1) with the max-entropic distribution (Eq. 3.6) it becomes clear that
microscopic states are dependent not only on the value of the trait, but
also on the microscopic distribution of the alleles. Therefore, there is
no reason to assume that the states are equiprobable. Depending on
the selective scheme that is acting over the population, the likelihood
of a microstate might also depend on other macroscopic quantities,
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Figure B.1: If we were to assume equipartition (an uniform base distribution
φ = const. there would be discrepancies in (A-C) the distribution of allele fre-
quencies at each locus (Nβ = 0.5), (D-F) the expectations of the trait, and (G-I)
the expectation of the genetic variance. In general the discrepancies are less as
N/µ is farther from the point Nµ = 1/4. (A,D,G) Nµ = 0.25, (B,E,H) Nµ = 0.5,
(C,F,I) Nµ = 2.

such as the genetic variance, the variance of the trait, the genetic vari-
ability, or other observables. Hence in the entropy measure (Eq. 3.2),
the density of states does not reduce to the number of states, as it
would be dictated by a uniform distribution, but rather, favour states
that in the absence of selection, would result in fixation. In Fig. B.1
we compare the value of the mean trait and genetic variance to the
hypothetical case of equipartition of the phase space. Clearly there are
deviations from our results, showing the importance of choosing the
correct prior distribution.
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B. ANALOGY WITH PHYSICS

Intensive and extensive variables Thermodynamics distinguishes
between extensive and intensive variables. The formers are those de-
pendent on the amount of matter of the system (total energy, volume,
entropy, etc.), and the latters are independent from them (like temper-
ature, pressure, specific heat, etc.). In an extensive system the macro-
scopic quantities are proportional to the number of particles. The ex-
tensiveness in quantitative genetics is given by the number of loci m
that are contributing to z. Two physical systems A and B with mass
M and energy E are equivalent to one system of mass 2M and energy
2E: volume would be doubled, and entropy would be SA+B = SA + SB.
This is true also in quantitative genetics, where we have that 〈z̄〉 and
〈U〉 are sums over loci, as well as other quantities like genetic vari-
ance 〈νz〉, etc. Doubling the number of loci would double the value of
macroscopic variables (if effects are equal; otherwise the extensiveness
still applyes to the corresponding effect at each quantity).

Intensive variables, on the other hand, are those that define the
constrains of the macrostates. These are selection intensity, mutation
rate and population size N . Their value cannot depend on the num-
ber of loci. This is a distinction that must be handled with care in
our methodology for quanitative genetics; 1/2N is analogous to tem-
perature kT (k is Boltzmann’ s constant) in physics, in the sense that
both reflect the amount of stochastic effects at the micro-level. High
temperature indicates strong stochasticity in physical particles. In
population genetics, a low number of individual selected by drift show
high stochastic fluctuations from generation to generation. Both kT

and 1/2N result from constraints on the macroscopic systems. But of
course, N is itself a quantity that can be confused as extensive. In our
problem it has to be regarded as an externally fixed intensive quan-
tity. Actually, the analogy between (the inverse of) temperature and
population size reflect the analogous phenomenon: temperature is a
measure of the degree of molecular fluctuations, just as population
size is a measure of the intensity of drift.

Another aspect that must be clarified in the analogy is about the
entities that conform the system. The simplest microscopic system in
physics is the ideal monoatomic gas. It consists of a closed reservoir of
a big number if independent (not interacting) particles. These particles

294



are physical entities. The analogy to QG is more abstract. The obvious
or natural guess would be that the biologically independent entities
are individuals, each having a genetic system of m loci contributing to
its phenotype. Our calculations employ a more extravagant definition
of what our biological ‘particles’ are. We consider the average value of
each of the m loci across the N individuals as the atomic units. There-
fore non-interacting physical particles are analogous to the situation of
having infinite recombination and no epistasis, and therefore linkage
equilibrium.

Still, the theory of statistical mechanics is robust to the assump-
tion of independency of the particles in the ideal gas, for example. The
structure of the theory holds even when interactions are strong (maybe
an exception is low temperature physics). Similarly, our calculations
are valid with arbitrary degrees of recombination and epistasis. A for-
mal treatment for the former was introduced by Prugel - Bennet (2001).
Of course the mathematical simplicity goes hand in hand with the in-
dependency assumptions, and therefore they are the cornerstone to
the understanding of how a static macroscopic world is built from a
continously changing microscopic universe.
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C. GENETIC ARCHITECTURE OF R. temporaria

C.1 GENETIC EFFECTS AND EFFECTIVE
NUMBER OF LOCI

C.1.1 Methods
Notice on the one hand from Eq. 4.1 that at p` = 1/2, the mean traits
will vanish and genetic variances will be maximal, ν̃ = 1

2

Pn
`=1 γ

2
` . This

situation is ideally realized at neutrality (βk = 0)), but it can be also
realized in any distribution of allele frequencies since there is always a
non-zero probability that a population has these frequencies p` = 1/2.
On the other hand, the extreme values that an additive mean trait can
have would be achieved at fixation of every locus p`, q` = 1, e.g. under
extreme selective pressure, and would have values of z̃ = ±

Pn
`=1 γ`. It

follows that 2ν̃
n

= 1
n

Pn
`=1 γ

2
` and that , z̃j

n
= 1

n

Pn
`=1 γ` = γ̄. We can apply

Jensen’s inequality to these quantities: 1
n

Pn
`=1 γ

2
` ≥

`
1
n

Pn
`=1 γ`

´
2 ⇒

2ν̃
n
≥
`
z̃
n

´2. Thus the estimators for n
∼

and γ̄ follow from the equalities.

Thus following this results, we proceeded to identify from the data
the corresponding quantities. First we pooled that data (1550 F1 pop-
ulation of 18 full-sib individuals) in order to perform a bootstrap anal-
ysis over the maximal trait in a subsample of fixed size m = 72 (i.e.
the number of experimental replicates). Independent bootstrappings
were performed with 5.106 iterations for every trait (to avoid inherent
constraints or trade-offs), to calculate the mean and variance of the
maximal mean trait values. We also computed the maximum value of
a sib population (ordering the data, and taking the largest 72 values);
and the mean maximum from the experiments. As a conservative es-
timator we took the mean value from the bootstrap plus half of the
standard deviation. This was also compared with the biggest individ-
ual sample from the data, keeping the greatest among them.

The bootstraping was compared with an equivalent methodology
where the pool of data is substituted by a sample of 1550 random
numbers from a normal distribution. Since the pool distribution is
finite, the distribution of the maximum of a finite sub-sample deviates
substantially from the theoretical expectations.
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C.1. GENETIC EFFECTS AND EFFECTIVE NUMBER OF LOCI

However, the patterns of this deviation are similar from the pooled
data, consistent with the approximate normality of the trait distribu-
tion, as dictated by theoretical grounds (Fig C.1).

The deviations of the bootstrapped distribution from the theoreti-
cal one, which follows a Gompertzian distribution (Fisher and Tippett,
1928), is evident (Figs. C.1 and C.2), not only because of (i) finite
sample effects, but also because (ii) the sub-sample size is small for
the requirements of the limit theorem (Fisher and Tippett, 1928), and
probably also because (iii) the real distribution of the trait is truncated,
property whose consequences over the estimations herein presented
were not investigated.

The issue is that in theory the trait has a maximal value that we
want to know, but we don’t want to overestimate. If we would know
the theoretical distribution density of the maximum for a truncated
Gaussian (that approximates the mean trait distribution if the num-
ber of loci n is large, (Turelli and Barton, 1994), we could compute
the deviation of the expectance of the maxima to the real maximum,
for replicas of a given size. In this scenario we could state the null
hypothesis that the bootstraped mean maximum is significantly equal
to the expectance, and from it we could calculate the real maximum.
But this distribution is not known, at least to us. Even then, if the
mean trait distribution can be approximated by a Gaussian, then the
cumulative distribution of the maximal z̃ would be Gompertzian, that
is of the form Exp

ˆ
ae−bz̃

˜
, where the parameters a and b depend on

the number of samples m (Fisher and Tippett, 1928). Therefore the
expected value of the maximum in a Gaussian distribution would be
bigger than the expected maximum in a truncated Gaussian. Know-
ing the latter would give at least an upper bound for overestimations.
Unfortunately this is a limit theorem with very slow convergence with
m and for the data employed here, the Gompertz distribution highly
underestimates the actual one (Fig C.2).
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C.1. GENETIC EFFECTS AND EFFECTIVE NUMBER OF LOCI

Estimating the biggest genetic variance, suffered from more seri-
ous problems, since the values that we have were inferred from an
animal model (Lynch and Walsh, 1998, pp 755-758) that eliminated
maternal and dominance effects. Thus they do not follow directly as
the variance of the raw data. As a first subterfuge, we calculated the
total variance, assuming that the data are subsamples of the pool,
thus Vartot = Mean(ν) + Var (z̄). Second, we employed the data of both
populations, their controls, and both treatments (fast and slow dessi-
cation), for a total of 6 points for each trait, to regress the mean trait
value and genetic variance calculations. From it, we took the intercept
of the regression and added half of the standard error (square root of
the sum of squares of the regression). The maximum between these
two approaches, together with the maximal observed genetic variance,
was taken as the estimator of ν̃.

C.1.2 Results
The maximal trait values estimated from the resampling proved higher
than the experimental ones for traits 1 and 4, while for traits 2 and
3 the empirical maxima were used (Table 1). The total genetic vari-
ance for an idealized pool resulted smaller than the maximal empirical
genetic variances, except for trait 3, with which the difference is very
small. The method with least squares always gave a smaller maximal
genetic variance Fig. C.2.

Figure C.1: (Opposite page) Bootstrapping results. The left column (T) shows
the distributions of the four mean traits, and the right column (M) the distribu-
tion of their maximum values. The distributions were calculated bootstrapping
the pooled data, with a sub-sampling size of m=72. The mean traits were cen-
tered in the average, and scaled by the variance of the pool (to approximate
normality). From top to bottom: (1) develpment time, (2) mass, (3) body length,
(4) tail length, and (5) the null hypothesis (samples from a normal distribution).
Notice that the resulting distribution of the maximum in M5 differ when the
distribution can be resampled infinitely, leading to a Gompertzian distribution
(gray bulk density), to when they are finite and resampled (gray overimposed
bars).
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Figure C.2: Average maxima of the mean traits computed from subsampling
the bootstrap (black dots, bars indicate standard error), maximum subsample
from the pool (black squares), maximum mean trait from the population (open
squares), and maximum sampled mean (open circle). The dotted line repre-
sents the expected value of the maximum following the theoretical predictions,
and the gray shade extends up to half the standard deviation. (Right) Maxi-
mum genetic variance. Pooled variance (open circles), maximal variance in the
populations (open squares) and maximal variance by linear regression (open
triangles). The traits are represented as (1) development time, (2) mass, (3)
body length, (3) tail length.
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C.2. GENETIC ARCHITECTURE AND
M.S.D. EQUILIBRIUM

C.2 GENETIC ARCHITECTURE AND
M.S.D. EQUILIBRIUM

C.2.1 Methods
Assuming that the effects of each loci over a given trait is equal to
the average effect, the possible combinations of pleiotropic structures
are drastically reduced. Still, if the number of loci is big, which in
practice would be on the order of 10 or more, finding all combinations
is a tedious enterprise. Thus we designed an algorithm to search a
representative subset of these pleiotropic structures. The contributing
loci are represented in an array whose positions can either be empty,
or occupied. The array has two dimensions. The first dimension, say
the rows, represents the different traits, while the second dimension,
the columns are slots where the contributing loci can be. The second
dimension can be as big as the sum of the total number of loci con-
tributing to all traits. That is no overlap among loci, and therefore the
traits are independent. The other extreme, when there is maximum
degree of overlap (pleiotropy is strong) is when the second dimension
is as small as the bigest number of loci that contribute to any of the
traits. Any case in between represents partial overlap between some
of the loci. Thus distinct structures with varying degrees of pleiotropy
are generated by randomly moving and shifting these loci to different
slots in each row. The movements in the algorithm are: a row of loci
(that is all the effects for one trait) can be shifted left or right one step;
the other alternative is to shift only one of the loci to an empty slot on
its right or left. To optimize the algorithm, we assigned probabilities
for the shifting of a locus, proportional to how fragmented a row of loci
is (that is how many empty slots among contributing loci). If the row is
too fragmented, it tends to condense, and if it is a single block, it tends
to fragment. In addition, empty columns are deleted, since they do not
represent any biological effect. Since all the effects over a given trait
are the same at all loci, the algotithmic exploration of the pleiotropic
configurations discards those which have a degree of overlap that was
already sampled (they are redundant in macroscopic terms). Perform-
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Figure C.3: Performance of the Monte Carlo method for generating new possi-
ble pleiotropic structures.

ing a random search with these rules allows to find a big number of
possible combinations.

C.2.2 Results
Figure C.3 shows the results of the Monte Carlo procedure to identify
the pleiotropic structures. Although it is clear that more structures
can be found, the idea is to have a representative sample from the
space. Thus in our analyses we employed only 60000 trial structures.
Supplementary Material B illustrates this search an animated repre-
sentation. As a rule of thumb, about 5% of the tested structures will
be considered.
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C.3 PLEIOTROPIC STRUCTURES AND
FITNESS DIFFERENTIALS (β)

Of the 450 structures that were produced with the previous algorithm,
only 47 allowed convergence of the numerical fit of the empirical traits
with the theoretical formulas. When numerical solutions could not
be found with precision of at lest 3 significant digits, the structures
were discarded as impossible to allow a fit between microscopic and
macroscopic states. However, those structures for which there was
convergence, had a precision of at least 10−8. Furthermore, although
the estimations were performed independently for the data of each
locations, the consistent pleiotropic structures were in both cases the
same (Fig C.4).

Nevertheless, the estimations gave distinct distribution of β at each
location, as seen in Fig C.5. Notice that the distribution changes for
both locations, indicating the action of selection.
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C.4 EIGENSTRUCTURES OF THE G MATRICES

A consistent way to compare matrices, is to compare their eigenstruc-
ture. (There are many other ways, by the way, as well as statistical
tests. But it looks the choice on the method remains arbitrary.) We
computed the eigenstructures for the empirical, expectances, and drift
samples matrices. In Fig C.6. it is revealed that the eigenvalues of the
expectancies 〈G〉, in most cases are close to those of the empirical G s,
except only for the third eigenvalue, and the fourth for the Southern
population.

Figure C.4: (Opposite page) Pleiotropic structures consistent with the data.
Each of these pleiotropic structures correspond to an estimated value of ~β.
Notice that most of them represent a high pleiotropic coupling of the traits. The
rows in each plot represent the effects of the loci over the first to the fourth
traits (development time, (2) mass, (3) body length, and (4) tail length. The
structure shaded in gray was the one employed to forecast the evolutionary
dynamics in Fig. 4.1.
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Figure C.5: (Opposite page) Distribution of selection coefficients for each lo-
cation: Kiruna (Northen population), first column, and Lund (Southern pop-
ulation) second column. Each histogram βk, represents the distribution of
estimated selection coefficients for each trait k: (1) development time, (2) mass,
(3) body length, and (4) tail length.
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Figure C.6: Distribution of the eigenvalues of G for each location: Kiruna
(Northern population), first column, and Lund (Southern population) second
column. Each histogram λk, represents the distribution of k’th eigenvalues of
the G matrices resampled from the distribution of allele frequencies, where the
components k are: (1) development time, (2) mass, (3) body length, and (4) tail
length. The gray dashed lines are the eigenvalues of the empirical G . The black
solid lines are the eigenvalues of the expectancies.
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D. EXPECTANCIES

D.1 DIRECTIONAL SELECTION

The main goal, from the technical side, is to have explicit formulas
for the expectations of the macroscopic variables, in order to be able
to make predictions of the course of evolution. That is, to put the
statistical mechanical method ‘at work’. The formulas for polygenic
traits are closely related to those of a single locus, which I will give
in the following pages. The polygenic versions will be given in the
following sub-section.

Remarks about the notation. The ‘per locus’ formulas will be al-
ways denoted with the subscript `. The formulas can be represented
by either regularized confluent hypergeometrics 0F1 (.; .), or modified
Bessel functions of fractional order Iν (.) . Although entirely equiva-
lent, for some of the formulas I will provide both expressions. It is just
a matter of taste which one to use. In general I am using variables
scaled by population size, so mutation rate and selective values will be
expressed as Nµ and Nβ. Although simplifications with respect to N

is often possible, I will leave all expressions in terms of the scaled vari-
ables. The reason is that the scaling always appears, and population
size N rarely appears on its own.

The formulas here defined, as well as the evolutionary dynamics
are implemented in Mathematica 6.0 packages, that are available upon
request.

D.1.1 Statistics for traits with a single locus
Distribution of allele frequencies and the partition function

• The maxentropic distribution is

ψ =
φ

Z
exp [2Nβz̄ + 2NµU ] (D.1)

where the base density is

φ = 1/p(1− p) (D.2)
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• The partition function is

Z`(Nµ,Nβ) = I4Nµ+ 1
2

(2Nβ) (D.3)

= 21−8NµΓ(4Nµ) 0F1

„
4Nµ+

1

2
; (Nβ)2

«
which is also the generating function for the macroscopics de-
fined below.

— Low mutation rates limit (4Nµ < 1). The distribution has only two
peaks at ψ(0) and ψ(1), and the partition function is

Z`(Nβ) = cosh(2Nβ) . (D.4)

Genetic mutation variability

• Definition

U = 2 log[p(1− p)] (D.5)

• Expectancy

〈U〉`(Nµ,Nβ) =
∂ log(Z`(Nµ,Nβ))

2N∂µ
(D.6)

= 2Ψ(4Nµ)− log(16) + 2
0F

(1,0)
1

`
4Nµ+ 1

2
; (Nβ)2

´
0F1

`
4Nµ+ 1

2
; (Nβ)2

´
where Ψ is the digamma function. The equation is to be com-
puted numerically, or approximated at small β, for which it sim-
plifies as

〈U〉 ' Ψ(8Nµ)− log(16) +

„
β

4Nµ+ 1/2

«2

.

— Low mutation rates limit (4Nµ < 1). This macroscopic does not
need to be defined for low mutation rates to couple the distribu-
tion of the micro and macroscopic variables.
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• Variance

var(U)`(Nµ,Nβ) =
∂2 log(Z`(Nµ,Nβ))

(2N)2∂µ2
=

∂〈U〉
2N∂µ

(D.7)

= 4Ψ′(4Nµ) − 4
0F

(2,0)
1

`
4Nµ+ 1/2; (Nβ)2

´
0F1 (4Nµ+ 1/2; (Nβ)2)

(D.8)

+ 4

"
0F

(1,0)
1

`
Nµ+ 1/2; (Nβ)2

´
0F1 (4Nµ+ 1/2; (Nβ)2)

#2

‘Genetic variance’ of genetic variability This quantity is defined
by the rate of change of U (Eq. 3.22), in analogy to the rate of change
of the mean trait, that is proportional to genetic variance:

• Definition

H = 2(p(1− p))−1 − 4 (D.9)

• Expectancy

〈H〉`(Nµ,Nβ) = −8 + 2
Z` (Nµ−1/4,Nβ)

Z`(Nµ,Nβ))
(D.10)

= −4 +
1

4Nµ− 1/4

0F1

`
4Nµ− 1/2; (Nβ)2

´
0F1 (4Nµ+ 1/2; (Nβ)2)

= 4
Nµ+ 1/4

Nµ− 1/4
+

Nβ〈z̄〉`(Nµ,Nβ)

(Nµ− 1/2)(Nµ+ 1/2)
(D.11)

— Low mutation rates limit (4Nµ < 1). As 4Nµ ↓ 1, 〈U〉 ↑ ∞. This
macroscopic however does not need to be defined for low muta-
tion rates to couple the dynamics of the micro and macroscopic
variables.

Mean Trait

• Definition

z̄ = 2(p− 1) (D.12)
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• Expectancy

〈z̄〉`(Nµ,Nβ) =
∂ log(Z`(Nµ,Nβ))

2N∂β
(D.13)

=
I4Nµ+ 1

2
(2Nβ)

I4Nµ− 1
2

(2Nβ)

= Nβ
0F1

`
4Nµ+ 3

2
; (Nβ)2

´
0F1

`
4Nµ+ 1

2
; (Nβ)2

´
— Low mutation rates limit (4Nµ < 1).

〈z̄〉`(Nβ) = tanh(2Nβ) (D.14)

• Variance

var(z̄)`(Nµ,Nβ)

∂2 log(Z`(Nµ,Nβ))

(2N)2∂β2
=

∂〈z̄〉
2N∂β

(D.15)

= 1−
I4Nµ+1/2 (2Nβ)

I4Nµ−1/2 (2Nβ)

„
4Nµ

2Nβ
+
I4Nµ+1/2 (2Nβ)

I4Nµ−1/2 (2Nβ)

«
= 1− 〈z̄〉

„
4Nµ

2Nβ
+ 〈z̄〉

«
(D.16)

— Low mutation rates limit (4Nµ < 1).

var(z̄)`(Nβ) = sech2(2Nβ) (D.17)

Genetic variance

• Definition
ν = 2p(1− p) (D.18)

• Expectancy

〈ν〉`(Nµ,Nβ) = 2
Z` (Nµ+1/4,Nβ)

Z`(Nµ,Nβ))
(D.19)

= 2Nµ
0F1

`
4Nµ+ 3

2
; (Nβ)2

´
0F1

`
4Nµ+ 1

2
; (Nβ)2

´
=

2Nµ

Nβ
〈z̄〉`(Nµ,Nβ) (D.20)
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— Low mutation rates limit (4Nµ < 1).

〈ν〉`(Nµ,Nβ) =
2Nµ

Nβ
tanh(2Nβ) (D.21)

Covariance between meant trait and genetic variability

cov(z̄, U)`(Nµ,Nβ) =
∂2 log(Z`(Nµ,Nβ))

(2N)2∂β∂µ
(D.22)

=
∂〈z̄〉

2N∂µ
=

∂〈U〉
2N∂β

= cov(U, z̄)

= 2

"
I(1,0)

4Nµ+1/2(2Nβ)

I4Nµ−1/2 (2Nβ)
−
I4Nµ+1/2 (2Nβ) I(1,0)

4Nµ−1/2(2Nβ)`
I4Nµ−1/2 (2Nβ)

´2
#

D.1.2 Statistics for multivariate traits with
unequal (and pleiotropic) effects

The statistics for the moments of a vector of mean traits 〈~z〉 results as
an extension of the per-locus functions. I will give only the multivariate
expressions, since the uni-variate traits are a special case. For the
latter, some properties (similar as in the one-locus case) hold, which I
will highlight.

Remarks about the notation. The ‘per locus’ sub-index will be used
here also as an iterator (index for the summations and products).
Hence, whenever a quantity has a subindex, it refers to the ‘per lo-
cus’ quantity evaluated at the effects of a given locus. These effects
of each locus ` over every trait k are summarized in a matrix �; each
column of this matrix, ~γ` contains the effects of one locus ` over each
of the m traits; the effect of a locus ` over a trait k is then γk`, which
for the univariate case will simply be written as γ`. :

� =

` loci −→0BBBB@
γ11 γ12 · · ·
γ21 γ22 · · ·
...

...
. . .

γm1 γm2 · · ·

~γ`266664
γ1`

γ2`

...
γm`

377775
. . . γ1n

. . . γ2n

. . .
...

. . . γmn

1CCCCA
>

traits

↓
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Similarly, each row of � represent the vector of effects of all loci
over each of the traits.

The symbol ⊗ represents the Kronecker (tensor, dyadic, or external)
product, and will appear when using matrix notation.

Partition function

• Partition function

Z(Nµ,N~β|�) =

nY
`=1

Z`(Nµ,N~γ`·~β) (D.23)

— Low mutation rates limit (4Nµ < 1).

Z(N~β|�) =

nY
`=1

cosh[2N~γ` · ~β] (D.24)

Genetic mutation variability

• Definition

U = 2

nX
`=1

log[p`(1− p`)] (D.25)

• Expectancy

〈U〉(Nµ,N~β|�) =
∂ log(Z(Nµ,N~β|�))

2N∂µ
(D.26)

= 2

nX
`=1

〈U〉`(Nµ,N~γ`·~β)

• Variance

var(U)(Nµ,N~β|�) =
∂2 log(Z(Nµ,N~β|�))

(2N)2∂µ2
(D.27)

=
∂〈U〉
2N∂µ

=
nX
`=1

var(U)`(Nµ,N~γ`·~β) (D.28)
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‘Genetic variance’ of genetic variability

• Definition

H =

nX
`=1

2[p`(1− p`)]−1 − 4 (D.29)

• Expectancy

〈H〉(Nµ,N~β|�) = 2
Z(Nµ−1/4,N~β|�)

Z(Nµ,N~β|�)

− 4n (D.30)

= −4n+ 2(Nµ− 1/4)−1
nX
`=1

0F1

“
4Nµ− 1/2; (N~γ` · ~β)2

”
0F1

“
4Nµ+ 1/2; (N~γ` · ~β)2

”
= 4n

Nµ+ 1/4

Nµ− 1/4
+

N~β · 〈~z〉(Nµ,N~β|�)

(Nµ− 1/2)(Nµ+ 1/2)
(D.31)

Mean traits

• Defintion

~z =

nX
`=1

~γ`(2p` − 1) (D.32)

• Expectancies

〈~z〉(Nµ,N~β|�) =
∂ log(Z(Nµ,N~β|�))

2N∂~β
(D.33)

=

nX
`=1

~γ`
I4Nµ+ 1

2

“
2N~γ` · ~β

”
I4Nµ− 1

2

“
2N~γ` · ~β

”
=

nX
`=1

~γ`〈z̄〉`(Nµ,N~γ`·~β) (D.34)

— Low mutation rates limit (4Nµ < 1).

〈~z〉(N~β|�) =
nX
`=1

~γ` tanh[2N~γ` · ~β] (D.35)
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• Covariances of the mean traits.

covar(z̄j , z̄k)(Nµ,N~β|�) =
∂ log(Z(Nµ,N~β|�))

(2N)2∂βj∂βk
(D.36)

=
∂〈z̄j〉

2N∂βk
=

∂〈z̄k〉
2N∂βj

= 2(νmax
jk − 〈νjk〉)−

nX
`=1

γj`γk`〈z̄〉2`(Nµ,N~γ`·~β)
(D.37)

where

νmax
jk =

1

2

nX
`=1

γj`γk` (D.38)

are the maximal genetic variances.

• Variances of the mean traits. The variance of a trait follows di-
rectly for j = k in Eq. D.36. For univariate traits of equal effects

var(z̄) = νmax − 2Nµ

Nβ
〈z̄〉 − 〈z̄〉2 . (D.39)

We can express the covariances in matrix form, as it is needed
for the dynamics; C = {covar(z̄j , z̄k)}mj,k=1 which results in:

C = 2(Gmax − G)−
nX
`=1

~γ` ⊗ ~γ`〈z̄〉2`(Nµ,N~γ`·~β)
, (D.40)

where the relation between the G-matrix and the variance across
phenotypes is revealed.

— Low mutation rates limit (4Nµ < 1).

C(N~β|�) =

nX
`=1

~γ` ⊗ ~γ`sech2[2N~γ` · ~β] (D.41)

Genetic variances, covariances, and the G-matrix

• Definition

νjk = 2

nX
`=1

γj`γk`p`(1− p`) (D.42)
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• Expectancies of the covariances

〈νjk〉(Nµ,N~β|�) = 2
Z(Nµ+1/4,N~β|�)

Z(Nµ,N~β|�)

(D.43)

= 2Nµ

nX
`=1

γj`γk`

2N~γ` · ~β
〈z̄〉`(Nµ,N~γ`·~β) (D.44)

• Expectancies of the genetic variances. These are defined by

〈νk〉 ≡ 〈νkk〉 . (D.45)

In the case of univariate traits, setting (m = 1), comparing Eqns.
D.32 and D.42 it holds true that

〈ν〉 =
2Nµ

Nβ
〈z̄〉 , (D.46)

for arbitrary number of loci and effects.

• Definition of the G-matrix. Expressed in matrix form, the covari-
ances are

G = {νjk}mj,k=1 =

0BBBB@
ν1 ν12 · · · ν1m

ν21 ν2 · · · ν2m

...
...

. . .
...

νm1 νm2 · · · νm

1CCCCA (D.47)

• Expectancies

〈G〉(Nµ,N~β|�) =

* ν1 ν12 · · · ν1m

ν21 ν2 · · · ν2m

...
...

. . .
...

νm1 νm2 · · · νm

+
(D.48)

=2Nµ

nX
`=1

~γ` ⊗ ~γ`
〈z̄〉`(Nµ,N~γ`·~β)

2N~γ` · ~β
(D.49)

— Low mutation rates limit (4Nµ < 1).

〈G〉(Nµ,N~β|�) = 2Nµ

nX
`=1

~γ` ⊗ ~γ`
2N~γ` · ~β

tanh[2N~γ` · ~β] (D.50)
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• Variance of the genetic co-variances

var(νjk) = 4
nX
`=1

~γ2
` ⊗ ~γ2

`

Z(Nµ+1/2,2N~γ`·~β)

Z(Nµ,N~β|�)

(D.51)

Covariance between meant trait and genetic variability

covar(~z, U)(Nµ,N~β|�) =
∂2 log(Z(Nµ,N~β|�))

(2N)2∂~β∂µ
(D.52)

=
∂〈U〉
2N∂~β

=
∂〈~z〉

2N∂µ
(D.53)

=

nX
`=1

~γ`covar(z̄, U)`(Nµ,N~γ`·~β) . (D.54)

Notice that this is a vector of the covariances between each mean
trait and U .
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D.2 STABILIZING SELECTION

Similar to the case of directional selection, in linkage equilibrium the
statistics for polygenic characters depend on those of single loci, so I
will first review these, and in the following subsection, the polygenic
formulas.

Remarks about the notation. For clarity in reading the formulas I
will use the following convention. The single locus formula will always
be denoted by the symbol 〈. . .〉`; the subscript ` is used to indicate
single locus statistic. In the polygenic formulas this subscript will
also be used as an iterator across the loci. Furthermore, the statis-
tics for single locus are function of three parameters, that is the vector
(Nµ,Nβ,Nσ). Also for notational simplicity this vector will be omit-
ted, bearing in mind that single locus statistics require these three
variables. The statistics for polygenic systems will not have any sub-
script. These statistics depend on the vector (Nµ,Nβ,Nσ,Nα) which
will also be left implicit. However, some formulas (one and multi-
ple loci) sometimes require evaluation of the parameters at different
values. In those cases I will express this dependence explicitly. For
example if I were to evaluate a given statistic X at a mutation rate
Nµ+ 1 (as it will be necessary to point out some properties and simpli-
fications on the implementations) and at a selective gradient of βγ I’d
write 〈X〉(Nµ=Nµ+1,Nβ=Nβγ), where the rest of the parameters are left
untouched (in this case, Nσ and Nα).

D.2.1 Statistics for traits with a single locus
The distribution of allele frequencies and the partition function
• Distribution of allele frequencies

ψ`(p;Nµ,Nβ,Nσ) := ψ` (D.55)

=
φ

Z`
exp [2Nβ(2p− 1) + 4Nσp(1− p) + 4Nµ log(p(1− p))] .

• Partition function. The partition function for the statistics of sin-
gle locus characters under SSMD, unfortunately cannot be anal-
litically integrated to give a closed solution. Yet properties and
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relations exist that simplify calculations and give understanding
of the dynamics.

Z`(Nµ,Nβ,Nσ) := Z` (D.56)

=

Z 1

0

dp[p(1− p)]−1×

× exp [2Nβ(2p− 1) + 4Nσp(1− p) + 4Nµ log[p(1− p)]] .

— Approximation in series. For practical purposes, it is sometimes
useful to represent the partition function as a series, expanding
over σ, which yields the following expression:

Z` '
√
π21−8Nµ× (D.57)

×
∞X
i=0

Γ(4Nµ+ i) 0F1

„
4Nµ+

1

2
+ i; (Nβ)2

«
(16Nσ)i

i!

The series is convergent, and numerically can be computed using
Aitken’s method (Abramowitz and Stegun, 1972, Sect. 3.9.5, p.
18), since the Hypergeometric function decreases exponentially
fast with the expansion index i. However, for weak Nβ between
8 and 10 terms would be enough for a precision of ∼ 10−5. For
strong Nβ between 15 and 20 terms would give that precision.
The calculations using the series are usually faster than the nu-
merical or Monte Carlo integration.

Genetic mutation variability
• Definition. As in Eq. D.5.

• Expectancy

〈U〉` =
∂ log(Z`)

2N∂µ
(D.58)

=

Z 1

0

Uψ`dp

• Variance.

• Variance. Calculated from the definition (see Eq. D.60 below)

var(U) = 〈U2〉 − 〈U〉2 . (D.59)
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Square genetic mutation variability

• Expectancy

〈U2〉` =

Z 1

0

U2ψ`dp (D.60)

‘Genetic variance’ of mutational variability

• Definition. As in Eq. D.9.

• Expectancy

〈H〉` = −4 + 2
Z`(Nµ=Nµ−1/4)

Z`
(D.61)

Mean trait

• Definition. As in Eq. D.12

• Expectancy

〈z̄〉` =
∂ log(Z`)

2N∂β
(D.62)

=

Z 1

0

z̄ψ`dp

• Variance. Calculated from the definition (see Eq. D.65 below)

var(z̄) = 〈z̄2〉 − 〈z̄〉2 . (D.63)

Squared mean trait

• Definition

z̄2 =(2p− 1)2 (D.64)

=1− 2ν

• Expectancy

〈z̄2〉` = 1− 2〈ν〉` (D.65)
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Genetic variance

• Definition. As in Eq. D.18.

• Expectancy

〈ν〉` = 2
Z`(Nµ=Nµ+1/4)

Z`
(D.66)

Third moment of allele frequencies

• Definition
m3z ≡ z̄ν2(2p− 1)(1− p)p (D.67)

• Expectancy

〈m3z〉 ≡〈z̄ν〉` = 〈z̄〉`(Nµ=Nµ+1/4)〈ν〉` (D.68)

=
Nβ

Nσ
〈ν〉` −

2Nµ

Nσ
〈z̄〉`

Fourth moment of allele frequencies

• Definition
m4z ≡ z̄2ν = 2(2p− 1)2(1− p)p (D.69)

• Expectancy

〈m4z〉 ≡〈z̄2ν〉` = 〈z̄2〉`(Nµ=Nµ+1/4)〈ν〉` (D.70)

=

„
(Nβ)2

Nσ
+ 4Nµ

«
〈ν〉` −

2NµNβ

Nσ
〈z̄〉` − 2Nµ (D.71)

D.2.2 Statistics for polygenic traits with
unequal effects

The computation of multi-locus statistics requires some tricks. There
are several options. The first, is to compute the multidimensional inte-
grals using Monte Carlo sampling. This is the least desirable, specially
when the distribution of allele frequencies has most of the density near
the borders (e.g. under disruptive selection, when we select for genetic
variance, and/or at low mutation rates).
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However, a neat approach is to transform the integrals from the
variables p → r = p(1 − p). Then they are much better behaved to
deal numerically (the peaks near the borders are not so steep, and the
density is spread across the interval r ∈ (0, 1/4). Then this integral can
be partitioned to sum around the borders p = {0, 1}, and adding the
results of the 2N corners.

Another option, the one taken for now to achieve some level of an-
alytic results, is to integrate the space of n variables (~p = {p`}n`=1)

constraining that they conform to a given value of the mean trait, and
then integrate in the space of traits. In Section 7.2 I already showed
how this method goes. I will focus now in the ways to compute the
expectances out of it.

Remarks about the notation. In this section I will use the following
notation. Quantities 〈A〉γ` are per-locus statistics, as above, but eval-
uated with scaled the scaled arguments Nβ → γ`Nβ and Nσ → γ2

`Nσ.
That is

〈A〉γ` = 〈A〉`(Nµ,γ`Nβ,γ`
2Nσ) .

Partition function

Z =

r
π

|2Nα|

Z ∞
−∞

exp

»
− (2Nβ − iω)2

8Nα

– nY
`=1

Z` (Nβ=− iω
2N

γ`)dω (D.72)

(This is the same as Eq. 7.10). If we call

ZEp =

r
π

|2Nα| exp

»
− (2Nβ)2

8Nα

–
(D.73)

ZAd =

nY
`=1

Z` (D.74)

we notice that:

1. ZEp is a Gaussian function only of α, β and iω ,

2. ZAd is a function only of σ, µ and iω,

3. Z is the convolution (in the variable 2Nβ) of the ‘extensive’ single
loci partition functions (without epistasis) (ZAd), and the Gaus-
sian distribution which induces the epistatic coupling (ZEp).
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Partitioning into the two terms, and expressing Z as a convolution
simplifies the calculations and the notation. The convolution is defined
as:

JF1(x) ∗ F2(x)K(x) :=

Z ∞
−∞

F1(ω)F2(x−ω)dω .

Thus we can write the partition function as

Z = JZAd ∗ ZEpK(2Nβ) , (D.75)

form equivalent to Eq. D.72, but in convolution notation. The con-
volution brackets are ‘permeable’ to the derivatives withe respect to
any of the parameters. Thus the statistical mechanical methods of
calculating the observables from the partition function apply.

Genetic mutational variability

• Definition

U = 2

nX
`=1

log[p`(1− p`)] (D.76)

• Expectancy

〈U〉` =
∂ log(Z)

2N∂µ
(D.77)

=Z−1

t 
ZAd

nX
`

〈U〉γ`

!
∗ ZEp

|

(2Nβ)

(D.78)

(D.79)

Squared mutational genetic variability

〈U2〉 = Z−1

t 
ZAd

nX
`

〈U2〉γ`

!
∗ ZEp

|

(2Nβ)

(D.80)

‘Genetic variance’ of mutational variability

• Definition

H = 2

nX
`=1

`
[p`(1− p`)]−1 − 2

´
(D.81)
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• Expectancy

〈H〉 =− 4n+ 2
Z(Nµ=Nµ−1/4)

Z
(D.82)

=Z−1

t 
ZAd

nX
`

〈H〉γ`

!
∗ ZEp

|

(2Nβ)

(D.83)

Mean trait

• Definition

z̄ =

nX
`=1

γ`(2p` − 1) (D.84)

• Expectancy

〈z〉 =
∂ log(Z)

2N∂β
(D.85)

=Z−1

s
ZAd ∗

„
−2Nβ

4Nα
ZEp

«{

(2Nβ)

Squared mean trait

• Expectancy

〈z̄2〉 =
∂ log(Z)

2N∂α
(D.86)

=Z−1

s
ZAd ∗

„
ZEp

2Nβ − 16Nα

(8Nα)2

«{

(2Nβ)

(D.87)

Cubic mean trait

• Expectancy

〈z̄3〉 = Z−1

s
ZAd ∗

„
8Nα+ 2Nβ(16Nα− 8Nβ)

(8Nα)3
ZEp

«{

(2Nβ)

(D.88)
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Quartic mean trait

• Expectancy

〈z̄4〉 = (D.89)

Z−1

s
ZAd ∗

„
(2Nβ − 16Nα)2 + 2(16Nα)2 − 128NαNβ

(8Nα)4
ZEp

«{

(2Nβ)

Genetic variance

• Definition

νz = 2

nX
`=1

γ`p`(1− p`) (D.90)

• Expectancy

〈νz〉 =2
Z(Nµ=Nµ+1/4)

Z
(D.91)

=Z−1

t 
ZAd

nX
`

γ2
` 〈νz〉γ`

!
∗ ZEp

|

(2Nβ)

(D.92)

Squared genetic variance

• Expectancy

〈ν2
z 〉 = Z−1

t 
ZAd

nX
`

γ4
` 〈ν2

z 〉γ`

!
∗ ZEp

|

(2Nβ)

(D.93)

Third moment of allele frequencies

• Definition

m3z =
nX
`=1

γ3
` 2(1− 2p`)(1− p`)p` (D.94)

• Expectancy

m3z = −Z−1

t 
ZAd

nX
`

γ3
` 〈z̄ν〉γ`

!
∗ ZEp

|

(2Nβ)

(D.95)
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Fourth moment of allele frequencies
• Definition

m4z = 2

nX
`=1

γ4
` (2p` − 1)2(1− p`)p` (D.96)

• Expectancy

〈m4z〉 = Z−1

t 
ZAd

nX
`

γ4
` 〈z̄2ν〉γ`

!
∗ ZEp

|

(2Nβ)

(D.97)

Crossed moment: mean trait and mutational genetic variability

〈z̄U〉 = Z−1

t 
ZAd

nX
`

Uγ`

!
∗
„
−2Nβ

4Nα
ZEp

«|

(2Nβ)

(D.98)

Crossed moment: squared mean trait and mutational genetic
variability

〈z̄2U〉 = Z−1
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ZAd

nX
`

〈U〉γ`
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«|
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(D.99)

Crossed moment: mean trait and genetic variance

〈z̄νz〉 = Z−1

t 
ZAd

nX
`

γ2
` 〈νz〉γ`

!
∗
„
−2Nβ

4Nα
ZEp

«|
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(D.100)

Crossed moment: squared mean trait and genetic variance

〈z̄2νz〉 = Z−1

t 
ZAd

nX
`

γ2
` 〈νz〉γ`

!
∗
„
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(8Nα)2
ZEp

«|

(2Nβ)

(D.101)

Crossed moment: mean trait and third moment of
allele frequencies

〈z̄m3z〉 = −Z−1

t 
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nX
`
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` 〈z̄ν〉γ`

!
∗
„
−2Nβ
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ZEp

«|
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(D.102)
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D.2. STABILIZING SELECTION

Covariances of Aj Ak (not including the traits)

cov(Aj , Ak) =

Z−1

t 
ZAd

nX
`

γ2
` 〈Aj〉γ`〈Ak〉γ` + cov(Aj , Ak)γ`

!
∗ ZEp

|

(2Nβ)

− 〈Aj〉〈Ak〉

(D.103)

Variances of Aj (not including powers of the traits)
From the previous identity, it follows that

var(Aj) =

Z−1

t 
ZAd

nX
`

γ2
` 〈Aj〉2γ`

+ var(Aj)γ`

!
∗ ZEp

|

(2Nβ)

− 〈Aj〉2 . (D.104)
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