
 

 

 University of Groningen

The Internal Model Principle
Fiaz, Shaik; Takaba, K.; Trentelman, H.L.

Published in:
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Fiaz, S., Takaba, K., & Trentelman, H. L. (2010). The Internal Model Principle: Asymptotic Tracking and
Regulation in the Behavioral Framework. In 49TH IEEE CONFERENCE ON DECISION AND CONTROL
(CDC) (pp. 7748-7753). NEW YORK: University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Groningen

https://core.ac.uk/display/232376953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/the-internal-model-principle(b56e78f7-ff20-4522-9275-28022c259a64).html


The Internal Model Principle: Asymptotic Tracking and Regulation in
the Behavioral Framework

Shaik Fiaz*, K. Takaba**, H.L. Trentelman*

Abstract— Given a plant, together with an exosystem gener-
ating the disturbances and the reference signals, the problem of
asymptotic tracking and regulation is to find a controller such
that the to-be-controlled plant variable tracks the reference
signal regardless of the disturbance acting on the system. If a
controller achieves this design objective, we call it a regulator
for the plant with respect to the given exosystem. In this paper
we formulate the asymptotic tracking and regulation problem
in the behavioral framework, with control as interconnection.
The problem formulation and its resolution are completely
representation free, and specified only in terms of the plant
and exosystem dynamics.

I. INTRODUCTION

This paper deals with control in a behavioral context. We
consider the problem of finding a free-disturbance stabilizing
controller that regulates the tracking error to zero in the
presence of a class of exogenous inputs. In other words, we
consider the problem of asymptotic tracking and regulation
in the behavioral framework.

In the behavioral framework, controlling a plant means
restricting its behavior to a desired subset of the behavior.
This restriction is brought about by interconnecting the plant
with a controller that we design. The restricted behavior
is then called the controlled behavior, which is required to
satisfy the design specifications. In terms of representations,
control means that additional laws (e.g., in the form of
differential equations representing the controller behavior)
are imposed on some of the plant variables. Thus, the plant
and controller are interconnected through some of their
variables. In our context we do not distinguish between
inputs and outputs, so the interconnection does not involve
feedback. This idea was introduced by J. C. Willems in [10]
in the context of stabilization and pole placement. In this
paper we use these ideas to solve the problem of asymptotic
tracking and regulation.

Of course, the problem of asymptotic tracking and regu-
lation has been studied before in the literature, in an input-
output framework. See for instance Davison and Goldenberg
in [3], Francis in [5] and Francis and Wonham in [6]. Many
results have been collected by Saberi, Stoorvogel and Sannuti
in the book [8]. In these, the concept of internal model
principle plays a pivotal role in obtaining a solution to the
asymptotic tracking and regulation problem. According to
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the internal model principle, in order to achieve regulation
the controller or the plant must contain the dynamics of the
exosystem.

Our work can be seen as the behavioral generalization of
[3], [5] and [6]. We use polynomial kernel representations of
the plant (see [7]) without any input-output considerations.
This problem was initially studied by K. Takaba in [9]. In
the work of Takaba only necessary conditions were obtained
for the existence of a controller which solves the regulation
problem. In [4] necessary and sufficient conditions for the
existence of a controller which solves the asymptotic tracking
and regulation problem were obtained under certain a priori
assumptions. It was assumed that the underlying exosystem
is anti-stable and that the underlying plant does not annihilate
any signal generated by the exosystem. In this paper we
generalize these results to the case where the underlying
exosystem is just an autonomous system (not necessarily
anti-stable) and the underlying plant might annihilate sig-
nals generated by the exosystem. Necessary and sufficient
conditions for the existence of controllers which solve the
asymptotic tracking and regulation problem are expressed
in terms of the plant and the exosystem which generates
the disturbances and the reference signal. Also a procedure
to construct such controllers is given using the polynomial
matrices appearing in the kernel representations of the plant
and the exosystem.

A. Notation and nomenclature

A few words about the notation and nomenclature used.
We use standard symbols for the fields of real and complex
numbers R and C. C−, and C̄+ will denote the open left
half plane and closed right half plane, respectively. We use
Rn, Rn×m, etc., for the real linear spaces of vectors and
matrices with components in R.

C∞(R,Rw) denotes the set of infinitely often differentiable
functions from R to Rw. R[ξ] denotes the ring of polyno-
mials in the indeterminate ξ with real coefficients. We use
Rn[ξ],Rn×m[ξ], for the spaces of vectors and matrices with
components in R[ξ]. Elements of Rn×m[ξ] are called real
polynomial matrices.

We use the notation det(A), to denote the determinant of
a square matrix A. A square, nonsingular real polynomial
matrix R is called Hurwitz if all roots of det(R) lie in the
open left half complex plane C−. It is called anti-Hurwitz if
all roots of det(R) lie in the closed right half complex plane
C̄+.
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II. LINEAR DIFFERENTIAL SYSTEMS AND POLYNOMIAL
KERNEL REPRESENTATIONS

In the behavioral approach to linear systems, a dynamical
system is given by a triple Σ = (R,Rw,B), where R is the
time axis, Rw is the signal space, and the behavior B is a
linear subspace of C∞(R,Rw) consisting of all solutions of
a set of higher order, linear, constant coefficient differential
equations. Such a triple is called a linear differential sys-
tem. More precisely, there exist a positive integer g and a
polynomial matrix R ∈ Rg×w[ξ] such that

B = {w ∈ C∞(R,Rw) | R( d
dt )w = 0}.

The set of linear differential systems with manifest variable
w taking its value in Rw is denoted by Lw.

Let R ∈ Rg×w[ξ] be a polynomial matrix. If the behavior
B is represented by R( d

dt )w = 0 then we call this a kernel
representation of B. Further, a kernel representation is said
to be minimal if every other kernel representation of B has at
least g rows. A given kernel representation, R( d

dt )w = 0, is
minimal if and only if the polynomial matrix R has full row
rank (see [7], Theorem 3.6.4). The number of rows in any
minimal polynomial kernel representation of B is equal to
the output cardinality of B, denoted by p(B). This number
corresponds to the number of outputs in any input/output
representation of B. We speak of a system as the behavior
B, one of whose representations is given by R( d

dt )w = 0 or
just B = ker(R). The ‘ d

dt ’ is often suppressed to enhance
readability.

The following Proposition from [7] relates two minimal
kernel representations of a given behavior.

Proposition 2.1: Let B1 = ker(R1) and B2 = ker(R2)
be minimal kernel representations. Then B1 = B2 if and
only if there exists a unimodular matrix U such that R1 =
UR2.

Definition 2.2: Let B ∈ Lw1+w2 with system variable w
partitioned as w = (w1, w2). We will call w2 free in B if, for
any w2 ∈ C∞(R,Rw2), there exists w1 such that (w1, w2) ∈
B.

The following result was shown in [7]:
Proposition 2.3: Let B ∈ Lw1+w2 with system variable

(w1, w2). Let a minimal kernel representation of B be given
by R1( d

dt )w1 +R2( d
dt )w2 = 0. Then w2 is free in B if and

only if the polynomial matrix R1 has full row rank.
Definition 2.4: A behavior B ∈ Lw is called autonomous

if it has no free variables, equivalently, p(B) = w. It is called
stable if for all w ∈ B we have limt→+∞ w(t) = 0.

The following Proposition was shown in [7].
Proposition 2.5: If B = ker(R), then B is autonomous

if and only if R has full column rank and is stable if and
only if R(λ) has full column rank for all λ ∈ C̄+. Note that
a stable behavior is necessarily autonomous.

We denote the set of all linear autonomous differential
systems with w variables by Lw

aut.
Definition 2.6: Let B ∈ Lw

aut. Then B is called anti-
stable if for all non-zero w ∈ B we have either
limt→+∞ w(t) 6= 0 or limt→+∞ w(t) does not exist.

Proposition 2.7: If B = ker(R), then B is anti-stable if
and only if R(λ) has full column rank for all λ ∈ C−.

Definition 2.8: A function of the form H(t) =∑N
i=1

∑ni

j=1Aijt
j−1eλit is called a Bohl function, i.e., a

Bohl function is a finite sum of products of polynomials
and exponentials. In the real case, a Bohl function is a finite
sum of products of polynomials, real exponentials, sines, and
cosines. A function H(t) is called stable Bohl if it is Bohl
and limt→+∞H(t) = 0. A function H(t) is called anti-
stable Bohl if it is Bohl and for non-zero H(t) we have
either limt→+∞H(t) 6= 0 or limt→+∞H(t) does not exist.
Then we have the following Proposition.

Proposition 2.9: Let B ∈ Lw
aut. Then

1) every w ∈ B is a Bohl function,
2) if B is stable then every w ∈ B is a stable Bohl

function, and
3) if B is anti-stable then every w ∈ B is a anti-stable

Bohl function.
Now we have the following Proposition.
Proposition 2.10: Let B ∈ Lw

aut. Then there exists a
stable Bs ∈ Lw

aut, and an anti-stable Ba ∈ Lw
aut such that

B = Bs ⊕Ba.
Proof: We skip the proof due to space limitations. �

We now recall from [7] the definitions of stabilizability
and detectability.

Definition 2.11: A behavior B ∈ Lw is said to be stabi-
lizable, if for every w ∈ B, there exists w′ ∈ B such that
w′(t) = w(t) for t ≤ 0, and limt→+∞ w′(t) = 0.

The following result was shown in [7]:
Proposition 2.12: If B = ker(R) is a minimal kernel

representation of B, then B is stabilizable if and only if
R(λ) has full row rank for all λ ∈ C̄+.

Definition 2.13: Let B ∈ Lw1+w2 with plant variable w =
(w1, w2). We say that w2 is observable from w1 in B if,
whenever (w1, w2), (w1, w

′
2) ∈ B, then w2 = w′2. We say

that w2 is detectable from w1 in B if, whenever (w1, w2),
(w1, w

′
2) ∈ B, then limt→+∞(w2 − w′2)(t) = 0.

The following result was shown in [7]:
Proposition 2.14: Let B ∈ Lw1+w2 with system variable

(w1, w2). Let a minimal kernel representation of B be given
by R1( d

dt )w1 +R2( d
dt )w2 = 0. In B, w2 is detectable from

w1 if and only if R2(λ) has full column rank for all λ ∈ C̄+.
Definition 2.15: Let A ∈ Rn×n, B ∈ Rn×•, C ∈ R•×n.

We call the pair (A,B) stabilizable if the behavior defined
by ker

(
d
dt I −A −B

)
is stabilizable and we call the pair

(C,A) detectable if the behavior defined by ker
( d

dt
I −A
C

)
is stable.

Let B ∈ Lw1+w2 with system variable (w1, w2). Often we
are interested only in the behavior of one of the components,
say the variable w1, obtained by projecting B onto the first
component w1. This behavior Bw1 is defined by Bw1 :=
{w1 | ∃w2 such that (w1, w2) ∈ B }. If B = ker(R1 R2)
is a kernel representation, then a kernel representation for
Bw1 is obtained as follows: choose a unimodular matrix
U such that UR2 =

(
R12

0

)
, with R12 full row rank,
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and conformably partition UR1 =
(
R11

R21

)
. Then Bw1 =

ker(R21) (see [7], section 6.2.2).

III. REVIEW OF STABILIZATION BY INTERCONNECTION

In this section we will briefly recall the notion of sta-
bilization by interconnection. We will first look at the full
interconnection case, i.e. the case when all the plant variables
are available for interconnection.

Definition 3.1: Let P ∈ Lw be a plant behavior. A con-
troller for P is a system behavior C ∈ Lw. The full intercon-
nection of P and C is defined as the system with behavior
P ∩ C. This behavior is called the controlled behavior, and
is also an element of Lw. The full interconnection is called
regular if p(P ∩ C) = p(P) + p(C). In that case we call C a
regular controller.

In full interconnection, the regularity condition is equiva-
lent to: C does not re-impose restrictions on the plant variable
w that are already present in the laws of P (see [10]).

A given plant is stabilizable if and only if we can stabilize
it by interconnecting it with a suitable controller, called a
stabilizing controller, which is defined as follows [11].

Definition 3.2: Let P ∈ Lw. A controller C ∈ Lw is said
to be a stabilizing controller if the behavior P ∩ C is stable
and the interconnection is regular.
The following result was shown in [10].

Proposition 3.3: Let P ∈ Lw. Then there exists a stabiliz-
ing controller for P if and only if P is stabilizable.

Next we will look at the so called partial interconnection
case, in which only a pre-specified subset of the plant
variables is available for interconnection. Let P ∈ Lw+c be a
linear differential system, with system variable (w, c), where
w takes its values in Rw and c in Rc. The variable w should
be interpreted as the variable to-be-controlled, the variable c
as the one through which we can interconnect the plant with
a controller, called the control variable. Let C ∈ Lc (to be
interpreted as a controller behavior) with variable c.

Definition 3.4: The interconnection of P ∈ Lw+c and C ∈
Lc through c is defined as the system behavior P∧cC ∈ Lw+c,
given by P ∧c C = {(w, c) | (w, c) ∈ P and c ∈ C}. The
behavior P ∧c C is called the full controlled behavior. The
behavior (P ∧c C)w ∈ Lw that is obtained by eliminating
c from P ∧c C is called the manifest controlled behavior.
The interconnection of P and C through c is called regular
if p(P ∧c C) = p(P) + p(C). C is then called a regular
controller.
In partial interconnection, the regularity condition is equiv-
alent to: C does not re-impose restrictions on the control
variable c that are already present in the laws of P (see [1]
and [2]).

Given P ∈ Lw1+w2 with system variable (w1, w2), in this
paper we use the notation Nw1(P) to indicate the behavior
obtained by putting w2 = 0 and projecting onto the variable
w1 i.e., Nw1(P) = {w1 | (w1, 0) ∈ P}.

The following Proposition on polynomial matrices will be
useful in the paper.

Proposition 3.5: Let A ∈ R[ξ]p×p be Hurwitz and B ∈
R[ξ]q×q be anti-Hurwitz. Then for any C ∈ R[ξ]p×q there
exists a solution (X,Y ) of the equation AX + Y B = C.
Proof: We skip the proof due to space limitations. �

In the next section we will formulate the asymptotic
tracking and regulation problem studied in this paper.

IV. ASYMPTOTIC TRACKING AND REGULATION

In this section we will introduce the problem of asymptotic
tracking and regulation in a behavioral context, with control
by general, regular, interconnection.

We start with a plant behavior P ∈ Lw+c+v, with plant
variable (w, c, v). The system variable has been partitioned
into w, c and v. These variables represent the to-be-
controlled variable (like tracking error), the interconnection
variable (like sensor measurements and actuator inputs), and
external disturbances and reference signals, respectively. The
interconnection variable c is the system variable through
which we are allowed to interconnect P with a controller
C ∈ Lc. As the variable v represents a reference signal and
external disturbances we assume it to be free in P. In addition
to the plant P, let an exosystem E ∈ Lv which generates the
disturbance and the reference signal be given.

Let C ∈ Lc. Then the interconnection of the plant P with
C is given by

P ∧c C = {(w, c, v) | (w, c, v) ∈ P and c ∈ C}. (1)

Then we have the following definition for a free-disturbance
stabilizing controller.

Definition 4.1: Let P ∈ Lw+c+v. Assume v is free in
P. Then a C ∈ Lc is called a free-disturbance stabilizing
controller for P if

1) the interconnection P ∧c C is regular,
2) v is free in P ∧c C,
3) for all (w, c, 0) ∈ P ∧c C we have

limt→+∞(w(t), c(t)) = (0, 0), i.e., N(w,c)(P) ∧c C is
stable.

Condition (2.) in the above definition asks the controller not
to put any restrictions on the variable v which represents
the reference signal and external disturbances acting on the
system. Condition (1.) about the regularity of the intercon-
nection P ∧c C will make sure that C does not re-impose
restrictions on the control variable c that are already present
in the laws of P. Condition (3.) asks the controller to drive
the plant variables w and c to zero if v = 0, i.e., if the
disturbance is absent. We have the following Theorem.

Theorem 4.2: Let P ∈ Lw+c+v. Assume v is free in P.
Then there exists a disturbance free stabilizing controller for
P if and only if

1) N(w,c)(P) is stabilizable, and
2) w is detectable from (c, v) in P.

Proof: We skip the proof due to space limitations. �

The interconnection of the plant P with the exosystem E and
controller C is given by

P ∧v E ∧c C = {(w, c, v) | (w, c, v) ∈ P, v ∈ E and c ∈ C}.
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We have the following definition of a regulator.
Definition 4.3: Let P ∈ Lw+c+v. Assume v is free in P.

Then C ∈ Lc is called a regulator for P with respect to
E ∈ Lv, if

1) C is a free-disturbance stabilizing controller for P

2) for all (w, c, v) ∈ P∧vE∧cC we have limt→+∞ w(t) =
0, i.e., (P ∧v E ∧c C)w is stable.

Condition (2.) in the above definition asks the controller
to achieve regulation of the system variable w.

We now formulate the main problem of this paper:

Problem: Given a plant P ∈ Lw+c+v with system variable
(w, c, v), with v free in P, and an autonomous system E ∈
Lv

aut with system variable v, find necessary and sufficient
conditions for the existence of a regulator C ∈ Lc for P with
respect to E.

As a first step in resolving Problem, we will show that
without loss of generality we can assume that in P∧v E, the
interconnection of plant and exosystem, v is observable from
(w, c), equivalently, E ∩ Nv(P) = 0. Indeed, the following
lemma shows that signals v ∈ E ∩ Nv(P) are completely
decoupled from the (w, c)-behavior of P ∧v E:

Lemma 4.4: Let P ∈ Lw+c+v, E ∈ Lv
aut. Let E′ ∈ Lv

aut

be such that E = E′ ⊕ (E ∩ Nv(P)). Then (P ∧v E)(w,c) =
(P ∧v E′)(w,c).
Proof: As E′ ⊆ E, it is straightforward that (P∧v E′)(w,c) ⊆

(P ∧v E)(w,c). We now prove the converse inclusion. Let
(w, c) ∈ (P ∧v E)(w,c). Then there exist a v such that
(w, c, v) ∈ P and v ∈ E. As E = E′ ⊕ (E ∩ Nv(P)) there
exist v1 ∈ E′ and v2 ∈ E ∩ Nv(P) such that v = v1 + v2.
Hence (w, c, v1 + v2) ∈ P, and v2 ∈ Nv(P), equivalently,
(0, 0, v2) ∈ P. From linearity we have (w, c, v1 + v2) −
(0, 0, v2) ∈ P. Therefore (w, c, v1) ∈ P. Hence we have
(w, c, v1) ∈ P ∧v E′, which implies that (w, c) ∈ (P ∧v
E′)(w,c). We conclude that (P ∧v E)(w,c) ⊆ (P ∧v E′)(w,c).

�

Since, obviously, for any direct summand E′ as above we
have E′ ∩Nv(P) = 0, the following theorem shows that for
the solvability of Problem the assumption E ∩ Nv(P) = 0
can indeed be made without loss of generality:

Theorem 4.5: Let P ∈ Lw+c+v,E ∈ Lv. Let E′ ∈ Lv
aut be

such that E = E′⊕ (E∩Nv(P)). Then C is a regulator for P

with respect to E if and only if C is a regulator for P with
respect to E′.
Proof: Using Lemma 4.4, we have (P∧v E∧cC)w = ((P∧v
E)(w,c) ∧c C)w = ((P∧v E′)(w,c) ∧c C)w = (P∧v E′ ∧v C)w.
Therefore C is a regulator for P with respect to E if and only
if C is a regulator for P with respect to E′. �

It is easy to show that the condition E ∩ Nv(P) = 0 is
equivalent to the condition that v is observable from (w, c)
in P ∧v E.

Also the following theorem will be instrumental in solving
Problem.

Theorem 4.6: Let P ∈ Lw+v with system variable (w, v).
Assume v is free in P. Let E ∈ Lv

aut be an anti-stable system

with system variable v. Then (P∧v E)w is stable if and only
if the following conditions hold.

1) limt→+∞ w(t) = 0 for all (w, 0) ∈ P, i.e., Nw(P) is
stable, and

2) (0, v) ∈ P holds for all v ∈ E, i.e., E ⊆ Nv(P).
Proof: (if) (w, v) ∈ P ∧v E implies (w, v) ∈ P and v ∈

E. As (0, v) ∈ P for all v ∈ E, from linearity, we have
(w, v) − (0, v) ∈ P. Therefore (w, 0) ∈ P. Since we have
limt→+∞ w(t) = 0 for all (w, 0) ∈ P, we conclude that
limt→+∞ w(t) = 0 holds for all (w, v) ∈ P ∧v E.

(only if) We have {(w, 0) | (w, 0) ∈ P} ⊆ P ∧v E. Since
limt→+∞ w(t) = 0 for all (w, v) ∈ P ∧v E, we obtain
limt→+∞ w(t) = 0 for all (w, 0) ∈ P.

Let R1( d
dt )w+R2( d

dt )v = 0 be a minimal representation
of P. Let v ∈ E. As v is free in P there exists a w such that

R1( d
dt )w = −R2( d

dt )v. (2)

As (P∧vE)w is stable, w is a stable Bohl function. Hence, the
LHS of Equation (2) is a stable Bohl function. Also, since
E is anti-stable, v is either identically equal to 0 or anti-
stable Bohl. This implies that the RHS of Equation (2) is
either identically equal to 0, or an anti-stable Bohl function.
Equation (2) thus implies that R1( d

dt )w = −R2( d
dt )v = 0.

Consequently, (w, 0) ∈ P. From linearity we have (w, v) −
(w, 0) ∈ P, which implies that (0, v) ∈ P. Therefore v ∈
Nv(P). �

Remark 4.7: Condition 2) of Theorem 4.6 provides a
version of the so called internal model principle in the
behavioral setting. That is, in order to achieve regulation
of the variable w subject to all exogenous signals v ∈ E,
the plant P must contain the dynamics of E, expressed by
E ⊆ Nv(P).
As regulation is an asymptotic condition, intuitively the
stable part of the exosystem does not affect regulation. From
the following Theorem, we in fact show that we can reduce
the general problem to the case when the exosystem is anti-
stable.

Theorem 4.8: Let P ∈ Lw+c+v and E ∈ Lv
aut. Let E =

Es ⊕ Ea where Es ∈ Lv
aut is stable and Ea ∈ Lv

aut is
anti-stable. Let C ∈ Lc. Then the following statements are
equivalent.

1) C is a regulator for P with respect to E.
2) C is a regulator for P with respect to Ea.

Proof: We skip the proof due to space limitations. �

Using Theorems 4.5 and 4.8, in the remaining paper with
out loss of generality we make the following assumptions on
exosystem E.

Assumptions :
A1. E ∈ Lv

aut is an anti-stable system, and
A2. v is observable from (w, c) in P ∧v E, i.e., E ∩

Nv(P) = 0.

The following Theorem is the main result of this paper. It
now provides a solution to Problem.
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Theorem 4.9: Let P ∈ Lw+c+v with system variable
(w, c, v). Assume v is free in P. Let E ∈ Lv

aut with system
variable v satisfies the assumptions A1 and A2. Then there
exists a regulator for P with respect to E if and only if the
following conditions hold

1) (w, v) is detectable from c in P ∧v E,
2) N(w,c)(P) is stabilizable, and
3) there exists a polynomial matrix X(ξ) ∈ R[ξ]c×v such

that for all v ∈ E we have (0, X( d
dt )v, v) ∈ P.

Proof:
Let P and E be given by minimal kernel representations

P = {(w, c, v) | R1( d
dt )w +R2( d

dt )c+R3( d
dt )v = 0} (3)

and
E = {v | V ( d

dt )v = 0} (4)

respectively.
(necessity)
Let C = ker(C) be a minimal representation of a regulator

for P with respect to E. Then from Definition 4.3 and using
Theorem 4.2, N(w,c)(P) is stabilizable. We have {(w, 0, v) |
(w, 0, v) ∈ P∧vE} ⊆ P∧vE∧cC. Therefore using Definition
4.3, for all (w, 0, v) ∈ P∧v E we have limt→+∞(w(t), 0) =
0. Hence for all (w, 0, v) ∈ P∧v E, w is a stable Bohl. As v
is observable from (w, c) in P∧vE, for all (w, 0, v) ∈ P∧vE

and w stable Bohl we have v stable Bohl. Therefore for all
(w, 0, v) ∈ P ∧v E we have limt→+∞(w(t), v(t)) = 0, in
other words (w, v) is detectable from c in P ∧v E.

We have

P ∧c C = ker
(
R1 R2 R3

0 C 0

)
. (5)

v is free in P ∧c C and N(w,c)(P ∧c C) stable implies that(
R1 R2

0 C

)
is Hurwitz. There exists a unimodular matrix

U such that U

„
R1 R2 R3

0 C 0

«
=

„
R̃11 0 R̃13

R̃21 R̃22 R̃23

«
where R̃11 and R̃22 are Hurwitz. Therefore from Proposition
2.1 we have

P ∧c C = ker
(

R̃11 0 R̃13

R̃21 R̃22 R̃23

)
, (6)

(P ∧c C)(w,v) = ker ( R̃11 R̃13 ), and (7)

Nv((P ∧c C)(w,v)) = ker(R̃13). (8)

From Proposition 3.5, as R̃22 is Hurwitz and V is anti-
Hurwitz there exists a solution (X, Ỹ2) of the equation

R̃22X + R̃23 = Ỹ2V. (9)

We have P ∧v E ∧c C = ker

(
R̃11 0 R̃13

R̃21 R̃22 R̃23

0 0 V

)
. It is

easy to see that

(
R̃11 0 R̃13

R̃21 R̃22 R̃23

0 0 V

)
has full row rank.

Then we have (P ∧v E ∧c C)(w,v) = (P ∧c C)(w,v) ∧v E =

ker
(
R̃11 R̃13

0 V

)
. From Theorem 4.6 (P ∧v E ∧c C)w =

((P∧v E∧cC)(w,v))w = ((P∧cC)(w,v)∧v E)w stable implies
that E ⊆ Nv((P ∧c C)(w,v)). Hence from Equations (8) and

(4) there exists a polynomial matrix Ỹ1 such that

R̃13 = Ỹ1V. (10)

Using Equations (9) and (10) we have(
0

R̃22

)
X +

(
R̃13

R̃23

)
=
(

Ỹ1

Ỹ2

)
V . (11)

Multiplying both sides with U−1 in the above equation we
obtain (

R2

C

)
X +

(
R3

0

)
=
(
Y1

Y2

)
V (12)

where
(
Y1

Y2

)
:= U−1

(
Ỹ1

Ỹ2

)
. Then we have

R2X +R3 = Y1V. (13)

Since E = ker(V ), for all v ∈ E we then have
( R2 R3 )

(
X( d

dt
)v

v

)
= 0, i.e., (0, X( d

dt )v, v) ∈ P.
(sufficiency)
Let P be given by the Equation (3). There exists a

unimodular matrix U such that U
`
R1 R2 R3

´
=„

R11 R12 R13

0 R22 R23

«
, where R11 has full row rank. There-

fore from Proposition 2.1 we have

P = ker
(
R11 R12 R13

0 R22 R23

)
, (14)

N(w,c)(P) = ker
(
R11 R12

0 R22

)
, (15)

(N(w,c)(P))c = ker(R22), (16)

and

P ∧v E = ker

(
R11 R12 R13

0 R22 R23

0 0 V

)
. (17)

There exists a polynomial matrix X(ξ) ∈ R[ξ]c×v such that
for all v ∈ E (0, X( d

dt )v, v) ∈ P. Hence V ( d
dt )v = 0 im-

plies
(

R12( d
dt

)

R22( d
dt

)

)
X( d

dt
)v +

(
R13( d

dt
)

R23( d
dt

)

)
v = 0. Therefore

there exists a polynomial matrix Y =
(
Y1

Y2

)
such that„

R12

R22

«
X +

„
R13

R23

«
=

„
Y1

Y2

«
V. (18)

This implies
R22X +R23 = Y2V. (19)

From Equation (15), N(w,c)(P) stabilizable implies that„
R11(λ) R12(λ)

0 R22(λ)

«
has full row rank for all λ ∈ C̄+,

which in turn implies that R22(λ) has full row rank for all
λ ∈ C̄+. From Equation (16) we conclude that (N(w,c)(P))c
stabilizable. From Proposition 3.3 there exists a C ∈ Lc such
that (N(w,c)(P))c ∩ C is stable and regular. Factor R22 as
R22 = DK where D is Hurwitz and K(λ) has full row rank

for all λ ∈ C. Let S be such that
(
K
S

)
is unimodular.

Then for an arbitrary polynomial matrix F and an arbitrary
Hurwitz polynomial matrix H of suitable dimensions, it is
easy to verify that

C = FR22 +HS (20)
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serves as a stabilizing controller for (N(w,c)(P))c. Note that(
R22

C

)
is Hurwitz for all C given by the Equation (20).

From Equation (17), (w, v) is detectable from c in P ∧v E

implies that

0@ R11(λ) R13(λ)
0 R23(λ)
0 V (λ)

1A has full column rank for

all λ ∈ C̄+. This implies that R11 is square nonsingular
and Hurwitz and

„
R23(λ)
V (λ)

«
has full column rank for all

λ ∈ C̄+. As V (λ) has full column rank for all λ ∈ C− (use
the fact that V is anti-Hurwitz) we conclude that

„
R23(λ)
V (λ)

«
has full column rank for all λ ∈ C. Hence there always exists
a solution (F,M) for the equation

FR23 +MV = HSX. (21)

We now prove that any controller given by C = ker(C)
where C = FR22 +HS with F satisfying the Equation (21)
acts as a regulator. The following identities hold true.

CX = FR22X +HSX

= FR22X + FR23 +MV ( from Equation (21) )
= FY2V +MV ( from Equation (19)).

We have
CX = WV, (22)

where W := FY2 +M . We have

P ∧c C = ker

(
R11 R12 R13

0 R22 R23

0 C 0

)
, (23)

N(w,c)(P ∧c C) = ker

(
R11 R12

0 R22

0 C

)
. (24)

As C is chosen such that
„

R22

C

«
is Hurwitz, we have0@ R11 R12

0 R22

0 C

1A square, nonsingular and Hurwitz. Therefore

from Equation (23), the interconnection P ∧c C is regular,
from Equation (24), N(w,c)(P∧c C) is stable, and also from
Proposition 2.3, v is free in P ∧c C. We have

P ∧v E ∧c C =(w, c, v)

∣∣∣∣∣∣
R11( d

dt )w +R12( d
dt )c+R13( d

dt )v = 0,
R22( d

dt )c+R23( d
dt )v = 0,

C( d
dt )c = 0, V ( d

dt )v = 0

 .

Substituting Equation (18) into the above equation yields

P ∧v E ∧c C =(w, c, v)

∣∣∣∣∣∣∣∣∣∣
R11( d

dt )w +R12( d
dt )(c−X( d

dt )v)
+Y1V ( d

dt )v = 0,
R22( d

dt )(c−X( d
dt )v) + Y2V ( d

dt )v = 0,
C( d

dt )(c−X( d
dt )v) + CX( d

dt )v = 0,
V ( d

dt )v = 0

 .

It further follows from Equation (22) that

P ∧v E ∧c C

=

(w, c, v)

∣∣∣∣∣∣∣∣∣∣
R11( d

dt )w +R12( d
dt )(c−X( d

dt )v)
+Y1V ( d

dt )v = 0,
R22( d

dt )(c−X( d
dt )v) + Y2V ( d

dt )v = 0,
C( d

dt )(c−X( d
dt )v) +WV ( d

dt )v = 0,
V ( d

dt )v = 0

 .

=

(w, c, v)

∣∣∣∣∣∣
R11( d

dt )w +R12( d
dt )(c−X( d

dt )v) = 0,
R22( d

dt )(c−X( d
dt )v) = 0,

C( d
dt )(c−X( d

dt )v) = 0, V ( d
dt )v = 0

 .

From the above, we see that, for all (w, c, v) ∈ P∧v E∧c C,

(w, c−X( d
dt )v) belongs to ker

 R11 R12

0 R22

0 C

.

Since

 R11 R12

0 R22

0 C

 is Hurwitz, limt→+∞(w(t), c(t)−

X( d
dt )v(t)) = 0 holds for all (w, c, v) ∈ P ∧v E ∧c C. This

clearly implies that (P ∧v E ∧c C)w is stable. �

V. CONCLUSION

In this paper we have formulated and resolved the prob-
lem of asymptotic tracking and regulation in a completely
representation free manner. We used the theory of behavioral
control for this purpose. In the behavioral context, controllers
act on the plant using general interconnection, without a pri-
ori input-output considerations. Given a plant and exosystem,
we have established necessary and sufficient conditions for
the existence of a regulator only in terms of the plant and
exosystem dynamics.
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