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Abstract

We performed real-time dynamics of a spin 1
2 quantum system that is coupled to a bath of N quantum spin 1

2
particles. The quantities we study are the time dependence of the magnetization and of the quantum purity, P(t). If
the spins that constitute the bath have no interactions with each other, the result is compared to a recent theoretical
result. We also present simulations to study the effect of interactions between the bath spins. In particular, we analyze
how P(t) approaches its asymptotic value for large t and N.
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1. Introduction

Advances in quantum information processing and quantum computing have been steady for over a decade [1,
2]. However, additional theoretical understanding and improved physical implementations are necessary before a
quantum computer becomes a practical device. At the simplest level a quantum computer can be viewed as a time
development problem for a quantum spin system coupled to a bath that is its environment. At the computational
level, the time development of the quantum system is in principle simple, since the underlying equation is just the
time-dependent Schrödinger equation. However in practice there are two complications that make calculations of
such quantum systems difficult. First, the precise nature of the environment must be taken into account quantum
mechanically, and hence the system to be simulated is much larger than just the quantum system of the qubits of the
quantum computer. Second, the development of real-time algorithms for the time-dependent Schrödinger equation are
very difficult due to the imaginary phase in the propagator of the quantum system. In quantum statistical mechanics
simulations this difficulty is referred to as the ‘minus sign’ problem. There has however been significant progress in
simulation of quantum spin systems in real time and the physical understanding of these systems [3, 4, 5, 6].

Suppression of decoherence of spin systems is of fundamental importance for building quantum computers [2, 4].
A recent paper [7] calculated the quantum frustration of dissipation of a single spin 1

2 coupled to one or two spin
baths, with no interactions between the spins of the bath. They showed that the quantum purity, P(t), decayed as
an exponential for coupling to one bath but as a power law for coupling to two baths. In this paper we describe our
simulation to check their expressions for a spin 1

2 coupled to one spin bath. Simulations are restricted by the largest
number of spins that can be simulated on modern supercomputers, so we study the approach to the asymptotic result
for a finite number of spins. Furthermore in our calculations we are not restricted to zero interactions between the
bath spins, and therefore we address the question of whether a spin bath with random interactions will allow a faster
approach to the asymptotic region for P(t).
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2. Problem and Theory

We consider a quantum spin system coupled to a quantum spin bath. The Hamiltonian for the system+bath is

H = HS +HSB +HB (1)

whereHS = ω0S z is the Hamiltonian of the system composed of a single spin 1
2 interacting with an external magnetic

field, HSB = gS x∑N
k=1 Ix

k is the interactions of the system with the bath spins, HB is the Hamiltonian for interactions
among the bath spins. The spin operators are S and I, for example S z = 1

2σ
z with σz the Pauli spin matrix.

For the case whereHB = 0 the form of the interactions with the bath ensure that the total x component of the spins
of I are a conserved quantity. We consider the case where the system spin is initially in the down state. Therefore the
time dependence of the z component of the single spin that makes up the system is given by [7]

〈
�S (t)
〉
= Tr
(
ρ(0)�S (t)

)
=

N
2∑

m=− N
2

λmTr
(
�S m(t)ρm(0)

)
(2)

where ρ(0) is the initial quantum density matrix and
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(
N
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)
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)
!
(
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!
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In addition 〈S x(t)〉 = 〈S y(t)〉 = 0. Define Ωm =

√
(mg)2 + ω2

0. Then one obtains [7]
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Using the Laplace-de Moivre theorem
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dm exp
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)
(5)

gives the asymptotic result for ω0 = 0 and large N, valid for all times t,

〈S z(t)〉 = −1
2

exp

(
−Ng2t2

8

)
. (6)

The quantum purity in our case is defined as

P(t) = Tr
(
ρ2
)
=

1
2
+ 2 〈S z〉2 = 1

2
+

1
2

exp

(
−Ng2t2

4

)
. (7)

Note the factor of 1
4 in the exponential, compared to Eq. (27) of Ref. [7]. A rederivation of their result [8] gives the

correct factor in Eq. 7. For a pure quantum state P = 1, and hence the rate of decrease of the purity is a measure of
the decoherence of the spin of the system.

3. Results

In Fig. (1a) we show results for 2P(t) − 1 as a function of N t2. The quantum purity was calculated from Eq. (7)
and Eq. (4), with g=1. To compare with the asymptotic form we have plotted 2P(t) − 1 versus N t2 rather than as a
function of either the number of spins N in the bath or the time t. Clearly to go to larger values of Nt2 the number of
spins in the bath, N, must increase. There is a limit to the number of bath spins which can be simulated, currently on
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the largest supercomputers one is restricted to about N ≈ 40. Our calculation results performed for N = 8 and N = 16
were indistinguishable from the results of Eq. (4), until numerical rounding error occurred for very small values of
2P(t) − 1. In Fig. (1b) we show results for the fractional error due to finite N in 2P(t) − 1 as a function of N. The
fractional error is defined as

fractional error =
[2P(t) − 1]asymptotic − [2P(t) − 1]calculated

[2P(t) − 1]asymptotic
. (8)

As long as N is large enough the fractional error for fixed Nt2 approaches the exact result as a power law in N. The
computer calculations are limited in the number of bath spins N, and hence can reach the power law approach to the
asymptotic value only for small values of Nt2.

Figure 1: (a) The decay of the quantum purity as a function of the variable N t2. For N = 8 and N = 16 the results from the simulation are the same
as the results shown here from Eq. (7). (b) The fractional error in 2P(t) − 1 as a function of N for three values of Nt2.

The computer calculation is limited to values of N of less than about forty. However, unlike the exact calculation
the computer calculations are not limited to the case HB = 0. Therefore it is natural to ask whether or not having
interactions within the bath can allow a closer approach to the asymptotic limit. This is shown in Fig. (2) for N = 10,
20, and 30. The exact calculation is from Eq. (7) and Eq. (4). The label ‘No BI’ is from the program forHB = 0, and is
indistinguishable on this scale from the exact results. For the case of interactions within the bath the bath Hamiltonian
is

HB =

N∑
k=1

N∑
j=1, j�k

(
gk j,xIx

k Ix
j + gk j,yIy

k Iy
j + gk j,zI

z
kIz

j

)
(9)

for the components of the spin 1
2 operators Ik. Each component of the values of gk j were chosen randomly from a

distribution uniformly distributed between chosen bounds [−gmax, gmax]. Fig. (2) shows that there exists a value of
gmax for a given value of Nt2 that brings the value of the purity closer to the asymptotic value. However for a fixed
value of Nt2 making the random bath interactions too strong hinders the approach with N to the asymptotic limit.

4. Conclusions and Discussion

We presented results for a single quantum spin 1
2 coupled to a bath of N quantum spin 1

2 particles with a coupling
g between the x-components of the spin operators. The comparison of the simulation results with the exact results
for no interactions between the bath spins is excellent. Furthermore, for large enough N for a fixed value of Nt2

the approach to the exact result is a power law in N. Adding random interactions among the bath spins changes the
approach to the large N limit for a fixed value of Nt2.
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Figure 2: 2P(t) − 1 is shown as a function of Nt2. The asymptotic result is shown, as is the theoretical and program result for no bath interaction
(BI). Also shown are a single realization of the random bath interactions with different strengths gmax. The graphs are for N = 10, 20, and 30 from
top to bottom.

A number of questions remain to be addressed. First, is there a mechanism to systematically pick the strength
of the random bath interactions, gmax, to approach the asymptotic limit more quickly for fixed N? Second, can
adding interactions among the bath spins also allow a faster approach to the asymptotic limit when there is more than
one bath? Third, how can this approach improve on current simulations of quantum computers? Answers to these
questions will hopefully be found in the near future.
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