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Abstract. An abstract file system is defined here as a partial function from (absolute) paths to data. Such a
file system determines the set of valid paths. It allows the file system to be read and written at a valid path,
and it allows the system to be modified by the Unix operations for creation, removal, and moving of files and
directories. We present abstract definitions (axioms) for these operations. This specification is refined towards a
pointer implementation. The challenge is to have a natural abstraction function from the implementation to the
specification, to define operations on the concrete store that behave exactly in the same way as the corresponding
functions on the abstract store, and to prove these facts. To mitigate the problems attached to partial functions,
we do this in two steps: first a refinement towards a pointer implementation with total functions, followed by
one that allows partial functions. These two refinements are proved correct by means of a number of invariants.
Indeed, the insights gained consist, on the one hand, of the invariants of the pointer implementation that are
needed for the refinement functions, and on the other hand of the precise enabling conditions of the operations
on the different levels of abstraction. Each of the three specification levels is enriched with a permission system
for reading, writing, or executing, and the refinement relations between these permission systems are explored.
Files and directories are distinguished from the outset, but this rarely affects our part of the specifications. All
results have been verified with the proof assistant PVS, in particular, that the invariants are preserved by the
operations, and that, where the invariants hold, the operations commute with the refinement functions.

Keywords: File system, Specification, Verification, Refinement, Permission system, Theorem proving

1. Introduction

What is a hierarchical file system? Although most of us seem to know the answer, it is difficult to find a definition,
let alone a specification. In [AL96], e.g., we read: “Like most modern operating systems, UNIX organizes its file
system as a hierarchy of directories” and “directories, which contain information about a set of files and are used
to locate a file by its name.” If this answers the question for the impatient, it does not yield a specification. Yet, a
specification is needed when we want to verify the correctness of an implementation.
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As file systems are at the core of the operating system kernel, even a simple error can cause a crash of the
system, possibly resulting in loss of stored data [YTEM06]. File system errors are among the most dangerous
errors because they can cause loss of persistent data stored on the disk. The growing size and complexity of file
systems indicates the need of verification of such systems for ensuring reliability. It is very difficult to ensure
reliability by testing techniques.

Testing and simulation are traditional techniques to check that the software written is correct with respect to
its functionality [HR04]. Many testing techniques are available which help in eliminating coding errors. However,
very few defects in end products are due to coding errors. For example, in 197 critical faults, detected during the
testing phase of the Voyager and Galileo spacecraft, just three of them were coding errors. About 50% of the
faults were traced to requirements, 25% to design, and the rest due to other errors. This is a typical example of
a prevalent problem that the majority of faults in software arise in requirements and design and very few occur
due to coding. Furthermore, such techniques do not cover all possible behaviors of the system [Lut93].

Formal verification uses mathematical techniques to ensure the design conforms to the functional specifica-
tion. It can be applied to designs describing many different levels of abstraction [Pec99]. It helps in eliminating
errors in the design which can cause problems at later stages.

In this paper, we formalize the most rudimentary aspects of a hierarchical file system: only reading and writing
files, deleting them, creating them, and moving them. We do this in a top-down fashion, starting with the point
of view of a user who does not want to know anything of the implementation. This is refined into a version with
directories that hold subdirectories.

When formalizing this, we encountered the following problem of partial functions. If one implements a data
structure with pointers, the model of the implementation contains a partial function that assigns values to some
of these pointers, while others are unused. A formal treatment of such a system has to be very careful about
the well-definedness of expressions that contain partial functions. The proof assistant PVS is strictly typed and
therefore enforces a rigid discipline for dealing with partial functions. Our problem was that this discipline added
unwanted complexity to an already complicated problem. This is not a PVS problem: every other prover would
give the same problem, though possibly at a different point. It is a logical problem, that corresponds to the
implementation problems associated to unallocated pointers.

Our solution was to split the problem by treating the refinement in two steps. In the first refinement step, the
partiality is ignored by forcing the functions to be total. In the second refinement step, we recognize the inherent
partiality of our functions. From the conceptual point of view, this may seem superfluous. For implementations,
however, it is crucial because this partiality corresponds to the potential occurrence of unallocated pointers.

The primary contribution is to formally define a file system at a high level of abstraction with its five operations
of reading and writing files, and creating, deleting and moving files and directories, and to refine this specification
in two steps to a system with file identifiers as pointers, and to mechanically verify the refinement relations.

This is an extended version of the paper [HL09a] written for the 14th BCS-FACS Refinement Workshop
(REFINE 2009). In the present version we distinguish files and directories from the outset, while the workshop
version did not distinguish these cases. This makes it possible to approximate the Unix permission system better,
e.g., because deletion of a directory requires stronger permissions than deletion of a file.

In the present version, all modifications of the filestore are defined functionally with an additional precondi-
tion. If the precondition is not met, the operation fails and the filestore is not modified. The workshop version
had the same functionality, but not this explicit separation. The separation makes the definitions more readable.
It also enables us to distinguish parts of the precondition that are needed to preserve well-definedness (legitimacy)
of the filestore from parts that serve to defend the store against unintended destructive operations.

In data refinement, one often uses the contract approach that allows arbitrary results when the precondition
of an operation is not satisfied. This is not what we want for filesystems because the filesystem must be preserved
unmodified when the user gives nonsensical commands. Of course, we expect that an actual implementation then
also gives error messages.
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Mechanical verification

We use the proof assistant PVS [OSRSC01] for our formalization and the verification of the refinement rela-
tions. The PVS proof script of our definitions, theorems, and proofs is available at [HL09b]. Our notation in this
paper is partially based on the PVS syntax, but we also use concepts from Haskell and standard mathematical
notations.

All assertions in this paper have been proved with PVS, usually prepared by a hand-written proof. PVS then
uncovers missing details. One can say that we do the proofs and PVS verifies them. Usually, only trivial parts
can be left to PVS to prove independently. Indeed we use PVS as a proof assistant, to help us learn as much as
possible about the model that we investigate. It is not our aim to use it as a theorem prover and guide it subtly to
find proofs independently.

We needed a proof assistant like PVS for verification, because the kind of assertions we wanted to establish
are difficult to prove reliably by hand. We come back to this in Sect. 6. A proof assistant is also helpful in finding
proofs by keeping track of the set of remaining proof obligations, which changes in every proof step, but it has
itself no intelligence to suggest promising proof strategies.

1.1. Related work

The 15 year old grand challenge in software verification proposed by Hoare in [Hoa03] was refined by Joshi and
Holzmann in [JH07] to a mini-challenge to build a small verifiable file system for flash memory. In [FWB08],
Freitas et al. suggested a roadmap towards solving the grand challenge. The current status of the challenge is
discussed in [WB07]. Earlier, in [MS84], Morgan and Sufrin proposed abstract specifications of some of the data
structures in the UNIX file system.

Several researchers used refinement techniques with automated theorem provers to specify and verify the file
systems. The POSIX file store using Z/Eves with refinements based on [MS84] is described in [FWF09, Fu06].
The paper [FWF09] provides a concrete implementation of an abstract specification by means of Java HashM-
aps, taken from JML annotations given in [BCC+03]. Wenzel [Wen01] analyses aspects of the Unix file system
security with the proof assistant Isabelle/HOL. Geambasu et al. [GBM08] formally specify fault tolerant file sys-
tems with TLA+. In [KJ08], Kang and Jackson presented an elaborated work on flash memory formalism using
Alloy. More recently in 2009, Schierl et al. [SSHR09] contemplated the formalization of flash memory with refer-
ence to UBIFS implementation for Linux. They verify pre and postconditions, but do not consider refinements.
A formal model of the bottom-level interface to memory is developed in [BFW09].

Model checking techniques to verify the file system implementation have been used in [GLMS09, YTEM06,
TP09]. Galloway et al. [GLMS09] verify the existing Linux Virtual File System (VFS) by extracting and validating
a model from an available implementation of VFS. Yang et al. [YTEM06] build their own model checker “FiSC”
to find serious file system errors. This paper shows that even the most popular file systems contain serious bugs
which can cause damage to the stored data. Therefore, it is important to consider correctness proofs even of
existing file system implementations. In this regard, a correctness proof of operations like reading and writing in
a Unix based file system is presented in [AZKR04] using Athena, an interactive theorem-proving environment.
More recently (December 2009), Taverne et al. [TP09], designed a simple robust file store and implemented it in
the form of a Promela model. They used model checking to verify the correctness of their implementation and
did exhaustive verification of power loss recovery.

In 2008, inspired by Hughes’ specification [Hug89] of a visual file system in Z, Damchoom, Butler, and Abrial
[DBA08] have modeled a tree structured file system in Event-B and Rodin. This paper gives one of the first
specifications of a hierarchical file system in which the tree structure can be modified. It is close to our work. An
important difference, however, is that it is more abstract in the sense that it ignores file names and paths, which are
central concepts in our specifications. We use top down approach for a deep understanding of system functions.

When presenting the material of this paper, we learned that our Sect. 2 on the user’s point of view has some
rather striking similarities with the algebraic specification of the Unix file system in [BGM87].
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1.2. Overview

A hierarchical file system associates a file or a directory to a path. The user can read files, write into files, create,
delete and modify files. From the user’s point of view, these are deterministic operations. Under well specified
conditions, these operations fail, but then the file store remains unchanged. In Sect. 2, we describe this in an
abstract specification based on “the user’s point of view”.

Hierarchical file systems are usually implemented and described by means of file identifiers that serve as
pointers to files and directories. The technical difficulties of unallocated pointers correspond in the theory with
the technical difficulties of partial functions. We deal with these difficulties by first constructing in Sect. 3 a file
system with total functions and all pointers allocated.

Section 4 presents the second refinement step to a system with pointers modelled as partial functions. In this
way, the difficulties are not removed, they only appear one by one. The main result we prove, is that the file system
operations of the three levels as specified here correspond exactly. The proof uses the invariants of the levels. It
is constructed with the proof assistant PVS.

In Sect. 5, we indicate how file permissions as used in Unix can be specified in our set-up. Here, we again
traverse the three levels of abstraction, and we take care that the permissions on the different levels correspond
exactly. Conclusions are drawn in Sect. 6.

2. The user’s point of view

From the user’s point of view, a file store associates a file or a directory to a path. The user can inspect files by
reading, modify files by writing, inspect the structure of the store by listing the files in a directory, and modify the
structure of the store by the commands create, delete, and move. In this section, we specify these six operations
in an abstract way.

2.1. The store as a partial function from paths to data

The user accesses the store usually by means of a relative path from his working directory. For the specification,
however, it is easier to eliminate the working directory and exclusively work with the absolute path. Henceforward,
we can therefore omit the word absolute. A path is a finite sequence of names, and the type of paths is defined by

Path � finite sequence[Name].

Name is the unspecified type of names. We use square brackets ([ ]) for type parameters and type constructors,
just as in PVS.

For a given store, the question whether there are data stored at path p depends on the path, the sequence of
names. If so, the path is called valid for the store. Validity of the path should of course imply that all strict prefixes
of the path give directories. We come back to this later.

A store thus determines the valid paths, and the associated data for each valid path. We thus define an abstract
store as a partial function from Path to Data, according to the following type definition:

StoreA � [Path → lift[Data]],

where we use the PVS definition lift[X ] � X ∪ {⊥}. The valid paths p for an abstract store x are given by

valid(p, x ) � (x (p) �� ⊥).

We distinguish files and directories by means of a boolean function

isdir : [Data → Bool].

We extend this function to lift[Data] by defining isdir(⊥) � false. For uniformity of notation, we write
isdir(p, x ) � isdir(x (p)). Note that isdir(p, x ) implies valid(p, x ). The empty path ε holds the root of the file
system and should therefore always hold a directory.

We use the operator ++ for concatenation of paths as finite sequences. This operator is associative, i.e.,
(p ++ q) ++ r � p ++ (q ++ r ), and has the empty path ε as two-sided unit, i.e., ε++ p � p � p ++ ε. Path p is called
a prefix of q , with notation p � q , iff there is a path r with p ++ r � q . Relation � is an ordering of the set Path,
i.e., it is reflexive and transitive, and p � q � p implies p � q . Path p is called a strict prefix of q (notation p � q)
iff p ++ r � q for some r �� ε.
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As announced, the empty path should hold a directory and a strict prefix of a valid path should also hold a
directory. We therefore define a store x to be legitimate if

isdir(ε, x ) ∧ (∀ p, q : p � q ∧ valid(q, x ) ⇒ isdir(p, x )).

Legitimacy is an invariant of the stores: we prove that every proposed modification of stores preserves
legitimacy.

2.2. Reading and writing

Reading the data of a path p in store x is just asking for x (p), which yields ⊥ iff path p is not valid in x . Reading
the data of a directory only gives the metadata associated.

The Unix function ls associates to a given store x and a valid path p the set of names n that occur in the
directory of p. Name n occurs in the directory of p iff the concatenation p ++ n (i.e., path p extended with name
n) is a valid path. We need to distinguish an empty directory from a nonexistent one. If the path is not valid or
not a directory, we define ls to yield ⊥ . We thus define:

ls : [Path × StoreA → lift[P[Name]]],
ls(p, x ) � (isdir(p, x ) ? {n | valid(p ++ n, x )} : ⊥).

Here and henceforth, we use a C-like syntax for conditional expressions (the PVS syntax is more verbose).
Writing a file means modifying the data according to some recipe, e.g., writing from a certain offset. Such a

recipe can be regarded as a function from Data to Data, but it should not change a file into a directory or vice
versa. We therefore define the type

Modifier � {m : [Data → Data] | isdir ◦ m � isdir}.
Writing with modifier m at path p in store x is only successful when p is valid. Otherwise nothing happens. For
simplicity, we do not yet include error messages for failure. We therefore lift every modifier m to lift[Data] by
defining m(⊥) � ⊥ and define writing by:

write : [Path × Modifier × StoreA → StoreA],
write(p,m, x ) � (x with [(p) :� m(x (p))]),
or equivalently: write(p,m, x )(q) � (q � p ? m(x (p)) : x (q)).

Here we use the with notation of PVS for function modification, with a conditional expression as an alternative.
If x is legitimate, then write(p,m, x ) is also legitimate.

We can also use modifiers when we want to specify that the reader does not read all of the file, but only part
of the file. In this case, we just define

read : [Path × Modifier × StoreA → lift[Data]],
read(p,m, x ) � m(x (p)).

The modifier m is used here to select the part of the file the user is requesting. In specifications, the modifiers
used for reading are simply applied after reading the entire file. We can therefore ignore these modifiers.

2.3. Modifying the structure of the store

As announced, we consider modifications of the store by functions create, delete, move. For each of these functions,
say F , we define a precondition pre.F and an operation F0, and the operation is applied when the precondition is
satisfied, while the store remains unchanged otherwise. In other words, the function F is defined by the conditional
expression

F (args, x ) � (pre.F (args, x ) ? F0(args, x ) : x ),

where args is the list of additional arguments of the function. In the present section, the preconditions are needed
partly to guarantee that the operation preserves legitimacy of the store. Later, they will also be needed to guaran-
tee that the operations are well-defined. The preconditions usually also contain conjuncts to defend the existing
file system against unintended destructive operations. These conjuncts are called defensive.
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In the setting of refinement theory, this use of preconditions is exceptional. In the more usual contract
approach, the implementor may assume that the precondition always holds, and may therefore do anything when
the precondition fails. We insist, however, that the store remains unmodified when the precondition fails. The
reason for this is that the user should be allowed to give arbitrary commands, but should be defended against
unintended operations. In practice, we assume that the store’s command interpreter (the shell) will give error
messages when the precondition is not satisfied. We have omitted these error messages because they would be
distracting.

We specify a function create that makes a new entry with data d in the store for a given path p. It does so
only when path p is not yet valid and has a valid parent directory. Otherwise, create has no effect. Here, for a
nonempty path p, the parent path parent(p) is defined as the unique maximal strict prefix of p, which satisfies
| parent(p) |�| p | −1, where | p | stands for the length of p.

create : [Path × Data × StoreA → StoreA],
pre.create(p, d , x ) : isdir(parent(p), x ) ∧ ¬ valid(p, x ),
create0(p, d , x ) � (x with [(p) :� d ]).

If store x is legitimate, the store create(p, d , x ) is legitimate because parent(p) holds a valid directory. The second
conjunct of the precondition is defensive: it precludes the destruction of an existing entry in the store. We define
function parent to be a total function with parent(ε) � ε. Therefore, if p � ε, the precondition is false: one cannot
create at the root of the store (initialization is treated below).

Deletion of a path p from an abstract store x also deletes all descendant files and directories, because we want
a legitimate store to remain legitimate. Deletion is thus specified by

delete : [Path × StoreA → StoreA],
pre.delete(p, x ) : p �� ε,
delete0(p, x )(r ) � (p � r ? ⊥ : x (r )).

The root ε of the file system must not be deleted because legitimacy asks for a valid root.
Moving is more complicated. The move from p to q has the effect that the old directory q (if it was valid) is

completely overwritten by p, whereas the old directory p disappears. Let store y � move(p, q, x ) be the result
of the move. For a path r of the form r � q ++ s , we therefore have y(r ) � x (p ++ s). For q � r , this implies
y(r ) � x (p ++ drop(| q |, r )) where drop(k , r ) is the suffix of r obtained by removing the first k elements. We thus
obtain:

move : [Path × Path × StoreA → StoreA],
pre.move(p, q, x ) : p �� q ∧ isdir(parent(q), x ) ∧ q �� ε ∧ valid(p, x ),
move0(p, q, x )(r ) �

( q � r ? x (p ++ drop(| q |, r ))
: p � r ? ⊥
: x (r ) ).

The precondition forbids moving a directory p to a proper subdirectory q (in which case p � q), because this
would give an orphaned directory q , making the store illegitimate. The case p � q is excluded because it is useless.
The condition that the parent of q must be a directory is also imposed to ensure that the store remains legitimate.
The other two conjuncts are defensive.

Because of the case distinctions in the definition of move, the proof that move preserves legitimacy is rather
complicated. A key step in the proof is the observation that, if q � s and r � s and q �� r , then r � parent(q).

We finally specify an initial store with arbitrary data d and an empty directory:

initstoreA : [Data → StoreA],
initstoreA(d )(p) � (p � ε ? d : ⊥).

To summarize the section, we proved with PVS:

Theorem 1 (a) If isdir(d ) holds, then initstoreA(d ) is legitimate.
(b) If store x is legitimate, then write(p,m, x ), create(p, d , x ), delete(p, x ), and move(p, q, x ) are legitimate.

Note that, when the precondition of the operation is not met in case (b), the assertion is trivial because the result
equals x .



Formalizing a hierarchical file system 33

3. Refining the store

In this section, we develop a simplified pointer implementation of the file system as specified in Sect. 2. We then
define the corresponding operations and prove refinement, i.e., construct a refinement function abstract from the
implementation to the specification that commutes with the operations.

3.1. The data structure, reading and abstraction

The usual implementation of a file store is by means of the standard pointer implementation of a tree. We use
a simple type Fid of file identifiers as the pointer type. The root of the tree is given by a constant file identifier
rootId ∈ Fid . For now, we define a directory to be a total function that maps names to file identifiers. We use a
constant null ∈ Fid as a default file identifier for nonoccurring names. We postulate that rootId �� null.

We thus allow nodes also for invalid paths. They always hold a potential directory dir, which may be empty,
and they may have data. A total store is a total function from file identifiers to nodes.

DirT � [Name → Fid ],
NodeT � [# data : lift[Data] , dir : DirT #],
StoreT � [Fid → NodeT ].

Here [# and #] are constructors for record types as used in PVS. The corresponding element constructors are (#
and #), used below. For a node v , we write v .data and v .dir for its data and its potential directory.

The first question to consider is whether a node holds a file or a directory. This is determined by the Boolean
function isdir on lift[Data] of the previous section. Now, in the above definition, for the sake of uniformity,
the type NodeT has a field dir even when the data would prohibit this by ¬ isdir(data). In such cases, rather
than having an undefined directory, we use an empty directory. As DirT consists of total functions, we define an
element of it to be empty when it maps all names to null. We therefore define legitimacy of total stores as follows.

A store x : StoreT is called legitimate if it has a directory at rootId , and at every node with a nonempty dir
field:

isdir(x (rootid).data)
∧ (∀ f ∈ Fid : isdir(x (f ).data) ∨ x (f ).dir � (λ n : null)).

A new node with data d and without children is declared by

nodeT (d ) � (# data :� d , dir :� (λ n : null) #).

The initial store is defined by

initstoreT (d ) � (λ f : f � rootId ? nodeT (d ) : nodeT (⊥)).

It is legitimate iff isdir(d ) holds.
Since a store x is supposed to be a total function, we postulate an invariant to ensure that no data are hidden

in or beyond null, viz.

J0(x ) : x (null) � nodeT (⊥).

The file identifier associated to a path in a given store is defined recursively. For this purpose, we define a
function last : [Path → Name] such that, for every nonempty path p, we have

p � parent(p) ++ last(p).

The file identifier of a path is given by the recursive lookup function L defined by:

L : [Path × StoreT → Fid ],
L(p, x ) � ( p � ε ? rootId : x (L(parent(p), x )).dir(last(p)) ).

PVS accepts this recursive definition because | parent(p) |<| p | whenever p �� ε.
We only want to find data � ⊥ at the node of null. This is expressed in the invariant

J1(x ) : ∀ p : x (L(p, x )).data � ⊥ ⇒ L(p, x ) � null.
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Reading is defined by

read(p, x ) � x (L(p, x )).data.

We use the abbreviation isdir(p, x ) � isdir(read(p, x )). The contents of a directory are found by means of function
ls defined by

ls(p, x ) � (isdir(p, x ) ? ls(x (L(p, x )).dir) : ⊥), where
ls(di) � {n ∈ Name | di(n) �� null}.

We define the abstraction function from total stores to abstract stores by

abstract : [StoreT → StoreA],
abstract(x )(p) � x (L(p, x )).data.

It is straightforward to prove that abstract(initstoreT (d )) � initstoreA(d ).
A path p should be valid for a total store x iff the lookup function gives a file identifier; that is L(p, x ) �� ⊥ .

This corresponds to validity according to the abstract store because, using J0(x ) and J1(x ), one can easily prove

valid(p, abstract(x )) ≡ L(p, x ) �� null.

Using invariant J0, we prove that

L(p, x ) � null ∧ p � q ⇒ L(q, x ) � null.

One can now prove that abstract(x ) is legitimate when the total store x itself is legitimate.
Using the invariants J0 and J1, it is also easy to prove the refinement theorem that ls(p, abstract(x )) � ls(p, x ).
The challenge is now to define implementation functions for write, create, delete, and move that behave exactly

in the same way as the corresponding functions on StoreA, and to prove such facts.

3.2. Writing in the store

In this section, we treat the operation write.
For writing, we use the PVS conventions for modifying functional structures. We thus define:

pre.write(p,m, x ) : L(p, x ) �� null
write0(p,m, x ) � (x with [(L(p, x )).data :� m(x (L(p, x )).data)] ).

Here, the precondition serves to ensure that write0 is well-defined.
Writing does not change L, because writing affects only field data, while L only uses field dir. In other words,

we have the easy result that

L(q,write(p,m, x )) � L(q, x ).

The specification of Sect. 2 implies that writing at a path p only affects path p. This implies that the total store must
be a tree, in the sense that different valid paths have different file identifiers. This is postulated in the invariant:

J2(x ) : ∀ p, q : L(p, x ) � L(q, x ) �� null ⇒ p � q .

With PVS, we have proved:

Theorem 2 Assume that x : StoreT satisfies J0(x ), J1(x ), and J2(x ). Then we have abstract(write(p,m, x )) �
write(p,m, abstract(x )).

The proof is not difficult, but also not illuminating. We have therefore left it out.
One may note that the invariant J2 forbids hard links as are used in the Unix file system.
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3.3. Removals from the store

In this subsection, we treat the operation delete.
Given x : StoreT , a path p can only be deleted from it if it is not the root. Deletion then amounts to removing

its last name from its parent directory:

pre.delete(p, x ) : p �� ε,
delete0(p, x ) � (x with [ (pp).dir(last(p)) :� null ] )
where pp � L(parent(p), x ).

We postpone garbage collection to Sect. 3.6.
It turns out that the invariants obtained above are enough to prove:

Theorem 3 Assume that x : StoreT satisfies J0(x ) and J2(x ). Then we have abstract(delete(p, x )) � delete
(p, abstract(x )).

At this point the reader has several options: either to believe that we proved this theorem with PVS, or to
verify that our proof script at [HL09b] contains this result, and that PVS has proved it, or to look at the following
hand-written proof that largely follows the PVS proof but omits many details.

Proof. We first claim that

L(q, delete(p, x )) �
(p �� ε ∧ p � q ? null : L(q, x )). (0)

This is proved by induction on the length of q , because L is defined recursively. The invariant J2 is needed because
store x is modified at pp.dir(last(p)), and at several points we therefore need to ensure that the arguments we are
interested in differ from this.

We verify the final step by observing for every path q :

abstract(delete(p, x ))(q)
= {definition of abstract; write y � delete(p, x ) }

y(L(q, y)).data
= { (0) and J0 for y }

(p �� ε ∧ p � q ? ⊥ : y(L(q, x )).data)
= { x and y are equal on data }

(p �� ε ∧ p � q ? ⊥ : x (L(q, x )).data))
= {definitions of delete and abstract }

delete(p, abstract(x ))(q).

This completes the proof. �

3.4. Creating new entries

In this section, we treat the operation create.
In order to preserve J2 when creating new entries in the store, we need an unbounded heap. We formally

ensure this by postulating that the type Fid is infinite and that the stores we consider are all finite, according to
the invariant

J3(x ) : #range(x ) < ∞, where
range(x ) � {null, rootId} ∪ {f ∈ Fid | ∃ g,n : f � x (g).dir(n)}.

This enables us to define a choice function new : StoreT → Fid with the property:

J3(x ) ⇒ new(x ) �∈ range(x ). (1)

Function create at this level of abstraction is defined by

pre.create(p, d , x ) : isdir(parent(p), x ) ∧ L(p, x ) � null,
create0(p, d , x ) � (x with [(pp).dir(last(p)) :� ln , (ln) :� nodeT (d )])
where pp � L(parent(p), x ) and ln � new(x ).
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Function create satisfies the refinement theorem:

Theorem 4 Assume that x : StoreT satisfies J0(x ) ∧ J2(x ) ∧ J3(x ). Then we have abstract(create(p, d , x )) �
create(p, d , abstract(x )).

Proof. One first proves that the failure conditions of both versions of create are equivalent, because
abstract(x )(q) � ⊥ if and only if L(q, x ) � null. Now assume both versions modify the store. We then prove, by
induction on the length of q , that

L(q, create(p, d , x )) �
( q � p �� ε ∧ L(parent(p), x ) �� null � L(p, x ) ? new(x )
: L(q, x ) ). (2)

We verify the final step by observing for every path q :

abstract(create(p, d , x ))(q)
= {definition of abstract; write y � create(p, d , x ) }

y(L(q, y)).data
= { (2) }

( q � p �� ε ∧ L(parent(p), x ) �� null � L(p, x ) ? y(new(x )).data
: y(L(q, x )).data)

= {definition y and new; L(q, x ) �� new(x ) }
( q � p �� ε ∧ L(parent(p), x ) �� null � L(p, x ) ? d
: x (L(q, x )).data))

= {write x ′ � abstract(x ); definition of abstract }
( q � p �� ε ∧ x ′(parent(p)) �� ⊥ � x ′(p) ? d : x ′(q))

= {abstract definition of create }
create(p, d , x ′)(q).

This completes the proof. �

3.5. Moving files and directories

In this subsection, we treat the operation move.
Function move at this level is defined by:

pre.move(p, q, x ) : p �� q ∧ isdir(parent(q), x ) ∧ q �� ε ∧ L(p, x ) �� null,
move0(p, q, x ) � (x with [(qq).dir(last(q)) :� L(p, x ),

(pp).dir(last(p)) :� null ] )
where qq � L(parent(q), x ) and pp � L(parent(p), x )

Note that J2(x ) implies that the file identifiers pp and qq are equal if and only if p and q have the same parent.
If so, then p �� q implies that last(p) and last(q) differ. The refinement theorem for move is:

Theorem 5 Assume that x : StoreT satisfies J0(x ) ∧ J1(x ) ∧ J2(x ). Then we have abstract(move(p, q, x )) �
move(p, q, abstract(x )).

We have proved this with PVS in [HL09b]. The structure of the proof is the same as for delete and create. Due
to the many case distinctions, it is cumbersome. We omit it because it is not illuminating.

3.6. Garbage collection

Unreachable nodes in the tree are useless. Garbage collection amounts to the removal of useless nodes. In the
present context this is impossible because every store x is a total function: every file identifier in type Fid maps
to a node. The best we can do is minimize the unreachable nodes. This is done as follows.

The set of reachable file identifiers f is defined by

reach(x ) � {f | ∃ p : L(p, x ) � f }.
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As unreachable file identifiers are never inspected, we define garbage collection by

gc : [StoreT → StoreT ],
gc(x )(f ) � (f ∈ reach(x ) ? x (f ) : nodeT (⊥)).

By a straightforward induction on the length of p, one proves that L(p, gc(x )) � L(p, x ) for all paths p. Having
done this, one can easily prove that abstract(gc(x )) � abstract(x ). In words, garbage collection does not influence
the meaning of the store.

3.7. Proofs of the invariants

It is straightforward to prove with PVS that the operations write, delete, create, move, and gc preserve legitimacy
of the store. It is also easy to prove that they preserve the invariant J0, i.e., J0(x ) implies J0(write(p,m, x )) for
all x : StoreT , and similarly for the other functions. The same is done for the invariant J1. Preservation of J3
under these five operations follows from the fact that they add at most one element (in the case of create) to the
range of the store.

The invariant J2 uses function L, which is defined recursively. We therefore define two simpler invariants,
which express that the file tree has no cycles and that all occurring file identifiers �� null are different:

J2a(x ) : ∀ f ,n : x (f ).dir(n) �� rootId ,
J2b(x ) : ∀ f , g,m,n : x (f ).dir(m) � x (g).dir(n) �� null ⇒ f � g ∧ m � n.

Here, f and g range over Fid and m and n range over Name. By induction on the lengths of the paths, one proves
that these two invariants, together with J0, imply J2. It is fairly easy to prove that write, delete, move, and gc
preserve the invariants J2a and J2b. For create, we use J3 and formula (1).

Finally, it is straightforward to prove, with PVS or by hand, that initstoreT (d ) satisfies the invariants J0, J1,
J2a, J2b, and J3.

4. Implementing the store

We now replace the total functions of the previous section by “finite maps”, i.e., partial functions with a finite
domain. We thus use the types declared in:

DirI � [Name → lift[Fid ]],
NodeI � [# data : Data , dir : DirI #],
StoreI � [Fid → lift[Node]].

Working with partial functions in a theorem prover like PVS gives technical difficulties that, from a conceptual
point of view, seem inessential and distracting. In the implementation, however, these difficulties correspond to
the usual problems with unallocated pointers. It is therefore important to get it correct at the theoretical level.

In our presentation here, we make one simplification of the PVS code. If X is a type, the PVS type lift[X ]
represents X ∪ {⊥}, but X is not a subset of lift[X ]. Instead, there is an injection up : [X → lift[X ]] and an
inverse coercion down : [X ′ → X ] where X ′ ⊆ lift[X ] is the image of up. In the presentation below, we suppress
the functions up and down, and regard X and X ′ as identical.

We construct a refinement function refine from the present system to the one of the previous section in:

refine : [StoreI → StoreT ],
refine(x )(f ) �

(x (f ) � ⊥ ? nodeT (⊥)
: (# data :� x (f ).data , dir :� ψ ◦ (x (f ).dir) #) )

where ψ(g) � (g � ⊥ ? null : g).

An implemented store x is legitimate iff rootId holds a directory and every node with a nonempty field dir is a
directory:

x (rootId) �� ⊥ ∧ isdir(x (rootId).data)
∧ (∀ f : x (f ) � ⊥ ∨ isdir(x (f ).data) ∨ x (f ).dir � (λ n : ⊥)).

It is easy to verify that, when x : StoreI is legitimate, refine(x ) is legitimate in StoreT .
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4.1. Reading and writing the store

The file identifier null is no longer needed in the implementation, but we allow and use it as an alias for ⊥ . We
therefore define for x : StoreI the invariant:

K0(x ) : x (null) � ⊥.

On the other hand, we want that all other file identifiers used in the store hold genuine nodes, as expressed in the
invariant:

K1(x ) : ∀ f ∈ range(x ) ⇒ f � null ∨ x (f ) �� ⊥, where
range(x ) � {null, rootId} ∪ {f ∈ Fid | ∃ g,n : f � x (g).dir(n)},

where, by convention, x (g).dir(n) �∈ Fid when x (g) � ⊥ or x (g).dir(n) � ⊥ .
At this refinement level, we need to define the lookup function L by

L : [StoreI × Path → Fid ],
L(p, x ) � ( p � ε ? rootId

: x (L(parent(p), x )) � ⊥ ∨ x (L(parent(p), x )).dir(last(p)) � ⊥ ? null
: x (L(parent(p), x )).dir(last(p)) ).

Using a straightforward induction on the length of path p, we now use PVS to prove

L(p, x ) � L(p, refine(x )). (3)

We do not want to present the calculational work needed for the proof. The admittedly ugly definition of the
lookup function illustrates the problem of the partial functions mentioned in the introduction, which we have
solved by doing a two-step refinement. It is thus the result of our investigation, and it could be helpfull when
someone were to verify an actual pointer implementation.

The invariants K0(x ) and K1(x ) imply the rule:

K01(x ) : L(p, x ) � null ≡ x (L(p, x )) � ⊥.

At this level, reading store x : StoreI at path p is defined by

read(p, x ) � (x (L(p, x )) � ⊥ ? ⊥ : x (L(p, x )).data).

A practical implementation would use the test L(p, x ) � null rather than the equivalent x (L(p, x )) � ⊥. Doing
this in PVS, however, would raise the objection that x (L(p, x )).data is defined only if x (L(p, x )) �� ⊥ . In other
words, the function read would only be defined on the stores where K01 holds. Although we shall prove that K01
holds for all reachable stores, we prefer to define read as a total function in PVS and therefore use the definition
above. The same argument applies to several of the definitions below.

Formula (3) enables us to prove that K01(x ) implies read(p, refine(x )) � read(p, x ). In other words, reading
in the implementation corresponds to reading in the intermediate specification, as required.

We define isdir(p, x ) � isdir(read(p, x )), just as in the previous section. The function ls is now defined by

ls(p, x ) � (isdir(p, x ) ? ls(x (L(p, x )).dir : ⊥), where
ls(di) � {n ∈ Name | di(n) �� ⊥ ∧ di(n) �� null}.

Using the invariant K0, it is easy to prove the refinement theorem that ls(p, refine(x )) � ls(p, x ). Writing of store
x is defined by

pre.write(p,m, x ) : x (L(p, x )) �� ⊥,
write0(p,m, x ) � (x with [(L(p, x )).data :� m(x (L(p, x )).data)] ).

Using K01(x ), we proved with PVS that refine(write(p,m, x )) � write(p,m, refine(x )).
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4.2. Tree modification

Analogously to the definition in Sect. 3.3, here removal is defined by

pre.delete(p, x ) : p �� ε ∧ L(p, x ) �� null,
delete0(p, x ) � (x with [ (pp).dir(last(p)) :� ⊥ ] )
where pp � L(parent(p), x ).

Note that L(p, x ) �� null implies that x (L(parent(p), x )) �� ⊥. Therefore this node indeed has a directory that can
be modified. The equality refine(delete(p, x )) � delete(p, refine(x )) is proved with the invariant K01(x ).

For making a directory, we again need finiteness of the store as expressed in the invariant

K2(x ) : #range(x ) < ∞.

We can therefore define a function new : [Store → Fid ] that satisfies new(x ) �∈ range(x ) for every x with K2(x ).
We need a different node constructor (compare Sect. 3):

nodeI (d ) � (# data :� d , dir :� (λ n : ⊥) #).

Analogously to Sect. 3.4, a new node is created by

pre.create(p, d , x ) : isdir(parent(p), x ) ∧ L(p, x ) � null,
create0(p, d , x ) � (x with [(pp).dir(last(p)) :� ln, (ln) :� node(d )])
where pp � L(parent(p), x ) and ln � new(x ).

It is easy to prove that range(refine(x )) � range(x ). We also get new(refine(x )) � new(x ), because we
can use the same choice function. Using K01(x ), one can then prove the equality refine(create(p, d , x )) �
create(p, d , refine(x )).

Function move is defined almost as in Sect. 3.5:

pre.move(p, q, x ) : p �� q ∧ isdir(parent(q), x ) ∧ q �� ε ∧ L(p, x ) �� null,
move0(p, q, x ) � (x with [(qq).dir(last(q)) :� L(p, x ),

(pp).dir(last(p)) :� ⊥ ] )
where qq � L(parent(q), x ) and pp � L(parent(p), x ).

At this point, the identification of type Node with a subtype of lift[Node] simplifies the presentation. Working
in PVS, we need to make a case distinction whether the file identifiers pp and qq are equal or differ. Nevertheless,
we formally proved the equality refine(move(p, q, x )) � move(p, q, refine(x )), using the invariant K01.

The verification that the invariants K0, K1, and K2 are preserved by the operations write, delete, create, and
move are straightforward. These invariants also hold for the initial store defined by

initstoreI (d ) � (λ f : f � rootId ? nodeI (d ) : ⊥).

Moreover, refine(initstoreI (d )) � initstoreT (d ).
It follows that the composition abs � abstract ◦ refine is a genuine refinement function StoreI → StoreA.

4.3. Garbage and garbage collection

Garbage collection is more useful at this level than in Sect. 3.6. Again we define:

reach : [StoreI → P[Fid ]],
reach(x ) � {f | ∃ p : L(p, x ) � f }.

Garbage collection now means removal of unreachable nodes:

gc : [StoreI → StoreI ],
gc(x )(f ) � (f ∈ reach(x ) ? x (f ) : ⊥).

As before, one first proves that L(p, gc(x )) � L(p, x ) for all paths p and x : StoreI . Then it is, indeed, straight-
forward to prove that function gc preserves the three invariants K0, K1, and K2.

It is easy to prove that refine(gc(x )) � gc(refine(x )). It follows that the composition abs : [StoreI → StoreA]
satisfies abs(gc(x )) � abs(x ) for all x : StoreI .
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5. File permissions at three levels

File system permissions form a core issue in every operating system. Not all users must be able to read and modify
all data. We therefore overload the six file system functions by adding a user as a new first argument, where User
is a new type, uninterpreted for now.

5.1. Permissions in the abstract system

We describe the file system permission model from the user’s point of view at the abstract level. For the user, we
have typical access types like reading, executing and writing, and the owner can control the permissions to these
operations. Furthermore, there is the concept of a super user, who holds all access rights in the file system.

We assume that the permissions attached to a node are encoded in the data of the node by means of predicates:

px, pr, pw : P[User × Data],

where px stands for the permission to execute, pr to read, and pw to write. We do not go into details of how these
permissions are represented in the data. Instead, we concentrate on the specification and verification that users
can only access and modify according to the permissions granted. As the functions px, pr, pw depend on the user,
they can also depend on the classification of the user as creator of the file or directory, as a member of the group,
etc. We can therefore here ignore these issues. As we need to apply these predicates in stores at a given path, we
overload them to

px, pr, pw : P[User × Path × StoreA],
px(u, p, x ) � x (p) �� ⊥ ∧ px(u, x (p)),

and similarly for pr and pw.
In case of files, readable, executable and writable means that the contents of a file can be read, executed (if

it is executable) and written. In case of directories, readable corresponds to the listing of the directory entries,
and executable means that user is allowed to go into the directory, i.e., “change directory”. Writable means the
permission to create or remove entries in the given directory. Therefore, for reading and writing in a file or direc-
tory at some path, the user needs execution rights along the whole path in the file system [AL96, Sect. 2.8]. This
implies that the effective permissions are slightly more complicated functions that depend on the user, the path,
and the store. We thus define:

pX , pR, pW : P[User × Path × StoreA],
pX (u, p, x ) � (∀ q : q � p ⇒ px(u, q, x )),
pR(u, p, x ) � pr(u, p, x ) ∧ (p � ε ∨ pX (u, parent(p), x )),
pW (u, p, x ) � pw(u, p, x ) ∧ (p � ε ∨ pX (u, parent(p), x )).

Here, by convention, parent(ε) � ε. In some Unix variants, write permission may imply or require read permis-
sion. This can be modelled by adapting the relations of pw and pr to the actual permission bits.

The user-adapted abstract versions of ls and read are simply:

ls(u, p, x ) � (pR(u, p, x ) ? ls(p, x ) : ⊥),
read(u, p, x ) � (pR(u, p, x ) ? x (p) : ⊥).

For the functions write, create, delete, and move, the permission system just adds another precondition. In each
case, we can take F0(u, as, x ) � F (as, x ) and it suffices to specify the additional precondition pre.F (u, as, x ).

For write, the additional precondition is write permission:

pre.write(u, p,m, x ) : pW (u, p, x ).

For creation, the user needs permission to execute and write the parent directory. We therefore define

pY (u, p, x ) � pX (u, p, x ) ∧ pw(u, p, x ),
pre.create(u, p, d , x ) : pY (u, parent(p), x ).
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For deletion we need write and execute permission of the parent directory. Deletion of a directory is only allowed
when the directory is empty, and we need ls to verify this. We therefore define

pre.delete(u, p, x ) :
pY (u, parent(p), x ) ∧ (¬ isdir(p, x ) ∨ ls(u, p, x ) � ∅).

Note that the user u needs read permission to obtain ls(u, p, x ) � ∅. Otherwise function ls yields ⊥, and ⊥ �� ∅.
For move, we propose:

pre.move(u, p, q, x ) : pY (u, parent(p), x ) ∧ pW (u, parent(q), x ).

5.2. Refinement of permissions

We now turn from the abstract stores of Sect. 2 to the total stores of Sect. 3. We extend the permission bit functions
px, pr, pw to the type lift[Data] by defining

px(u,⊥) � pr(u,⊥) � pw(u,⊥) � false.

The lookup function L that gives the file identifier of a path is now modified to verify execution permissions along
the path:

L : [User × Path × StoreT → Fid ],
L(u, p, x ) �

( p � ε ? rootId
: px(u, xpp.data) ? xpp.dir(last(p))
: null )

where xpp � x (L(u, parent(p), x )).

This expresses that the user can only traverse a path p if he has rights to execute all strict ancestors of p. The
perceived permissions now become

pX (u, p, x ) � px(u, x (L(u, p, x )).data),
pR(u, p, x ) � pr(u, x (L(u, p, x )).data),
pW (u, p, x ) � pw(u, x (L(u, p, x )).data),
pY (u, p, x ) � (pX (u, p, x ) ∧ pW (u, p, x )).

Under assumption of J0(x ) and J1(x ), we can prove

L(u, p, x ) �
(p � ε ∨ pX (u, parent(p), abstract(x )) ? L(p, x ) : null).

The proof of this is complicated. It is used to prove the abstraction result

pX (u, p, abstract(x )) � pX (u, p, x ),

and the analogous formulas for pR, pW , pY .
The user-adapted versions of read and ls are given by

read(u, p, x ) � (pR(u, p, x ) ? read(p, x ) : ⊥),
ls(u, p, x ) � (pR(u, p, x ) ? ls(p, x ) : ⊥).

Now, it is easy to define user-adapted versions of write, create, delete, and move in such a way that they
correspond exactly to the abstract versions defined in Sect. 5.1.
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5.3. Implementation of permissions

We turn to the concrete stores of Sect. 4. For the permission system, we extend the lookup function L of Sect. 4
to verify the execution permissions along the path:

L : [User × Path × StoreI → Fid ],
L(u, p, x ) � ( p � ε ? rootId

: x (L(u, parent(p), x )) � ⊥
∨ ¬ px(u, x (L(u, parent(p), x )).data)
∨ x (L(u, parent(p), x )).dir(last(p)) � ⊥ ? null
: x (L(u, parent(p), x )).dir(last(p)) ).

The correspondence with the definition of Sect. 5.2 is established by

L(u, p, refine(x )) � L(u, p, x ) for all x : StoreI .

The perceived user permissions at this level are

pX (u, p, x ) � (x (L(u, p, x )) �� ⊥ ∧ px(u, x (L(u, p, x )).data)),
pR(u, p, x ) � (x (L(u, p, x )) �� ⊥ ∧ pr(u, x (L(u, p, x )).data)),
pW (u, p, x ) � (x (L(u, p, x )) �� ⊥ ∧ pw(u, x (L(u, p, x )).data)),
pY (u, p, x ) � (pX (u, p, x ) ∧ pW (u, p, x )).

We can again prove the abstraction result

pX (u, p, refine(x )) � pX (u, p, x ),

and the analogous formulas for pR, pW , pY .
We now define the user-adapted versions of read and ls just as in Sect. 5.2. The user adapted versions of write,

create, delete, move are defined with the preconditions specified in 5.1 as translated to the concrete store, with the
actions as specified in Sect. 4, but with L(p, x ) replaced by L(u, p, x ) when access permission is needed.

For example, create is given by

pre.create(u, p, d , x ) :
isdir(parent(p), x ) ∧ L(p, x ) � null ∧ pY (u, parent(p), x ),

create0(u, p, d , x ) �
(x with [(pp).dir(last(p)) :� ln, (ln) :� node(d )])

where pp � L(u, parent(p), x ) and ln � new(x ).

Here L(p, x ) must not be replaced by L(u, p, x ), because this conjunct in the precondition serves to preclude
destroying an occupied node.

6. Conclusion

In this work, we developed an abstract specification of the six main operations in the Unix file system. This
specification is deterministic: it tells the effect of every command. We refined this to an implementation with file
identifiers as pointers, in such a way that the operations on the concrete level correspond exactly with the abstract
operations. In order to do this provably correct, we had to use a proof assistant, and we had to do it in two steps.

Initially, we tried to model file systems directly at the implementation level of Sect. 4. In order to evade or at
least postpone the details of partial functions, we invented the more abstract level described in Sect. 3. The real
breakthrough came when we saw that we had to begin by specifying a hierarchical file system from a user’s point
of view, as a partial function from absolute paths to data. The requirements for the other two levels then emerged
naturally as proof obligations for the refinement functions. Having the three levels was also very helpful in the
development of the permission system. It was a relatively minor exercise to rework the PVS proof of the workshop
paper towards a proof for the present version, although several of the critical definitions had been changed.

We used the proof assistant PVS. Advantages of PVS are: it has a simple syntax, reasonably close to mathe-
matics, and a simple type system, rich enough for the problems at hand. During the interactive construction of
a proof, PVS builds a proof tree with the remaining proof obligations at the leaves. If a proof seems to get stuck,
this proof tree greatly helps to see where the proof went wrong and to get back on track. It is also useful for the
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analysis of a proof, e.g., to find superfluous conditions. We only used the proof commands provided directly by
PVS, although the application of PVS-strategies presumably would have made things easier in the end.

It is likely that the proofs could equally well have been done with any other theorem prover with higher-order
functions, like HOL, Isabelle or Coq, although these provers lack proof trees. We have the impression that the level
of proof automation of these provers is comparable to PVS. The prover ACL2 has stronger proof automation,
but our specifications cannot be elegantly encoded in ACL2 because it lacks function types.

Now that we have the results, the results of the Sects. 2 and 3 can be proved by hand. In principle, the same
holds for Sects. 4 and 5, see [Lam93], but in practice, we would not be able to do it. It is not that the proofs are
difficult, but that they are complicated and boring. A human prover is therefore not reliable enough. The proof
assistant is even more important during the development of the theory, because, when it fails to prove something,
it shows which conditions are lacking. An important advantage of using a proof assistant is that, once a proof
has been constructed, it can be replayed under modified conditions and then adapted where needed. If proof trees
are provided, these are very helpful at this point.

What really happens when one uses PVS (or any other prover) to prove such things, is that one sees details
that one missed before. We present such details in the paper at a semantic level. The syntax of PVS is very close
to this level, as it is to mathematics in general. The main point of day-to-day user experience is: when you fail to
prove something with PVS, you are too close to the prover and too far away from the mathematics; first make a
better handwritten proof.

The entire PVS model, available at [HL09b], consists of 221 lemmas. Some of the lemmas were discharged
automatically by the PVS theorem prover and rest were proved by human guidance. It took approximately 3
person months to complete this work with moderate level of expertise in using PVS. The main mathematical
problems came from the case distinctions, the function types, the partial functions, and the recursive definitions.

As for directions for future research, the model needs an extension with hard links. At the abstract level, the
appropriate way to do this may be by means of a modifiable equivalence relation on valid paths, as a second
component of the store. Function write should then modify all members of the equivalence class of the path. After
this, several problem areas call for attention: concurrent access, disk lay-out, distribution, and fault tolerance.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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