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Abstract. We reprove and slightly improve theorems of Nudelman and
Stenger about compressions of maximal dissipative and self-adjoint
operators to subspaces of finite codimension and discuss related results
concerning the closedness and the adjoint of a product of two operators
on a Hilbert space.
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1. Introduction

The motivation to begin the research for this note is a recent result of
Nudelman [19] of 2011: The compression of a densely defined maximal
dissipative operator in a Hilbert space to a subspace of finite codimension is
densely defined maximal dissipative. It is a generalization of an older theorem
of Stenger [21] of 1968 : The compression of a self-adjoint operator in a Hilbert
space to a subspace of finite codimension is self-adjoint. For another proof
of this theorem we refer to [12, Lemma 1]. Shortly after the publication of
Stenger’s paper, in reaction to this paper, there appeared a number of papers
dealing with the closely related questions: When is the product of two closed
operators closed? and When is the adjoint of a product of two operators the
reverse product of the adjoints of the operators? We mention here the papers
[4,5,12–14,20] from the period 1968–1972. Earlier results are contained in the
papers [6,15] of 1963 and in the book [11] of 1966, where more references can
be found. Later, in 1976/77, a detailed analysis related to the second question
appeared in [8]. In this paper we reprove and slightly improve the theorems
of Nudelman and Stenger, see Theorem 3.2 and 3.3 in Sect. 3, and reprove
for Hilbert space operators answers to the above mentioned questions, see
Theorem 4.1 and 4.3 in Sect. 4. Theorem 4.1 deals with the first question
and is a special case of [11, Theorem IV.2.7(i)] due to Goldberg. Theorem 4.3
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concerns the second question and is a special case of the theorem in [20]
due to Schechter. Our proofs of these theorems are based on results from
Sect. 2, which we think are new. We make use of the polar decomposition of
an operator. This notion was previously used in the proofs of [5, Theorem 12
and Theorem 13] and [4, Corollary 2] which state sufficient conditions, differ-
ent from the ones in Theorem 4.3, under which the equality (ST )∗ = T ∗S∗

holds, where S and T are densely defined operators on a Hilbert space and
for example S∗ denotes the adjoint of S.

In Sect. 2 we prove two theorems, Theorems 2.2 and 2.4, about a spec-
tral connection between an operator and its compression to a space of finite
codimension and we prove a theorem, Theorem 2.3, concerning the closedness
and the adjoint of a product of two operators. These results are formulated
in a Banach space setting and are applied in the last two sections which both
deal with operators on spaces with an inner product. In Sect. 3 we prove the
theorems of Nudelman and Stenger in the format of if and only if statements
and their Krein space analogs. Nudelman’s result is a direct consequence of
Theorem 2.2. In the proofs of the theorems in Sect. 4 we apply Theorems 2.3
and 2.4.

In another note [3] we plan to discuss the theorems of Nudelman and
Stenger using an associated kernel function and to generalize them to linear
relations.

In the paper E+̇F stands for the direct sum of two linear spaces E
and F, σp(T ) and ρ(T ) for the point spectrum and the resolvent set of an
operator T , and D and T for the closure of a set D and of a closable opera-
tor T . Further, domT, ran T and kerT stand for domain, range and kernel
(null space) of an operator T, T ′ denotes the conjugate of an operator T on
a Banach space and a subspace is a closed linear subset.

2. Preliminaries

Lemma 2.1. Let E be a Banach space and let P be a projection in E such
that codim ranP =: κ < ∞. For a subspace ˜L of E the following statements
are equivalent.
(i) There is a subspace L ⊂ E with L ⊂ ˜L, codim L=κ and L∩ker P ={0}.
(ii) P ˜L = ranP .

Proof. Assume (i). Then E = L+̇ ker P and

ran P = PE = P (L+̇ ker P ) = PL ⊂ P ˜L ⊂ ran P,

whence (ii).
Assume (ii). Denote by L a direct complement of the finite-dimensional

subspace ˜L∩ker P in ˜L: ˜L = (˜L∩ker P )+̇L (see [11, Theorem II.1.16]). Then

L ∩ ker P = L ∩ (˜L ∩ ker P ) = {0}.

Since dim kerP = κ, this implies codim L ≥ κ. We assume codim L > κ and
derive a contradiction. The assumption implies ker P + L �= E and therefore
there is a nonzero y0 ∈ E \ (ker P + L). From
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Py0 ∈ ranP
(ii)
= P ˜L = P ((˜L ∩ ker P )+̇L) = PL

we obtain the contradiction

0 �= y0 ∈ (ker P + L) ∩ (E \ (ker P + L)) = {0}.

We conclude that codim L = κ. This proves (i). �

Theorem 2.2. Let A be a linear operator on a Banach space E. Let P be a
projection in E such that codim ran P < ∞ and let B be the compression of
A to ran P : B = PA|ran P∩ dom A. Then

0 ∈ ρ(A) and 0 �∈ σp(B) ⇒ 0 ∈ ρ(B).

In this theorem A need not be densely defined.

Proof of Theorem 2.2. To show 0 ∈ ρ(B) it suffices to show that (i) ranB =
ranP and (ii) B is a closed operator on ran P . For these two items and
the hypothesis 0 �∈ σp(B) imply that 0 ∈ ρ(B). We set κ = dim ker P =
codim ran P .

(i) We assume that dim(dom A/dom B) > κ and derive a contradic-
tion. The assumption implies that there is a (κ + 1)-dimensional subspace
L0 ⊂ dom A such that L0 ∩ dom B = {0}. Since dimL0 > codim ran P , we
have L0 ∩ ranP �= {0} which leads to the contradiction

{0} �= L0 ∩ ran P = L0 ∩ dom B = {0}.

We conclude that κ1 := dim(domA/dom B) ≤ κ. Therefore there is a sub-
space L1 ⊂ dom A such that dim L1 = κ1 and domA = dom B+̇L1. Define
the operator

A1 := A|ran P∩ dom A = A|dom B .

Since 0 ∈ ρ(A), we have E = ranA1+̇AL1 and dimAL1 = κ1, and hence
ranA1 has codimension κ1. We show that κ1 = κ by assuming κ1 < κ

and deriving a contradiction. The assumption implies that there is a non-
zero y0 ∈ ran A1 ∩ ker P and therefore there is a nonzero x0 ∈ dom A1 such
that y0 = A1x0. Thus Bx0 = PA1x0 = Py0 = 0 which shows that x0 is a
nonzero eigenelement of B with eigenvalue 0, contradicting the hypothesis
that 0 �∈ σp(B). Hence codim ran A1 = κ and ranA1 ∩ ker P = {0}. From
Lemma 2.1 with ˜L = L = ranA1 it follows that

ranB = P ranA1 = ranP.

(ii) We first show that the operator A1 is closed. Let xn ∈ dom A1 and
assume xn → x0, A1xn = Axn → y0 as n → ∞. Since A is a closed operator,
x0 ∈ dom A and y0 = Ax0. From xn ∈ ran P and the fact that ranP is
closed, we obtain x0 ∈ ranP , that is, x0 ∈ dom A1 and y0 = A1x0. Hence
A1 is closed. Since, as shown in (i), ker P |ran A1 = {0} and P ranA1 = ranP ,
the operator P |ran A1 : ranA1 → ran P is bounded and boundedly invertible.
Hence B = PA1 is closed. �

The first statement in the next theorem is applied in Sect. 4, see the
proof of Theorem 4.1.
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Theorem 2.3. Under the assumptions of Theorem 2.2, including the hypoth-
eses 0 ∈ ρ(A) and 0 �∈ σp(B), the operator PA is closed. If moreover A is
densely defined and E is a reflexive Banach space, then (A′P ′)′ = PA.

Proof. First we show that PA is closed. As shown in the proof of Theorem 2.2,
there is a κ-dimensional subspace L1 ⊂ dom A such that dom A =
dom B+̇L1. Since ranP∩L1 ⊂ dom B∩L1 = {0}, we have E = ranP +̇L1. Let
Q be the projection onto ranP parallel to L1. Then the operator PA(I − Q)
is bounded, and the operator PAQ is closed because PAQ = BQ and the
operator B is a closed. Hence PA = PAQ+PA(I −Q) is closed. This proves
the first statement. The assumption that A is densely defined implies that the
conjugate A′ is well defined. Since P is bounded, A′P ′ = (PA)′. The closed-
ness of PA and the assumption that E is reflexive imply that PA = (PA)′′.
Hence PA = (A′P ′)′. �

Denote by r(A) the set of points of regular type of a closed operator
A, that is, λ ∈ r(A) if ker(A − λ) = {0} and ran (A − λ) = ran (A − λ). For
λ ∈ r(A) the number defλA := codim ran (A − λ) is called the defect of A in
λ. In particular, ρ(A) ⊂ r(A) and λ ∈ r(A) is a regular point for A if and
only if defλA = 0.

Theorem 2.4. Let A be a closed densely defined linear operator on a Banach
space E. Let P be a projection in E such that codim ran P < ∞ and let B be
the compression of A to ran P . Then

0 �∈ σp(A) and 0 ∈ ρ(B) ⇒ 0 ∈ ρ(A).

Proof. We use the same notation as in the proof of Theorem 2.2. Recall
A1 = A|dom B and κ = codim ranP . Since 0 ∈ ρ(B), the range ranA1 is closed
in E and the operator P |ran A1 is a bijection from ranA1 onto ranP . It follows
that E = ker P +̇ranA1 and codim ranA1 = κ. The inclusion ranA1 ⊂ ran A
implies that ranA is closed. Hence, by the assumption that ker A = {0}, we
have 0 ∈ r(A) and

def0A = codim ranA ≤ codim ranA1 = κ.

To show that 0 ∈ ρ(A) it suffices to show that def0A = 0. We prove this
equality by showing that the assumption def0A > 0 yields a contradiction.
The assumption implies that there a subspace D with dimD = κ−def0A < κ

such that ranA = D+̇ranA1 and hence such that

dom A = A−1D˙+ domA1.

From codim ranP = κ it follows that there is a κ-dimensional subspace
E0 ⊂ E′ orthogonal to ranP , which means that for all functionals e′ ∈ E0

we have e′(Px) = 0, x ∈ E. The inclusion dom A1 ⊂ ran P implies E0 is
also orthogonal to domA1. Since dim A−1D = dim D < κ, there is a nonzero
element e′ ∈ E0 orthogonal to A−1D, hence e′(dom A) = {0}. Since A is
densely defined, e′(E) = {0}. Thus we have obtained the contradiction that
the nonzero element e′ is zero. �
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Remark 2.5. If we do not suppose that the operator A is densely defined,
then the implication in Theorem 2.4 does not hold. This is clear from the
proof of the theorem, if we take A = A|ran P∩ dom A with P �= I.

In the sequel we use the following lemmas.

Lemma 2.6. If D is a dense linear subset of a Banach space E and G is a
closed linear subset of E of finite codimension, then D ∩ G is dense in G.

Lemma 2.7. If T is a closed densely defined operator on a Banach space, then
ranT is closed if and only if ran T ′ is closed.

For proofs of the first lemma see [9, Lemma 2.1] or [11, Lemma IV.2.8]
and for proofs of the second lemma see [16, Lemma 324], [18, Theorem 5.1]
or [11, Theorem IV.1.2].

3. Compressions

An operator T on a Hilbert space with inner product ( · , · ) is called dis-
sipative if Im (Tf, f) ≥ 0, f ∈ dom T , and it is maximal dissipative if
it is not properly contained in another dissipative operator. For the fol-
lowing lemma we refer to [2, Corollary 2.2.5 and Lemma 2.2.8], see also
[17, Subsection V.3.10].

Lemma 3.1. For a densely defined operator T in a Hilbert space the following
statements are equivalent.
(1) T is maximal dissipative.
(2) T is dissipative and ρ(T ) ∩ C− �= ∅.
(3) T is dissipative and C− ⊂ ρ(T ).

The implication (i) ⇒ (ii) in the theorem below is due to Nudelman
[19]. It is a direct consequence of Theorem 2.2. The implication (ii) ⇒ (i)
seems to be new and follows from Theorem 2.4.

Theorem 3.2. Let T be a closed densely defined dissipative operator in a
Hilbert space E. Let P be an orthogonal projection in E with codim ran P < ∞
and let S be the compression of T to ranP : S = PT |ran P∩ dom T . Then

(i) T is maximal dissipative in E ⇔ (ii) S is maximal dissipative in ranP.

Proof. We fix a complex number λ with Im λ < 0 and set A := T − λ and
B := PA|ran P∩ dom A = S − λ. Since T is closed, A is closed; since T is dissi-
pative, 0 �∈ σp(A). On account of Lemma 2.6, S is densely defined; since S is
dissipative, 0 �∈ σp(B).

Assume (i). Then, by Lemma 3.1, λ ∈ ρ(T ), that is, 0 ∈ ρ(A).
Theorem 2.2 implies 0 ∈ ρ(B). Hence λ ∈ ρ(S) and Lemma 3.1 implies (ii).

Assume (ii). Then, by Lemma 3.1, λ ∈ ρ(S), hence 0 ∈ ρ(B).
Theorem 2.4 then implies, 0 ∈ ρ(A), that is, λ ∈ ρ(T ). Lemma 3.1
implies (i). �

A densely defined operator T on a Hilbert space is called symmetric if
T ⊂ T ∗, it is called self-adjoint if equality prevails. The only if statement in
the next theorem is due to Stenger [21].
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Theorem 3.3. Let T be a closed densely defined symmetric operator in a Hil-
bert space E. Let P be an orthogonal projection in E with codim ranP < ∞
and let S be the compression of T to ranP . Then T is self-adjoint in E if
and only if S is self-adjoint in ran P .

Proof. The theorem immediately follows from Theorem 3.2 because an opera-
tor T is self-adjoint if and only if both T and −T are maximal dissipative. �

Theorems 3.2 and 3.3 also hold in a Krein space setting. We assume the
reader is familiar with operator theory in spaces with an indefinite metric as
in [2], see also [1,7].

Theorem 3.4. Let T be a closed densely defined dissipative (symmetric) oper-
ator in a Krein space E. Let P be an orthogonal projection in E with
codim ran P < ∞ and let S be the compression of T to ranP . Then T is
maximal dissipative (self-adjoint) in E if and only if S is maximal dissipative
(self-adjoint) in ranP .

Proof. Denote by [ · , · ] the indefinite inner product on E. Let J be a funda-
mental symmetry on E such that J |ran P is a fundamental symmetry on ranP
or, equivalently, such that PJ = JP . Then in the inner product (x, y) :=
[Jx, y] E and ranP are Hilbert spaces and P is the Hilbert space orthogo-
nal projection in E onto ranP . Since T is dissipative (maximal dissipative,
self-adjoint) in the Krein space E if and only if JT is dissipative, (maximal
dissipative, self-adjoint) in the Hilbert space E and S is dissipative (max-
imal dissipative, self-adjoint) in the Krein space ranP if and only if JS is
dissipative, (maximal dissipative, self-adjoint) in the Hilbert space ranP , the
theorem follows directly from Theorem 3.2 and 3.3 and the equalities

JS = JPT |ran P∩ dom T = PJT |ran P∩ dom JT .

�

The above theorems can be generalized to linear relations (multi-valued
operators). This will be proved in another note [3].

4. Closedness and Adjoints of Operator Products

In the proofs of the theorems in this section the polar decomposition of an
operator plays a key role. Recall (see for example [17,22]) that the polar
decomposition of a closed densely defined operator T in a Hilbert space is
the factorization T = U |T |, where |T | =

√
T ∗T and U is the partial isometry

with initial space (ker U)⊥ = ran |T | and final space ranU = ran T .
The following theorem is essentially a Hilbert space version of

[11, Theorem IV.2.7(i)] or [10, Proposition XVII.3.2]. We give a different
proof.

Theorem 4.1. Let S and T be closed densely defined operators on a Hilbert
space. If ranS is closed and dim ker S < ∞, then ST is a closed operator.
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Proof. Let S = U |S| and T ∗ = V |T ∗| be the polar decompositions of S and
T ∗. Let P be the orthogonal projection onto ranS∗ which, by Lemma 2.7,
is closed. Then S = SP = U |S|P and hence ST = (U |S|)(P |T ∗|)V ∗. We
claim that P |T ∗| is closed. If the claim is true, then, since V ∗ is bounded and
(U |S|)|ran P is boundedly invertible, the above equality implies that the oper-
ator ST is closed. It remains to prove the claim. For that we apply Theorem
2.3 with A = |T ∗| + 1 and P as defined above. We verify the assumptions
in the theorem: Since (ran P )⊥ = ker S, codim ran P < ∞. A is a closed
operator defined with dense domain domA = dom T ∗ and, since |T ∗| is non-
negative, we have 0 ∈ ρ(A). We assume that 0 ∈ σp(B) and derive a con-
tradiction. The assumption implies that there is a nonzero x ∈ dom B such
that Bx = PAx = 0 or, equivalently, P |T ∗|x = −Px. Denote by ( · , · ) the
inner product in the Hilbert space. Then, since domB ⊂ ran P and x �= 0,
we obtain the contradiction:

0 ≤ (|T ∗|x, x) = (P |T ∗|x, x) = −(Px, x) = −(x, x) < 0.

This implies 0 �∈ σp(B). Thus the conditions of Theorem 2.3 are satisfied and
hence, by the first statement in this theorem, the operator PA = P (|T ∗|+1)
is closed. This readily implies that P |T ∗| is closed. �

Lemma 4.2. Let A and B be densely defined operators on a Hilbert space such
that the product AB is also densely defined. Then

(AB)∗ = B∗A∗ (4.1)

if B satisfies one of the following conditions:

(a) 0 ∈ ρ(B).
(b) B is a partial isometry with dim kerB∗ < ∞ and ker B∗ ⊂ ker A.
(c) B is an orthogonal projection with dim ker B < ∞.

Proof. Since A, B and AB are densely defined, their adjoints A∗, B∗ and
(AB)∗ are well defined operators and we have B∗A∗ ⊂ (AB)∗. Let E be the
Hilbert space in which A and B act and denote by ( · , · ) and ‖ · ‖ the inner
product and corresponding norm of E.

(a) To prove (4.1) it suffices to show dom (AB)∗ ⊂ dom B∗A∗. Let
y ∈ dom (AB)∗. This means, by definition, that the linear functional x �→
(ABx, y) is continuous on domAB, that is, there exists a finite c > 0 such
that:

|(ABx, y)| ≤ c‖x‖, x ∈ dom AB.

Since 0 ∈ ρ(B), we have dom AB = B−1dom A, hence BdomAB = dom A
and ‖x‖ = ‖B−1Bx‖ ≤ ‖B−1‖‖Bx‖. It follows that y ∈ dom A∗, (ABx, y) =
(Bx,A∗y) and

|(Bx,A∗y)| ≤ c‖x‖, x ∈ B−1dom A.

Since dom A = E and B−1 is continuous, this inequality can be extended by
continuity to all x ∈ dom B. Hence A∗y ∈ dom B∗. So y ∈ dom B∗A∗ and
dom (AB)∗ ⊂ dom B∗A∗. Thus (4.1) holds in this case.
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(b) Consider the matrix representations of A and B relative to the two
orthogonal decompositions E = ker B ⊕ ran B∗ and E = ker B∗ ⊕ ranB:

B =

[

0 0

0 B1

]

:
[

ker B
ranB∗

]

→
[

ker B∗

ranB

]

,

where B1 is bounded and boundedly invertible, and

A =

[

0 A01

0 A1

]

:
[

ker B∗

ran B

]

→
[

ker B
ran B∗

]

.

Since domA = ker B∗ ⊕ (ran B ∩dom A), we have that domA01 = dom A1 =
(ran B ∩ dom A). By Lemma 2.6, these domains are dense in ran B. Thus
A01B1 and A1B1 are densely defined and

(AB)∗ =
[

0 0
(A01B1)∗ (A1B1)∗

]

:
[

ker B
ranB∗

]

→
[

ker B
ranB∗

]

.

Arguments similar to the ones in part (a) can be used to show that
(A01B1)∗ = B∗

1A∗
01 and (A1B1)∗ = B∗

1A∗
1. These equalities imply (4.1).

(c) As in (a) to prove (4.1) it suffices to show that dom (AB)∗ ⊂
dom BA∗ = dom A∗. Let g ∈ dom (AB)∗. This means, by definition, that the
linear functional f �→ (ABf, g) is continuous in domAB. Our aim is to check
that the functional f �→ (Af, g) is continuous in domA. Since A is densely
defined, Lemma 2.6 implies that dom A|ran B is dense in ranB and therefore
there is a subspace L ⊂ dom A such that dom A = dom A|ran B+̇L, dim L =
dim kerB < ∞ and L ∩ ran B = {0}, hence also E = ranB+̇L. Denote
by Q the projection onto L parallel to ranB. Let f ∈ dom A. Then
Qf ∈ dom A, B(I − Q)f = (I − Q)f ∈ dom A and

(Af, g) = (AB(I − Q)f, g) + (AQf, g).

The first summand on the right is continuous in (I − Q)f and hence in f
and the second summand is continuous in f , because L is finite-dimensional.
Thus f �→ (Af, g) is continuous on domA, that is, g ∈ dom A∗. This proves
(4.1). �

The next theorem is essentially the theorem in [20] (see also
[5, Theorem 6] and [8, p. 306]) in a Hilbert space setting. It is the same
as [11, Proposition 2], but our proof of it is different.

Theorem 4.3. Let S and T be densely defined operators on a Hilbert space.
If T is closed and ranT is closed and has finite codimension, then ST is a
densely defined operator and

(ST )∗ = T ∗S∗. (4.2)

Proof. Let E be the Hilbert space on which S and T act and denote by ( · , · )
and ‖ · ‖ the inner product and corresponding norm of E. First we show that
ST is densely defined. Consider the operator T1 = T |dom T∩ran T ∗ . It is a
bijection onto ranT and from Tdom ST = dom S ∩ ranT it follows that

dom ST = T−1
1 (D) ⊕ ker T, D := domS ∩ ranT.
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We claim that T−1
1 (D) is dense in ran T ∗, which is closed by Lemma 2.7.

Assuming the claim is correct, we obtain from the above equality that

dom ST = T−1
1 (D) ⊕ ker T = ranT ∗ ⊕ ker T = E,

that is, ST is densely defined. It remains to prove the claim. We prove it
by showing that if x ∈ ranT ∗ is orthogonal to T−1

1 (D), then x = 0. Let
x = T ∗y, y ∈ E, and assume x ⊥ T−1

1 (D). Then

{0} = (x, T−1
1 (D)) = (T ∗y, T−1

1 (D)) = (y, TT−1
1 (D)) = (y,D),

which shows that y ∈ D⊥. By Lemma 2.6, D is dense in ranT , hence D⊥ =
(ran T )⊥ = ker T ∗. It follows that x = T ∗y = 0. This completes the proof of
the claim.

We now prove the equality (4.2). Let T ∗ = V |T ∗| be the polar decom-
position of T ∗. Then dom |T ∗| = dom T ∗, ran |T ∗| = ranT , and kerV =
ker |T ∗| = ker T ∗ and T = |T ∗|V ∗, see [17, Section VI.2.7]. Thus ker V is
finite dimensional and contained in kerS|T ∗|; this is needed below when we
apply Lemma 4.2 (b). Denote by R the closed densely defined linear operator
on E such that

R =
{ |T ∗| on ranT ∩ dom T ∗,

I on ker T ∗,

and let P be the orthogonal projection onto ranT . Then R is self-adjoint and
boundedly invertible, dim kerP < ∞ and |T ∗| = PR = RP . By the first part
of this proof, ST, S|T ∗| and SP are densely defined operators and therefore
the equality (4.2) follows from Lemma 4.2:

(ST )∗ = (S|T ∗|V ∗)∗ (b)
= V ∗∗(S|T ∗|)∗ = V (SPR)∗

(a)
= V R(SP )∗ (c)

= V RPS∗ = V |T ∗|S∗ = T ∗S∗.

�

Remark 4.4. In Theorem 4.3 we do not claim that the closed operator T ∗S∗

is densely defined, or, what is equivalent in this case, that ST is closable. If
T ∗S∗ is densely defined, then (T ∗S∗)∗ = ST . So, if, in addition, ST is closed,
then (T ∗S∗)∗ = ST .
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