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a  b  s  t  r  a  c  t

Objective:  The  generalized  matrix  learning  vector  quantization  (GMLVQ)  is used  to  estimate  the relevance
of texture  features  in  their  ability  to classify  interstitial  lung  disease  patterns  in high-resolution  computed
tomography  images.
Methodology: After  a  stochastic  gradient  descent,  the GMLVQ  algorithm  provides  a  discriminative  dis-
tance  measure  of  relevance  factors,  which  can  account  for pairwise  correlations  between  different  texture
features  and  their  importance  for the  classification  of  healthy  and  diseased  patterns.  65  texture  features
were extracted  from  gray-level  co-occurrence  matrices  (GLCMs).  These  features  were  ranked  and  selected
according  to  their  relevance  obtained  by GMLVQ  and,  for comparison,  to a  mutual  information  (MI) crite-
ria. The  classification  performance  for different  feature  subsets  was  calculated  for  a  k-nearest-neighbor
(kNN)  and  a random  forests  classifier  (RanForest),  and  support  vector  machines  with  a  linear  and  a radial
basis function  kernel (SVMlin  and  SVMrbf).
Results:  For  all classifiers,  feature  sets  selected  by  the  relevance  ranking  assessed  by  GMLVQ  had  a  signif-

icantly  better  classification  performance  (p <  0.05)  for  many  texture  feature  sets  compared  to  the  MI
approach.  For  kNN,  RanForest,  and  SVMrbf,  some  of  these  feature  subsets  had  a significantly  better
classification  performance  when  compared  to the  set consisting  of all  features  (p < 0.05).
Conclusion:  While  this  approach  estimates  the relevance  of  single  features,  future  considerations  of
GMLVQ should  include  the  pairwise  correlation  for the  feature  ranking,  e.g. to reduce  the  redundancy  of
two equally  relevant  features.
. Introduction

The ability to detect and classify pathological patterns in medical
mages is a key challenge in computer-aided diagnosis systems that
onsist of a feature extraction and machine learning task. In high-
esolution computed tomography (HRCT) images of the chest, the
lassification of pathological patterns of interstitial lung diseases
ILDs) is a complicated classification task which requires substan-
ial expertise. Different texture features and classifiers have been
roposed to achieve the goal of distinguishing healthy lung patterns

rom disease patterns [1–3]. A reliable, consistent and reproducible
omputer-aided diagnosis could improve the radiologists efficiency
nd avoid surgical lung biopsies for some patients.
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E-mail addresses: markus.huber@rochester.edu, mbh@bme.rochester.edu
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©  2012  Elsevier  B.V.  All rights  reserved.

One approach to design an image-based, automated detection
tool is to extract texture features from regions of interest (ROI)
and then use supervised machine learning techniques to classify
the ROI as healthy or pathological. Too many features deteriorate
the classification performance of the machine learning algorithms
summarized as “curse of dimensionality” [4].  In addition, irrele-
vant features degrade the classification performance. Because of
these negative effects, it is common to precede the learning with
a feature selection stage that strives to eliminate all but the most
relevant features.

This study addresses the question how the texture feature can
be identified that provide the best information from the underlying
lung HRCT images for a specific (classification) problem. This objec-
tive can be addressed by estimating the global relevance of each

individual texture feature relative to all other texture features in the
set. The resulting relevance allows the ranking of texture features
for a specific classification problem. The ranks in relevance can then
be used (1) to compare the performance of texture features and (2)
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o select only a subset with the texture features most important
or the classification task thereby reducing the dimensionality of
he data set and avoiding any over-fitting [4].  With an independent
eature selection step, many proposed texture feature approaches
an be tested and the best set can then be used for the actual clas-
ification task.

The generalized matrix learning vector quantization (GMLVQ)
5] offers such a relevance estimation for features in a supervised
attern classification problem. The GMLVQ algorithm provides a
iscriminative distance measure of relevance factors, which can
ccount for pairwise correlations between different texture fea-
ures and their importance in classification using real-world data
6]. From lung HRCT images, texture features were extracted,
anked and selected according to the relevances obtained by
MLVQ. For comparison, features were also selected by a mutual

nformation criteria. The selected features subsets were then eval-
ated in their ability to classify the lung patterns.

. Related work

The learning vector quantization (LVQ) approach [7] and its vari-
nts (e.g. LVQ3) [8,9] constitute a popular family of supervised
lassifiers based on prototypes in the feature space. Specifically,
VQ3 shifts the decision borders toward the Bayesian limits and
pplies a correction term that ensures that the prototypes approx-
mate the corresponding class distribution. Relevance learning
chemes quantify the importance of extracted features for a cer-
ain classification task in heterogenous data sets [9].  The GMLVQ
s an extension of this concept that provides a matrix of rele-
ances that accounts for correlations between different features.

 similar approach is the distinction sensitive LVQ (DSLVQ) [10],
hich adapts LVQ3 for the weighting factors according to plausible
euristics. In contrast, the GMLVQ update constitutes a stochastic
radient descent on a cost function [8].

Several schemes for adaptive distance learning exist, e.g. the
arge margin nearest neighbor (LMNN) [11]. A comparison between
he LMNN technique and the GMLVQ approach on the basis of a con-
ent based image retrieval application revealed that both methods
an reach a similar performance; however the computational cost
or GMLVQ training is typically lower [12,13].

Several authors investigated the performance of certain
roups of texture features and their combination with classifiers
1–3,14,17,15,18,16] in lung HRCT images as well as other types
f images [19,20].  In addition, various feature selection schemes
ased on mutual information were proposed [21,22].

In this work, the feature selection based on the GMVLQ rel-
vances is compared with a mutual information criteria using a
eal-world data set.

. Generalized matrix LVQ

LVQ [7] constitutes a particularly intuitive classification algo-
ithm, which represents data by means of prototypes. LVQ itself
onstitutes a heuristic algorithm, hence extensions have been pro-
osed for which convergence and ability to represent the data
tructure can be guaranteed [23,9].  One particularly crucial aspect
f LVQ schemes is the dependency on the underlying metric, usually
he Euclidean metric, which may  not suit the underlying data struc-
ure. Therefore, general metric adaptation has been introduced
nto LVQ schemes [9,24].  Recent extensions parameterize the dis-

ance measure in terms of a relevance matrix, the rank of which

ay  be controlled explicitly. The algorithm suggested in [5] can
e employed for linear dimension reduction and visualization of

abeled data.
e in Medicine 56 (2012) 91–97

We  consider training data �xi ∈ R
N , i = 1 . . . S with labels yi corre-

sponding to one of C classes respectively. The aim of LVQ is to find
m prototypes �wj ∈ R

N with class labels c( �wj) ∈ {1, . . . , C} such that
they represent the classification as accurately as possible. A data
point �xi is assigned to the class of its closest prototype �wj , where
d(�xi, �wj) ≤ d(�xi, �wl) for all l /= j and d usually denotes the squared
Euclidean distance

d(�xi, �wj) = (�xi − �wj)
�(�xi − �wj). (1)

Consider a function �(�xi),

�(�xi) = d( �wJ, �xi) − d( �wK , �xi)
d( �wJ, �xi) + d( �wK , �xi)

, (2)

where �wJ denotes the closest prototype with the same class label
as �xi (c( �wJ) = yi), and �wK is the closest prototype with a different
class label (c( �wK ) /= yi). Let ˚(·) denote a monotonically increasing
function; then, the general scheme of generalized LVQ (GLVQ) [8]
adapts prototype locations by minimizing the cost function

EGLVQ =
S∑

i=1

˚
(

�(�xi)
)

. (3)

In this contribution,  ̊ was  chosen to be the identity function,
˚(x) = x; other choices include, e.g. the logistic function [9]. This cost
function aims at an adaptation of the prototypes, such that a large
hypothesis margin is obtained and a reliable and robust classifica-
tion (see [25]) is achieved. A learning algorithm can be derived from
the cost function EGLVQ by means of a stochastic gradient descent
as shown in [9,23].

Matrix learning in GLVQ (GMLVQ) [24,25] substitutes the usual
squared Euclidean distance d by a more advanced dissimilarity
measure which contains an adaptive dissimilarity measure, thus
resulting in a more complex and better adaptable classifier. In [5],
it was proposed to choose the dissimilarity as

d�
j ( �wj, �xi) = (�xi − �wj)

��(�xi − �wj), (4)

with an adaptive, symmetric and positive semi-definite matrix
� ∈ R

N×N . The dissimilarity measure Eq. (4) possesses the shape
of a Mahalanobis distance. Note, however, that the precise matrix
is determined in a discriminative way  according to the given label-
ing, such that severe differences from the standard Mahalanobis
distance based on correlations can be observed. By setting

� = ˝�˝,  (5)

with  ̋ ∈ R
M×N with M ≤ N, semi-definiteness and symmetry is

guaranteed. Optimization takes place by a stochastic gradient
descent of the cost function EGLVQ in Eq. (2),  with the distance
measure d substituted by d� (see Eq. (4)).

The training takes place as an iterative learning scheme picking
a sample �xi in every step t from the randomized labeled training
set and performing an update of both the prototypes �wK,J and the
matrix ˝.  The update of the nearest prototype �wJ with the same
class label like �xi and the nearest prototype �wK with a different
class label is given by

�wnew
J = �wJ + �1 · �+ · 2�(�xi − �wJ) (6)

�wnew
K = �wK + �1 · �− · 2�(�xi − �wK ), (7)

with �+ = 2 · d�
K

(d�
J + d�

K )2
and �− =

−2 · d�
J

(d�
J + d�

K )2
. (8)
The corresponding update of the matrix reads

˝new
mn = ˝mn − �2 ·

(
�+ ·

∂d�
J

∂˝mn
+ �− · ∂d�

K

∂˝mn

)
(9)
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∂d�
L

∂˝mn
= 2
[
˝(�xi − �wL)

]
m

(xi,n − wL,n) (10)

ith L ∈ {J, K}. After each training step t the matrix is normalized
o
∑

i[�]ii = 1 in order to prevent degeneration to 0. An addi-
ional regularization term in the cost function proportional to
ln(det(˝˝�)) can be used to enforce full rank M of the relevance
atrix and prevent over-simplification effects, see [26]. The learn-

ng stops after a maximal number of epochs (sweep through the
huffled training set) are reached. At the end of the learning pro-
ess the algorithm provides a set of prototypes �wj , their labels c( �wj),
nd a task specific discriminative distance d�.

The diagonal elements �ii of the dissimilarity matrix can be
nterpreted as overall relevances of every feature i for the classifica-
ion. The off-diagonal elements �ij with j /= i weight the pairwise
orrelations between features i and j. High absolute values in the
atrix denote highly relevant features, while values near zero can

e seen as less important for the classification accuracy. So the
MLVQ approach offers typical representatives of the classes in

orm of prototypes, a discriminative distance measure and feature
elevance information suitable for the specific classification task.

The cost function of GMLVQ is non-convex and, in consequence,
ifferent local optima can occur, which lead to different results and
ubsequent data visualizations. The non-convexity of the cost func-
ion is mainly due to the discrete assignments of data points to one
rototype, which may  not be unique for real-world data sets with
verlapping classes. In the experiments, different assignments and,
n consequence, different data representations could be observed,

here these representations focus on different relevant facets of
he given data sets.

The choice ˝ ∈ R
M×N with M ≤ N transforms the data locally to

n M-dimensional feature space. It can be shown that the adaptive
istance d�( �wj, �xi) in Eq. (4) equals the squared Euclidean dis-
ance in the transformed space under the transformation �x �→ ˝�x,
ecause d�( �wj, �xi) = (˝�xi − ˝ �wj)

2. The target dimension M must
e chosen in advance by intrinsic dimension estimation or accord-

ng to available prior knowledge. For visualization purposes, usually
 value of two or three is appropriate.

. Experiment

.1. Data

For each of the 14 patients with known occurrence of ILD pat-
erns, a stack of 70 axial images reconstructed with a lung kernel
rom HRCT of the chest was assessed by an experienced radiolo-
ist. The resulting images are comparable to classical HRCT with
he exception that not only reconstructions of a small number of
lice positions are available. A morphological pattern related to

 heterogenous group of ILDs is the so-called honeycombing. All
mages have a slice thickness of 1 mm,  an in-plane pixel size of
.69 mm×0.69 mm,  and a slice distance of 5 mm.  In this data set,
64 two-dimensional, squared ROIs with an edge length of 23 pixels
ere defined in 608 healthy and 356 pathological, honeycombing

ung patterns (Fig. 1). In each of these ROIs, the set of the following
ectors of texture features was calculated.

.2. Texture features

Gray level co-occurrence matrices (GLCM) [19] are second order
istograms that estimate the joint probability P(gi, gj) for the occur-
ence of two pixels with the gray levels gi and gj for a given pixel

pacing and direction. In each ROI, the gray levels were rescaled
min–max-scaling) to 128 gray level values and texture features
ere calculated for ndir = 4 offset directions (0◦, 45◦, 90◦, 135◦) and
ve pixel spacings sp = {1, 2, 3, 4, 5}. Pixels pairs were excluded from
e in Medicine 56 (2012) 91–97 93

the GLCM if the neighbor pixel was  outside the ROI. To achieve
rotation invariant features, the GLCM of the four directions were
summed to one matrix. From those isotropic GLCMs, 13 statisti-
cal features fi(sp) (i = 1, . . .,  13) were calculated resulting in a set of
65 GLCM texture features. After the calculation, all features were
standardized to zero mean and unit variance.

4.3. Mutual information

For a comparison with the estimated feature relevance by
GMLVQ, an information theoretic approach to feature selection is
used. Mutual information (MI) [4] is a measure of general indepen-
dence between random variables. For two  random variables X and
Y, the MI  is defined as

I(X, Y) = H(X) + H(Y) − H(X, Y), (11)

where entropy H(·) measures the uncertainty associated with a ran-
dom variable. The MI  I(X, Y) estimates how the uncertainty of, e.g. X
is reduced if Y has been observed. If X and Y are independent, their
MI  is zero.

For ROI data set in this study, the MI  between the single texture
features fi(sp) and the corresponding class labels yi was  calculated
by approximating the probability density function of each variable
using histograms P(·):

I(fi(sp), yi) =
nc∑ nf∑

P(fi(sp), yi)log2
P(fi(sp), yi)

P(fi(sp))P(yi)
.  (12)

Here, the number of classes nc = 2 was  used; the number of his-
togram bins for the texture features nf was  determined adaptively
according to

nf = log2N + 1 + log2

(
1 + �

√
N

6

)
, (13)

where � is the estimated kurtosis and N the number of ROIs in the
data set[21]. Hence, more histogram bins were assigned to non-
Gaussian distributed features.

4.4. Classification performance

After the ranking of the texture features, different classifiers
were used to test the classification performance on ranked features
acquired by the GMLVQ algorithm and the MI  approach. Three com-
monly used classifiers were investigated in this study: a k-nearest
neighbor (kNN), support vector machines with a linear and a radial
basis function kernel (SVMlin, SVMrbf, respectively), and random
forests (RanForest) [27,28]. Free parameters of all classifiers were
subject to optimization via cross validation in the training phase.
In one iteration, the data set is randomly divided into a training
set (70%) and a test set (30%); all ROIs of one patient are either
included in the training set or the test set. The training set is used
to estimate the relevance with GMLVQ and MI  ranking and to deter-
mine the best classifier parameter in a 10-fold cross-validation.
The optimized classifier model was then applied on the indepen-
dent test set to calculate the accuracy of one iteration. This scheme
was repeated 50 times resulting in an accuracy distribution for
each texture feature sets and classifier. In addition to a feature set

including all features, sets consisting of the best {1, . . .,  20} features
according the the GMLVQ and MI  ranking were evaluated for their
classification performance. A Wilcoxon signed-rank test was  used
to compare two accuracy distributions.
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Fig. 1. ROIs with HRCT image patterns showing examples for health

. Results

.1. Feature ranking

In Fig. 2, the ranking of the used texture feature is shown for the
elevance measure obtained by GMLVQ and the MI  estimation, and
he 20 best features in each ranking scheme are highlighted. Both
eature selection approaches identify f8(1) as the most important
eature to distinguish the two classes of ROI patterns. However,
he second best feature is already different ( f11(1) for GMLVQ,
8(2) for MI)  and the overall set of the best 20 texture features is
ot identical as well. The best ranked texture features f8 and f11
efine the ‘sum of entropy’ and the ‘difference entropy’, respec-
ively [19]. For the GMLVQ algorithm, the off-diagonal elements
f � are shown in Fig. 3, which weight the pairwise correlations

etween two features.

For the classification task, it is interesting to investigate distri-
ution of the feature vectors in the high-dimensional feature space.
n Fig. 4, the feature space of the sets including the best 5 features
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ig. 2. Ranking of the used texture features for the relevance measure obtained by GMLV
he  mean ranking is shown for each feature; the error bars indicate the corresponding stan
f the dissimilarity matrix (Eq. (5)). The 20 best features in each ranking approach are ma
erived  from the GLCMs, fi(sp), for i = {1, . . .,  13}  and sp = {1, . . ., 5}.
g tissue (upper 2 rows) and pathological lung tissue (lower 2 rows).

as defined by the two ranking methods are represented by a
two-dimensional embedding, where each data point is replaced
with the corresponding ROI. The embedding was  obtained with a
principal component analysis (PCA) leading to the first and second
principal components, that include the highest variation found in
the data set through a coordinate transformation with the covari-
ance matrix. Using this linear PCA projection, features in the MI
ranking seem to be more correlated compared to the GMLVQ
ranking (Fig. 4). In addition, the two  images classes, healthy and
diseased, can be better distinguished in the latter ranking approach.

5.2. Classification performance

In Fig. 5, the test accuracies obtained by the four classifiers are
shown for different feature sets including all features and the best n

features selected by GMLVQ and MI  rankings. For all classifiers, fea-
ture sets selected by the relevance ranking assessed by GMLVQ had
a significantly better classification performance for the best {2, . . .,
18}  texture features compared to the MI  approach (p < 0.05). The

 Best 20 Features

 Features

Q (upper panel) and the mutual information MI  (lower panel). For the 50 iterations,
dard deviation. The GMLVQ relevance is calculated from the diagonal elements �ii

rked with black bars. The set of texture features consists of the statistical measures
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Fig. 3. The matrix � with pairwise-correlations between the GLCM features. Dark
a
t
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F
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(
a

nd bright entries correspond to high negative and positive correlations, respec-
ively. The diagonal elements (see Fig. 2) are set to zero to emphasize the off-diagonal
lements.
ther subsets defined by the GMLVQ and MI  ranking had a similar
erformance. For kNN, RanForest, and SVMrbf, some of these fea-
ure subsets had a significantly better classification performance
hen compared to the set consisting of all features, e.g. the best {3,

ig. 4. Two  dimensional projections of feature spaces with a subset of corresponding lu
pace  of the best 5 features for the mutual information (upper panel) and the GMLVQ (lo
gray  circles) and diseased lung patterns (black dots). These representations reveal the sh
re  less correlated. Note that not all lung pattern images are shown to avoid overlapping.
e in Medicine 56 (2012) 91–97 95

. . .,  10} texture features (p < 0.05). For these three classifiers, the
best performance was  found with sets between 4 and 6 features
defined by the GMLVQ ranking; the performance decreased with
increasing numbers of features. For SVMlin classifier, the best level
of performance was  reached with 6 features and remained similar
with increasing number of features.

6. Discussion

In this novel application of the GMLVQ algorithm, the relevance
of texture features was  estimated in their ability to classify healthy
and diseased lung patterns in chest HRCT images. This supervised
learning scheme incorporates a stochastic gradient descent on an
appropriate error surface and provides a feature selection approach
to determine the relevance of several input dimensions for a spe-
cific classification task. To this end, GMLVQ weights the texture
features corresponding to their ability in discriminating between
the two lung tissue classes. In our experiment with real-world data,
the feature sets selected by the GMLVQ approach had a similar or a
significantly better classification performance compared with fea-
ture sets selected by a mutual information ranking. Some of the
feature subsets selected by the GMLVQ ranking even improved the
overall classification performance of three classifiers.

The common challenge in the field of feature selection is to find
sets of features with a low pairwise correlation to avoid redundancy
but with a high relevance of the complete set for the classifica-
tion task. This means that even weak features can be included,
if they provided complimentary information to strong features.
In general, ranking single features based on their individual per-

formance and then create feature sets according to this ranking
may  not accommodate these requirements and thus, may  not
identify the members nor the size of the optimal feature subset.
The above ranking-based feature selection method considers only

ng patterns: the first and second principal components are shown for the feature
wer panel) ranking. The subimages show the complete distributions of the healthy
ape of the feature space, especially that the features in the set selected by GMLVQ
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Fig. 5. Classification performance for different features sets and two classifiers. Median test accuracies (error bars indicate the 20th and 80th percentiles) are shown for a set
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stimations of mutual information MI  (triangles). Circles mark significant differenc
MLVQ ranking compared to the set including all features (p < 0.05).

he individual performance of the features and does not consider
airwise correlations between features. However, for this appli-
ation of interest, the GMLVQ relevance yields a satisfactory
erformance. While this approach estimates the relevance of single
eatures, future considerations of GMLVQ should include the pair-
ise correlation (Fig. 3) for the feature ranking, e.g. to reduce the

edundancy of two equally relevant features [21,22].
In order to improve computed-aided diagnosis systems, the pre-

ented approach can be used to compare the performance of texture
eatures and to optimize their free parameters in order to find
he near optimal settings for subsequent supervised learning tasks.
rom the broad variety of approaches for texture classification [1],
he best set of individual texture features can be identified that is
est suited to distinguish between data classes. Most of these tex-
ure feature methods have free parameters and it is unclear, which
et of parameters leads to the best discrimination between tex-
ure classes. For one of these methods, the parameter setting with
he best classification performance can be found. For instance, in
he presented experiment, the GLCM features with a pixel spacing
p = 5 did not contribute to a significantly better classification per-
ormance (Fig. 2). More complex texture feature approaches may
enefit from this reduction to the possible parameter space.

In terms of the detection of ILD patterns, a limiting factor of this
tudy was that only one typical pathological lung pattern, i.e. hon-
ycombing, was classified. This represents one of many interstitial
ung disease patterns that are common in clinical chest HRCT [1]
nd should be investigated in future studies. For this endeavor, the
MLVQ approach can be extended for such a multi-class problem

o provide feature rankings of individual features for each class.
his leads to class specific feature selection and may  reveal fur-
her insights into the texture quantification and the structure of
he feature space.

. Conclusions

Using the GMLVQ algorithm, the relevance of texture features
as estimated in their ability to classify healthy and diseased lung

atterns in chest CT images. In our experiment with real-world
ata, the feature sets selected by the GMLVQ approach had a sig-
ificantly better classification performance compared with feature
ets selected by a mutual information ranking. While this approach
cording to the n highest relevances obtained from GMLVQ (squares) and n highest
tween the two  ranking methods; crosses mark a significant better performance of

estimates the relevance of single features, future considerations of
GMLVQ should include the pairwise correlation (Fig. 3) for the fea-
ture ranking, e.g. to reduce the redundancy of two  equally relevant
features [21,22].
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