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The third- and fifth-order nonlinear Raman response of liquid CS 2
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Koos Duppen
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A finite field molecular dynamics~MD! method has been developed to calculate the off-resonant
Raman response of liquids. The method has been used to calculate the third- and fifth-order optical
responses of CS2. From the third-order response, the intensity of third-order cascading processes has
been estimated. The calculated ratio between the fifth-order intensity and the intensity of the
third-order cascading processes supports experimental observations, claiming that two-dimensional
Raman spectra are dominated by third-order cascading processes. ©2000 American Institute of
Physics.@S0021-9606~00!50223-2#

I. INTRODUCTION

More than 70 years after Raman discovered Raman
scattering,1 Raman spectroscopy has become a widespread
technique that is used in many areas of science. In the last
decade, the conventional methods, based on determining the
characteristics of the spontaneous light scattering spectrum,
have been supplemented by a number of femtosecond tech-
niques, relying on stimulated light scattering. In these experi-
ments, which have been extensively applied in experimental
studies of the intra- and intermolecular dynamics of liquids
and solutions, a short optical pulse perturbs a sample in equi-
librium through a Raman interaction. After a period of free
evolution another, variably delayed optical pulse is em-
ployed to probe the state of the sample. Examples of experi-
ments that are aimed at the low frequency, intermolecular
part of the Raman spectrum are the~heterodyned! optical
Kerr effect2,3 and transient grating scattering.4,5 The main
advantage of these time domain methods is that for short
enough pulses the excitation occurs impulsively, so that it is
possible to observe the induced motions in real time, rather
than as a resonance. In particular the initial, short time dy-
namics can be clearly followed, while that information is
hidden in the wings of frequency domain spectra. Despite
these operational advantages, however, it should be realized
that the information content of time and frequency domain
experiments are, in principle, identical. They are both deter-
mined by the accessible Raman modes of the liquid and are
simply related by Fourier transforms.

Recently, the use of two-dimensional~2D! Raman spec-
troscopy has been suggested.6 In these experiments there are
two Raman perturbations of the sample, separated by a vari-
able period of free evolution, before the state of the sample is
probed after a second independently variable delay. Such
experiments are expected to yield considerably more infor-
mation on the structural dynamics of liquids than the one-
dimensional~in either time- or frequency-domain! experi-

ments discussed above. The 2D experiments do not just
depend on the overall Raman spectrum of the liquid, but also
on dynamical details that give rise to this spectrum. For in-
stance, it should be possible to determine whether the spectra
are dominated by ultrafast fluctuations on a local, molecular
scale, or by density fluctuations on a much larger length
scale.6,7 In limiting cases this may be described as homoge-
neous line broadening, arising from the interaction of a sys-
tem with a fast heat bath, and inhomogeneous line broaden-
ing, due to a slowly fluctuating distribution of local
environments, respectively. Also, the experiments are ex-
pected to be sensitive to mode coupling effects, similar to the
well-known coupling effects between spins in 2D-nuclear
magnetic resonance~NMR!.8,9

In the last few years, the 2D off-resonant Raman re-
sponse has been measured experimentally by various
groups.10–13 The shape of the spectra was not understood
until very recently, when Blanket al.13 demonstrated experi-
mentally that the two-dimensional Raman spectrum is domi-
nated by third-order cascade processes. The true fifth-order
response that contains all the information about the line
broadening and the mode coupling mechanisms is apparently
much weaker than these cascading lower-order processes.

The search for the true fifth-order response can be
guided by theoretical calculations and simulations. Theory
can predict the line shape and intensities of the different
types of response and in particular give the intensity ratio
between the cascade response and the true fifth-order re-
sponse.

II. THEORY

The Raman response can be calculated in four different
ways. The most frequently used, to fit experimental results,
is based on a phenomenological model, where the many-
body motion in the liquid is described by a few Brownian
oscillators.6,14,15 Since the experimental results are not the
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true fifth-order response, this method cannot provide useful
insight in the dynamics of the liquid that gives rise to the
optical response. An alternative approach to this problem is
the use of MD simulations that in principle can provide all
the information needed to calculate the response functions.
This can be done either using the full MD data16,17 or by
using the instantaneous normal mode~INM ! approach,
where the dynamics is described as motion in harmonic po-
tentials around local structures that are derived from the MD
simulation.18–20 This last approach is only valid for short
times, so that, for instance, diffusion cannot be described in
this approach. The three methods, described so far, are all
based on calculation of the response of the system as a small
perturbation from equilibrium, using classical correlation
functions.

The third- and fifth-order nonlinear optical response
functionsR(3) andR(5) are related to the quantum mechani-
cal correlation functions of the polarizability tensor elements
Pab :21,22

Rabcd
(3) ~ t1!52

i

\
Tr~Pab~ t1!@Pcd~0!,r~2`!#!, ~1!

Rabcde f
(5) ~ t1 ,t2!5S i

\ D 2

Tr~Pab~ t11t2!

3@Pcd~ t1!,@Pe f~0!,r~2`!##!, ~2!

wherer(2`) is the density matrix of the system at equilib-
rium. In the classical limit the commutator@A,B# is replaced
by the Poisson bracketi\$A,B%, which gives

Rabcd
(3) ~ t1!5^Pab~ t1!$Pcd~0!,r~2`!%&, ~3!

Rabcde f
(5) ~ t1 ,t2!5^Pab~ t11t2!

3$Pcd~ t1!,$Pe f~0!,r~2`!%%&. ~4!

The Poisson bracket$A,r% is given by 2Ȧr/kBT23,app.8E

whereȦ is the time derivative ofA, kB is Boltzmann’s con-
stant andT is the temperature. Thus, the response functions
can be written as

Rabcd
(3) ~ t1!52

1

kBT
^Pab~ t1!Ṗcd~0!r~2`!&, ~5!

Rabcde f
(5) ~ t1 ,t2!52

1

kBT
^Pab~ t11t2!

3$Pcd~ t1!,Ṗe f~0!r~2`!%&. ~6!

Using the general relation$A,Br%5B$A,r%1$A,B%r and
moving the time differentiation in the third-order expression
we get the classical correlation function expressions:

Rabcd
(3) ~ t1!5

1

kBT
^Ṗcd~ t1!Pe f~0!r~2`!&, ~7!

Rabcde f
(5) ~ t1 ,t2!5S 1

kBTD 2

^Pab~ t11t2!

3Ṗcd~ t1!Ṗe f~0!r~2`!&

2
1

kBT
^Pab~ t11t2!$Pcd~ t1!,Ṗe f~0!%r~2`!&. ~8!

The Poisson bracket,$•••,•••%, in the second term of
the fifth-order expression can be written in terms of the dif-
ferentials with respect to the phase space coordinates,p and
q:

$Pcd~ t1!,Ṗe f~0!%5(
i

]Pcd~ t1!

]qi~0!

]Ṗe f~0!

]pi~0!

2
]Pcd~ t1!

]pi~0!

]Ṗe f~0!

]qi~0!
. ~9!

These differentials of the polarizabilities with respect to a
phase space coordinate pose a problem, since they cannot be
calculated straightforwardly from molecular dynamics data.
However, they can be rewritten using the chain rule for de-
rivatives, wherex can be any phase space coordinate, both
momentum and position, and the summation overk runs over
all possible phase space coordinates.

]Pcd~ t1!

]xi~0!
5(

k

]Pcd~ t1!

]xk~ t1!

]xk~ t1!

]xi~0!
. ~10!

It is possible to calculate this expression, if one knows how a
change in the phase space coordinates at one time affects the
phase space coordinates at a later time. The]xk(t1)/]xi(0)
derivatives can be collected in the so-called stability
matrix:22

M jk~ t1,0![H ]xk~ t1!

]xj~0! J . ~11!

This stability matrix contains (63N)2 numbers, whereN is
the number of particles.

Using molecular dynamics all these numbers have to be
updated every time step22 which is very time consuming.
Using the INM approach or the Brownian oscillator model
the nonlinear response can be calculated analytically, but, as
discussed before, this involves approximations of which the
validity is unclear.

The fourth way of calculating the response is to directly
simulate the actual experimental conditions. In an experi-
ment ultrashort laser pulse pairs excite the Raman active
modes in the liquid.10–13In the case of a linear molecule this
is the same as applying a torque~or more general: a force! on
the individual molecules during the short time that the laser
pulses interact with the liquid. This torque will tend to align
the molecules in the direction of the local electric field, giv-
ing rise to different polarizabilities in different directions,
i.e., an induced anisotropy,a. The diagonal elements of the
a tensor are defined from the polarizability tensor elements
of the simulation box,Pab , and the volume of the box,
Vbox, as
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aaa5
Paa2~Paa1Pbb1Pcc!/3

Vbox
. ~12!

The off-diagonal elements are defined similarly

aab5
Pab

Vbox
. ~13!

In the third-order experiment, the anisotropy induced by a
pulse pair is monitored by a delayed probe pulse. In the
fifth-order experiment two laser pulse pairs are used, sepa-
rated by a delayt1. Then, after a second delayt2 a probe
pulse is applied, which generates a signal pulse, which de-
pends on the induced anisotropy of the sample.

This sequence of events is exactly how the calculation in
the finite field MD method is performed. When the laser
pulse pairs are applied in the experiment a torque is added to
the molecules in the simulation, in order to take the com-
bined effect of the two ultrashort optical fields into account.
The signal is then calculated by monitoring the induced an-
isotropy tensor of the simulated molecules.

The third-order response function can be expressed as
function of theab component of the anisotropy,aab

(3) , in-
duced by laser fields polarized in thed andc directions, and
the number density of the liquid

Rabcd
(3) ~ t !5

aab
(3)~ t !

4pe0NEcEd
. ~14!

The fifth-order response function can be found by per-
forming a simulation where the laser pulse pairs are applied
twice. The third-order responses from each of the two pulse
pairs separately are subtracted from the total signal. This
procedure is repeated for different values of delayt1, in or-
der to produce the full two-dimensional response.

The essential difference between the correlation function
methods and the finite field method is that the full molecular
dynamics is used, while avoiding the complications related
to the evaluation of the stability matrix Eq.~11!. In finite
field calculations, first the distortion of the phase space co-
ordinates caused by the applied laser fields is calculated.
Subsequently, the field-free evolution of the system is fol-
lowed, which is equivalent to calculating only the part of the
stability matrix that corresponds to the initial distortion. In
contrast the whole stability matrix that can describe arbitrary
distortions has to be calculated in the correlation function
methods.

Cascading signals arise through the combined effect of
two third-order processes. They are emitted by the sample in
the same direction as the two-dimensional fifth-order signal
and have the same overall dependence on laser intensity.
Thus, their possible contribution to the overall signal has to
be carefully evaluated. In the past, this was done experimen-
tally for sequential third-order processes, which were shown
to yield an insignificant contribution to the observed fifth-
order signals in CS2.12,23 This is possible because of the se-
lectivity that phase matching provides. Both the fifth-order
and the cascade processes obey the same overall phase
matching condition, but for the cascade process phase match-
ing requirements related to the intermediate steps are also of
importance. Recently it was realized that cascades, built up

from parallel third-order processes may yield significant con-
tributions to the experimentally observed signals, due to in-
sufficient suppression of the intermediate fields.13,24Here, we
evaluate how selective the phase matching should be in an
experiment, in order to suppress any kind of cascade process
compared to the true fifth-order signal.

In this study all optical fields were chosen to be polar-
ized in the z direction. According to the analysis of
Tokmakoff25,26 the ratio between the cascading and the true
fifth-order response can be at most a factor of 2 different for
other polarization conditions. For simplicity, we omit the
polarization indices of the third and fifth-order response
functions in the remainder of this article.

Solving the Maxwell equations for the optical fields in
the sample and calculating the microscopic response in the
simulation box can be separated as long as the size of the
simulation box is much smaller than the wavelength of the
optical field. The intensity ratio between the two-
dimensional fifth-order signal and the cascade processes that
are proportional to two third-order signals is then found solv-
ing the Maxwell equations for the optical fields using the
microscopic third-order response functionR(3), and the fifth-
order response functionR(5) from the simulations. This in-
troduces macroscopic experimental parameters as the optical
frequencyv, the effective sample thicknessl, the number
density N, the refractive index of the samplenl , and the
phase mismatch in these coherent nonlinear interactions. In
the following expression all phase matching conditions have
been included inf (Dkl):

I j ,cas

I j ,5th
.

~pv!2l 2

c2nl
2

N2
uR(3)R(3)u2

uR(5)u2
f 2~Dkl !. ~15!

Experimental wavelengths of about 620 nm~Refs. 10 and
12! and 800 nm~Ref. 11! have been used with sample thick-
nesses of 1–2 mm. The number density of pure CS2 at the
simulated conditions is 9.8831027 m23, which is calculated
from the experimental density of 1.26 g/ml~Ref. 27! and the
refractive index of pure CS2 is 1.628.28 R(3) and R(5) both
depend on time and polarization of the laser fields.

III. RESULTS

To compare the third-order response functions of the fi-
nite field method, described in Sec. II, with the full MD data
correlation function approach, MD simulations were per-
formed with a slightly modified version ofGROMACS 1.6.29

The MD box is cubic and contains 256 rigid CS2 molecules
at 1 bar pressure and 298 K, using a Berendsen thermostat30.
The intermolecular interaction is described using atomic
Lennard-Jones potentials from literature, giving a fair de-
scription of properties such as density, diffusion constant and
neutron and x-ray scattering data.27 The size of the time steps
in the calculations is 10 fs. The experimental molecular po-
larizability tensor for an oscillating field with a wavelength
of 514.5 nm is used.31 For each Raman event, a 3.83 V/nm
~dc! field is applied during one time step. The box polariz-
ability is calculated as a simple sum of the polarizability of
the individual molecules, so local field effects are neglected
in this study.
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The third-order correlation function response was calcu-
lated from a single 100 ps MD simulation. The finite field
response was obtained from 8000 simulations of 2 ps dura-
tion. In Fig. 1 the calculated third-order response functions
are compared with each other and with the experimental re-
sponse function32. The highest value of the calculated in-
duced anisotropya (3) is 1.05310214 C/Vm.

In the comparison between the third-order responses,
calculated using the full MD correlation function approach
and the finite field approach, almost perfect agreement is
observed~Fig. 1!. The long diffusive tail of the experimen-
tally observed response function is reproduced very well by
both calculated response functions. The discrepancy with the
experiment at short times is due to the neglect of local field
effects. Previous correlation function calculations of the
same third-order response function by Geiger and Ladanyi17

have also shown that the long diffusive tail is well repro-
duced, even when one omits the local field effects. However,
the peak at 200 fs is underestimated by a factor of 2 by not
taking these effects into account. The comparison of our re-
sults with those of Geiger and Ladanyi17 indicate that inclu-
sion of local field effects in our calculations will give results
in much better agreement with the experiment at short times.
This will be treated in a future publication.33 Here we will
concentrate on the ratio between third- and fifth-order re-
sponses, in order to be able to estimate the contribution of
cascade processes to the fifth-order 2D-Raman response.

The fifth-order response was calculated by averaging
over 8000 finite field approach simulations with a duration of
0.75 ps using the same MD simulation conditions as for the
third-order response. The result is shown in Fig. 2. The mag-
nitude of noise introduced by the perturbation of the system
has been calculated as the spread on the mean value of the
response function at each timet2 for the calculation with
t150.2 ps. The highest value of the induced anisotropya (5)

is 0.98 3 10217 C/Vm which occurs fort150.2 ps and
t250.2 ps.

The intensity ratio of the cascaded and fifth-order re-
sponse can be estimated from the peak values of the third-
and fifth-order response functions in the sample. Using the
calculated response function peak intensities we find

N2uR(3)R(3)u2

uR(5)u2
50.0104. ~16!

With this information Eq.~15! gives an approximate inten-
sity ratio of the two types of response of 43106 in favor of
the third-order cascade processes when a wavelength of 620
nm, a sample size of 1 mm and perfect phase matching,
f (Dkl)51, is taken. This indicates that the cascade process
should be very severely mismatched in phase under experi-
mental conditions, in order to be able to observe the 2D
fifth-order Raman signal. Such mismatch was not present in
the experiments reported so far.10–13

IV. CONCLUSIONS

The estimated intensity ratio of 4 million between the
third-order cascading processes and the true fifth-order re-
sponse, in favor of the cascading processes before taking
phase matching into account, supports the conclusions of D.
A. Blank et al.13 that all reported experimental results of 2D
Raman scattering actually dealt with cascading processes,
instead.

Although in the present study local field effects are not
taken into account, it is not expected that these will change
the ratio by orders of magnitude. Work is in progress to
include interaction induced effects in the future
simulations.33

The finite field method used in this study was proven to
be reliable. This conclusion is based on the agreement be-
tween the third-order response functions calculated with the
finite field method and the correlation function method. The
finite field method is a bit more time consuming in the
present third-order calculations, but this is mainly because
the correlation function can be simplified when local field
effects are ignored. For the fifth-order response, the finite
field method provides a much more efficient alternative to
the correlation function approach. The latter is very time
consuming when the full MD trajectories are used.

FIG. 1. Third-order Raman responseRzzzz
(3) of CS2, calculated using the

finite field method and the correlation function method. Experimental results
are also shown. For details see text. FIG. 2. Fifth-order responseRzzzzzz

(5) , calculated using the finite field method.
The different lines correspond to different values oft1, with t1 increasing
from 0.1 ps in the left trace to 0.7 ps in the right trace in steps of 0.1 ps. The
positively inclined line at the bottom signifies the noise level in the calcu-
lation with t1 0.2 ps.
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