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Collective Oscillations and the Linear and Two-Dimensional Infrared Spectra of
Inhomogeneousâ-Sheets

Arend G. Dijkstra and Jasper Knoester*
Institute for Theoretical Physics and Materials Science Centre, UniVersity of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

ReceiVed: December 23, 2004; In Final Form: February 28, 2005

We numerically calculate the collective amide I oscillations and the associated linear and two-dimensional
infrared (2DIR) spectra for model antiparallelâ-sheets and study the effect of inhomogeneity. To visualize
the collective vibrational exciton states, a new method is introduced, which proves very useful in classifying
the optically dominant states with respect to their symmetry properties and phase relations, even in the absence
of exact symmetries. We find that energy (diagonal) and interaction (off-diagonal) disorder may have profoundly
different effects on the main peaks in the linear spectrum. We also show that in the 2DIR spectra energy
disorder leads to diagonal stretching of the diagonal peaks, while the cross-peaks are typically stretched more
horizontally. This offers an explanation for the recently observed overall Z-shape in experimental spectra.
Finally, we find that the anharmonic splitting between associated positive and negative features in the 2DIR
spectra scales inversely proportionally with the exciton delocalization size imposed by the disorder, thus
offering a spectroscopic ruler for this size.

1. Introduction

The study of the structure and dynamics of proteins, in
relation to their function, is a problem of central importance
for our understanding of elementary processes in living organ-
isms. X-ray crystallography offers a powerful means to study
the structure of complex molecules,1 but is limited to proteins
that can be crystallized and, by its very nature, cannot be applied
to proteins in their natural environment. Nuclear magnetic
resonance (NMR), in particular, its two-dimensional version,
does not rely on crystallization and offers an alternative that
has been applied with much success.2 Drawbacks of NMR are
its limited time resolution (millisecond) and its reliance on
motional narrowing of the NMR lines due to fast reorientational
motion.

During the past decade, sparked by the rapidly growing
possibilities to control optical and IR pulse sequences at the
picosecond and femtosecond time scales, two-dimensional IR
(2DIR) and Raman spectroscopies have received increasing
attention for the study of molecular structure and dynamics.3-5

These techniques rely on the structural information contained
in (collective) vibrations. In linear (one-dimensional) IR spectra
of proteins, this information is often hidden under broad line
shapes, resulting from inhomogeneity and the congestion of
many vibrational states in a rather narrow spectral region.6,7 This
problem may to some extent be circumvented by performing
nonlinear (multipulse) experiments, in which the spectral
information is spread along two independent frequency axes,
revealing correlations and anharmonic couplings between vari-
ous vibrational modes. Moreover, these experiments allow for
the observation of relatively weak transitions as cross-peaks with
strong transitions and for the detection of relative polarization
angles between transitions.5 Also, these multidimensional

techniques facilitate the distinction between homogeneous and
inhomogeneous relaxation.8,9

Over recent years, 2DIR spectroscopy has successfully been
applied to a series of small molecules, such as water and small
peptides, confirming the potential of the technique to determine
structure and dynamics at the molecular level.10-18 Most
recently, several groups have taken up the challenge to study
proteins using 2DIR spectroscopy. The most interesting and
challenging question is whether this technique may be used to
probe the structure of these complex systems and to follow
structural changes in real time. To this end, the existence of
clear 2DIR markers for structural elements should be investi-
gated. The current focus is on searching for markers of
secondary structural elements, especially in the amide I region
of the spectrum (around 1650 cm-1). In this context, theoretical
and experimental model studies have been performed ofR- and
310-helical structures,19-22 as well asâ-sheets and hairpins.23,24

The theoretical study by Cheatum, Tokmakoff, and Knoester,23

based on an idealized exciton model for the collective amide I
oscillations, suggested that the 2DIR spectrum indeed offers
markers forâ-sheet structure. In particular, it was found that
the cross-peaks in this spectrum may be useful to distinguish
antiparallelâ-sheets from parallel ones as well asâ-hairpins.
Recent experiments by Demirdo¨ven et al.,24 in which poly-L-
lysine and proteins with differentâ-sheet content were studied,
confirmed the existence of structural markers and the potential
of 2DIR spectroscopy to assess the relativeâ-sheet content.
Further experimental studies have even demonstrated the first
application of 2DIR spectroscopy to detecting the kinetics of
thermal denaturing of a protein.25

Of course, the experimentally observed linear and 2DIR
spectra of proteins are considerably more complicated and harder
to interpret than the ones obtained in idealized model studies.
One reason is that in experiment one probes the entire protein,
and not an isolated secondary structural element. Moreover, in* Corresponding author. Fax: 31-50-3634947. E-mail: j.knoester@rug.nl.
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a real protein, those elements are never ideal. Reproducible as
well as random inhomogeneity occurs in the eigenenergies of
the individual amide I oscillators (diagonal disorder) and the
transfer interactions between them (off-diagonal disorder) as a
result of conformational irregularity (for instance, twisting of
the sheet) and random solvent shifts. An important source of
diagonal disorder (on the order of tens of reciprocal centimeters)
is the effect of hydrogen bonding with surrounding protic
molecules in the solvent.10,26-28 The effects of random diagonal
disorder on the linear29 and 2DIR10 spectra of globular proteins
have been considered, while in addition, the effects of confor-
mational disorder on the linear spectra ofâ-sheets have been
modeled.24

It is the goal of this paper to perform a systematic study of
the effect of random disorder on the linear and 2DIR spectra of
model antiparallelâ-sheets. Deliberately, we focus on a simple
model, in which we still treat the sheet as an idealized plane
(finite) lattice and incorporate the disorder in a phenomenologi-
cal way, instead of taking coordinates for specific proteins from
NMR experiments and generating disorder distributions from
molecular dynamics simulations. We believe our approach is
most useful to investigate the existence of generic spectroscopic
markers forâ-sheet content, which should not depend too much
on the details of the model.

In addition to investigating the one- and two-dimensional
spectra, we also pay considerable attention to the nature of the
underlying collective vibrational states. In ref 23, it was shown
that for homogeneous antiparallelâ-hairpins the optically
dominant states can be related in a simple way to the (basic)
collective oscillations of a single unit cell, consisting of four
oscillators. These four basic states are distinguished by the
relative phases of the four oscillators. For extendedâ-sheets,
such an identification was argued to be harder, but still was
tentatively made for two optically important states (the
|a-〉 and the |a+〉 states). Hard evidence for this was not
given, however. The question concerning the nature of the
states gained interest with the clear detection of two dominant
spectral peaks in experiment (named the|R-〉 and|R+〉 states).24

In this paper, we introduce a new visualization method of
collective states that facilitates and clarifies their proper as-
signment.

This paper is organized as follows. In section 2, we introduce
the model and give the expressions for the spectra in terms of
one- and two-quantum eigenstates. Section 3 presents our results
and discussion concerning the nature of the one-quantum
eigenstates and the linear spectrum. Homogeneous systems are
considered in sections 3.1-3.3, while the effects of disorder
are the subject of sections 3.4 (diagonal disorder) and 3.5 (off-
diagonal disorder). We then switch to a discussion of simulated
2DIR spectra in the presence of disorder (section 4) and
demonstrate that this spectrum may be used as an experimental
ruler for the exciton delocalization size. Finally, we conclude
in section 5.

2. Model and Expressions for the Spectra

Many proteins containâ-sheets as secondary structural
elements. They are large, almost two-dimensional structures,
consisting of long polymerized polypeptide chains, called
strands. The chemical structure of an antiparallelâ-sheet is
shown in Figure 1. In our convention, the strands run in the
horizontal (x) direction. In the vertical (y) direction, strands are
held together by hydrogen bonds (dotted lines in Figure 1). The
direction perpendicular to the sheet is thez-direction. The

geometry of the sheet is determined by the torsion angles of
the strands (φ, ψ) and the hydrogen bond lengthr. Our
parameters are (φ, ψ) ) (-160°, 118°) andr ) 0.304 nm. This
is the same structural model as was studied by Cheatum,
Tokmakoff, and Knoester.23 As argued in the Introduction, we
will focus on idealized planar sheets; we thus neglect strand
turns and incomplete unit cells that may occur at the sides of
the sheet, as well as twists of the sheet.

The amide I vibration, which is the focus of most current
2DIR studies of small peptides and proteins, is primarily a
stretching of the CdO bond in amide groups.6 At a frequency
of 1675 cm-1, it occurs about 100 cm-1 away from other
vibrational modes, which justifies considering it decoupled from
other modes and simplifies its study. The antiparallelâ-sheet
is seen to contain four amide I oscillators per unit cell, labeled
1 to 4 in Figure 1. For the optical response, each amide group
in the sheet is treated as an anharmonic vibrational oscillator.
The dipole of the oscillator lies on the CdO bond, 86.8 pm
from the carbon atom, and makes an angle of 20° with this
bond toward the nitrogen atom. The directions of the dipoles
of the four oscillators within the plane of theâ-sheet are
indicated in Figure 1 by arrows; the very small tilting out of
this plane is indicated by a cross (pointing downward) or a dot
(pointing upward). Explicit values for the three vector compo-
nents of the dipoles follow from the geometry of the sheet and
are given in Table 1 of ref 23, where also the three-dimensional
positions of the oscillators are given.

We will describe the collective amide I vibrations of the sheet
by an anharmonic Frenkel exciton Hamiltonian, defined in the
site representation.10 While, in general, this Hamiltonian contains
many different terms, we will restrict ourselves to resonant
contributions, which conserve the number of vibrational quanta.

Figure 1. Chemical structure of the antiparallelâ-sheet. The sheet is
built from strands that run in the horizontal direction. In the vertical
direction, the strands are bound together by hydrogen bonds (dashed
lines). The structure shown is 2× 2 unit cells large; a single unit cell
is detailed inside the box. The four dipoles in this unit cell are indicated
by arrows. The center of the circle on each arrow gives the position of
the dipole. The arrow shows its direction in thexy-plane. The dipole
component in thez-direction is indicated by the symbol inside the circle.
A dot (cross) means that the normalized dipole has a positive (negative)
z-component. The components of the dipoles in the plane of the sheet
are antisymmetric with respect to inversion of the unit cell; those
perpendicular to the sheet are symmetric.
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Thus, the coupling between oscillators is given by a bilinear
term, describing the transfer of vibrational energy between them.
Moreover, for the anharmonic contributions, we restrict our-
selves to terms that are diagonal in the site representation, as
these are expected to be dominant. Thus, we arrive at the
Hamiltonian10

where an
† and an are the Bose creation and annihilation

operators, respectively, for an excitation quantum on thenth
oscillator andN denotes the total number of oscillators.εn in
the first term of the Hamiltonian represents the transition energy
of the nth oscillator. In previous work onâ-sheets, all these
energies have been taken to be equal,εn ) ε0. However, this
assumption is too restrictive for a sound understanding of
experimental data. As was explained in the Introduction,
variations in local structure and solvent exposure affect the site
energies. We will model such effects by including energetic
disorder, taking the site energies randomly and independently
from a Gaussian distribution

where the standard deviationσ determines the magnitude of
the disorder. We will study the effects of this disorder on the
collective excited states and the spectra. For the average single-
oscillator frequency, we will useε0 ) 1675 cm-1.

ParameterA in the first term of the Hamiltonian is the strength
of the anharmonicity; the energy of a doubly excited oscillator
is 2εn - A. Throughout this paper, we useA ) 16 cm-1.10

Finally, the second term in the Hamiltonian describes interac-
tions between oscillators, where the prime on the summation
excludes self-interactions (terms withn ) m). The interactions
are taken from the transition dipole coupling model (TDC).6,30

Although the validity of this model is disputed and it has been
demonstrated that interactions through the peptide backbone may
be much stronger than predicted by a TDC calculation,31,32 no
concensus about an alternative parametrization of the interac-
tions in polypeptides exists. We therefore prefer to use one
consistent interaction model and include TDC interactions only.
The resulting array of oscillators coupled by interactions is
shown in Figure 2, where the three strongest interactions have
been drawn (solid lines, 18.7 cm-1; dotted lines,-7.4 cm-1,
and dashed lines,-4.1 cm-1). Aside from these three interac-

tions, we have also accounted in our calculations for the next
five weaker interactions (see caption of Figure 2).

Variations in local structure will obviously also lead to
disorder in the interactions. Furthermore, the exact form of the
nuclear potential is also not necessarily identical for different
oscillators, leading to possible disorder in the anharmonicity
parameterA. In the present treatment, we will mostly be
concerned with energetic disorder. In section 3.5, we will briefly
consider interaction disorder, while variations in the anharmo-
nicity are not included in this paper.

With the knowledge of the sheet geometry and Hamiltonian,
we can proceed to calculate the collective energy eigenstates,
which may be referred to as (vibrational) excitons. These follow
from a simple diagonalization of the Hamiltonian. Because the
Hamiltonian (eq 1) does not change the number of excitations
in the system, the eigenstates fall apart into different classes,
labeled by this number. We expand the eigenstates in the site
representation. A one-quantum state|u〉, from the class of
eigenstates with one excitation quantum in the system, can then
be written as|u〉 ) ∑n)1

N unan
†|g〉. A two-quantum state|w〉 can

be decomposed as|w〉 ) ∑n,mgn
N (1 + δnm)-1/2 wnm an

† am
† |g〉.

Here,|g〉 is the ground state, without any excitation quanta, and
the coefficientsun and wnm are the components of the eigen-
state in the chosen basis. They follow from anN × N and
an N(N + 1)/2 × N(N + 1)/2 matrix diagonalization, respec-
tively.

Once the eigenstates and their energies are known, it is
straightforward to calculate linear and 2DIR spectra using
nonlinear response theory.33 The linear absorption spectrum as
a function of frequencyω is, up to a constant factor, given by

The summation runs over all one-quantum states|u〉, which have
energiesEu and transition dipole to the ground stateµu0 ) ∑n

unµn, with µn the dipole vector of moleculen. The applied
Lorentzian line shape has a homogeneous full width at half-
maximum (fwhm) of 2γ.

The 2DIR signal is radiated from a system after interaction
with three linearly polarized laser pulses with wave vectorsk1,
k2, andk3, which arrive at timest - t3 - t2 - t1, t - t3 - t2,
and t - t3, respectively. For a fixed timet2, the signal is
measured by scanningt1 andt3. The spectrum in the frequency
domain is obtained by a double Fourier transform. The variable
ω1 is the Fourier conjugate oft1, andω3 is the conjugate oft3.
The 2DIR spectrum is calculated as the sum of rephasing and
non-rephasing contributions. For details concerning the experi-
ment and the calculation of the signal, we refer to refs 5 and
23. Here, we simply state the results. The signal for the
rephasing pathways, detected in the-k1 + k2 + k3 phase-
matched direction, is given by

Figure 2. The three strongest interactions obtained in the antiparallel
â-sheet within the TDC model. Each circle represents an oscillator.
Lines give the interaction strength:L14 ) 18.7 cm-1 (solid line), L13

) -7.4 cm-1 (dotted line), andL45 ) -4.1 cm-1. The five next largest
interactions that we also accounted for areL23 ) 1.5 cm-1, L15 ) L26

) L37 ) L48 ) 1.3 cm-1, L49 ) L27 ) 1.1 cm-1, L25 ) L47 ) 0.8 cm-1,
andL12 ) L34 ) 0.7 cm-1. Smaller interactions were neglected.

A(ω) ) ∑
u

|µu0|2γ

(ω - Eu)
2 + γ2

(3)

S1(ω1, ω3) )

∑
uV

(ouV
1 + ouV

2 )
(ω1 - Eu)(ω3 - EV) + γ2

[(ω1 - Eu)
2 + γ2][(ω3 - EV)

2 + γ2]
-

∑
uVw

ouVw
3

(ω1 - Eu)(ω3 - Ewu) + γ2

[(ω1 -Eu)
2 + γ2][(ω3 - Ewu)

2 + γ2]
(4)

H ) ∑
n)1

N

an
†(εn -

A

2
an

†an)an + ∑
n,m)1

N

′ Jnman
†am (1)

P(εn) ) 1

σx2π
exp(-

(εn - ε0)
2

2σ2 ) (2)
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The non-rephasing diagrams, radiated in the+k1 - k2 + k3

direction, yield

In these expressions, the summations overu andV run over all
one-quantum states, the summation overw extends over all two-
quantum states, and Eab ≡ Ea - Eb. The above expressions were
derived under the assumption thatt2 ) 0, which experimentally
means that the second and third pulses overlap in time. The
signals from rephasing and non-rephasing diagrams are added
to obtain the 2DIR correlation spectrum:S(ω1, ω3) ) S1(ω1,
ω3) + S2(ω1, ω3).5

The factorsoi in the above expressions forS1 andS2 are the
orientational parts of the response functions, which account for
the specific combination of pulse polarizations, transition dipole
orientations, orientational averaging, and orientational relaxation
during the experiment. As in ref 23, we will neglect orientational
relaxation. As pointed out by Woutersen and Hamm,11 even
for small peptides, molecular rotation is much slower than the
time scale of the experiment. Calculating the orientational factors
is then a straightforward, albeit tedious, algebraic exercise. The
response functions contain four inner products between an
electric field vector and a transition dipole. The first three of
these derive from the interaction between the polarized input
fields and theâ-sheet, while the fourth one accounts for the
interaction with the polarized heterodyne detection field. We
averaged this product of four inner products over an iso-
tropic distribution of orientations of theâ-sheet, neglecting, as
stated, the possible effects of reorientation during the experi-
ment.

To be specific, we have calculated spectra in theZZYY-
polarization for which the third pulse (polarized in the labora-
tory’s Y-direction) is perpendicular to the first and second pulses
(polarized in theZ-direction), while theY-component of the
signal is detected. The results for the orientational functions in
the ZZYY-polarization are

Here,µu andµV are the transition dipoles between the ground
state and the one-quantum states|u〉 and|V〉, as introduced below
eq 3, whileµwu is the transition dipole between|u〉 and the two-
quantum state|w〉 (analogous forµwV). The latter dipole is easily
expressed in terms of the eigenvectorsun andwnm. In the above
expressions, we have normalized the electric field vectors to
unity.

3. Results and Discussion: Linear Spectra and
One-Quantum Eigenstates

1. Homogeneous Unit Cell.In Figure 3, we present the
numerically calculated linear spectra for a single unit cell of
four oscillators, the 3× 1 â-hairpin (i.e., a system made up of
three unit cells in the horizontal direction) and the 3× 3
extendedâ-sheet (having nine unit cells in a square arrange-
ment). In all cases, the system chosen was homogeneous (σ )
0) and we used a homogeneous line width ofγ ) 2 cm-1. These
spectra (with somewhat different widths) have been given in
ref 23 already. We show them again, because we want to expand
on the nature of the states responsible for the various spectral
features. In the current subsection, we focus on the unit cell,
while the homogeneous hairpin and sheet are discussed in
sections 3.2 and 3.3, respectively. The effect of disorder in
â-sheets is analyzed in sections 3.4 and 3.5.

The spectrum of the single unit cell (dotted) is dominated by
two peaks, occurring at about 1653 and 1677 cm-1. A very faint
peak can still be discerned at 1696 cm-1. Considering the
inversion symmetry of the unit cell’s Hamiltonian with respect
to its center (i.e., with respect to interchanging oscillators 1 and
4, and at the same time 2 and 3), the four collective eigenstates
underlying these peaks were calculated analytically in ref 23.
The two strongest peaks in the spectrum arise from the
eigenstates that are antisymmetric with respect to the inversion
operation (referred to asa-states in ref 23). This is a direct
consequence of the fact that the large dipole components are
the ones in the plane of the sheet, which are antisymmetric with
respect to the inversion operation, as seen in Figure 1. The state
underlying the main peak at 1653 cm-1 results from the|a-〉
state, which is the antisymmetric state in which oscillators 1
and 2 have opposite phases. The second peak (at 1677 cm-1)
results from the|a+〉 state, which is antisymmetric with respect
to the inversion, and has oscillators 1 and 2 in phase. The
a-states are polarized in the plane of the sheet.

The other two eigenstates of the unit cell are symmetric with
respect to inversion (s-states) and have a very small oscillator
strength, caused by the smallz-components of the oscillator
dipoles, which are symmetric with respect to the inversion
operation. The faint peak at 1696 cm-1 results from the|s-〉
state, which is symmetric, with oscillators 1 and 2 having
opposite phases. The|s+〉 state (at 1674 cm-1) is not visible,
because its oscillator strength is too small. Obviously, thes-states
are polarized perpendicular to the plane of the sheet. We note
that the current labeling of the|s+〉 and |s-〉 states is
interchanged with respect to the one originally given in ref 23,
where+ and- were used to indicate higher and lower energy,

S2(ω1, ω3) ) ∑
uV

ouV
4

-(ω1 - Eu)(ω3 - EV) + γ2

[(ω1 - Eu)
2 + γ2][(ω3 - EV)

2 + γ2]
+

∑
uV

ouV
5

-(ω1 - Eu)(ω3 - Eu) + γ2

[(ω1 - Eu)
2 + γ2][(ω3 - Eu)

2 + γ2]
+

∑
uVw

ouVw
6

(ω1 - Eu)(ω3 - EwV) - γ2

[(ω1 - Eu)
2 + γ2][(ω3 - EwV)

2 + γ2]
(5)

ouV
1 ) ouV

4 ) 1
30

[4|µu|2|µV|2 - 2(µu‚µV)
2] (6)

ouV
2 ) ouV

5 ) 1
30

[3(µu‚µV)
2 - |µu|2|µV|2] (7)

ouVw
3 ) ouVw

6 ) 1
30

[4(µu‚µV)(µwu‚µwV) - (µu‚µwu)(µV‚µwV) -

(µu‚µwV)(µV‚µwu)] (8)

Figure 3. Linear absorption spectra in arbitrary units for a single unit
cell of four oscillators (dotted), a 3× 1 â-hairpin, existing of a
horizontal row of three adjacent unit cells (dashed), and a 3× 3
extendedâ-sheet (solid). In all cases, a value ofγ ) 2 cm-1 was used
for the homogeneous broadening.
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respectively. For the optically dominanta-states, this does not
affect the labels.

For future assignment of the eigenstates, it is useful to
introduce a visualization of their wave functions that emphasizes
the symmetry and phase relations. We do this by making color
maps on the plane of the system, as is done in Figure 4a for the
four eigenstates of the single unit cell. In this map, each
oscillator is represented by a square whose color indicates the
eigenstate’s component (un) on that particular oscillator. Red
(blue) stands for a positive (negative) value ofun, thus
distinguishing opposite phases of oscillation on the various
oscillators; the intensity of the color indicates the absolute value
of un. This visualization technique is useful, because it allows
us to study the nature of eigenstates by simple inspection and
is easily applied to more complicated models ofâ-sheets. The
four color maps given in Figure 4a indeed clearly reflect the
symmetry properties and phase relations of the four eigenstates
discussed above and will turn out to be useful reference cases
for larger color maps to be studied below.

2. Homogeneous Hairpin. In Figure 3, we see that the
spectrum of the 3× 1 hairpin (dashed) has two dominant peaks,
which are slightly blue-shifted relative to the main peaks of
the unit cell. A third weak peak around 1695 cm-1 is slightly
red-shifted relative to the|s-〉 state of the unit cell. Finally, a
fourth feature is seen as a shoulder on the red side of the largest
peak. All these peaks were explained analytically, even at a
quantitative level, in ref 23 already. It was argued that in hairpins
the interactions between adjacent unit cells are so weak that
unit cell eigenstates with different symmetry and phase proper-
ties are hardly mixed by them. More explicitly, for theN × 1
hairpin, the eigenstates are to a good approximation given by
four bands of states, denoted as|a-〉k, |a+〉k, |s-〉k, and|s+〉k,
with23

and similar for the other bands. Here,|a-〉l denotes the state in
which thelth unit cell is in its basis state|a-〉, andk ) 1, ...,
N is the wavenumber of the state. On the basis of estimating
interband coupling coefficients, it was argued in ref 23 that the
hairpin’s eigenstates responsible for the main peaks near 1657,
1679, and 1695 cm-1 to a good approximation are given by the
k ) 1 states of the|a-〉, |a+〉, and |s-〉 bands, respectively.
The state that contributes the shoulder in the largest peak was
associated with thek ) 3 state of the|a-〉 band.

The above identification of the eigenstates of hairpins can
be made more convincingly by giving their color maps. In order
of ascending energy, these maps are given in Figure 4b-f for
the four states that are responsible for the spectral features
discussed above, as well as for a fifth state that gives a small
shoulder in the red wing of the peak near 1679 cm-1. We first
note that the five states displayed are either symmetric (b-e)
or antisymmetric (f) with respect to inversion relative to the
center of the hairpin. The existence of a definite parity with
respect to this inversion results from the fact that the Hamil-
tonian of a homogeneous hairpin (and also a homogeneous
extended sheet) has inversion symmetry. The color maps also
demonstrate other (approximate) symmetry properties, however.
For instance, comparison with Figure 4a clearly shows that the
state displayed in Figure 4c, mainly responsible for the spectral
peak at 1657 cm-1, repeats the color pattern of the|a-〉 basis
state in each of its three unit cells. Thus, inside each unit cell,
the cell symmetry and phase relations follow those of the|a-〉
state, with the same overall sign of the phase for all three unit
cells. This confirms that indeed this state to a good approxima-
tion is the|a-〉k)1 state. Similarly, Figure 4e,f clearly exhibits
the symmetries and phase relations appropriate for the|a+〉k)1

and |s-〉k)1 states, respectively. The other two states at first
sight have less regular color maps. Upon closer inspection,
however, Figure 4b in each of its unit cells has the (approximate)
symmetry and phase relations belonging to the|a-〉 basis state,
with the middle cell having an opposite overall phase relative
to the outer two. Thus, this state has the symmetries and phase
relations appropriate for|a-〉k)3, confirming its assignment
made in ref 23. Likewise, the remaining state in Figure 4d has
the phase relations that belong to|a+〉k)3, although in this case
the exact amplitudes on each of the oscillators, while having
the correct signs, considerably deviate from the ideal|a+〉k)3

state, probably due to mixing with the close-lying|s+〉-type
basis states of the three unit cells.

We have studied the color maps for the four optically
dominant eigenstates of hairpins of up to six unit cells long
and found that they always have the phase symmetries and phase
relations appropriate to the states|a-〉k)1, |a+〉k)1, |a-〉k)3, and
|s-〉k)1 (in order of descending oscillator strength). The
|a-〉k)3-type state was found to shift from 1649 to 1654 cm-1

with increasing hairpin length, consistent with the dispersion
of the |a-〉 band found in ref 23. The three other states vary
very little in energy, reflecting the weak intercell interactions.

Owing to the symmetry of the various dipole components
on the oscillators, only states that are (anti)symmetric with
respect to both the global symmetry and the cell symmetry will
have a large oscillator strength. A state that is perfectly
symmetric (antisymmetric) with respect to the global symmetry
and perfectly antisymmetric (symmetric) with respect to the unit
cell symmetry has no oscillator strength at all. Quite generally,
the low-wavenumber states, in which no overall phase differ-
ences exist between different unit cells, dominate the spectrum.
These statements also hold for extendedâ-sheets (see below).
In practice, cell symmetries are not exact, although, as we have

Figure 4. (a) Color maps of the four one-quantum eigenstates (|a-〉,
|s+〉, |a+〉, and |s-〉) of the homogeneousâ-sheet unit cell, in order
of ascending energy. The colors indicate the value of the wave function
on each of the four oscillators of the unit cell, where red stands for
positive values and blue for negative components (see legend to the
right). Below each state, its energy and the square of its transition dipole
to the ground state (in units of the squared dipole of the single oscillator)
are given, as well as its symbol. (b)-(f) As in (a), but now for the five
states that dominate the dashed spectrum of the homogeneous 3× 1
hairpin (twelve oscillators) given in Figure 3.

|a-〉k ) x 2

N + 1
∑
l)1

N

sin[ πkl

N + 1]|a-〉l (9)
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seen above, for hairpins they survive the intercell interactions
to a very good approximation. Finally, the polarization of the
states is governed entirely by the global symmetry. States that
are antisymmetric (symmetric) with respect to global inversion
have a transition dipole to the ground state that is oriented
parallel to (perpendicular to) the plane of the hairpin. In practice,
this means that, as for the isolated unit cell, alla-type (s-type)
states are polarized parallel (perpendicular) to the plane of the
system.

3. Homogeneous Sheet.The spectrum of the 3× 3 sheet
(solid line in Figure 3) shows more structure than the one for
hairpins. The main peak is now red-shifted relative to the|a-〉
state of the unit cell and the feature around 1680 cm-1 appears
to consist of two closely spaced peaks, while a new feature (with
substructure) has emerged just above 1660 cm-1. The weak peak
near 1700 cm-1 is shifted to the blue relative to the unit cell
and the hairpin spectrum. As was noted in ref 23, assigning the
spectral peaks for extended sheets is more complicated than
for hairpins. The reason is that in extended sheets strong
interactions exist between unit cells (for instance, the interaction
between oscillators 7 and 10 in Figure 2 and the interactions
between 3 and 9 and between 4 and 10).

First, these stronger interactions lead to wider exciton bands
than in the case of hairpins, as is clear from the separation
between highest and lowest peaks in Figure 3. Second, and more
importantly, as these interactions are not weak relative to the
energy differences between the four eigenstates of the isolated
unit cell, these states will be mixed in extended sheets. Thus,
one expects that in extended sheets the intracell parity and phase
properties are mixed, making it more difficult to associate the
spectral peaks with unit cell eigenstates, such as|a(〉. Despite
this, in ref 23, the dominant state at about 1645 cm-1 was
tentatively labeled as an|a-〉-type state,34 while the one near
1680 cm-1 was associated with|a+〉.

The color maps introduced above allow us to asses in more
detail to what extent the unit cell symmetries persist for extended
sheets. The seven eigenstates of the 3× 3 sheet with the largest
oscillator strengths are depicted in Figure 5 in order of ascending

energy. Because the global inversion symmetry is exact for this
system, all eigenstates are either antisymmetric (the first six)
or symmetric (the last one) with respect to inversion in the
sheet’s center. As noted above, this means that the first six states
are polarized in the plane of the sheet, while the seventh is
polarized perpendicular to it. In addition to the global symmetry,
several states in Figure 5 show rather consistent intracell parity
and phase relations. In particular, the second state (energy 1647.2
cm-1) to a good approximation has|a-〉 character: seven unit
cells out of nine havea- symmetry. This justifies its identifica-
tion as an|a-〉-type state. The stronga- character is im-
mediately recognized from the fact that the color map resembles
an array of six columns that alternate in color when going from
left to right. The fact that no overall phase changes occur
between unit cells (i.e., the same cell pattern is repeated)
indicates that this resembles the smallest-wavevector state with
a- character, with the strongest transition dipole.

Studying more generalN × N sheets, we have found that
always by far the strongest state in the spectrum occurs near
1645 cm-1. It always is antisymmetric with respect to global
inversion. Moreover, forN even, this state to an excellent
approximation hasa- symmetry (with regard to the phases of
the oscillators): all unit cells have the requireda- symmetry
for N up to 14, while forN ) 16, only 4 (out of 256) cells have
symmetry that is nota-. For N odd, the cell symmetry is not
present in all unit cells, as we already found above forN ) 3.

A second strong peak in the sheet spectra is found near 1680
cm-1. As is illustrated in Figure 5, it is mainly caused by the
transition at 1680.7 cm-1, which to a very good approximation
hasa+ symmetry. Note the clear difference between the color
map of this state (a stack of rows that alternate in color from
top to bottom) and the one at 1647 cm-1 (alternating columns),
illustrating the usefulness of these maps. Centered around 1660
cm-1 are several states with considerable oscillator strengths.
The one at 1660.1 cm-1 still has a largea- character and can
be interpreted as a higher-wavevector state in the|a-〉 band;
this identification is confirmed by the fact that relative phase
changes occur between unit cells in the vertical (y) direction.
By contrast, the state at 1662.7 cm-1 has no consistent intracell
parity and phase relation, implying that it arises from strong
mixing of unit cell eigenstates. All states dealt with so far have
negative parity with respect to the global inversion symmetry
and therefore are polarized within thexy-plane. Only the very
faint state near 1705 cm-1 has positive global parity and is
polarized in thez-direction. Notice that the color map of this
state clearly has a checkerboard pattern, indicative of the lowest-
wave-vector state with a strongs- character.

We finally notice that, if we would have imposed periodic
boundary conditions, the eigenstates would always preserve clear
parity labels, both with respect to the global symmetry and with
respect to phase relations within cells.35-37 The reason is that
all unit cells would be equivalent then, and for the optically
allowed states, no phase differences would occur between unit
cells, because of theq ) 0 selection rule imposed by the
translational symmetry. As was noted in ref 23, however, the
use of periodic boundary conditions on extended sheets leads
to significant qualitative errors, especially in the polarization
properties of the dominant (a+ anda- type) states.

4. Sheet with Diagonal Disorder.As mentioned in the
Introduction, disorder plays an important role in understanding
experimental spectra. In this subsection, we will discuss the
effect of diagonal disorder on the linear spectrum of extended
â-sheets. Figure 6 shows the linear spectrum for a 3× 3 sheet
in the absence of disorder (solid line) and for two values of the

Figure 5. Color maps of the 7 one-quantum eigenstates in a
homogeneous 3× 3 unit cell â-sheet (36 oscillators) that have a
significant dipole to the ground state.
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disorder strength:σ ) 5 cm-1 (dotted) andσ ) 10 cm-1

(dashed). In all cases, the homogeneous width was set toγ )
2 cm-1.

The observed changes due to disorder are quite typical. The
first obvious effect is a broadening of the spectral lines. This
results from the fact that disorder breaks the inversion and
approximate translational symmetry in the system; it thus mixes
the unperturbed eigenstates and breaks the optical selection rules
for the excitons: more collective states become strongly dipole-
allowed. We calculated the fwhmW of the strongest peak (the
|a-〉 peak) as a function of the disorder strengthσ (keeping
the system size constant at 3× 3 unit cells). For 5 cm-1 e σ
e 30 cm-1, which is significantly larger than the homogeneous
half-width of 2 cm-1, we observe power-law behavior:W ≈
aσb (squares in Figure 7). When bothW andσ are expressed in
wavenumbers, a least-squares fit yieldsa ) 1.1 andb ) 1.2.
Power-law scaling of the optical line width of energetically
disordered exciton systems has been found previously by
Schreiber and Toyozawa38 and Fidder, Knoester, and Wiersma.39

These authors reportedb ) 4/3 for one-dimensional systems and
b ) 2 for two-dimensional systems, in both cases with equal
orientation of all oscillator dipoles. Comparing our result forb
with the cited values, we observe that line broadening inâ-sheets
does not scale as in a two-dimensional system. This is not
surprising, because the interactions in the sheet render the system

non-isotropic. In addition, the occurrence of four different dipole
orientations leads to four interwoven exciton bands, which also
leads to a different line broadening.

Apart from line broadening, disorder also causes the energy
separation between the two main spectral peaks (the|a-〉 and
|a+〉 peaks) to increase. This is visible in Figure 6 mainly as a
red-shift of the|a-〉 peak. The peak shift, caused by disorder-
induced coupling between the homogeneous eigenstates, is well-
known forJ aggregates.38,39The red-shiftSof the |a-〉 state in
our â-sheet model (triangles in Figure 7) is observed to follow
power-law scaling forσ e 17 cm-1: S ∝ σb, with b ) 1.5
from a least-squares fit. Again, the result can be compared with
linear aggregates, where the exponent is found to be slightly
smaller,b ) 1.35.39 For larger values of the disorder, the peak
shift does not increase anymore, but even decreases somewhat.
This effect can be understood by realizing that, for these large
values ofσ, the peaks broaden so much that they start to overlap.
In particular, the|a-〉 peak starts to merge with the higher-
energy peaks. The growing overlap displaces the weight of the
total peak to the high-energy side, causing a blue-shift that
compensates for the disorder-induced red-shift. The net effect
is a deviation from the power-law behavior which we observed
for smaller disorder values.

Finally, we analyze the nature of the eigenstates in the
presence of disorder. To this end, we plot in Figure 8 the color
maps of the state with the largest transition dipole to the ground
state that occurs within three randomly chosen disorder realiza-
tions forσ ) 5, 20, and 50 cm-1. For small disorder, we expect
these dominant states to be of the|a-〉 type. Indeed, for the
three states found forσ ) 5 cm-1, we still see an overall color
pattern that resembles the alternating red and blue columns of
the state at 1647.2 cm-1 in Figure 5. The fact that we are still
dealing with weak disorder is clear from the fact that all three
states considered are still strongly delocalized over the entire
sheet. Even the global inversion symmetry seems not to be
broken very strongly, implying that these states are mostly
polarized within the plane of the sheet. The disorder of 5 cm-1

is too small to cause strong mixing between the lowest-lying
|a-〉-type state and states of different symmetries, and the
broadened low-energy absorption peak may still be referred to
as an|a-〉 peak.

At σ ) 20 cm-1, we see from the many white or very light
sites in the color maps that the states tend to get more localized

Figure 6. Linear absorption spectrum, in arbitrary units, of a 3× 3
â-sheet in the absence of disorder (solid) and with diagonal disorder
of strengthσ ) 5 cm-1 (dotted) andσ ) 10 cm-1 (dashed). Spectra
with disorder were obtained through Monte Carlo simulations, averaging
over 10 000 disorder realizations. In all spectra, a value ofγ ) 2 cm-1

was used for the homogeneous broadening of individual exciton
transitions. The three spectra have equal area, reflecting the conservation
of the total oscillator strength. The disorder-induced broadening of
spectral lines and the red-shift of the dominant|a-〉 peak are clearly
visible.

Figure 7. Dependence of the width (squares) and shift (triangles) of
the |a-〉 peak in the linear absorption spectrum of the 3× 3 unit cell
â-sheet on the strengthσ of the diagonal disorder. The lines indicate
power-law fits, for which the parameters are given in the text.

Figure 8. Color maps of the one-quantum eigenstate with the largest
dipole to the ground state for a disordered 3× 3 unit cell â-sheet.
Three values of the disorder were considered (σ ) 5, 20, and 50 cm-1

from top to bottom), and for eachσ value, three disorder configurations
were generated randomly (left to right). For each of these realizations,
the optically strongest state is shown. Color coding is as in Figure 5.
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on a part of the sheet. Anderson localization of exciton states
is well-known in the field of electronic excitons inJ aggregates
and semiconductors, and in many such systems, the exciton
localization size is considered an important microscopic quantity
whose measurement has attracted much attention.40-42 Also, for
exciton models of globular proteins, localization has been
studied.10,29Even though atσ ) 20 cm-1 the exciton states are
localized in our modelâ-sheets and their global symmetry is
lost, we see that within their localization area their color maps
still bear a marked (though not perfect) resemblance to the
alternating red and blue column pattern. This justifies us to still
refer to these states as|a-〉-type states and also, in hindsight,
justifies us to identify the strong|R-〉 absorption peak defined
in ref 24 as an|a-〉-type peak.

For σ ) 50 cm-1, the states are strongly localized. Even in
this case, however, we recognize that locally the strongly dipole-
allowed states seem to carry a fair|a-〉-type character. It should
be noted, however, that for this large value ofσ no distinction
can be made between different absorption bands anymore, so
that we cannot speak of an|a-〉 peak in the spectrum. The fact
that we still only found states that locally look like the|a-〉
states, directly results from the fact that selecting the largest
dipole automatically selects phases between neighboring oscil-
lators that also apply to the|a-〉-type states.

We notice that a more complete study of the nature of the
eigenstates in the presence of disorder requires a more systematic
investigation of the energy dependence of certain moments of
the wave functions. A good choice would be to consider the
autocorrelation function of the wave function as a function of
energy.43 This would allow one to distinguish whether states
underlying the strongest absorption bands indeed may be
referred to in a statistically meaningful way as|a-〉 or |a+〉
states. Recently, a similar study was performed to investigate
the chiral behavior of exciton states in helical cylinders.44

5. Off-Diagonal Disorder. We have seen that, forσ e 17
cm-1, the |a-〉 peak shifts to lower energy with increasing
disorder strength. While for energetic disorder this is the normal
behavior for the lower band edge states, for disorder in the
interactionsJnm, this need not be the case. Such disorder
naturally arises from conformational disorder: small random
deviations of oscillator positions and dipoles from their regular
values lead to random changes in the TDC interactions. This
type of disorder was simulated by Demirdo¨ven et al.,24 who
applied random Gaussian shifts of the oscillator positions. They
found that the|a-〉 peak was broadened and shifted to the blue
as a result of disorder, while the|a+〉 peak hardly changed in
position and width. No explanation was offered, except that the
change in position of the|a-〉 peak was ascribed mainly to
fluctuations in the interstrand distances. Our study shows that
this is not correct.

As a simple example, we have considered interaction disorder
in a single unit cell by varying the positions of the four
oscillators. The displacements are random and uncorrelated. We
first look at variations in thexy-plane, by taking the absolute
value of the displacement from a Gaussian distribution and its
direction from a uniform distribution. Figure 9 shows the
resulting linear spectra for different disorder strengths, where
for clarity the spectra have been scaled to equal amplitude of
the |a-〉 peak. From the figure, we observe that the|a-〉 peak
shifts to the blue and strongly broadens, while the|a+〉 peak
shifts slightly to the red and hardly broadens. The explanation
for the shifts is that the conformational disorder decreases the
average TDC strength, thus giving smaller exciton dispersions
and keeping the average exciton transitions closer to the single-

oscillator frequency. Because for the|a+〉-type states, the
various interactions largely cancel each other (which is why
this state occurs so close to the single-oscillator energy), the
net effect of disorder in these interactions on the line shift is
also smaller. For the same reason, the fluctuations in the
strengths of the interactions have a much smaller effect on
fluctuations in the position of the|a+〉 state than the|a-〉 state,
leading to the considerably smaller line broadening of the|a+〉
peak.

To get a better understanding of the origin of the strong blue-
shift of the |a-〉 peak, we also randomly varied the oscillator
positions in only one of the spatial directions. In the resulting
spectra (not shown), we observe that fluctuations in the
x-direction almost entirely explain the blue-shift of this peak,
while variations in the interstrand spacing (i.e., Gaussian disorder
in they-direction) have almost no effect on the position of this
peak. This conclusion is in marked contrast to the suggestion
made in ref 24 that the interstrand distances are the crucial
quantities. We also found that disorder in thez-component of
the oscillator positions leads to a small blue-shift of the|a-〉
peak.

4. Results and Discussion: 2DIR Spectra of Extended
Sheets

Figure 10 shows the calculated 2DIR correlation spectrum
in theZZYY-polarization without disorder (panel (a)) and with
Gaussian diagonal disorder of strengthσ ) 10 cm-1 (panel (b)).
In both plots, a homogeneous half-width at half-maximum
(hwhm) ofγ ) 2 cm-1 has been used. Panel (b) was generated
by averaging over 500 disorder realizations. The spectrum for
the homogeneous system was discussed at considerable length
in ref 23. It contains positive peaks (red and yellow), resulting
from bleaching and stimulated emission contributions, and
associated negative peaks (blue), resulting from induced-
absorption processes to two-quantum eigenstates. As a result
of the anharmonicity of the oscillators, the induced-absorption
peaks are red-shifted along theω3 direction relative to the
associated positive features. The spectrum shows such pairs of
positive and negative features both at the diagonal of the (ω1,
ω3) plane, whereω1 andω3 basically probe the same exciton,
as well as outside the diagonal, where the correlation between
two different exciton states is seen as cross-peak. As was argued

Figure 9. Spectra of a single unit cell with disorder in the oscillator
positions. Oscillators have been randomly displaced in thexy-plane
with a uniform distribution of the angle of displacement and a Gaussian
distribution of the standard deviations in the distance. The four spectra
correspond tos ) 0 (solid),s ) 17.3 pm (dotted),s ) 50 pm (dashed),
ands) 100 pm (dash-dotted). Spectra have been averaged over 50 000
disorder realizations. In all cases, a value ofγ ) 2 cm-1 was used for
the homogeneous broadening of individual exciton transitions. We
observe that the excitonic band narrows with increasing disorder,
resulting from a blue-shift of the|a-〉 peak.
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in ref 23, especially, the cross-peaks seem to be sensitive probes
for secondary structure in proteins. In the calculated spectra for
the homogeneous sheet, we clearly see the cross-peaks between
|a-〉 and|a+〉, between|a-〉 and|s-〉, and between|a-〉 and
the states around 1660 cm-1. The fact that all features in the
2DIR spectra are extended in theω1 direction, and not in the
ω3 direction, results from the homogeneous broadening, which
merges close-lying peaks of the same sign in the spectrum. In
theω3 direction, the close-lying pairs of positive and associated
negative contributions, even after homogeneous broadening, still
stay visible as separate peaks of opposite sign (albeit with less
amplitude with increasing value ofγ).

As expected from the linear absorption spectrum, we observe
that the features in the 2DIR spectrum broaden when disorder
is present. The diagonal peaks strongly stretch along the
diagonal, leading to a rather featureless diagonal ridge. As in
the case of the linear spectrum, the broadening results from
many exciton transitions obtaining a large transition dipole as
a consequence of the symmetry breaking by the random
disorder. The fact that diagonal peaks are slanted along the
diagonal direction results from the fact that our model treats
the disorder as purely static. Thus, the energy of a particular
exciton state|u〉 stays constant throughout the experiment, giving
rise to a bleaching resonance at (ω1, ω3) ) (Eu, Eu).

Disorder also has a clear influence on the cross-peaks, which
are seen to further extend along theω1 direction than in the
homogeneous case. This results from the extra broadening,
which, like the homogeneous broadening, leads to merging
peaks of the same sign in the two-dimensional spectrum, while
preserving the separate positive and negative peaks along the
ω3 direction. We observe that the strong cross-peak positioned
around (ω1, ω3) ≈ (1685 cm-1, 1640 cm-1) is slanted out of
the horizontal direction toward the diagonal direction. This
results from the fact that, within a certain realization of the
disorder configuration, a positive correlation exists between the
energies of different exciton transitions, for instance, of the
|a-〉- and |a+〉-type transitions. This correlation derives from
the fact that, in a finite system, the average of theN randomly
chosenεn values is not exactlyε0, but deviates from this mean
by an amount that is different for each disorder realization. This
deviation in the average transition energy shifts all exciton
transitions within a certain disorder realization by the same
amount (i.e., creates a positive correlation between the exciton
energies within a given disorder realization). We note that this
correlation is not perfect, as has been shown explicitly for the

case of excitons in linear molecular aggregates in ref 45, which
explains why, as opposed to the diagonal peaks, the cross-peak
is not oriented exactly along the diagonal direction of the
spectrum. Also for the other cross-peaks observed in Figure 10b,
this correlation effect is visible, albeit only weakly for the peak
around (ω1, ω3) ) (1640 cm-1, 1680 cm-1).

Generally speaking, the slanting of (cross-)peaks in 2DIR
spectra away from theω1 axis is indicative of the presence of
static disorder;46 dynamic fluctuations on time scales short
compared to the pulses ort2 tend to wash out the correlations
necessary for this slanting, as we have also seen in the
homogeneous limit, Figure 10a. As we observe from our
simulations (and explained above), even for purely static
disorder, the excitonic cross-peaks tend to lie closer along the
ω1 direction (less diagonal slanting) than the diagonal peaks.
The combined effect of diagonal peaks being strongly stretched
along the diagonal of the 2D spectrum and cross-peaks being
more elongated along theω1 direction leads to an overall
spectrum that resembles a Z. This Z-shape may be taken as the
spectral signature for the presence ofâ-sheets in a protein.

Recently, Z-shaped 2DIR spectra have indeed been observed
experimentally for poly-L-lysine, as well as forâ-sheet contain-
ing proteins, such as concanavalin A and ribonuclease A.24 Our
simulations show that the presence of disorder offers a natural
explanation for the observed Z-shape. In contrast to our results,
however, the experimental spectra seem to exhibit no slanting
of the cross-peaks at all, while the main diagonal peak is clearly
directed along the diagonal. The explanation may well be that
in the experiment the main diagonal peak, associated with
|a-〉-type transitions, is mainly inhomogeneously broadened,
while the cross-peaks, also involving|a+〉-type states, mainly
undergo homogeneous (dynamic) broadening. As we have
observed in Figure 9, in particular, the presence of conforma-
tional disorder may lead to a strong reduction of the inhomo-
geneous broadening of the|a+〉 transitions as compared to the
|a-〉 transitions. This fact and the already noted absence of
perfect correlation in the inhomogeneous shifts of the energies
of different exciton states may easily explain that the cross-
peaks are stretched along theω1 direction, while the main
diagonal peak is slanted along the diagonal.

As was suggested in earlier work,23 the splitting between
positive and associated negative peaks in the 2DIR spectrum is
expected to contain information about the number of oscillators
that share an excitation (i.e., about the exciton delocalization
sizeL). The reason is that this splitting finds its origin in the

Figure 10. 2DIR spectra in theZZYYpolarization for a homogeneous 3× 3 unit cell â sheet (a) and the same sheet with Gaussian diagonal
disorder of standard deviationσ ) 10 cm-1 (b). In both spectra, we usedγ ) 2 cm-1 for the homogeneous broadening of the exciton transitions.
To generate the spectrum in (b), we averaged over 500 disorder realizations.
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anharmonic term of the Hamiltonian,Hanh ) -(A/2)∑n)1
N

an
† an

†anan, which roughly stated adds the fourth powers of the
amplitudes of the exciton states on all oscillators. For a state
shared byL oscillators, this amplitude scales as 1/xL, leading
to an expected anharmonic splitting∆ ≈ A/L between the
negative induced-absorption peak and the associated positive
bleaching peak (the latter one being higher in energy). Similarly,
using simple statistical arguments, Hochstrasser and co-workers
arrived at∆ ) 2A/(L + 1) for L-coupled oscillators.10

It is useful to derive the expected scaling from perturbative
arguments, instead of the above heuristic ones. In the absence
of Hanh, there is no anharmonic shift and the two-quantum
eigenstates are just the two-boson states|u, V〉 ) ∑n,m

unVman
† am

† |g〉. Let us consider the effect ofHanh on the exci-
tonic overtone|2u〉 ) (1/x2) ∑n,m unuman

† am
† |g〉, where the

prefactor 1/x2 ensures proper normalization (the one-quantum
eigenvectorun is assumed to be normalized to unity). To first
order inHanh, the anharmonic shift is then given by

whereL ≡ (∑n |un|4)-1 is now the participation ratio, a well-
known measure of the one-particle delocalization size in
disordered systems.47 This confirms the scaling postulated in
ref 23. One may argue, however, that for our system the value
of A does not justify a first-order treatment. To estimate higher-
order effects, we also consider the second-order shift of the
energy of the state|2u〉, which reads

If we consider this shift, in particular, for states|u〉 that occur
at the bottom of the exciton band, such as the spectrally
dominant|a-〉-type states, we see that∆2 is positive (i.e., it
increases the energy spacing between the bleaching and induced-
absorption peaks). We can further estimate∆2 by approximating
the energy denominator in eq 11 byB, whereB is on the order
of the total exciton bandwidth. The summations overu′ andu′′
can then be performed using the closure relation on these wave
functions, leading to∆2 ) 2A2/(BL), where againL is defined
as the participation ratio. Because, for the system under
consideration, 2A ) 32 cm-1, while B is on the order of 60
cm-1, we see that∆2 ≈ ∆1/2. It is likely that yet higher-order
terms add similar contributions, leaving us with an expected
scaling of∆ ) cA/L with c on the order of unity.

Using our numerical simulations of the 2D spectrum, we have
investigated whether indeed such simple scaling relations exist
between the peak splitting∆ and the delocalization size of the
one-quantum states. Because the spectrum is two-dimensional,
one may define the splitting between the positive and negative
peaks in various ways. We have defined the splitting∆a- as
the frequency separation between the negative minimum and
the positive maximum in a slice through the 2D spectrum atω1

) Ω. Here,Ω is the position of the maximum of the main (a-)
peak in the linear absorption spectrum. Note that, because of
the broadening of the exciton band with increasing disorder
strength,Ω is different for each value of the disorder strength
σ. In Figure 11, the splitting obtained from this procedure over
a range of values of the disorder strength (1 cm-1 e σ e 30
cm-1) is plotted against the delocalization sizeL. The latter was

calculated as the average participation ratio of the exciton states
at energyΩ47

where〈...〉 indicates the disorder average.
From Figure 11, it is clear that, as long as the disorder strength

is not too large (i.e., the localization size is not too small), the
expected relationship

holds. ForL g 8, corresponding toσ e 10 cm-1, we find c )
3.4. For larger values of the disorder strength, the peak splitting
shows a sharp decrease. This unexpected decrease is entirely
due to the behavior of the negative peak and is probably caused
by interference effects with other spectral features, similar to
the non-monotonic behavior of the peak shiftSas a function of
disorder strength observed in section 3.4.

The scaling relation eq 13 provides a tool to estimate the
exciton delocalization size inâ-sheets from the experimentally
observed peak splitting, provided that static disorder dominates
the spectral broadening. For electronic excitations in linear
molecular aggregates, it has been demonstrated that the two-
color pump-probe spectrum provides a similar spectroscopic
ruler for the exciton delocalization size.40,48

To close this section, we note that in various publications
the participation ratio has been used in a slightly different way,
defining L as the inverse of the average of∑n)1

N un
4.38,39 Both

definitions correctly monitor the localization behavior, though
their numerical values differ, in particular, for larger disorder
strengths, where distribution functions get broader. We have
checked that the alternative definition forL still gives the linear
scaling of eq 13, withc ) 3.1.

5. Conclusions

In this paper, we numerically studied the effects of static
disorder on the collective vibrational exciton states of the amide
I type in antiparallelâ-sheets and the corresponding linear and
two-dimensional IR spectra. We mostly focused on energetic
(diagonal) disorder. To analyze the nature of the exciton states,
we introduced a new visualization technique in which the
exciton wave function is represented as a two-dimensional color

Figure 11. Splitting between the positive and negative parts of the
diagonal|a-〉 peak in the 2DIR spectrum vs the inverse localization
size 1/L, with L obtained from the average participation ratio. The data
(squares) have been obtained for a 3× 3 sheet, using theZZYY
polarization and takingγ ) 2 cm-1. For eachσ value, the spectrum
was obtained by averaging over 500 disorder realizations. The solid
line is the best linear fit forL g 8 (see text for slope).
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map. This color map facilitates recognizing symmetries of the
wave function and phase relations between various oscillators
in the sheet. Using these maps, we confirmed that for homo-
geneousâ-hairpins the collective states to a very good ap-
proximation separate into four different bands that have a one-
to-one correspondence to the four eigenstates (|a-〉, |a+〉,
|s-〉, |s+〉) of a single unit cell in the sheet.

For â-sheets that are extended in both directions, this
identification is less ideal, as strong interactions between
different unit cells mix the various types of cell eigenstates.
Still, using the color maps, we have been able to demonstrate
that in the absence of disorder several of the optically dominant
states of extended sheets still reflect the symmetries and phase
relations of the cell eigenstates. In particular, the strongest state
near 1645 cm-1 has a clear|a-〉 character, as recognized from
its color map, which closely resembles an array of alternating
red and blue columns. A second optically strong state near 1680
cm-1 is recognized as an|a+〉-type state through its representa-
tion as a stack of rows that alternate in color. Finally, a
checkerboard color pattern is typical for the|s-〉-type state that
occurs around∼1705 cm-1. A few other visible states are either
recognized as higher wave vector states of the above ones or
as mixtures of various unit cell states.

Energetic disorder has strong effects on the exciton states,
as it destroys the translational symmetry (which is not perfect
anyway, as a consequence of edge effects) and leads to
localization of the exciton states. As we demonstrated, however,
within their localization area, in particular, the states underlying
the optically strongest peak in the linear spectrum clearly exhibit
the |a-〉-type color map. In hindsight, this strongly suggests
that the experimentally observedR- peak reported in ref 24
for poly-L-lysine and severalâ-sheet-containing proteins may
be associated with the|a-〉 state. A more rigorous identification
should involve an analysis of the color maps for these systems,
using their known coordinates as input for constructing the
exciton Hamiltonian.

The effects of energetic disorder on the linear spectrum of
extended (two-dimensional) sheets reported here are quite
generic: broadening and shifts of absorption lines follow power
laws as long as the disorder strength is not too large. The powers
found differ from those obtained for two-dimensional lattices,
as a consequence of the strong anisotropic nature of the
interactions inâ-sheets. We have also found that disorder in
the interactions, caused by random shifts of the oscillator
positions, causes the dominant|a-〉 peak to shift to the blue,
rather than the red. This marked difference with energetic
disorder finds its origin in a decrease of the average TDC
interactions in the presence of this type of disorder and is
dominated by shifts in the direction of the peptide strands.

For the 2DIR spectrum, energetic disorder leads to stretching
of the diagonal peaks in the diagonal direction, while the cross-
peaks are stretched closer to theω1 direction. These two effects
together lead to a Z-shape in the two-dimensional spectrum,
which may be a useful signature ofâ-sheet content in
experimentally observed spectra. Indeed, a Z-shape has been
observed in the 2DIR spectra of variousâ-sheet-containing
systems.24 As opposed to our model results, the cross-peaks in
the experimental spectra do not seem to exhibit any slanting
relative to theω1 direction. As explained in section 4, this may
result from a relatively large dynamic contribution in the
broadening of the|a+〉 transitions in experiment. We also found
that, for not-too-large disorder, the splitting between associated
positive and negative features in the 2DIR spectrum scales
inversely proportionally with the delocalization size of excitons

in the â-sheet. Future studies should address the effects of
dynamic disorder49,50 and investigate whether in this case a
similar scaling relation exists between the peak splitting and
the exciton coherence size.
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(24) Demirdöven, N.; Cheatum, C. M.; Sung, H. S.; Khalil, M.; Knoester,
J.; Tokmakoff, A.J. Am. Chem. Soc.2004, 126, 7981.

(25) Chung, H. S.; Khalil, M.; Smith, A. W.; Ganim, Z.; Tokmakoff,
A. Proc. Natl. Acad. Sci. U.S.A.2005, 102, 612.

(26) Mirkin, N. G.; Krimm, S.J. Am. Chem. Soc.1991, 113, 9742.
(27) Scheurer, C.; Piryatinski, A.; Mukamel, S.J. Am. Chem. Soc.2001,

123, 3114.
(28) Ham, S.; Kim, J. H.; Lee, H.; Cho, M.J. Chem. Phys.2003, 118,

3491.
(29) Choi, J. H.; Ham, S.; Cho, M.J. Chem. Phys.2002, 117, 6821.
(30) Torii, H.; Tasumi, M.J. Chem. Phys.1992, 96, 3379.
(31) Ham, S.; Cha, S.; Choi, J.; Cho, M.J. Chem. Phys.2003, 119,

1451.
(32) Choi, J.; Ham, S.; Cho, M.J. Phys. Chem. B2003, 107, 9132.
(33) Mukamel, S.Principles of Nonlinear Optical Spectroscopy; Oxford

University Press: Oxford, 1995.
(34) In ref 23, this state appears at 1641 cm-1. The discrepancy is

because, in the current calculations, we only account for the eight strongest
interactionsJnm (see Figure 2).

(35) Miyazawa, T.J. Chem. Phys.1960, 32, 1647.
(36) Miyazawa, T.; Blout, E. R.J. Am. Chem. Soc.1961, 83, 712.
(37) Chirgadze, Y. N.; Nevskaya, N. A.Biopolymers1976, 15, 607.
(38) Schreiber, M.; Toyozawa, Y.J. Phys. Soc. Jpn.1982, 51, 1528.
(39) Fidder, H.; Knoester, J.; Wiersma, D. A.J. Chem. Phys.1991, 95,

7880.
(40) Bakalis, L. D.; Knoester, J.J. Phys. Chem. B1999, 103, 6620.
(41) Bakalis, L. D.; Knoester, J.J. Lumin.1999, 83/84, 115.

Oscillations and Spectra of Inhomogeneousâ-Sheets J. Phys. Chem. B, Vol. 109, No. 19, 20059797



(42) Dahlbom, M.; Pullerits, T.; Mukamel, S.; Sundstro¨m, V. J. Phys.
Chem. B2001, 105, 5515.

(43) Chachisvilis, M.; Ku¨hn, O.; Pullerits, T.; Sundstro¨m, V. J. Phys.
Chem. B1997, 101, 7275.

(44) Didraga, C.; Knoester, J.J. Chem. Phys.2004, 121, 10687.
(45) Knoester, J.J. Chem. Phys.1993, 99, 8466.

(46) Rubtsov, I. V.; Wang, J.; Hochstrasser, R. M.J. Chem. Phys.2003,
118, 7733.

(47) Thouless, D. J.Phys. Rep.1974, 13, 93.
(48) Juzeliujnas, G.Z. Phys. D1988, 8, 379.
(49) Kwac, K.; Cho, M.J. Chem. Phys.2003, 119, 2247.
(50) Kwac, K.; Cho, M.J. Chem. Phys.2003, 119, 2256.

9798 J. Phys. Chem. B, Vol. 109, No. 19, 2005 Dijkstra and Knoester


