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3 Introduction to the Keldysh Formalism

R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.-O. Almbladh,
and U. von Barth

3.1 Introduction

In this chapter we give an introduction to the Keldysh formalism, which is
an extremely useful tool for first-principles studies of nonequilibrium many-
particle systems. Of particular interest for TDDFT is the relation to non-
equilibrium Green functions (NEGF), which allows us to construct exchange-
correlation potentials with memory by using diagrammatic techniques. For
many problems, such as quantum transport or atoms in intense laser pulses,
one needs exchange-correlation functionals with memory, and Green function
techniques offer a systematic method for developing these. The Keldysh for-
malism is also necessary for defining response functions in TDDFT and for
defining an action functional needed for deriving TDDFT from a variational
principle. In this chapter, we give an introduction to the nonequilibrium
Green function formalism, intended to illustrate the usefulness of the the-
ory. The formalism does not differ much from ordinary equilibrum theory,
the main difference being that all time-dependent functions are defined for
time-arguments on a contour, known as the Keldysh contour.

The Green function G(rt, r′t′) is a function of two space- and time-
coordinates, and is obviously more complicated than the one-particle density
n(r, t), which is the main ingredient of TDDFT. However, the advantage of
NEGF methods is that we can systematically improve the approximations
by taking into account particular physical processes (represented in the form
of Feynman diagrams) that we believe to be important. The Green function
provides us directly with all expectation values of one-body operators (such
as the density and the current), and also the total energy, ionization poten-
tials, response functions, spectral functions, etc. In relation to TDDFT, this
is useful not only for developing orbital functionals and exchange-correlation
functionals with memory, but also for providing insight in the exact properties
of the noninteracting Kohn-Sham system.

In the following, we shall focus on systems that are initially in ther-
mal equilibrium. We will start by introducing the Keldysh contour and the
nonequilbrium Green function, which is one particular example of a function
defined on the contour. In Sect. 3.4 we will explain how to combine and ma-
nipulate functions of time variables on the contour. These results, that are
summarized in Table 3.1, are highly important, since the class of functions
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also include response functions and self-energies. The results derived in this
section are essential for defining action functionals and response functions,
as we will do in Sect. 3.9, and are also used extensively in Chap. 32. The
equations of motion for the Green function, known as the Kadanoff-Baym
equations, are explained in Sect. 3.5. While in TDDFT we take exchange and
correlation effects into account through vxc[n], the corresponding quantity in
Green function theory is the self-energy Σ[G]. Just like vxc, the self-energy
functional must be approximated. For a given functional Σ[G], it is impor-
tant that the resulting observables obey the macroscopic conservation laws,
such as the continuity equation. These approximations are known as conserv-
ing, and will be discussed briefly in Sect. 3.7. In the last part of this chapter
we discuss the applications of the Keldysh formalism in TDDFT, including
the relation between Σ and vxc, the derivation of the Kohn-Sham equations
from an action functional, and the derivation of an fxc functional. As an il-
lustrative example, we discuss the time-dependent exchange-only optimized
effective potential approximation.

3.2 The Keldysh Contour

In quantum mechanics we associate with any observable quantity O a Her-
mitian operator Ô. The expectation value Tr{ρ̂0Ô} gives the value of O when
the system is described by the density operator ρ̂0 and the trace denotes a
sum over a complete set of states in Hilbert space. For an isolated system the
Hamiltonian Ĥ0 does not depend on time, and the expectation value of any
observable quantity is constant, provided that [ρ̂0, Ĥ0] = 0. In the following
we want to discuss how to describe systems that are isolated for times t < 0,
such that Ĥ(t < 0) = Ĥ0, but disturbed by an external time-dependent field
at t > 0. The expectation value of Ô at t > 0 is then given by the aver-
age on the initial density operator ρ̂0 of the operator Ô in the Heisenberg
representation,

O(t) = 〈ÔH(t)〉 ≡ Tr{ρ̂0ÔH(t)} = Tr{ρ̂0Û(0, t)ÔÛ(t, 0)} , (3.1)

where the operator in the Heisenberg picture has a time-dependence accord-
ing to ÔH(t) = Û(0, t)ÔÛ(t, 0). The evolution operator Û(t, t′) is the solution
of the equations

i
d
dt

Û(t, t′) = Ĥ(t)Û(t, t′) and i
d
dt′

Û(t, t′) = −Û(t, t′)Ĥ(t′) , (3.2)

with the boundary condition Û(t, t) = 1. It can be formally written as

Û(t, t′) =

{
T̂ exp[−i

∫ t

t′ dt̄ Ĥ(t̄)] t > t′

T̂ exp[−i
∫ t

t′ dt̄ Ĥ(t̄)] t < t′
. (3.3)
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Fig. 3.1. The Keldysh contour in the complex time-plane, starting at t = 0, and
ending at t = −iβ, with t on the backward branch and t′ on the forward branch.
By definition, any point lying on the vertical track is later than a point lying on
the forward or backward branch

In (3.3), T̂ is the time-ordering operator that rearranges the operators in
chronological order with later times to the left; T̂ is the anti-chronological
time-ordering operator. The evolution operator satisfies the group property
Û(t, t1) U(t1, t′) = Û(t, t′) for any t1. Notice that if the Hamiltonian is time-
independent in the interval between t and t′, then the evolution operator be-
comes Û(t, t′) = exp[−iĤ(t−t′)]. If we now let the system be initially in ther-
mal equilibrium, with an inverse temperature β ≡ 1/kBT and chemical poten-
tial µ, the initial density matrix is ρ̂0 = exp[−β(Ĥ0−µN̂)]/Tr{exp[−β(Ĥ0−
µN̂)]}. Assuming that Ĥ0 and N̂ commute, ρ̂0 can be rewritten using the
evolution operator Û with a complex time-argument, t = −iβ, according to
ρ̂0 = exp[βµN̂ ]Û(−iβ, 0)/Tr{exp[βµN̂ ]Û(−iβ, 0)}. Inserting this expression
in (3.1), we find

O(t) =
Tr
{

eβµN̂ Û(−iβ, 0)Û(0, t)ÔÛ(t, 0)
}

Tr
{

eβµN̂ Û(−iβ, 0)
} . (3.4)

Reading the arguments in the numerator from the right to the left, we see
that we can design a time-contour γ with a forward branch going from 0
to t, a backward branch coming back from t and ending in 0, and a branch
along the imaginary time-axis from 0 to −iβ. This contour is illustrated in
Fig. 3.1. Note that the group property of Û means that we are free to extend
this contour up to infinity. We can now generalize (3.4), and let z be a time-
contour variable on γ. We will in the following stick to the notation that
the time-variable on the contour is denoted z unless we specify on which
branch of the contour it is located. This time-variable can therefore be real
or complex. Letting the variable z̄ run along this same contour, (3.4) can be
formally recast as

O(z) =
Tr
{

eβµN̂ T̂c e−i
∫

γ
dz̄ Ĥ(z̄) Ô(z)

}

Tr
{

eβµN̂ T̂c e−i
∫

γ
dz̄ Ĥ(z̄)

} . (3.5)
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The contour ordering operator T̂c moves the operators with “later” contour
variable to the left. In (3.5), Ô(z) is not the operator in the Heisenberg
representation [the latter is denoted with ÔH(t)]. The contour-time argument
in Ô is there only to specify the position of the operator Ô on γ. A point on
the real axis can be either on the forward (we denote these points t−), or on
the backward branch (denoted t+), and a point which is earlier in real time,
can therefore be later on the contour, as illustrated in Fig. 3.1.

If z lies on the vertical track, then there is no need to extend the contour
along the real axis. Instead, we have

O(z) =
Tr
{

eβµN̂e−i
∫ −iβ

z
dz̄Ĥ0 Ô e−i

∫ z
0 dz̄Ĥ0

}

Tr
{

e−β(Ĥ0−µN̂)
} =

Tr
{
e−β(Ĥ0−µN̂) Ô

}

Tr
{

e−β(Ĥ0−µN̂)
} ,

(3.6)
where the cyclic property of the trace has been used. The right hand side is
independent of z and coincides with the thermal average Tr{ρ̂0Ô}. It is easy
to verify that (3.5) would give exactly the same result for O(t), where t is
real, if the Hamiltonian was time-independent, i.e., Ĥ(t) = Ĥ0 also for t > 0.

To summarize, in (3.5) the variable z lies on the contour of Fig. 3.1; the
r.h.s. gives the time-dependent statistical average of the observable O when
z lies on the forward or backward branch, and the statistical average before
the system is disturbed when z lies on the vertical track.

3.3 Nonequilibrium Green Functions

We now introduce the NEGF, which is a function of two contour time-
variables. In order to keep the notation as light as possible, we here discard
the spin degrees of freedom; the spin index may be restored later as needed.
The field operators ψ̂(r) and ψ̂†(r) destroy and create an electron in r and
obey the anticommutation relations {ψ̂(r), ψ̂†(r′)} = δ(r−r′). We write the
Hamiltonian Ĥ(t) as the sum of a quadratic term

ĥ(t) =
∫

d3r

∫
d3r′ ψ̂†(r)〈r|h(t)|r′〉ψ̂(r′) , (3.7)

and the interaction operator

V̂ee =
1
2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)vee(r, r′)ψ̂(r′)ψ̂(r) . (3.8)

We use boldface to indicate matrices in one-electron labels, e.g., h is a matrix
and 〈r|h|r′〉 is the (r, r′) matrix element of h. When describing electrons
in an electro-magnetic field, the quadratic term is given by 〈r|h(t)|r′〉 =
δ(r − r′)

{
[−i∇+ Aext(r, t)]2/2 + vext(r, t)

}
.

The definition of an expectation value in (3.1) can be generalized to the
expectation value of two operators. The Green function is defined as
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G(rz, r′z′) = 〈r|G(z, z′)|r′〉 ≡ −i〈T̂c ψ̂H(r, z)ψ̂†H(r′, z′)〉 , (3.9)

where the contour variable in the field operators specifies the position in the
contour ordering. The operators have a time-dependence according to the de-
finition of the Heisenberg picture, e.g., ψ̂†H(r, z) = Û(0, z)ψ̂†(r)Û(z, 0). No-
tice that if the time-argument z is located on the real axis, then ψ̂H(r, t+) =
ψ̂H(r, t−). If the time-argument is on the imaginary axis, then ψ̂(r,−iτ) is
not the adjoint of ψ̂(r,−iτ) since Û†(−iτ, 0) �= Û(0,−iτ). The Green function
can be written

G(z, z′) = θ(z, z′)G>(z, z′) + θ(z′, z)G<(z, z′) . (3.10)

The function θ(z, z′) is defined to be 1 if z is later on the contour than
z′, and 0 otherwise.1 From the definition of the time-dependent expectation
value in (3.4), it follows that the greater Green function G>(z, z′), where z
is later on the contour than z′, is

iG>(rz, r′z′) =
Tr
{

eβµN̂ Û(−iβ, 0)ψ̂H(r, z)ψ̂†H(r′, z′)
}

Tr
{

eβµN̂ Û(−iβ, 0)
} . (3.11)

If z′ is later on the contour than z, then the Green function equals

iG<(rz, r′z′) = −
Tr
{

eβµN̂ Û(−iβ, 0)ψ̂†H(r′, z′)ψ̂H(r, z)
}

Tr
{

eβµN̂ Û(−iβ, 0)
} . (3.12)

The extra minus sign on the right hand side comes from the contour ordering.
More generally, rearranging the field operators ψ̂ and ψ̂† (later arguments to
the left), we also have to multiply by (−1)P , where P is the parity of the
permutation. From the definition of the Green function, it is easily seen that
the electron density, n(r, z) = 〈ψ̂†H(r, z)ψ̂H(r, z)〉 and current are obtained
according to

n(r, z) = −iG(rz, rz+) , (3.13)

and

j(r, z) = −
{[
−i
∇
2

+ i
∇′

2
+ Aext(r, z)

]
iG(rz, r′z′)

}

z′=z+

. (3.14)

where z+ indicates that this time-argument is infinitesimally later on the
contour.

The Green function G(z, z′) obeys an important cyclic relation on the
Keldysh contour. Choosing z = 0−, which is the earliest time on the con-
tour, we find G(0−, z′) = G<(0, z′), given by (3.12) with ψ̂H(r, 0) = ψ̂(r).
1 This means that if z is parametrized according to z(s), where the parameter s

runs from linearly from si to sf , then θ(z, z′) = θ(s− s′).
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Inside the trace we can move ψ̂(r) to the left. Furthermore, we can ex-
change the position of ψ̂(r) and exp{βµN̂} by noting that ψ̂(r) exp{βµN̂} =
exp{βµ(N̂ + 1)}ψ̂(r). Using the group identity Û(−iβ, 0)Û(0,−iβ) = 1, we
obtain

iG(r 0−, r′z′) = −
Tr
{
ψ̂H(r)eβµN̂ Û(−iβ, 0)ψ̂†H(r′, z′)

}

Tr
{

eβµN̂ Û(−iβ, 0)
} .

= −eβµ
Tr
{

eβµN̂ Û(−iβ, 0)ψ̂H(r,−iβ)ψ̂†H(r′, z′)
}

Tr
[
eβµN̂ Û(−iβ, 0)

] . (3.15)

The r.h.s. equals −eβµ〈r|iG(−iβ, z′)|r′〉. Together with a similar analysis for
G(z, 0−), we conclude that

G(0−, z′) = −eβµG(−iβ, z′) and G(z, 0−) = −e−βµG(z,−iβ) . (3.16)

These equations constitute the so called Kubo-Martin-Schwinger (KMS)
boundary conditions [Kubo 1957, Martin 1959]. From the definition of the
Green function in (3.9), it is easily seen that the G(z, z) has a discontinuity
at z = z′,

G>(z, z) = G<(z, z)− i1 . (3.17)

Furthermore, for both time-arguments on the real axis we have the important
symmetry

[
G≶(t′, t)

]†
= −G≶(t, t′). As we shall see, these relations play a

crucial role in solving the equation of motion.

3.4 The Keldysh Book-Keeping

The Green function belongs to a larger class of functions of two time-contour
variables that we will refer to as Keldysh space. These are functions that can
be written on the form

k(z, z′) = δ(z, z′)kδ(z) + θ(z, z′)k>(z, z′) + θ(z′, z)k<(z, z′) , (3.18)

where the δ-function on the contour is defined as δ(z, z′) = dθ(z, z′)/dz.2

The Green function, as defined in (3.10), has no such singular part. Another
example of a function belonging to the Keldysh space, is the self-energy Σ,
which will be discussed below. The singular part, Σδ, of the self-energy is the
Hartree-Fock self-energy, while the terms Σ≶ represent the correlation part.
2 In general, functions containing singularities of the form dnδ(z, z′)/dzn belong to

the Keldysh space (see [Danielewicz 1984]). Notice that if the contour variable z
is parametrized according to z(s), where the parameter s runs linearly from some
value si to sf , we have δ(z, z′) = [dz/ds]−1dΘ(s− s′)/ds = [dz/ds]−1δ(s− s′).
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The functions in Keldysh space are somewhat complicated due to the fact
that each of the time-arguments can be located on three different branches
of the contour, as illustrated in Fig. 3.1. Below we systematically derive a
set of identities that are commonly used for dealing with such functions and
will be used extensively in the following sections. Most of the relations are
well known [Langreth 1976], while others, equally important [Wagner 1991],
are not. Our aim is to provide a self-contained derivation of all of them. A
table at the end of the section summarizes the main results. For those who
are not familiar with the Keldysh contour, we strongly recommend to scan
what follows with pencil and paper.

It is straightforward to show that if a(z, z′) and b(z, z′) belong to the
Keldysh space, then

c(z, z′) =
∫

γ

dz̄ a(z, z̄)b(z̄, z′) (3.19)

also belongs to the Keldysh space. For any k(z, z′) in the Keldysh space we
define the greater and lesser functions on the physical time axis

k>(t, t′) ≡ k(t+, t′−), k<(t, t′) ≡ k(t−, t′+) . (3.20)

We also define the following two-point functions with one argument t on the
physical time axis and the other τ on the vertical track

k�(t, τ) ≡ k(t±, τ), k	(τ, t) ≡ k(τ, t±) . (3.21)

In the definition of k� and k	 we can arbitrarily choose t+ or t− since τ
is later than both of them. The symbols “” and “�” have been chosen in
order to help the visualization of the time arguments. For instance, “” has a
horizontal segment followed by a vertical one; correspondingly, k� has a first
argument which is real (and thus lies on the horizontal axis) and a second
argument which is imaginary (and thus lies on the vertical axis). We will
also use the convention of denoting the real time with latin letters and the
imaginary time with greek letters.

If we write out the contour integral in (3.19) in detail, we see – with the
help of Fig. 3.1 – that the integral consists of four main parts. First, we must
integrate along the real axis from z̄ = 0− to z̄ = t′−, for which a = a> and
b = b<. Then, the integral goes from z̄ = t′− to z̄ = t+, where a = a> and
b = b>. The third part of the integral goes along the real axis from z̄ = t+
to z̄ = 0+, with a = a< and b = b>. The last integral is along the imaginary
track, from 0+ to −iβ, where a = a� and b = b	. In addition, we have the
contribution from the singular parts, aδ and bδ, which is trivial since these
integrals involve a δ-function. With these specifications, we can drop the “±”
subscripts on the time-arguments and write
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c>(t, t′) = a>(t, t′)bδ(t′) + aδ(t)b>(t, t′)

+
∫ t′

0

dt̄ a>(t, t̄)b<(t̄, t′) +
∫ t

t′
dt̄ a>(t, t̄)b>(t̄, t′)

+
∫ 0

t

dt̄ a<(t, t̄)b>(t̄, t′) +
∫ −iβ

0

dτ̄ a�(t, τ̄)b	(τ̄ , t′) . (3.22)

The second integral on the r.h.s. is an ordinary integral on the real axis of
two well defined functions and may be rewritten as
∫ t

t′
dt̄ a>(t, t̄)b>(t̄, t′) =

∫ 0

t′
dt̄ a>(t, t̄)b>(t̄, t′) +

∫ t

0

dt̄ a>(t, t̄)b>(t̄, t′) . (3.23)

Using this relation, the expression for c> becomes

c>(t, t′) = a>(t, t′)bδ(t′)+aδ(t)b>(t, t′)−
∫ t′

0

dt̄ a>(t, t̄)[b>(t̄, t′)− b<(t̄, t′)]

+
∫ t

0

dt̄ [a>(t, t̄)− a<(t, t̄)]b>(t̄, t′) +
∫ −iβ

0

dτ̄ a�(t, τ̄)b	(τ̄ , t′) . (3.24)

Next, we introduce two other functions on the physical time axis

kR(t, t′) ≡ δ(t, t′)kδ + θ(t− t′)[k>(t, t′)− k<(t, t′)] , (3.25a)
kA(t, t′) ≡ δ(t, t′)kδ − θ(t′ − t)[k>(t, t′)− k<(t, t′)] . (3.25b)

The retarded function kR(t, t′) vanishes for t < t′, while the advanced function
kA(t, t′) vanishes for t > t′. The retarded and advanced functions can be used
to rewrite (3.24) in a more compact form

c>(t, t′) =
∫ ∞

0

dt̄ [a>(t, t̄)bA(t̄, t′)+aR(t, t̄)b>(t̄, t′)]+
∫ −iβ

0

dτ̄ a�(t, τ̄)b	(τ̄ , t′) .

(3.26)
It is convenient to introduce a short hand notation for integrals along the
physical time axis and for those between 0 and −iβ. The symbol “·” will be
used to write

∫∞
0

dt̄ f(t̄)g(t̄) as f · g, while the symbol “�” will be used to
write

∫ −iβ

0
dτ̄ f(τ̄)g(τ̄) as f � g. Then

c> = a> · bA + aR · b> + a� � b	 . (3.27)

Similarly, one can prove that

c< = a< · bA + aR · b< + a� � b	 . (3.28)

Equations (3.27)–(3.28) can be used to extract the retarded and advanced
component of c. By definition
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cR(t, t′) = δ(t− t′)cδ(t) + θ(t− t′)[c>(t, t′)− c<(t, t′)]

= aδ(t)bδ(t′)δ(t− t′) + θ(t− t′)
∫ ∞

0

dt̄ aR(t, t̄)[b>(t̄, t′)− b<(t̄, t′)]

+ θ(t− t′)
∫ ∞

0

dt̄ [a>(t, t̄)− a<(t, t̄)]bA(t̄, t′) . (3.29)

Using the definitions (3.25a) and (3.25b) to expand the integrals on the r.h.s.
of this equation, it is straightforward to show that

cR = aR · bR . (3.30)

Proceeding along the same lines, one can show that the advanced component
is given by cA = aA · bA. It is worth noting that in the expressions for cR and
cA no integration along the imaginary track is required.

Next, we show how to extract the components c� and c	. We first define the
Matsubara function kM(τ, τ ′) with both arguments in the interval (0,−iβ):

kM(τ, τ ′) ≡ k(z = τ, z′ = τ ′) . (3.31)

Let us focus on k�. Without any restrictions we may take t− as the first
argument in (3.21). In this case, we find

c�(t, τ) = aδ(t)b�(t, τ) +
∫ t−

0−

dz̄ a>(t−, z̄)b<(z̄, τ)

+
∫ 0+

t+

dz̄ a<(t−, z̄)b<(z̄, τ) +
∫ −iβ

0+

dz̄ a<(t−, z̄)b(z̄, τ) . (3.32)

Converting the contour integrals in integrals along the real time axis and
along the imaginary track, and taking into account the definition (3.25a)

c� = aR · b� + a� � bM . (3.33)

The relation for c	 can be obtained in a similar way and reads c	 = a	 · bA +
aM �b	. Finally, it is straightforward to prove that the Matsubara component
of c is simply given by cM = aM � bM.

There is another class of identities we want to discuss for completeness.
We have seen that the convolution (3.19) of two functions belonging to the
Keldysh space also belongs to the Keldysh space. The same holds true for
the product

c(z, z′) = a(z, z′)b(z′, z) . (3.34)

Omitting the arguments of the functions, one readily finds (for z �= z′)

c> = a>b<, c< = a<b>, c� = a�b	, c	 = a	b�, cM = aMbM . (3.35)

The retarded function is then obtained exploiting the identities (3.35). We
have (for t �= t′)
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Table 3.1. Table of definitions of Keldysh functions and identities for the convo-
lution and the product of two functions in the Keldysh space

Definition c(z, z′) =
∫

γ dz̄ a(z, z̄)b(z̄, z′) c(z, z′) = a(z, z′)b(z′, z)

k>(t, t′) = k(t+, t′−) c> = a> · bA + aR · b> + a� � b� c> = a>b<

k<(t, t′) = k(t−, t′+) c< = a< · bA + aR · b< + a� � b� c< = a<b>

kR(t, t′) = δ(t − t′)kδ(t)

+ θ(t − t′)[k>(t, t′) − k<(t, t′)]
cR = aR · bR cR =

{
aRb< + a<bA

aRb> + a>bA

kA(t, t′) = δ(t − t′)kδ(t)

− θ(t′ − t)[k>(t, t′) − k<(t, t′)]
cA = aA · bA cA =

{
aAb< + a<bR

aAb> + a>bR

k�(t, τ) = k(t±, τ) c� = aR · b� + a� � bM c� = a�b�

k�(τ, t) = k(τ, t±) c� = a� · bA + aM � b� c� = a�b�

kM(τ, τ ′) = k(z = τ, z′ = τ ′) cM = aM � bM cM = aMbM

cR(t, t′) = θ(t− t′)[a>(t, t′)b<(t′, t)− a<(t, t′)b>(t′, t)] . (3.36)

We may get rid of the θ-function by adding and subtracting a<b< or a>b>

to the above relation and rearranging the terms. The final result is

cR = aRb< + a<bA = aRb> + a>bA . (3.37)

Similarly one finds cA = aAb< +a<bR = aAb> +a>bR. The time-ordered and
anti-time-ordered functions can be obtained in a similar way and the Reader
can look at Table 3.1 for the complete list of definitions and identities.

For later purposes, we also consider the case of a Keldysh function
k(z, z′) multiplied on the left by a scalar function l(z). The scalar function
is equivalent to the singular part of a function belonging to Keldysh space,
l̃(z, z′) = l(z)δ(z, z′), meaning that l̃R/A = l̃M = l̃ and l̃≶ = l̃� = l̃	 = 0. Using
Table 3.1, one immediately realizes that the function l is simply a prefactor:∫

γ
dz̄ l̃(z, z̄)kx(z̄, z′) = l(z)kx(z, z′), where x is one of the Keldysh components

(≶, R, A, , �, M). The same is true for
∫

γ
dz̄ kx(z, z̄)r̃(z̄, z′) = kx(z, z′)r(z′),

where r̃(z, z′) = r(z)δ(z, z′) and r(z) is a scalar function.

3.5 The Kadanoff-Baym Equations

The Green function, as defined in (3.10), satisfies the equation of motion

i
d
dz

G(z, z′) = 1δ(z, z′) + h(z)G(z, z′) +
∫

γ

dz̄ Σ(z, z̄)G(z̄, z′) , (3.38)

as well as the adjoint equation

−i
d

dz′
G(z, z′) = 1δ(z, z′) + G(z, z′)h(z′) +

∫

γ

dz̄ G(z, z̄)Σ(z̄, z′) . (3.39)
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The external potential is included in h, while the self-energy Σ is a functional
of the Green function, and describes the effects of the electron interaction.
The self-energy belongs to Keldysh space and can therefore be written in
the form Σ(z, z′) = δ(z, z′)Σδ(z)+ θ(z, z′)Σ>(z, z′)+ θ(z′, z)Σ<(z, z′). The
singular part of the self-energy can be identified with the Hartree–Fock po-
tential, Σδ(z) = vH(z)+Σx(z). The self-energy obeys the same anti-periodic
boundary conditions at z = 0− and z = −iβ as G. We will discuss self-energy
approximations in more detail below.

Calculating the Green function on the time-contour now consists of two
steps: (i) First one has to find the Green function for imaginary times,
which is equivalent to finding the equilibrium Matsubara Green function
GM(τ, τ ′). This Green function depends only on the difference between the
time-coordinates, and satisfies the KMS boundary conditions according to
GM(τ+iβ, τ ′) = −eβµNGM(τ, τ ′). Since the self-energy depends on the Green
function, this amounts to solving the finite-temperature Dyson equation to
self-consistency. (ii) The Green function with one or two time-variables on
the real axis can now be found by propagating according to (3.38) and (3.39).
Starting from t = 0, this procedure corresponds to extending the time-contour
along the real time-axis. The process is illustrated in Fig. 3.2. Writing out the
equations for the components of G using Table 3.1, we obtain the equations
known as the Kadanoff-Baym equations [Kadanoff 1962],

i
d
dt

G≶(t, t′) = h(t)G≶(t, t′) + [ΣR ·G≶](t, t′) + [Σ≶ ·GA](t, t′)

+ [Σ� � G	](t, t′) , (3.40a)

−i
d
dt′

G≶(t, t′) = G≶(t, t′)h(t′) + [G≶ ·ΣA](t, t′) + [GR ·Σ≶](t, t′)

+ [G� � Σ	](t, t′) , (3.40b)

Fig. 3.2. Propagating the Kadanoff-Baym equations means that one first deter-
mines the Green function for time-variables along the imaginary track. One then
calculates the Green function with one or two variables on an expanding time-
contour
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i
d
dt

G�(t, τ) = h(t)G�(t, τ) + [ΣR ·G�](t, τ) + [Σ� � GM](t, τ) , (3.40c)

−i
d
dt

G	(τ, t) = G	(τ, t)h(t) + [Σ	 ·GA](τ, t) + [ΣM � G	](τ, t) . (3.40d)

The equations (3.40a) and (3.40c) can both be written on the form

i
d
dt

Gx(t, z′) = hHF(t)Gx(t, z′) + Ix(t, z′) , (3.41)

while (3.40b) and (3.40d) can be written as the adjoint equations. The term
proportional to hHF ≡ h + Σδ describes a free-particle propagation, while
Ix is a collision term, which accounts for electron correlation and introduces
memory effects and dissipation. Considering the function G≶(t, t′), it is easily
seen that if we denote by T the largest of the two time-arguments t and
t′, then the collision terms I≶(t, t′) depend on G≶(t1, t2), G	(τ1, t2) and
G�(t1, τ2) for t1, t2 ≤ T . In other words, given the functions Gx(t, t′) for time
arguments up to T , we can calculate Ix(t, t′), and consequently find Gx for
time-arguments t+∆ and t′+∆, by a simple time-stepping procedure based
on (3.41). The Green function G≶(t, t′) is thus obtained for time-arguments
within the expanding square given by t, t′ ≤ T . Simultaneously, one calculates
G�(t, τ) and G	(τ, t) for t ≤ T . The resulting G then automatically satisfies
the KMS boundary conditions.

When propagating the Kadanoff-Baym equations one therefore starts at
t = t′ = 0, with the initial conditions given by G<(0, 0) = limη→0 GM(0,−iη),
G>(0, 0)= limη→0 GM(−iη, 0), G	(τ, 0)= GM (τ, 0) and G�(0, τ) = GM (0, τ).
As can be seen from (3.40a)–(3.40d), the only contribution to Ix(0, 0) comes
from terms containing time-arguments on the imaginary axis. These terms
therefore contain the effect of initial correlations, since the time-derivative
of G would otherwise correspond to that of an uncorrelated system, i.e.,
Ix(0, 0) = 0.

3.6 Example: H2 in An Electric Field

We can illustrate the procedure outlined in the previous section by a sim-
ple example. We consider an H2 molecule, which is initially (at t = 0)
in its ground-state. At t = 0 we then switch on an additional electric
field, which is directed along the molecular axis and will remain constant,
adding a term v′(r, t) = −zE0θ(t) to the Hamiltonian. We will here fo-
cus on the electron dynamics, and let the nuclei remain fixed in their equi-
librium positions. The functions G, Σ, h and I defined in the previous
section are all expanded in a molecular orbital basis, and the first step there-
fore consists of choosing these orbitals, e.g. by performing a Hartree-Fock
calculation. The resulting Green function is independent of this choice of
orbitals. Given this basis, the Green function is represented on matrix form,
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〈r|G(z, z′)|r′〉 =
∑

ij ϕi(r)Gij(z, z′)ϕ∗j (r
′), where the indices i refer to the

molecular orbitals ϕi(r) = 〈r|ϕi〉. We then solve the Dyson equation for the
ground state, when the Hamiltonian (without the additional electric field) is
time-independent. The Matsubara Green function only depends on the differ-
ence between the two imaginary time-coordinates, and we consequently have
to solve the equation3

i
d
dτ

GM (τ − τ ′) = 1δ(τ, τ ′) + hGM (τ) +
[
ΣM � GM

]
(τ − τ ′) (3.42)

with the anti-periodic boundary condition GM (τ + iβ) = −e−βµGM (τ). In
this example, we have use the second-order approximation to the self-energy
Σ, as illustrated in Fig. 3.4(b). Since the self-energy depends on the Green
function, the Dyson equation should be solved to self-consistency, which can
be done with an iterative procedure [Dahlen 2005b, Ku 2002]. The Matsubara
Green function itself contains a wealth of information about the ground state
system, and quantities such as the energy, ionization potential and the density
matrix are readily given.

The time-propagation of the time-dependent matrix equations (3.40a)–
(3.40d) is relatively straightforward, the main difficulty rising from the fact
that the Green function G≶ has to be stored for all times t, t′ ≤ T . The self-
energy approximation used here, is given by the same second-order diagrams
that was used for the ground-state calculation. The plots in Fig. 3.3 show
the imaginary part of the matrix element G<

σg,σg
(t, t′) calculated for time-

variables within the square t, t′ ≤ T = 20.0 a.u., i.e., we have extended the
contour in Fig. 3.2 to T = 20 a.u. The time-variables are here represented on
an even-spaced grid. In the plot to the left, there is no added external po-
tential and the molecule remains in equilibrium. This means that the Green
function depends only on the difference t2−t1 (for t1, t2 ≥ 0) precisely like the
ordinary equilibrium Green functions. Time-propagation without any added
time-dependent field can in this way provide us with information about the
ground state of the system. For instance, the Fourier transformed Green func-
tion G(ω) =

∫
d(t1− t2)eiω(t1−t2)G(t1− t2) has poles at the ionization poten-

tials and electron affinities of the system [Fetter 1971]. The density matrix at
a time t is given by the time-diagonal, −iG<(t, t), and one can therefore define
time-dependent natural orbitals (and corresponding natural orbital occupa-
tion numbers) by diagonalizing the time-dependent density matrix. As the
Green function illustrated in Fig. 3.3(a) is largely diagonal in the HF orbital
indices, the frequency of the oscillations in the matrix element Gσg,σg

(t1, t2)
is for this reason practically identical to the first ionization potential of the
molecule. Also the value of −iG<

σg,σg
(t1, t1) = ImG<

σg,σg
(t1, t1) (the Green

function is imaginary on the diagonal), which is constant along the diagonal

3 This equation looks slightly different from how it usually appears in textbooks,
e.g. in [Fetter 1971]. The conventional form is obtained by redefining GM →
−iGM , ΣM → −iΣM and τ → −iτ . The new quantities are then all real.



46 R. van Leeuwen et al.

(a) (b)

Fig. 3.3. The figures show the Green function Im G<
σg,σg

(t1, t2) in the double time-
plane, where the matrix indices refer to the groundstate σg Hartree–Fock orbital
of the molecule. The figure on the left shows the system in equilibrium, while the
system on the right has an additional electric field, θ(t)E0 along the molecular axis.
The times t1 and t2 on the axes are given in atomic units

ridge in Fig. 3.3, is almost identical to the occupation number of the 1σg

natural orbital.
The figure on the right shows the same matrix element, but now in the

presence of an additional electric field which is switched on at t = 0. The
oscillations along the ridge t1 = t2 can be interpreted as oscillations in the
occupation number. We emphasize that Fig. 3.3 only shows the evolution
of one matrix element. To calculate observables from the Green function we
must of course take all matrix elements into account.

3.7 Conserving Approximations

In the Dyson-Schwinger equations (3.38) and (3.39), we introduced the elec-
tronic self-energy functional Σ, which accounts for the effects of the electron
interaction. The self-energy is a functional of the Green function, and will
have to be approximated in practical calculations. Diagrammatic techniques
provide a natural scheme for generating approximate self-energies and for
systematically improving these approximations. There are no general pre-
scriptions for how to select the relevant diagrams, which means that this se-
lection must be guided by physical intuition. There are, however, important
conservation laws, like the number conservation law or the energy conserva-
tion law, that should always be obeyed. We will in the following discuss an
exact framework for generating such conserving approximations.

Let us first discuss the conservation laws obeyed by a system of interacting
electrons in an external field given by the electrostatic potential vext(r, t)
and vector potential Aext(r, t). An important relation is provided by the
continuity equation
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d
dt

n(r, t) +∇ · j(r, t) = 0 . (3.43)

The density and the current density can be calculated from the Green func-
tion using (3.13) and (3.14). Whether these quantities will obey the continuity
equation will depend on whether the Green function is obtained from a con-
serving self-energy approximation. If we know the current density we can also
calculate the total momentum and angular momentum expectation values in
the system from the equations

P (t) =
∫

d3r j(r, t) and L(t) =
∫

d3r r × j(r, t) . (3.44)

For these two quantities the following relations should be satisfied

d
dt

P (t) = −
∫

d3r {n(r, t)E(r, t) + j(r, t)×B(r, t)} (3.45a)

d
dt

L(t) = −
∫

d3r {n(r, t)r ×E(r, t) + r × [j(r, t)×B(r, t)]} . (3.45b)

where E and B are the electric and magnetic fields calculated from

E(r, t) = ∇vext(r, t)−
d
dt

Aext(r, t) and B(r, t) = ∇×Aext(r, t) .

(3.46)
The (3.45a) and (3.45b) tell us that the change in momentum and angular
momentum is equal to the total force and total torque on the system. In the
absence of external fields these equations express momentum and angular
momentum conservation. Since the right hand sides of (3.45a) and (3.45b)
can also directly be calculated from the density and the current and therefore
from the Green function, we may wonder whether they are satisfied for a given
approximation to the Green function.

Finally we consider the case of energy conservation. Let E(t) = 〈Ĥ(t)〉 be
the energy expectation value of the system, then we have

d
dt

E(t) = −
∫

d3r j(r, t) ·E(r, t) . (3.47)

This equation tells us that the energy change of the system is equal to the
work done on the system. The total energy is calculated from the Green
function using the expression

E(t) = − i
2

∫
d3r 〈r|

[
i
d
dt

+ h(t)
]

G<(t, t′)|r〉
∣∣∣∣
t′=t

. (3.48)

The question is now whether the energy and the current calculated from an
approximate Green function satisfy the relation in (3.47).

Baym and Kadanoff [Baym 1961, Baym 1962] showed that conserving
approximations follow immediately if the self-energy is obtained as the func-
tional derivative,
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(c)(b)(a) (d)

Fig. 3.4. Diagrams for the generating functional Φ[G], and the corresponding self-
energy diagrams. In (a) we have the exchange diagram, and (b) the second order
approximation. The diagrams in (c) and (d) belong to the GW approximation and
the T -matrix approximation respectively

Σ(1, 2) =
δΦ[G]

δG(2, 1)
. (3.49)

Here, and in the following discussion, we use numbers to denote the contour
coordinates, such that 1 = (r1, z1). A functional Φ[G] can be constructed,
as first shown in a seminal paper by Luttinger and Ward [Luttinger 1960],
by summing over irreducible self-energy diagrams closed with an additional
Green function line and multiplied by appropriate numerical prefactors,

Φ[G] =
∑

n,k

1
2n

∫
d1̄
∫

d2̄Σ(k)
n (1̄, 2̄)G(2̄, 1̄) . (3.50)

In this summation, Σ(k)
n denotes a self-energy diagram of n-th order, i.e., con-

taining n interaction lines. The time-integrals go along the contour, but the
rules for constructing Feynman diagrams are otherwise exactly the same as
those in the ground-state formalism [Fetter 1971]. Notice that the functional
derivative in (3.49) may generate other self-energy diagrams in addition to
those used in the construction of Φ[G] in (3.50). In Fig. 3.4 we show some
examples of typical Φ[G] diagrams. Examples of Φ-derivable approximations
include Hartree–Fock, the second order approximation (also known as the
second Born approximation), the GW approximation and the T -matrix ap-
proximation.

When the Green function is calculated from a conserving approximation,
the resulting observables agree with the conservation laws of the underlying
Hamiltonian, as given in (3.43), (3.45a), (3.45b), and (3.47). This guarantees
the conservation of particles, energy, momentum, and angular momentum.
All these conservation laws follow from the invariance of Φ[G] under specific
changes in G. We will here only outline the principles of the proofs, without
going into the details, which can be found in [Baym 1961, Baym 1962].

• Number conservation follows from the gauge invariance of Φ[G]. A gauge
transformation Aext(1) → Aext(1) +∇Λ(1), where Λ(r, 0−) = Λ(r,−iβ)
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leaves Φ[G] unchanged. A consequence of the gauge invariance is that a
pure gauge cannot induce a change in the density or current. The invari-
ance is therefore closely related to the Ward-identities and to the f -sum
rule for the density response function [van Leeuwen 2004a].

• Momentum conservation follows from the invariance of Φ[G] under spa-
tial translations, r → r + R(z). The invariance is a consequence of the
electron interaction v(1, 2) = δ(z1, z2)/|r1 − r2| being instantaneous and
only depending on the difference between the spatial coordinates.

• Angular momentum conservation follows from the invariance of Φ[G] un-
der a rotation of the spatial coordinates.

• Energy conservation follows from the invariance of Φ[G] when described
by an observer using a “rubbery clock”, measuring time according to
the function s(z). The invariance relies on the electron interaction being
instantaneous.

3.8 Noninteracting Electrons

In this section we focus on noninteracting electrons. This is particularly rel-
evant for TDDFT, where the electrons are described by the noninteracting
Kohn-Sham system. While the Kohn-Sham Green function differs from the
true Green function, they both produce the same time-dependent density.
This is important since the density is not only an important observable in,
e.g., quantum transport, but also since the density is the central ingredient
in TDDFT. The use of NEGFs in TDDFT is therefore important due to the
relation between vxc and the self-energy.

For a system of noninteracting electrons V̂ee = 0 and it is straightfor-
ward to show that the Green function obeys the equations of motion (3.38)
and (3.39), with Σ = 0. For any z �= z′, the equations of motion can be
solved by using the evolution operator on the contour,

U(z, z′) = T̂c

{
e−i

∫ z
z′dz̄ h(z̄)

}
, (3.51)

which solves i d
dz U(z, z′) = h(z)U(z, z′) and −i d

dz′U(z, z′) = U(z, z′)h(z′).
Therefore, any Green function

G(z, z′) = θ(z, z′)U(z, 0−)f>U(0−, z′) + θ(z′, z)U(z, 0−)f<U(0−, z′) ,
(3.52)

satisfying the constraint (3.17) on the form

f> − f< = −i1 , (3.53)

is a solution of (3.38)–(3.39). In order to fix the matrix f> or f< we impose
the KMS boundary conditions. The matrix h(z) = h0 for any z on the ver-
tical track, meaning that U(−iβ, 0−) = e−βh0 . Equation (3.16) then implies
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f< = −e−β(h0−µ)f>, and taking into account the constraint (3.53) we con-
clude that

f< =
i

eβ(h0−µ) + 1
= if(h0) , (3.54)

where f(ω) = 1/[eβ(ω−µ) + 1] is the Fermi distribution function. The matrix
f> takes the form f> = i[f(h0)− 1].

The Green function G(z, z′) for a system of noninteracting electrons is
now completely fixed. Both G> and G< depend on the initial distribution
function f(h0), as it should according to the discussion of Sect. 3.3. Another
way of writing −iG< is in terms of the eigenstates |ϕn〉 ≡ |ϕn(0)〉 of h0 with
eigenvalues εn. From the time-evolved eigenstate |ϕn(t)〉 = U(t, 0)|ϕn〉 we can
calculate the time-dependent wavefunction ϕn(r, t) = 〈r|ϕn(t)〉. Inserting∑

n |ϕn(0)〉〈ϕn(0)| in the expression for G< we find

− iG<(rt, r′t′) = −i
∑

m,n

〈r|U(t, 0)|ϕm〉〈ϕm|f<|ϕn〉〈ϕn|U(0, t)r′〉

=
∑

n

f(εn)ϕn(r, t)ϕ∗n(r′, t′) , (3.55)

which for t = t′ reduces to the time-dependent density matrix. The Green
function G> becomes

−iG>(rt, r′t′) = −
∑

n

[1− f(εn)]ϕn(r, t)ϕ∗n(r′, t′) . (3.56)

Knowing the greater and lesser Green functions we can also calculate
GR,A. By definition we have

GR(t, t′) = θ(t− t′)[G>(t, t′)−G<(t, t′)] = −iθ(t− t′)U(t, t′) , (3.57)

and similarly

GA(t, t′) = iθ(t′ − t)U(t, t′) = [GR(t′, t)]† . (3.58)

In the above expressions the Fermi distribution function has disappeared.
The information carried by GR,A is the same contained in the one-particle
evolution operator. There is no information on how the system is prepared
(how many particles, how they are distributed, etc). We use this observation
to rewrite G≶ in terms of GR,A

G≶(t, t′) = GR(t, 0)G≶(0, 0)GA(0, t′) . (3.59)

Thus, G≶ is completely known once we know how to propagate the one-
electron orbitals in time and how they are populated before the system is
perturbed [Blandin 1976, Cini 1980, Stefanucci 2004a]. We also observe that
an analogous relation holds for G�,	
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G�(t, τ) = iGR(t, 0)G�(0, τ), G	(τ, t) = −iG	(τ, 0)GA(0, τ) . (3.60)

Let us now focus on a special kind of disturbance, namely h(t) = h0 +
θ(t)h1. In this case

GR(t, t′) = −iθ(t− t′)e−i(h0+h1)(t−t′) (3.61)

depends only on the difference between the time arguments. Let us define the
Fourier transform of GR,A from

GR,A(t, t′) =
∫

dω
2π

e−iω(t−t′)GR,A(ω) . (3.62)

The step function can be written as θ(t − t′) =
∫

dω
2πi

exp{iω(t−t′)}
ω−iη , with η an

infinitesimally small positive constant. Substituting this representation of the
θ-function into (3.61) and shifting the ω variable one readily finds

GR(ω) =
1

ω − h0 − h1 + iη
, (3.63)

and therefore GR(ω) is analytic in the upper half plane. On the other hand,
from (3.58) it follows that GA(ω) = [GR(ω)]† is analytic in the lower half
plane. What can we say about the greater and lesser components? Do they
also depend only on the difference t− t′? The answer to the latter question is
negative. Indeed, we recall that they contain information on how the system
is prepared before h1 is switched on. In particular the original eigenstates
are eigenstates of h0 and in general are not eigenstates of the Hamiltonian
h0 + h1 at positive times. From (3.59) one can see that G≶(t, t′) cannot be
expressed only in terms of the time difference t− t′. For instance

G<(t, t′) = e−i(h0+h1)t if(h0) ei(h0+h1)t
′
, (3.64)

and, unless h0 and h1 commute, it is a function of t and t′ separately.
It is sometimes useful to split h(t) in two parts4 and treat one of them per-

turbatively. Let us think, for instance, of a system composed of two connected
subsystems A + B. In case we know how to calculate the Green function of
the isolated subsystems A and B, it is convenient to treat the connecting
part as a perturbation. Thus, we write h(t) = E(t) + V(t), and we define g
as the Green function when V = 0. The function g is a solution of

{
i
d
dz
− E(z)

}
g(z, z′) = 1δ(z, z′) , (3.65)

and of the corresponding adjoint equation of motion. Furthermore, the Green
function g obeys the KMS boundary conditions. With these we can use g to
convert the equations of motion for G into integral equations
4 This can be done using projection operators. See [Stefanucci 2004a].
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G(z, z′) = g(z, z′) +
∫

γ

dz̄ g(z, z̄)V(z̄)G(z̄, z′)

= g(z, z′) +
∫

γ

dz̄ G(z, z̄)V(z̄)g(z̄, z′) ; (3.66)

the integral on z̄ is along the generalized Keldysh contour of Fig. 3.1. One
can easily check that this G satisfies both (3.38) and (3.39). G also obeys
the KMS boundary conditions since the integral equation is defined on the
contour of Fig. 3.1.

In order to get some familiarity with the above perturbation scheme,
we consider explicitly the system A + B already mentioned. We partition
the one-electron Hilbert space in states of the subsystem A and states of
the subsystem B. The “unperturbed” system is described by E, while the
connecting part by V and

E =

[
EAA 0

0 EBB

]
, V =

[
0 VAB

VBA 0

]
. (3.67)

Taking into account that g has no off-diagonal matrix elements, the Green
function projected on one of the two subsystems, e.g., GBB , is

GBB(z, z′) = gBB(z, z′) +
∫

γ

dz̄ gBB(z, z̄)VBA(z̄)GAB(z̄, z′) (3.68)

and
GAB(z, z′) =

∫

γ

dz̄ gAA(z, z̄)VAB(z̄)GBB(z̄, z′) . (3.69)

Substituting this latter equation into the first one, we obtain a closed equation
for GBB :

GBB(z, z′) = gBB(z, z′) +
∫

γ

dz̄
∫

dz̄′gBB(z, z̄)ΣBB(z̄, z̄′)GBB(z̄′, z′) ,

(3.70)
with

ΣBB(z̄, z̄′) = VBA(z̄)gAA(z̄, z̄′)VAB(z̄′) (3.71)

the embedding self-energy. The retarded and advanced component can now
be easily computed. With the help of Table 3.1 one finds

GR,A
BB = gR,A

BB + gR,A
BB ·ΣR,A

BB ·GR,A
BB . (3.72)

Next, we have to compute the lesser or greater component. As for the
retarded and advanced components, this can be done starting from (3.70).
The reader can soon realize that the calculation is rather complicated, due
to the mixing of pure real-time functions with functions having one real
time argument and one imaginary time argument, see Table 3.1. Below, we
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use (3.59) as a feasible short-cut. A closed equation for the retarded and
advanced component has been already obtained. Thus, we simply need an
equation for G≶(0, 0). Let us focus on the lesser component G<(0, 0) = if<.
Assuming that the Hamiltonian h0 is hermitian, the matrix (ω − h0)−1 has
poles at frequencies equal to the eigenvalues of h0. These poles are all on the
real frequency axis, and we can therefore write

G<(0, 0) = if(h0) =
∫

γ

dζ
2π

f(ζ)
1

ζ − h0
, (3.73)

where the contour γ encloses the real frequency axis.

3.9 Action Functional and TDDFT

We define the action functional

Ã = i ln Tr
{

eβµN̂ Û(−iβ, 0)
}

, (3.74)

where the evolution operator Û is the same as defined in (3.3). The action
functional is a tool for generating equations of motion, and is not interesting
per se. Nevertheless, one should notice that the action, as defined in (3.74) has
a numerical value equal to Ã = i lnZ, where Z is the thermodynamic partition
function. In the zero temperature limit, we then have limβ→∞ iÃ/β = E −
µN .

It is easy to show that if we make a perturbation δV̂ (z) in the Hamil-
tonian, the change in the evolution operator is given by

i
d
dz

δÛ(z, z′) = δV̂ (z)Û(z, z′) + Ĥ(z)δU(z, z′) . (3.75)

A similar equation for the dependence on z′, and the boundary condition
δÛ(z, z) = 0 gives

δÛ(z, z′) = −i
∫ z

z′
dz̄ Û(z, z̄)δV̂ (z̄)Û(z̄, z′) . (3.76)

We stress that the time-coordinates are on a contour going from 0 to −iβ. The
variation in, e.g., V (t+) is therefore independent of the variation in V (t−). If
we let δV̂ (z) =

∫
d3r δv(r, z)n̂(r), a combination of (3.74) and (3.76) yields

[compare to (3.4)] the expectation values of the density,

δÃ

δv(r, z)
=

i

Tr
{

eβµN̂ Û(−iβ, 0)
} δ

δv(r, z)
Tr
{

eβµN Û(−iβ, 0)
}

=
Tr
{

eβµN̂ Û(−iβ, 0)Û(0, z)n̂(r)Û(z, 0)
}

Tr
{

eβµN̂ Û(−iβ, 0)
} = n(r, z) . (3.77)
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A physical potential is the same on the positive and on the negative branch
of the contour, and the same is true for the corresponding time-dependent
density, n(r, t) = n(r, t±). A density response function defined for time-
arguments on the contour is found by taking the functional derivative of the
density with respect to the external potential. Using the compact notation
1 = (r1, z1), the response function is written

χ(1, 2) =
δn(1)
δv(2)

=
δ2Ã

δv(1)δv(2)
= χ(2, 1) . (3.78)

This response function is symmetric in the space and time-contour coordi-
nates. We again stress that the variations in the potentials at t+ and t− are
independent. If, however, one uses this response function to calculate the
density response to an actual physical perturbing electric field, we obtain

δn(r, t) = δn(r, t±) =
∫

γ

dz′
∫

d3r′ χ(rt±, r′z′)δv(r′, z′) , (3.79)

where γ indicates an integral along the contour. In this expression, the per-
turbing potential (as well as the induced density response) is independent
of whether it is located on the positive or negative branch, i.e., δv(r′, t′±) =
δv(r′, t′). We consider a perturbation of a system initially in equilibrium,
which means that δv(r′, t′) �= 0 only for t′ > 0, and we can therefore ignore
the integral along the imaginary track of the time-contour. The contour in-
tegral then consists of two parts: (i) First an integral from t′ = 0 to t′ = t,
in which χ = χ>, and (ii) an integral from t′ = t to t′ = 0, where χ = χ<.
Writing out the contour integral in (3.79) explicitly then gives

δn(r, t) =
∫ t

0

dt′
∫

d3r′
[
χ>(rt, r′t′)− χ<(rt, r′t′)

]
δv(r′, t′)

=
∫ ∞

0

dt′
∫

d3r′ χR(rt, r′t′)δv(r′, t′) . (3.80)

The response to a perturbing field is therefore given by the retarded response
function, while χ(1, 2) defined on the contour is symmetric in (1 ↔ 2).

If we now consider a system of noninteracting electrons in some external
potential vKS, we can similarly define a noninteracting action-functional ÃKS.
The steps above can be repeated to calculate the noninteracting response
function. The derivation is straightforward, and gives

χKS(1, 2) =
δ2ÃKS

δvKS(1)δvKS(2)
= −iGKS(1, 2)GKS(2, 1) . (3.81)

The noninteracting Green function GKS has the form given in (3.52), (3.55)
and (3.56). The retarded response-function is
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χR
KS(r1t1, r2t2) = −iθ(t1 − t2)

[
G>

KS(r1t1, r2t2)G<
KS(r2t2, r1t1)

−G<
KS(r1t1, r2t2)G>

KS(r2t2, r1t1)
]

= i
∑

n,m

[f(εm)− f(εn)]

× ϕn(r1, t1)ϕ∗m(r1, t1)ϕm(r2, t2)ϕ∗n(r2, t2) , (3.82)

where we have used (3.55) and (3.56) in the last step.
Having defined the action functional for both the interacting and the

noninteracting systems, we now make a Legendre transform, and define

A[n] = −Ã[v] +
∫

d1n(1)v(1) , (3.83)

which has the property that δA[n]/δn(1) = v(1). We also observe that the
functional Av0 [n] = A[n] −

∫
d1n(1)v0(1), where v0 is a fixed potential, is

variational in the sense that

δAv0 [n]
δn(1)

= v(1)− v0(1) = 0 (3.84)

when v = v0. This equation can be used as a basis for a variational principle
in TDDFT [von Barth 2005]. Similar to the Legendre transform in (3.83), we
define the action functional

AKS[n] = −ÃKS[vKS] +
∫

d1n(1)vKS(1) . (3.85)

with the property δAKS[n]/δn(1) = vKS(1). The Legendre transforms assume
the existence of a one-to-one correspondence between the density and the po-
tential. From these action functionals, we now define the exchange-correlation
part to be

Axc[n] = AKS[n]−A[n]− 1
2

∫
d1
∫

d2 δ(z1, z2)
n(1)n(2)
|r1 − r2|

. (3.86)

Taking the functional derivative with respect to the density gives

vKS[n](1) = v(1) + vH(1) + vxc[n](1) (3.87)

where vH(1) is the Hartree potential and vxc(1) = δAxc/δn(1). Again, for
time-arguments on the real axis, these potentials are independent of whether
the time is on the positive or the negative branch. If we, however, want to
calculate the response function from the action functional, then it is indeed
important which part of the contour the time-arguments are located on.

As mentioned in the beginning in the section, we can make a connec-
tion to ground state DFT if we restrict ourselves to a time-independent
Hamiltonian. In that case, the Kohn-Sham action takes the numerical value
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limβ→∞ iÃKS/β =
∑N

i=1(εi − µ) = TKS[n] +
∫

d3r n(r)vKS(r) − µN . Using
i/β

∫
d1n(1)vKS(1) =

∫
d3r n(r)vKS(r), we can obtain, for a fixed potential

v0,

Ev0 [n]− µN = − lim
β→∞

i
β
Av0 [n] = TKS[n] +

∫
d3r n(r)v0(r)

+
1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′| + lim

β→∞

i
β
Axc − µN (3.88)

from which we identify the relation

Exc[n] = lim
β→∞

i
β
Axc[n] . (3.89)

As an example, we can consider the ALDA action functional defined according
to

AALDA
xc [n] =

∫
d1n(1)exc(n(1)) (3.90)

where exc is the exchange-correlation energy density. The resulting energy
expression is

ELDA
xc [n] = lim

β→∞

i
β

∫ −iβ

0

dτ

∫
d3r n(r)exc(n(r)) =

∫
d3r n(r)exc(n(r)) .

(3.91)
We mention that much more sophisticated approximations to the exchange-
correlation action functional can be derived using Green function techniques
[von Barth 2005].

We already described how to define response function on the contour, both
in the interacting (3.78) and the noninteracting (3.81) case. Given the exact
Kohn-Sham potential, the TDDFT response function should give exactly the
same density change as the exact response function,

δn(1) =
∫

d2χ(1, 2)δv(2) =
∫

d2χKS(1, 2)δvKS(2) . (3.92)

The change in the Kohn-Sham potential is given by

δvKS(1) = δv(1) +
∫

d2
δvH(1)
δn(2)

δn(2) +
∫

d2
δvxc(1)
δn(2)

δn(2)

= δv(1) +
∫

d2 fHxc(1, 2)δn(2)

= δv(1) +
∫

d2
∫

d3 fHxc(1, 2)χ(2, 3)δv(3) , (3.93)

where fHxc(1, 2) = δ(z1, z2)/|r1 − r2|+ δvxc(1)/δn(2). Inserted in (3.92), we
obtain
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χ(1, 2) = χKS(1, 2) +
∫

d3
∫

d4χKS(1, 3)fHxc(3, 4)χ(4, 2) . (3.94)

This is the response function defined for time-arguments on the contour. If we
want to calculate the response induced by a perturbing potential, the density
change will be given by the retarded response function. Using Table 3.1, we
can just write down

χR(r1t1, r2t2) = χR
KS(r1t1, r2t2) +

∫
dt3
∫

dt4
∫

d3r3

∫
d3r4

χR
KS(r1t1, r3t3)fR

Hxc(r3t3, r4t4)χR(r4t4, r2t2) . (3.95)

The time-integrals in the last expression go from 0 to ∞. As expected, only
the retarded functions are involved in this expression. We stress the important
result that while the function fHxc(1, 2) is symmetric under the coordinate-
permutation (1 ↔ 2), it is the retarded function

fR
Hxc(r1t1, r2t2) =

δ(t1, t2)
|r1 − r2|

+ fR
xc(r1t1, r2t2) , (3.96)

which is used when calculating the response to a perturbing potential.

3.10 Example: Time-Dependent OEP

We will close this section by discussing the time-dependent optimized effective
potential (TDOEP) method in the exchange-only approximation. This is a
useful example of how to use functions on the Keldysh contour. While the
TDOEP equations can be derived from an action functional, we use here
the time-dependent Sham-Schlüter equations as starting point [van Leeuwen
1996]. This equation is derived by employing a Kohn-Sham Green function,
GKS(1, 2) which satisfies the equation of motion
{

i
d

dz1
+
∇2

1

2
− vKS(r1, z1)

}
GKS(r1z1, r2z2) = δ(z1, z2)δ(r1 − r2) , (3.97)

as well as the adjoint equation. The Kohn-Sham Green function is given
by (3.55) and (3.56) in terms of the time-dependent Kohn-Sham orbitals.
Comparing (3.97) to the Dyson-Schwinger (3.38), we see that we can write
an integral equation for the interacting Green function in terms of the Kohn-
Sham quantities,

G(1, 2) = GKS(1, 2)+
∫

d1̄
∫

d2̄GKS(1, 1̄) {Σ(1̄, 2̄) + δ(1̄, 2̄)[vext(1̄)− vKS(1̄)]}G(2̄, 2) . (3.98)
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It is important to keep in mind that this integral equation for G(1, 2) differs
from the differential equations (3.38) and (3.39) in the sense that we have
imposed the boundary conditions of GKS on G in (3.98). This means that if
GKS(1, 2) satisfies the KMS boundary conditions (3.16), then so will G(1, 2).

If we now assume that for any density n(1) = −iG(1, 1+) there is a po-
tential vKS(1) such that n(1) = −iGKS(1, 1+), we obtain the time-dependent
Sham-Schlüter equation,
∫

d1̄
∫

d2̄GKS(1, 1̄)Σ(1̄, 2̄)G(2̄, 1) =
∫

d1̄GKS(1, 1̄)[vKS(1̄)− vext(1̄)]G(1̄, 1) .

(3.99)
This equation is formally correct, but not useful in practice since solving it
would involve first calculating the nonequilibrium Green function. Instead,
one sets G = GKS and Σ[G] = Σ[GKS]. For a given self-energy functional, we
then have an integral equation for the Kohn-Sham equation. This equation
is known as the time-dependent OEP equation. Defining Σ = vH + Σxc and
vKS = vext + vH + vxc, the TDOEP equation can be written
∫

d1̄
∫

d2̄GKS(1, 1̄)Σxc[GKS](1̄, 2̄)GKS(2̄, 1) =
∫

d1̄GKS(1, 1̄)vxc(1̄)GKS(1̄, 1) .

(3.100)
In the simplest approximation, Σxc is given by the exchange-only self-

energy of Fig. 3.4a,

Σx(1, 2) = iG<
KS(1, 2)vee(1, 2) = −

∑

j

njϕj(1)ϕ∗j (2)vee(1, 2) (3.101)

where nj is the occupation number. This approximation leads to what is
known as the exchange-only TDOEP equations [Ullrich 1995a, Ullrich 1995b,
Görling 1997] (see Chap. 9). Since the exchange self-energy Σx is local in
time, there is only one time-integration in (3.100). The x-only solution for
the potential will be denoted vx. With the notation Σ̃(3, 4) = Σx(r3t3, r4t3)−
δ(r3 − r4)vx(r3t3) we obtain from (3.100)

0=
∫ t1

0

dt3
∫

d3r3

∫
d3r4

[
G<

KS(1, 3)Σ̃(3, 4)G>
KS(4, 1)−G>

KS(1, 3)Σ̃(3, 4)G<
KS(4, 1)

]

+
∫ −iβ

0

dt3
∫

d3r3

∫
d3r4 G

�
KS(1, 3)Σ̃(3, 4)G	

KS(4, 1) . (3.102)

Let us first work out the last term which describes a time-integral from 0
to −iβ. On this part of the contour, the Kohn-Sham Hamiltonian is time-
independent, with vx(r, 0) ≡ vx(r), and ϕi(r, t) = ϕi(r) exp (−iεit). Since
Σx is time-independent on this part of the contour, we can integrate
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∫ −iβ

0

dt3 G
�
KS(1, r3t3)G

	
KS(r4t3, 1)

= −i
∑

i,k

ni(1− nk)ϕi(1)ϕ∗i (r3)ϕk(r4)ϕ∗k(1)
eβ(εi−εk) − 1

εi − εk
. (3.103)

If we then use ni(1 − nk)(eβ(εi−εk) − 1) = nk − ni and define the function
ux,j by

ux,j(1) = − 1
ϕ∗j (1)

∑

k

nk

∫
d2ϕ∗j (2)ϕk(2)ϕ∗k(1)vee(1, 2) , (3.104)

we obtain from (3.103) and (3.101)

∫ −iβ

0

dt3
∫

d3r3

∫
d3r4 G

�
KS(1, 3)Σ̃(3, 4)G	

KS(4, 1)

= −
∫

d3r2
∑

j

nj

∑

k �=j

ϕ∗j (r2)ϕk(r2)
εj − εk

ϕj(1)ϕ∗k(1) [ux,j(r2)− vx(r2)] + c.c.

(3.105)

The integral along the real axis on the l.h.s. of (3.102) can similarly be eval-
uated. Collecting our results we obtain the OEP equations on the same form
as in [Görling 1997],

0 = i
∑

j

∑

k �=j

nj

∫ t1

0

dt2
∫

d3r2 [vx(2)− ux,j(2)]ϕj(1)ϕ∗j (2)ϕ∗k(1)ϕk(2) + c.c.

+
∑

j

∑

k �=j

nj
ϕj(1)ϕ∗k(1)
εj − εk

∫
d3r2 ϕ

∗
j (r2) [vx(r2)− ux,j(r2)]ϕk(r2) . (3.106)

The last term represents the initial conditions, expressing that the system is
in thermal equilibrium at t = 0. The equations have exactly the same form
if the initial condition is specified at some other initial time t0. The second
term on the r.h.s. can be written as a time-integral from −∞ to 0 if one
introduces a convergence factor. In that case the remaining expression equals
the one given in [van Leeuwen 1996, Ullrich 1995a, Ullrich 1995b]. The OEP
equation (3.106) in the so-called KLI approximation have been successfully
used by Ullrich et al. [Ullrich 1995b] to calculate properties of atoms in strong
laser fields (see Chap. 24).


