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Estimating a frequency unseen: an
application to ornithology
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9700 AV Groningen, The Netherlands

G. Th. De Roos

Dorpsstraat 198, 8899 AP Vlieland, The Netherlands

W. Schaafsma
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The second author is involved in a capture–mark–recapture study of
some wader species. Part of his program deals with resight
observations. On a particular day he visually inspects a fairly stable
population to identify the ringed birds by reading their ring-number.
Some ringed birds will be missed, so observations are repeated on
other days. The issue of main interest is whether, after some
repetitions, we can be sufficiently sure that all the ringed birds in the
population have been identified or, equivalently, that the frequency of
unseen birds is zero.
Most current theory is concerned with an asymptotic setting. In our
�exact� context the emphasis is on the determination of the
�probability� that the frequency of unseen birds is zero. This issue is
settled by considering the more general problem of �estimating� the
frequency of the unseen birds by providing a predictive inference in
the form of a probability distribution. We develop methods of
inference based on the assumption of a bird-independent probability
pi of identifying a ringed bird on day i, as well as without this
assumption. In Section 5 we critically examine these approaches.

Key Words: capture–mark–recapture analysis, epistemic probabili-
ties, distributional inference.

1 Introduction

The second author is involved in a study involving the catching, measuring, ringing

and colour-ringing, counting and identifying individual Turnstones, a wader species

belonging to the Charadriiformes order. In this paper we develop the theory for an

interesting subproblem.

*c.j.albers@open.ac.uk
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De Roos has collected and is still collecting biometric, count and moult data on

Ruddy Turnstones (Arenaria interpres, see the drawing in Figure 1). Having their

breeding habitat in the high-artic tundras of Siberia and Greenland, these waders

may migrate via the Frisian island Vlieland. This provides good opportunities for De

Roos to study them because of the large number of breakwaters stretching into the

North Sea where these birds congregate during high tides and can be caught at night

if there is a dark moon, cloudy sky, and favourable tide and wind and other

conditions (DE ROOS, 1987). The birds caught were (in the case that they hadn’t

aimed been ringed) ringed and colour-ringed, sexed, classified according to age,

weighed, and various aspects of size and shape were measured and recorded.

During the day the birds present in the group can be counted and, at high tide, can

be identified by reading ring-numbers with a telescope. Unfortunately, De Roos

could not be sure of identifying, on a particular day, all the ringed birds present.

However, by the procedure regularly, he can feel certain that, after a certain day (day

11 in the case of Table 1), all ringed birds have been identified. A mathematical-

statistical approach will be developed to characterize the degree of (un)certainty.

Fig. 1. Ruddy Turnstones (taken from Naumann, Naturgeschichte der Vögel Mitteleuropas, Band VIII,

Table 5, Gera, 1902).

Table 1. A �1� denotes that the bird indicated is spotted on the day indicated. All dates are in 1992. Note

that r1 ¼ 2, r2 ¼ 0, r3 ¼ 2, r4 ¼ 2, r5 ¼ 3, r6 ¼ 1, r7 ¼ 2, r8 ¼ 1, and r9 ¼ 1 (see the text). Note also that

n ¼ 68 identifications have been made involving m ¼ 14 birds on k ¼ 11 days.

Day Date a b c d e f g h i j k l m n Total

1 20–8 1 1 1 s1 ¼ 3

2 23–8 1 1 1 s2 ¼ 3

3 26–8 1 1 1 1 1 s3 ¼ 5

4 29–8 1 1 1 1 1 s4 ¼ 5

5 2–9 1 1 1 1 1 1 s5 ¼ 6

6 5–9 1 1 1 1 1 1 s6 ¼ 6

7 8–9 1 1 1 1 1 1 1 1 s7 ¼ 8

8 11–9 1 1 1 1 1 1 1 1 s8 ¼ 8

9 14–9 1 1 1 1 1 1 1 1 1 s9 ¼ 9

10 17–9 1 1 1 1 1 1 s10 ¼ 6

11 20–9 1 1 1 1 1 1 1 1 1 s11 ¼ 9

Total 1 8 6 7 3 4 5 1 7 4 5 9 5 3 68
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But first some notations will be defined. Using the letters a, b, . . . , n to indicate the

birds identified, the data appear in the form presented in Table 1. Apart from si, the

number of birds seen on day i (i ¼ 1, . . . , k ¼ 11), we use the notation rh for the

number of birds identified on (exactly) h different days. Note that r0 is the unknown

value of interest: the number of ringed birds that were not seen. Finally we introduce

m ¼ r1 þ . . . þ r9 ¼ 14 as the total number of birds seen, r ¼ r0 þ m as the total

number of ringed birds, and n ¼
P11

i¼1 si ¼
P11

h¼1 hrh ¼ 68 as the number of

identifications made. Note that it takes until day 10 before each one of these 14

birds has been seen.

The mathematical-statistical problem

Given the set of data �x� presented in Table 1, in particular the outcomes r1, . . . , r9,

we wish to construct a method of inference Q specifying a distributional inference

Q(x) about the number y ¼ r0 of ringed birds present but not identified by the

ornithologist. In particular an assessment of the probability that r0 ¼ 0, i.e. all

ringed birds have been seen, is required.

Note that the term �distributional inference� is nothing but a new name for an old

subject. It refers to the quantification of (un)certainty, belief, etc., by using

probabilistic terminology. This term was introduced by KROESE et al. (1995), because

similar terms such as Bayesian inference, fiducial inference, etc., are too closely

associated to a particular methodology of generating such distributional inferences

(and probability statements). With respect to the problem of interest a distributional

inference Q(x) about y ¼ r0 is nothing but a concrete probability distribution on

f0, 1, 2, . . .g expressing an opinion about y. The name distributional inference is also

used to refer to the science/technology/methodology of generating concrete distribu-

tional inferences like Q(x). In our approach to distributional inference (see, e.g.,

KARDAUN and SCHAAFSMA, 2003) requirements of probabilistic coherency are

questioned. This implies that we are somewhat critical with respect to the Bayesian

approach and that we do not believe that, in the present context, the �most reasonable�
distributional inferenceQ(x) about y ¼ r0 and the �most reasonable� assessment a(x) of
the probability that y ¼ 0 should, necessarily, be related by fQ(x)g(f0g) ¼ a(x). In this
paper, however, such subtleties will be ignored.

Our problem is related to the proofreaders problem studied in the literature.

POLYA (1975) considered the case of two proofreaders (�days� in our context) who

read, independently of each other, the same manuscript. Let A þ C and B þ C

denote the number of misprints found by reader 1 and reader 2, respectively. Here C

denotes the number of commonly found misprints. If M is the (unknown) total

number of misprints, then M � A � B � C is the number of undiscovered

misprints. Polya’s estimate for this number is AB/C; the statistical uncertainties

involved can be derived using the d-method. In YANG et al. (1982) an �optimal

stopping rule� for rereading the manuscripts is discussed. In comparison with the

proofreading problem, our problem has the advantage that probabilistic assump-

tions are less awkward. Another difference between our problem and that of Polya is
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that the assumption of a fixed underlying population is completely natural for the

proofreading problem, but not for our problem (see Section 6).

At the time we developed our theory, we did not have access to the data reported in

Table 1. The examples suggested to us were such that the number k of days is so small

(yet larger than 2) that it is practically impossible to falsify the hypothesis of the

existence of a bird-and-day-independent �probability� to identify ringed birds when

present in the group on a given observation day. The capture-mark-recapture

literature (e.g. OTIS et al., 1978; WHITE et al., 1982; CONN et al., 2004) emphasize that

�tests for equal catchability� or �equal identifiability� should be performed. While we

worried about day-effects, we somewhat overlooked the possibility of the existence of

bird-effects. Sections 2 and 3 are based on the assumption that neither bird- nor day-

effects exist. In Section 4 day-effects are allowed. After a discussion in Section 5, the

existence of bird-effects or, more precisely, nonconstancy of the population, (obvious

from Table 1) will be dealt with in Section 6.

2 A simple model

We have the outcomes (r1, . . . , r11) ¼ (2, 0, 2, 2, 3, 1, 2, 1, 1, 0, 0) and need the

latent outcome r0 or, more precisely, the �probabilities� that r0 ¼ 0, 1, 2, . . . , respect-

ively. There are, of course, many approaches to performing such extrapolation. One

such approach is to assume that r0, r1, . . . , rk are outcomes of independent Poisson

variables with parameters kh satisfying some model kh ¼ kh(h), e.g. with kh(h) ¼
exp(h1 þ h2h) (h ¼ 0, . . . , k) (see, also, STAM, 1987, for an alternative approach

based on negative binomial distributions). The models we shall use have a more

realistic appearance. In this and in the next section we assume (1) that the population

is constant (actually, the total number of birds, ringed and unringed, varies between

60 (on day 1) and 72 (on day 10)) and (2) that there is a fixed (unknown) probability

p that the j-th ringed bird is seen on day i. Here j ¼ 1; . . . ; r ¼
Pk

h¼0 rh and i ¼
1, . . . , k (¼11). Note that r ¼ r0 þ m ¼ r0 þ 14. Making some independence

assumptions in addition, the essence of Table 1 is captured in the Kolmogorovian

setting (X, F, P) where X is the space of all k � r matrices x with

xi;j ¼ 1 if bird j is seen on day i
0 otherwise

n
and the probability of each matrix x is

PðfxgÞ ¼ pnð1� pÞkr�n

where, as indicated before, n ¼
Pk

h¼1 hrh ¼
Pk

i¼1 si ¼ 68 is the total number of

identifications made. Note that the theoretical maximum kr for n appears if all r

(r � 14) birds are seen on all k ¼ 11 days. The random variables (some of these are

�statistics�, in the sense that their outcome is available) we are interested in are

defined by
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1. SiðxÞ ¼
Pr

j¼1 xi;j the number of birds identified on day i

2. TjðxÞ ¼
Pk

i¼1 xi;j the number of times bird j is seen

3. Rh ¼ #fjjTj ¼ hg the number of birds seen on h out of k days

4. M ¼
Pk

h¼1 Rh the number of birds seen at least once

5. N ¼
Pk

h¼1 hRh ¼
Pk

i¼1 Si the total number of identifications made.

The following statements are trivial.

1. S1, . . . ,Sk are i.i.d., Si � B(r, p)

2. T1, . . . ,Tr are i.i.d., Tj � B(k, p)

3. ðR0; . . . ; RkÞ � Multinomialðr; ð1� pÞk; k
1

� �
pð1� pÞk�1; . . . ; pkÞ

4.M � B(r, 1 � (1 � p)k)

5.N � B(rk, p)

6. Given fTj � 1g, the conditional distribution of Tj is defined by the

probabilities

PðTj ¼ cjTj � 1Þ ¼

k
c

� �
pcð1� pÞk�c

1� ð1� pÞk
ðc ¼ 1; . . . ; kÞ

7. The conditional distribution of N, given fM ¼ mg corresponds to that of the

sum
Pm

g¼1 Ng of independent random variables N1, . . . ,Nm, all having the

distribution specified under 6.

3 Settling the issue under the assumptions of Section 2

There are, of course, various reasons to question the assumption that a fixed

probability p exists, independently of i and j, that the j-th ringedbird is seen onday i.We

worried, for example, about the possibility of a day-effect because weather conditions

are likely to play a role: on one day birds might be less likely to be identified than on

another. This suggests that the assumption of a fixed p is unrealistic. In this section,

however, we will use the assumption of a constant probability.

It seems reasonable to concentrate our attention on the outcome x ¼ (m, n) (¼
(14, 68)) of (M, N) and on the number k (¼11) of days (in Table 1; later we shall

consider alternative situations where a distributional inference is made on the basis

of, e.g., the first five observation days, see Figure 2, or the last one or three, see

Figure 3). To start with, we estimate p by equating

EðN jM ¼ mÞ ¼ mEðTjjTj � 1Þ ¼ mkp=ð1� ð1� pÞkÞ

to the outcome n or, equivalently, by computing the estimate p̂ as the solution

of
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Fig. 2. Visualization for the case k ¼ 5. From left to right, the inferences �Binðr̂; 1� qÞ�, QðmÞ � ~QðmÞ
and QLIK(m) about r0 are displayed. We recommend QðmÞ � ~QðmÞ.

9 1514 25
0

0.2

0.4

Fig. 3. Opinions about r, expressed as distributional inferences, based on the last row (circles) and on the

last three rows (squares) of Table 1.
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p ¼ n
mk

ð1� ð1� pÞkÞ:

Next, ignoring the uncertainties involved in the estimation of p and concentrating

our attention on the outcome m of

M � Bðr; 1� ð1� p̂ÞkÞ;

an assessment has to be made of the �probability� that r0 ¼ r � m is equal to 0 and,

more generally, a distributional inference Q ¼ Q(m) has to be made specifying such

probabilities for all possible values 0, 1, 2, . . . of the frequency r0 of birds that were

not seen.

Classical statisticians will be attracted to the idea that such �predictive distribution�
Q can be obtained from the �factual� result, implied by Section 2, that

R0 � B r; ð1� pÞk
� �

:

They will replace the unknown values r and p in this equation by certain estimates.

A referee suggested using the moment estimates r̂ and p̂, which one can obtain by

equating the outcome m of M with EM ¼ r(1 � (1 � p)k) and the outcome n of N

with E N ¼ rkp. Such a plug-in approach is rather natural and a more sophisticated

approach should be in line with it. Some refinement, however, cannot be dispensed

with because (1) statistical uncertainties in the estimates r̂ and p̂ should be

incorporated, (2) the estimate r̂ is not an integer. As indicated before (see Section 1,

the mathematical-statistical problem), theories of Bayesian inference, fiducial

inference, etc. have been developed to cope with such refinements. Ignoring the

statistical uncertainty in estimating p (i.e. by equating p and p̂), we have to settle the

following issue.

Problem. Given is the outcome m of M � B(r, q) where

q ¼ 1� ð1� p̂Þk

and required is a distributional inference Q(m) about the frequency r0 ¼ (r � m)

of unseen birds.

We shall subsequently consider a �formal-Bayes� approach and a �fiducial�
approach. (We shall not use the �personalist-Bayes� approach based on a �proper
prior distribution� for the number r0 of birds unseen because we consider it

unreasonable to ask De Roos to specify such a prior. The formal-Bayes approach we

shall follow is not necessarily the most appropriate. In Section 4 we shall play with

the idea of assigning probabilities 1/2 to the possibilities r0 ¼ 0 and r0 ¼ 1 or, in the

context used there, to the possibilities r ¼ m and r ¼ m þ 1.)

The �formal Bayes� approach we would like to consider here is that the

distributional inference Q ¼ QLIK(m) about r0 is simply obtained by standardizing

the likelihood function. Using Mh as a notation for a (fictitious) random variable

with the same distribution asM if r0 happened to be equal to h 2 Q ¼ f0, 1, . . .g, we
obtain from
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PðMh ¼ mÞ ¼ rðhÞ
m

� �
qmð1� qÞrðhÞ�m

where r(h) ¼ m þ h, that the likelihood function lm(h) ¼ P(Mh ¼ m) provides the

probabilities

lmðhÞ=
X1
h¼0

lmðhÞ ¼
mþ h
m

� �
qmþ1ð1� qÞh

of h ¼ 0, 1, . . . , after standardization. These are the probabilities of the distribu-

tional inference

QLIKðmÞ ¼ NegBinðmþ 1; qÞ:

Assigning prior mass 1 to the possibilities h ¼ 0, 1, . . . for r0 is very questionable,

especially if the main interest is in the extreme case h ¼ 0: that De Roos has seen all

ringed birds present. (Assigning prior probabilities 1/2 to h ¼ 0 and h ¼ 1 is a

possibility but, in our opinion, not a very attractive one either.)

The �fiducial approach� (see KROESE et al., 1995 and SALOMÉ, 1998) is based on the

simple �classical-statistical� idea that the distribution function Gm of the distributional

inferenceQ(m) that we try to construct should be determined by identifyingGm(h) with
the �most reasonable� degree of belief ah(m) in the truth of the hypothesis Hh: r0 � h.
The next question is, of course, how to specify such a most reasonable degree of belief.

In the fiducial approach it is recommended that one uses �some� p-value. The

construction of distributional inferences for real-valued unknown parameters is then

reduced to the construction of p-values for a family of testing problems.

If we use the one-sided p-value

ahðmÞ ¼ PðMh � mÞ ¼
XrðhÞ
s¼m

rðhÞ
s

� �
qsð1� qÞrðhÞ�s

as degree of belief in Hh: r0 � h and define Gm(h) ¼ ah(m) then, using

PðBinðr; qÞ � mÞ ¼ PðNegBinðm; qÞ � r � mÞ;

we infer that

GmðhÞ ¼ PðNegBinðm; qÞ � rðhÞ � m ¼ hÞ

and, hence, that the distributional inference

QðmÞ ¼ NegBinðm; qÞ

is obtained.

In the theory of distributional inference, alternative solutions are discussed

because it is not completely reasonable to identify the one-sided p-value with the

degree of belief in Hh. In some situations assigning the �mid-

p-value�
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ahðmÞ ¼
1

2
PðMh � mÞ þ 1

2
PðMh � mþ 1Þ

is recommendable. For the present problem, KARDAUN and SCHAAFSMA (2003) show

that the distributional inference

~QðmÞ ¼ 1

2
þ 1

2
q

� �
NegBinðm; qÞ þ 1

2
� 1

2
q

� �
NegBinðmþ 1; qÞ

provides a slight improvement (in the sense that ~Q is approximately �weakly similar�,
whereas Q is not).

Numerical evaluation of the data in Table 1

The above methods provide p̂ ¼ 0:441 as the solution of 14�11p ¼ 68(1 � (1 � p)11)

and that QLIK(m) ¼ NegBin(15, 0.998) assigns the probability 0.99815 ¼ 0.975 to

H0: r0 ¼ 0 while Q(m) ¼ NegBin(14, 0.998) assigns the probability fQ(m)g(0) ¼
0.99814 ¼ 0.977. Note that QðmÞ � ~QðmÞ because q � 1.

Of course, also after the first, second, . . . , etc., day, De Roos could have tried to

make a distributional inference about the number of unseen birds. Figure 2 displays,

for k ¼ 5, the distributional inferences Binðr̂; 1� qÞ, QðmÞ � ~QðmÞ and QLIK(m)

about r0. As stated earlier, r̂ (¼10.78) is not an integer; the displayed inference is

based on Bin(10.78, q): ¼ 0.22Bin(10, q) þ 0.78Bin(11, q). Although, as suggested,

the right-tails of ~Q and QLIK are heavier than that of Binðr̂; 1� qÞ, the differences

between the three inferences are practically ignorable in this case k ¼ 5. This,

however, will not be true in general. We consider the distributional inference ~QðmÞ as
most reasonable because of the underlying theory but we will not object if somebody

else proposes Q(m). With respect to QLIK we are less positive because, if one is

interested in the truth or falsity of H0: r0 � h, then it does not seem reasonable to

assign prior measure h þ 1 to H0 and prior measure 1 to Ah: r0 � h þ 1.

The outcomes (k, mk, nk), the estimates p̂ ¼ p̂k, as well as the assessments a0(m) ¼
fQ(m)g(f0g) and ~a0ðmÞ ¼ f ~QðmÞgðf0gÞ are displayed in Table 2. It is not until after

the ninth day that we are sufficiently certain (at a ¼ 5%) that De Roos has identified

all the ringed birds present. Nevertheless the next day (day 10), two new birds

appeared (birds k and h).

Initially, we (Albers antd Schaafsma) were completely satisfied by this approach, the

�fiducial� inferences Q(m) and ~QðmÞ in particular. However, after discussion with

Table 2. First three rows: number, mk, of birds spotted at least once and total number, nk, of

observations, both after k days. Last three rows: the estimate p̂ of p and the probabilities fQ(x)g(0) and
f~QðxÞgð0Þ assigned to the event that all ringed birds present in the group were identified after day k.

k 2 3 4 5 6 7 8 9 10 11

mk 4 6 8 10 10 12 12 12 14 14

nk 6 11 16 22 28 36 44 53 59 68

p̂ 0.667 0.559 0.456 0.408 0.454 0.419 0.455 0.490 0.420 0.441

fQ(x)g(0) 0.624 0.583 0.481 0.470 0.765 0.762 0.910 0.972 0.941 0.977

f~QðxÞgð0Þ 0.620 0.581 0.479 0.469 0.765 0.762 0.910 0.972 0.941 0.977
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De Roos and other ornithologists and, especially, after seeing Table 1, we lost the

conviction that the theories of Sections 2 and 3 are satisfactory. The existence of a fixed

probability p, independent of day and bird, is obviously questionable. Another (minor)

drawback is that the statistical uncertainties involved in p̂ have been ignored. In the

next section, a theorywill be presented to dealwith the case that day-effects are allowed.

4 Taking day effects into account

To adapt the theory of the previous sections to the situation where on day i a

probability pi is involved, we shall condition on fS1 ¼ s1, . . . ,Sk ¼ skg to get rid of

p1, . . . , pk. This is convenient and natural, but not compelling because s1, . . . , sk
contains some information about r, e.g. that r � s ¼ max(s1, . . . , sk). Assuming that

bird-effects are absent, we have that, given the number si of ringed birds on day i, all

ð r
si
Þ combinations of sibirds from the r ringed birds available have the sameprobability

1=ð r
si
Þ of being the si ones seen. Following a recommendation by A.J. Stam (personal

communication), X consists of points x which are composed of the sets

fvi;1; . . . ; vi;sig � f1; . . . ; rg

of the identification or, rather, index numbers of the si birds seen on day i (i ¼
1, . . . , k). Assuming independence, the conditional probability distribution P on

(X, F) is determined by

PðfxgÞ ¼ 1=
r
s1

� �
r
s2

� �
. . .

r
sk

� �� �
if SiðxÞ ¼ siði ¼ 1; . . . ; kÞ

0 otherwise.

(

Note that here, and elsewhere, we use notations for random variables,

conceptually defined in Section 2, but now defined on a different X-space such

that, e.g., Si is not �random� at all. As defined earlier, Tj denotes the number of

times bird j has been observed. The (conditional) distribution of the relevant

observable M ¼
Pr

j¼1 1fTj�1g ¼ r� R0 can now be studied for any a priori

possible value h 2 Q ¼ fs, s þ 1, . . .g of r, where, as indicated before, s ¼
max(s1, s2, . . .). Standard theory (see, e.g., PARZEN, 1960, Section 2.6),

provides that

PðM ¼ mÞ ¼
Xr
j¼m

ð�1Þj�m j
m

� �
Qj

and that

PðM � mÞ ¼
Xr
j¼m

ð�1Þj�m j� 1
m� 1

� �
Qj

where
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Q0 ¼ 1

Q1 ¼
Xr
j¼1

PðAjÞ

Q2 ¼
Xr
j1¼1

Xr
j2¼j1þ1

PðAj1Aj2Þ

..

.

Qr ¼ PðA1A2 . . .ArÞ

and Aj ¼ fTj � 1g (j ¼ 1, . . . , r). The (conditional) probability that bird j is not seen

on day i is equal to 1 � (si/r). Hence, the probability that bird j is never seen is equal to

PðTj ¼ 0Þ ¼
Yk
i¼1

1� si
r

� �
:

As r is unknown, we introduce the auxiliary random variable Mh such that Mh has

the distribution which M would have had if r ¼ h. The result just mentioned

provides the relevant �physical� probabilities ph(l) ¼ P(Mh ¼ l) (l ¼ s, s þ 1, . . . , h)
whether or not a priori probabilities are specified. We are interested in the

construction of (epistemic) posterior probabilities

qmðhÞ ðh ¼ m;mþ 1; . . .Þ

specifying the opinion we should have about r after observing the outcome m of M.

The posterior probability qm(m) is of particular interest because it refers to the

(epistemic) probability that De Roos has identified all ringed birds in the population.

Two issues are involved:

1. The determination of ph(l)
2. How to convert the ph(l), given the outcome m of M, into the qm(h).

The distribution of M has been derived in the above, at least in principle. Its

expectation is given by

EðMÞ ¼
Xr
j¼1

PðTj � 1Þ ¼
Xr
j¼1

1� PðTj ¼ 0Þ
� �

¼ r � r
Yk
i¼1

1� si
r

� �
:

Thus having obtained

EðMhÞ ¼ h 1�
Yk
i¼1

1� si
h

� � !

we shall content ourselves by providing approximate ph(l)�s by equating L(Mh) to

the distribution on fs, s þ 1, . . . , hg which maximizes the entropy
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�
Xh
l¼s

pðlÞ log pðlÞ

under the restrictions

pðlÞ � 0;
Xh
l¼s

pðlÞ ¼ 1;
Xh
l¼s

lpðlÞ ¼ EðMhÞ:

This maximum entropy approach (cf. JAYNES, 2003) provides

~phðlÞ ¼ expðchl� wðhÞÞ ðl ¼ s; . . . ; hÞ

withwðhÞ ¼ log
Ph

l¼s expðchlÞ andwith ch such that
P

l ~phðlÞ ¼ EMh.Webelieve that

it is not very reasonable, in the context of Table 1 with k ¼ 11, s ¼ 9,m ¼ 14, n ¼ 68,

to convert the ~phðlÞ into posterior probabilities qm(h) by normalizing the likelihood

function lmðhÞ ¼ ~phðmÞ or, equivalently, by using the formal Bayes approach with

improper priorw(h) ¼ 1(h ¼ s, s þ 1, . . .). In our opinion, it ismore reasonable to use

some form of Fisher’s fiducial argument, e.g. that where the distribution function

GmðzÞ ¼
Xz
h¼m

qmðhÞ

of the distributional inference about r is equated to the p-value az(m) ¼ P(Mz � m)

or to the symmetrized p-value ~azðmÞ ¼ 1=2PðMz � mÞ þ 1=2PðMz � mþ 1Þ where, of
course, the approximate values

PðMz � mÞ �
Xz
l¼m

~pzðmÞ ¼ e�wðzÞ
Xz
l¼m

eczl ¼ e�wðzÞðeczðzþ1Þ � eczðmÞÞ=ð1� eczÞ

are used. To avoid extensive computations and, also, for some other reasons (see

Section 5), we shall proceed somewhat differently. With respect to the determination

of qm(m), we consider it appropriate, in the present context, to use a Bayesian

approach where the data-dependent prior w(h) ¼ 1/2 (h ¼ m, m þ 1) is used. It

provides us with

qmðmÞ ¼
pmðmÞ

pmðmÞ þ pmþ1ðmÞ
� ð1þ eðcmþ1�cmÞm�wðmþ1ÞþwðmÞÞ�1

If, in the situationofTable 1, the question is consideredwhether all ringed birdswere

identified in the first 11 days, then s ¼ max(si) ¼ 9,k ¼ 11, andm ¼ 14. Taking h ¼ 14

provides E M14 ¼ 14(1��(1 � si/14)) ¼ 13.984 such that the maximum entropy

solution satisfies ~p14ðlÞ / expðc14lÞ with c14 ¼ 4.175. Hence

ð~p14ð9Þ; . . . ; ~p14ð14ÞÞ ¼ ð0; 0; 0; 0; 0:015; 0:985Þ:

For the denominator of qm(m), given above, it is also necessary to look at the

situation h ¼ m þ 1. This provides E M15 ¼ 14.968, and ~p15ðlÞ / expðc15lÞ with

c15 ¼ 3.470. Hence
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ð~p15ð9Þ; . . . ; ~p15ð15ÞÞ ¼ ð0; 0; 0; 0; 0:001; 0:030; 0:969Þ:

As a consequence we obtain the (approximate) probability

q14ð14Þ ¼
~p14ð14Þ

~p14ð14Þ þ ~p15ð14Þ
¼ 0:985

0:985þ 0:030
¼ 0:970;

that r ¼ 14 and, hence, r0 ¼ 0. According to this model, the hypothesis that at least

one ringed bird has not been seen after day 11 is rejected at a ¼ 5% (or, almost

equivalently, the hypothesis that all birds have been seen is accepted). Table 3

provides such �probabilities� qm(m) in favor of H0: r0 ¼ 0, after inspection day k. The

agreement with the results in Table 2 is rather satisfying.

The theory in this section is not completely compelling, since much more

information is needed about the accuracy of the maximum-entropy approximation

to the true distribution L (Mh) and, also, since the data-dependent prior w(m) ¼
w(m þ 1) ¼ 1/2 is very questionable if k is smaller than, say, 9. (Elaboration along

the lines of the fiducial argument has not been performed because of the awkward

conclusion of the next section.)

5 Discussion

As indicated at the end of Section 1, the theory was developed without having access

to the real data. The attention was concentrated on a small number of consecutive

days (say k ¼ 6) such that falsification of the hypothesis of bird-independent

experimental probabilities would not be feasible. In such situations the research

worker may decide to make the assumption of �no bird-effects�. If the hypothesis

p1 ¼ . . . ¼ pk of �no day-effects� is acceptable (as in Table 1), then the theory of

Section 3 is applicable. If this hypothesis is not reasonable, then one might use the

theory of Section 4. That the results reported in Tables 2 and 3 are not much

different could have been expected on the basis of the acceptability of the hypothesis

p1 ¼ . . . ¼ pk. In practice, it may very well happen that day-effects are present.

Ornithologist J.B. Hulscher was dealing with counting all ringed Oystercatchers

(Haematopus ostralegus) on Schiermonnikoog (another Frisian island). In his

Table 3. First three rows: number of birds spotted at least once (m) at day k and maximum number s ¼
max(s1, . . . , sk) of observations per day until day k. Last row: probability that all ringed birds have been

seen after day k.

k 2 3 4 5 6 7 8 9 10 11

m 4 6 8 10 10 12 12 12 14 14

s 3 5 5 6 6 8 8 9 9 9

~pmðmÞ 0.750 0.750 0.681 0.664 0.836 0.839 0.940 0.984 0.958 0.985

~pmþ1ðmÞ 0.323 0.302 0.256 0.250 0.195 0.186 0.099 0.036 0.069 0.030

qm(m) 0.700 0.713 0.727 0.726 0.811 0.819 0.905 0.965 0.933 0.970
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experience (personal communication) the frequencies s1, . . . , sk of birds counted on k

consecutive days were too different to assume a common p. This implies that the

theory in Section 4 may be of practical interest as well.

However, if we study the frequencies (r1, . . . , r11) ¼ (2, 0, 2, . . . , 0) of Turnstones

with 1, 2, . . . , 11 identifications, then these frequencies are in obvious conflict with

the probabilistic assumption of �no bird-effects�. This leaves us with an awkward

issue. We have applied the theory developed in Sections 2, 3 and 4 to a table which

is in conflict with the assumption of �equal watchability�. In less extensive

applications this assumption may be acceptable, but for Table 1 our theory is

�dead�.

6 Life after death?

In the previous sections we ignored the fact that our observations were not from a

fixed population, but that the population was slowly expanding in time (especially

around the sixth day), see Table 4. If we look at Table 1, we get the impression that,

e.g., birds a and h were not present in the population in the beginning. This explains,

at least partly, that the frequencies (r1, . . . , r11) ¼ (2, 0, 2, 2, 3, 1, 2, 1, 1, 0, 0) are in

contrast with the hypothesis of a fixed probability. It also explains why the estimates

p̂k in Table 2 display a decreasing trend. Fortunately, we can exploit the following

information, obtained from Table 1. If a bird is seen at least twice, then there is a

first and a last day, and a number of days in between. Restricting the attention to the

birds with, at least, one intermediate observation (birds b, c, etc. indicated in

Table 5) we can count the number ui of such intermediate observation days (ui ¼ 9

for bird b, see Table 1) and the number vi of these ui days (vi ¼ 6 for bird b, see

Table 1) on which the bird was identified. Table 5 provides the basis for the

following argument. If we assume that rejection of the hypothesis of a fixed

probability is entirely due to the (obvious) fact that some birds are not always

present, then we can concentrate the attention on the probability of seeing a ringed

bird, when present in the population on any day. Ignoring day-effects and assuming

Table 4. Total number of birds on the breakwaters each day.

day 1 2 3 4 5 6 7 8 9 10 11

population 60 63 61 62 60 65 71 70 71 72 70

Table 5. Days between first and last sighting, and number of in-between sightings, given for birds that

are identified at least twice.

bird i b c d e f g i j k l m n total

ui 9 5 9 3 3 5 6 6 4 9 6 8 73

vi 6 4 5 1 2 3 5 2 3 7 3 1 42
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that birds seen at least twice were present on all intermediate days, we can use

Table 5 to compute the relative frequency 42/73 ¼ 57.5% as an estimate of the

probability of reading the ring-number of a bird if it is present on a specific day.

Table 1 suggests (see birds j, m and, especially, n) that birds are not necessarily

present on all intermediate days. That is why the denominator in 42/73 is too large

and the statement should be that if, on some day, a ringed bird is present in the

population, then De Roos will identify its ring number with probability at least

57.5%. We were, obviously, not sufficiently precise with respect to the population

concept. Moreover, we have ignored some, possibly relevant, information about

colour-rings.

With respect to the population-concept, a general methodological perspective is

based on the idea that there is a gradual increase of concreteness – and decrease

of abstractness – if one considers the sequence epistemology/mathematical

statistics/applied statistics, /actual scientific research. An example about birds,

from epistemology, is HEMPEL�s ravens paradox (1965). The essence is as follows.

Sitting by his desk is a rational man, looking around his study and seeing books,

pictures, the cat, etc., and the curtains closed in from of the windows, he notices

that every single non-black item he sees is not a raven. But if �non-black� implies

�non-raven� then, by inversion, all ravens must be black. The flaw in this

argument is, of course, that the �universe of discourse� is tacitly extended from the

factual population of things in the rational man’s study to the entire world.

Hempel concludes that armchair ornithology should not give us beliefs about real

birds in the wild. This is in line with the conclusion in the above that we should

have been more precise about the �universe of discourse�. With respect to his

population, De Roos was very clear: it consists of all birds present on the high-

tide roosting site where they (tend to) congregate during high-tides during the day

(some birds, but not too many, may occasionally be elsewhere on Vlieland). This

population of birds was fairly, but not exactly, constant during the inspection

period considered: it is expanding somewhat (see Table 4) because of delayed

arrivals.

With respect to the existence of additional information, De Roos did not only

denote the ring-number, he also read the colour-rings whenever possible. For some

birds the colour-ring was read but the identification number was not, because the

bird flew away before identification was successful. Data presented in Table 6

Table 6. Extension of Table 4. On day i, De Roos read the colour code of the rings of ci birds, and for si
birds, the ring-number was also noted. Note that assuming the presence of 14 (or 15) birds during days 7 to

10, the probability of reading the identification number is (about) 57% (or 53%).

day i 1 2 3 4 5 6 7 8 9 10 11

population ni 60 63 61 62 60 65 71 70 71 72 70

colour-rings ci 6 6 8 8 10 9 10 14 13 14 14

identifications si 3 3 5 5 6 6 8 8 9 6 9
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indicate that the ci are increasing more rapidly than the si. The explanation is that

during the earlier days of the inspection period it is more difficult to approach the

population such that colour-rings and, especially, ring-numbers can be identified:

the birds had to become accustomed to their new environment and to the

ornithologist’s behaviour. The conclusion of the existence of a fixed probability of

at least 57.5% to identify a ringed bird (if it is present) was made too hastily.

Tables 1 and 6 are in line with the statements that (1) the probability of reading

the colour-ring gradually increases from about 0.50 on day 1 to about 0.95 during

the last 5 days; (2) the probability of reading the identification number, given the

reading of the colour-ring, is fairly constant; it is about
P

si/
P

ci ¼ 0.6; (3) the

probability of identifying the bird by reading its ring-number is about 0.57 during

the last five inspection days in Table 1; (4) in principle, birds stay in the population

from the day of their arrival until the day of their (common) departure which is

beyond the inspection period; (5) if this is used as an assumption then Table 1 can

be used to provide the estimate 54/91 ¼ 0.59 for the probability that a ringed bird,

when present, is identified.

Concluding remarks. De Roos collected the data presented in Table 1 because he

had to inspect his population. He does not want to miss any ringed bird because he is

interested in making a survival analysis of Turnstones. It is fair to conclude that he

should inspect his population more frequently in the second half of the period that it

is present on Vlieland: first because identification is somewhat easier and second

because of the late arrivals. If we restrict the attention to these later inspections, say

the last k days, then we can conclude that (1) if De Roos wants to have a probability

of at least 95% of identifying all ringed birds available and is expecting 15 to 20

ringed birds, then he should choose k such that

1� ð0:43Þk
� �20

� 0:95;

this provides k � 8.

(2) In practice, De Roos is not inspecting his population that often. If he

inspects his population in some year k times and succeeds in identifying m birds by

reading their ring-number, then he will worry about the frequency r0 ¼ r � m of

unseen birds. If inspections took place in the second half of the period that these

Turnstones are present, then the situation of Section 3 becomes of interest, with p̂

replaced by 0.57.

Example. Suppose De Roos inspects his population on one day only providing

m ¼ 9 identifications, like on the 11th day of Table 1. Using k ¼ 1, q ¼ 0.57 we

recommend the distributional inference

~QðmÞ ¼ 0:79NegBinð9; 0:57Þ þ 0:21NegBinð10; 0:57Þ

for the frequency of ringed birds not identified (see Section 3). By shifting the dis-

tribution m ¼ 9 units to the right, we obtain a distributional inference about the

total frequency r of ringed birds. This distribution is displayed in Figure 3.
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Next, suppose De Roos inspects his population on three days providing the same

results as on the 9th, 10th and 11th day of Table 1 such that m ¼ 14. Using k ¼ 3

and q ¼ 1 � (0.43)3 ¼ 0.92 we recommend the distributional inference

~QðmÞ ¼ 0:96NegBinð14; 0:92Þ þ 0:04NegBinð15; 0:92Þ

for the frequency of unseen ringed birds (see Section 3). By shifting this over m ¼ 14

units to the right, we obtain a distributional inference about r, see again Figure 3.

Note the �convergence� of these opinions to the true value of r, which we believe to be

14 or 15, or perhaps 16.
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