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C h a p t e r  7  

THE MACRO-LEVEL ASPECTS OF THE ALIGNMENT STUDY 

A coordinated problem solving perspective 

7.1 Introduction 

This chapter addresses the macro-level aspects of the alignment study and consists of 
five sections. Section 7.2 describes the cooperative work condition of the alignment 
experiment. It describes how two Soar agents cooperate within the task environment 
and addresses the problems encountered. Section 7.3 presents the results of the 
cooperative work condition. Section 7.4 discusses the results of the multiagent effort 
in relation to the single agent effort of the Van den Broek experiment. In fact, this is 
the second comparison contrasting the single Soar agent performance with that of the 
multi Soar agent condition. Hence, this entails a comparison of the non-cooperative 
and the cooperative work condition within the Van den Broek experiment. Section 7.5 
discusses the results of the multiagent effort in relation to the single agent effort of the 
Cohen experiment. This in fact is the third comparison concerning the performance of 
the single Cohen agent and that of the two Cohen agents in the cooperative work 
condition. Section 7.6 compares the cooperative work conditions of both experiments. 
This is the fourth comparison between the performances of the multi Cohen agent and 
the multi Soar agent. 

7.2 The cooperative work condition 

This section describes the cooperative work condition of the alignment experiment. 
Within the cooperative work condition, two Soar agents must cooperate in order to 
accomplish the same model task. 

Within the cooperative work condition, the bottom-up experimental cycle has been 
applied (Conte & Castelfranchi, 1994). The starting point of the bottom-up 
experimental cycle, depicted in figure 7.1, is the task environment in which the two 
Soar agents are embedded. The agents are endowed with cognition and initial 
knowledge such as goals, rules following principles, etc. The next step is to set the 



On agent Cooperation 160 

agents to the task of collective decision-making. The top frame of figure 7.1 represents 
the starting point of the bottom-up experimental cycle. 

In the process of cooperation (the second frame), it is probable that different kinds of 
coordination problems of will emerge (the third frame). 

Emergence
Of

Problems

Agents
+

Knowledge

Cooperation
Adding

Knowledge

 

Figure 7.1. The bottom-up experimental cycle. 

The way to overcome these emerging difficulties in cooperation is first to analyse the 
causes of the problem, i.e. to identify what knowledge the agents are lacking in order 
to cooperate successfully. Based on the analysis, the presumed knowledge required 
will be added to the agents. The feedback arrow represents this process of adding 
knowledge. Whether the knowledge added proves to be appropriate in solving the 
cooperation problem among the agents can be established by rerunning the 
experiment. In this way, the bottom-up experimental cycle can be explored several 
times with the intention of achieving a situation in which the agents are capable of 
cooperating successfully, i.e. to achieve a situation in which a task can be attained 
through a collaboration process. Knowledge is viewed as being “appropriate”  when it 
enables coherent collective behavior and achieves the collaborative goal set. This 
means that we are not concerned with optimizing the cooperating process, or with its 
efficiency, although this experimental cycle could provide the methodological tool to 
do so. The bottom-up experimental cycle has been applied to provide the experimenter 
with a means of “discovering” the agent’s need for sociality, i.e. coordination ability, 
without presupposing it. 

The agents, being copies of the agent used within the single agent condition, were set 
to their cooperation task. During the first run, the agents became locked into an action-
repetition deadlock. The action-repetition deadlock within the problem-solving 
process emerges when the agents persist in making different action decisions 
concerning the same observed state. The emergence of an action-repetition deadlock 
will be explained with an example run. The sequence of actions as it occurs in the 
example run and the items learned by both agents are listed in table 7.1. 
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Table 7.1. The action sequence and items learned within the example run. 

Action 
decision 

State Agent Applied 
action 

Items learned 

1 { 4 8 16 24}  Alpha   
 { 3 8 15 24}  Alpha  Hyp-action1  
2  Beta   
 { 3 7 15 23}  Beta  Hyp-action1  
3  Alpha  No-effect  
4     
 { 3 8 15 24}  Alpha  Hyp-action2  

5 
 Beta 

 
Repetition 1; No-
effect  

6    No-effect  
7     
 { 4 8 16 24}  Beta  Hyp-action2  
8  Alpha   

9 
{ 3 8 15 24}  Beta 

 
Repetition 2; 
ineffective state 

10 { 4 8 16 24}  Alpha  Repetition 1 
11 { 3 8 15 24}  Beta ? Repetition 3 

Let us assume that the organization is in its initial state {4 8 16 24} , see figure 7.2, and 
that agent Alpha applies action A (“up”)—a random selection—causing a state change 
to {3 8 15 24} . Alpha deduces that Hyp-action1 is A (“up”) because of the positive 
feedback obtained (see table 7.1). Control now shifts to agent Beta, which applies 
(second action decision)—again at random—action B (“ left” ). At this stage it should 
be emphasized that agent Beta has no knowledge, i.e. no model, of agent Alpha and 
vice versa. Beta deduces that the best action to pursue (Hyp-action1) must be D 
(“right”) because action B (“ left” ) induced negative feedback. Again, Alpha is in 
control. Because of its Hyp-action1 preference (RULE 4 see Appendix A), Alpha 
applies A (“up”) and experiences the fact that action A has no effect on this state (see 
action decision 3). The action potential has been narrowed down to three. However, by 
applying action C (“down”), the agent would proceed in the opposite direction as 
indicated by Hyp-action1, which has been implemented as less effective search 
behavior. This search knowledge has been implemented as RULE 6. Hence, the action 
potential for this state is reduced to either B (“ left” ) or D (“right”). Alpha has not 
established a preference for either of these actions and consequently a random choice 
between the two will be made. Alpha applies D (“right”), moving the organization 
back to state {3 8 15 24} . The feedback received is positive and Alpha represents that 
Hyp-action2 is D (“right”). Now in control, Beta finds itself again in state {3 8 15 24} , 
the state in which it made its last action decision. The fact that agent Beta has moved 
to a state it just came from is represented as repetition 1 in table 7.1 (see action 
decision 5). Beta applies action D (“right”)—Hyp-action1 preference—and finds that 
action D has no effect on this state (action decision 5). Beta also will make a random 
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choice between action A (“up”) and C (“down”), based on SEARCH RULE 6. Beta 
applies action A and observes that the action has, again, no effect on this state. 
Consequently, action C (“down”) will be applied, which causes a state transition to {4 
8 16 24} . Please note that the last Beta action resulted in a return to the initial state. 
Negative feedback is obtained, leading Beta to conclude that Hyp-action2 is to be 
represented as action A (“up”). Alpha, now in control, applies action A (“up”)—Hyp-
action1 preference (action decision 8). With Alpha’s last action decision, Beta finds 
itself back in state {3 8 15 24}  for the second consecutive time, which has been 
represented in table 7.1 as repetition 2. Because Beta now knows that neither of the 
Hyp-actions can be applied in this state, it will represent it as an ineffective state. 
Again, Beta applies action C (“down”) (action decision 9). The reaction of Alpha will 
be to apply action A (“up”) in state {4 8 16 24}  because it has not yet established the 
“ ineffectiveness” of state {3 8 15 24}  and it still assumes that Hyp-action1 (“up”) must 
be pursued (action decision 10). Beta returns for the third consecutive time to the same 
state, i.e. repetition 3. In this way, a cyclic pattern of action decisions emerges from 
which the agents cannot escape and which therefore yields a deadlock for the 
cooperation process. The knowledge that both agents hold within their world models is 
depicted in figure 7.2. 

 

     3 
15     8 
    24 

α 

Goal State 

Initial State 

Hyp-dir1 

 Agent’s  α  view Goal State 

Initial State 

β 

Hyp-dir1 

 Agent’s ß view 

Hyp-dir2 Hyp-dir2 

    24 
16     8 
     4  

Figure 7.2. The situation in which an action repetition deadlock emerges. 

The reason the cooperative deadlock emerges in the form of a cyclic pattern is that 
agent Beta wants to avoid state {3 8 15 24} , which has been represented as ineffective, 
while agent Alpha does not possess this knowledge and has therefore no reason not to 
want to explore that state and to pursue in that direction. This is considered realistic in 
terms of cooperation processes. Differences in perception of reality are identified as 
one of the causes of individual conflict (March & Simon, 1993: 141). 

The lesson learned in terms of representation is that when models of the environment 
are learned on the basis of individual action-feedback cycles, the model content may 
differ from agent to agent simply because they are based on individual learning 
experience, which enhances the plausibility of the model. 
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7.2.1 Difference between both mental models 

The example of a cooperative deadlock caused by cyclic behavior, depicted in figure 
7.2, shows an important consequence of learning agents in a cooperative work 
condition. Within the cooperative work condition, agents build up a mental model of 
the task environment based on their own individual experience. Because experience 
differs at a certain moment in time, the model content on which the agents base their 
choice of action will also differ accordingly. Incorporating the possibility of different 
interpretations of reality within the multiple agent decision-making models enhances 
the plausibility of the model, because it mimics real-world situations in which conflicts 
emerge. 

The cooperative deadlock is perceived as a “social conflict”  because it is based upon a 
cyclic behavioral pattern of two agents. It means that both agents perceive different 
means for reaching the same goal state. The different perceptions of “means” in 
reaching the goal state relate to the different content of their task environmental 
models. Agent Beta’s model of the task domain holds that both Hyp-actions A (“up”) 
and D (“right”) have no effect on state {3 8 15 24}  and has represented this state as 
ineffective. Consequently, Beta tries to avoid that state and proceeds in a different 
direction. Agent Alpha, not having this knowledge, has no reason to avoid this state 
and still holds the attainment of that state as preferable. The emergence of conflict is a 
phenomenon that was not anticipated beforehand. It was something the simulation 
stumbled upon and therefore it came somewhat as a surprise. 

7.2.2 Adding cooperation knowledge 

The emerging cooperative deadlock of cyclic behavior has been perceived and dealt 
with as an indication of the need for additional knowledge in order for the cooperation 
effort to succeed. The first thing that the agent needs is the ability to recognize that 
“ the other agent”  reversed the effect of its own action. The recognition rule has been 
implemented in such a way that the “ incidental”  reversals, which are part of the 
normal trial-and-error learning cycle, will be ignored. In order to do so, the LEVEL OF 
REPETITION was introduced, i.e. the number of consecutive times a state reversal 
occurs. An action-repetition deadlock will only be detected when a state transition 
reversal takes place at least two consecutive times, see Appendix A under label 
OPERATOR PASS2LEARN. 

The next thing to decide is what action to take when the cooperative deadlock has 
been recognized. Initially, the rule that was added forces the agent that recognizes the 
action-repetition deadlock first, to select an action different than the action that was 
last applied. In the above example sequence of figure 7.2, the action last applied is 
“A”. Alpha must now exclude action “A” as an alternative and choose from the others 
(B, C, and D). This forced variation adds a certain amount of randomness to behavior 
in order to overcome cyclic patterns at a local minimum. This random factor is 
comparable to a stochastic activation function used in Boltzmann machines (Russell & 
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Norvig, 1995). Adding this stochastic activation function to the action selection 
behavior did not solve the problem since the cyclic behavior remained. The difference, 
however, was that the cyclic pattern occurred in a span of three different states instead 
of two. We did not extend the Soar agent’s ability for remembering more than one 
visited state, since the cyclic behavior would persist and spread over even more states, 
providing, therefore, no “real”  solution. A real solution in the case of a knowledge-
level system, which the Soar agent evidently is (see chapter 4), would be to add 
sufficient coordination knowledge to the agent so that it is able to cope with the 
deadlock situations. That is, we want to look for a knowledge-based solution instead 
of a trial-and-error approach. 

The question then was: What would be a proper knowledge-based solution for the 
cooperative deadlock. We have stated that particular differences in world 
representations are the cause of the cyclic pattern. Therefore, the answer must be 
found in somehow aligning the knowledge content of the models in such a way that 
the basis for perceiving different means of reaching the goal state disappears. One way 
of accomplishing this is to give the agents an opportunity of learning additional 
environmental knowledge. The assumption is that the newly acquired environment 
knowledge will change the action preference ordering and consequently change the 
decision-making process of the agents with the potential of lifting the cooperative 
deadlock situation. The solution proposed is different from the former in that 
additional knowledge about the environment is learned instead of simply 
implementing a heuristic of randomly trying “something else”. 

The way an agent learns within the model is to act within the task environment. 
Therefore, the best action to apply in the case of a cooperative deadlock is to “pass”, 
i.e. to apply action E, and grant the other agent an extra opportunity to act and, by 
doing so, to learn and change its world model accordingly. Because this second order 
“pass” decision will be made based on the assumption that the other agent will learn 
from it, it has been called a “pass2learn” decision. The difference between the default 
“pass” decision following each state transition and the one induced through a 
cooperative deadlock is that the latter is based on a percept of the cyclic decision 
pattern. This means a shift from applying the pass rule based on tacit knowledge to 
applying the rule based on explicit knowledge. In summary, the pass2learn rule means 
that a decision will be made by the agent that detects a no-progress situation (percept), 
in the form of cyclic behavior, to shift control to the other agent. 

Next, this pass2learn rule will be applied in the example case as depicted in figure 7.2 
and it will be indicated how the problem-solving process changes accordingly. The 
action sequence and items learned as occurs within the example run demonstrating the 
pass2learn rule is listed in table 7.2. 
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7.2.3 Applying the pass2learn rule 

Beta will be the first to detect the cooperative deadlock when it returns to state {3 8 15 
24}  for the second consecutive time and will, consequently, take the initiative for 
“pass2learn” (see action decision 9 in table 7.2). It means that instead of applying 
action C (“down”) it will shift the control to Alpha. 

Table 7.2. The action sequence and items learned as occurs within the example run 
demonstrating the pass2learn rule. 

Action 
decision 

State Agent 
Applied 
action 

Items learned 

1 { 4 8 16 24}  Alpha   
 { 3 8 15 24}  Alpha  Hyp-action1  
2  Beta   
 { 3 7 15 23}  Beta  Hyp-action1  
3  Alpha  No-effect  
4     
 { 3 8 15 24}  Alpha  Hyp-action2  

5  Beta  
Repetition 1; No-
effect  

6    No-effect  
7     
 { 4 8 16 24}  Beta  Hyp-action2  
8  Alpha   
9 { 3 8 15 24}  Beta Pass2learn Repetition 2 
10  Alpha  No-effect  

11  Alpha  
No-effect 
ineffective state 

12  Alpha   
 { 3 7 15 23}  Alpha  Ineffective state 
13  Beta   
 { 3 8 15 24}  Beta  Ineffective state 
14  Alpha  Repetition 1 

15 { 3 7 15 23}  Beta  
Repetition 1; No-
effect 
ineffective state 

Control accordingly shifts and Alpha will apply action A (“up”) (Hyp-action1) to state 
{3 8 15 24}  and will learn that action A has no effect on that state. Based on RULE 5, 
agent Alpha will now attempt to apply action D (“right”), which is represented as 
Hyp-action2, and will learn that this action also cannot be applied to this state. Based 
on the knowledge that both Hyp-actions cannot be applied here, the state will be 
represented as ineffective. Alpha will apply action B (“ left” ) (action decision 12) and a 
transition to {3 7 15 23}  occurs, and this state will also be represented as ineffective. 
Based upon the newly acquired world knowledge, agent Alpha will now also avoid 
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visiting state {3 8 15 24}  and the cyclic pattern that caused the cooperation deadlock 
has been broken. 

What happened was, that based on the ability to recognize a cooperative deadlock, 
agent Beta took the initiative of applying the pass2learn rule instead of applying action 
C. In this way, agent Alpha gets an extra opportunity of learning from the 
environment. In doing so, its model of the task environment is augmented to the extent 
that it takes a different action decision. Because the action selection behavior of Alpha 
changes, the cooperative deadlock has been solved and cooperation progresses. 

7.2.4 The necessity to model the other agent 

A second interesting effect that emerged from the simulation experiments was that the 
pass2learn rule, as described above, provided only a partial solution. It worked fine 
when the cooperation deadlock was detected within the state of which the “other”  
lacks knowledge, as was the case in the example run listed in table 7.2. The pass2learn 
rule fails in the case where the repetition was detected “outside” the state of which the 
“other”  lacks knowledge. First, we will present an example run demonstrating such a 
case. Then we will explain how the pass2learn rule has been augmented to overcome 
the problem. 

The reason we describe the problem of cyclic behavior and the solution applied in 
such a detailed way is because the problem illustrates and underlines an important 
property that a cognitive agent should have to be able to operate in multiagent 
situations, i.e. in order to act as a social agent. The property that agents need to have in 
cooperative work situations is the ability to model the “other”  agent or agents (e.g. 
Van Heusden & Jorna, 1999). The agent model may be viewed in addition to, or as 
part of their model of the task environment. Within Distributed AI, these so-called 
“agent models”  are an important way of coordinating the activities of a group of 
agents without imposing centralized control (Bond & Gasser, 1988; Gasser & Hill, 
1990). Sociologists, social psychologists, and those within the field of computational 
organization theory have proposed that the primary mechanism for creating organized 
societies of individuals is the ability of the individual to generate and use internal 
models of other agents and for the individual to reflect on actions and their effects 
(Carley & Newell, 1994). The next example shows that the ability to model the other 
agent is also needed within this cooperative effort. 

7.2.4.1 Illustrating the problem 

The example situation depicted in figure 7.3 will be used for illustrating the failure of 
the pass2learn rule in particular situations. The action sequence and items learned 
within the example run are listed in table 7.3. 

The situation is that Alpha is located in the top-left state {1 5 9 17} , Hyp-action1 is A 
(“up”); Hyp-action2 is D (“right”). From this it follows that Alpha’s movement 
decision will be A (“up”) and in doing so will learn that this action has no effect on 
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this state. Alternatively Alpha applies D (“right”)—Hyp-action2—and a transition to 
state {1 6 9 18}  occurs. 

 

Goal State   

Hyp - action2   

Hyp - action1   

Initial State   

�� ��
9       6 
     1 

    18 

 

Figure 7.3. α’s movement decision. 

Table 7.3. The action sequence and items learned as occurs within the example run 
demonstrating the failure of the pass2learn rule. 

Action 
decision 

State Agent 
Applied 
action 

Items learned 

1 (figure 7.3) { 1 5 9 17}  Alpha  No-effect  
2  Alpha   
3 (figure 7.4) { 1 6 9 18}  Beta   
4 (figure 7.5) { 1 7 13 19}  Alpha  No-effect  

5  Alpha  
No-effect 
ineffective state 

6  Alpha   
7 { 1 6 9 18}  Beta  Repetition 1 
8 { 1 7 13 19}  Alpha  Repetition 1 
9 { 1 6 9 18}  Beta Pass2leran Repetition 2 

10  Alpha  
No-effect 
ineffective state 

11  Alpha   
 { 1 5 9 17}  Alpha  Ineffective state 
12  Beta   
13 { 1 6 9 18}  Alpha  Repetition 1 
14 { 1 5 9 17}  Beta  Repetition 1 
15 { 1 6 9 18}  Alpha Pass2learn Repetition 2 
16  Beta   
Back to action 
decision 6!  

{ 1 7 13 19}  Alpha   

The situation in which Beta makes the third action decision is depicted in figure 7.4. 
With D (“right”) being Hyp-action1 and A (“up”) being Hyp-action2, Beta applies D 
(“right) and a transition to state {1 7 13 19}  occurs. 
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Goal State   

Hyp - action2   

Hyp - action1   

Initial State   

7     13 
     1 

    19 

�� ��
5        9 
     1 

    17 

 

Figure 7.4. β’s movement decision. 

Alpha, back in control, see figure 7.5, will first try to apply A (“up”) (Hyp-action1) 
and will detect that this action has no effect on this state. Subsequently, D (“right”) 
(Hyp-action2) will be applied and Alpha, again, learns that this action has no effect on 
this state. State {1 7 13 18}  will be represented as ineffective state. Two alternative 
actions (B, C) are left. Based on rule 6, Alpha will apply action B (“ left” ) thereby 
enabling a transition to state {1 7 13 19} . 

Now in control, Beta detects that Alpha restored the effect of its last applied action 
decision, i.e., Beta finds the organization back in the same state that it was when it last 
applied an action, i.e. repetition is 1. Because of Hyp-action1, Beta will apply action D 
(“right”) (action decision 7). Now Alpha also detects the first repetition and again 
applies action B (“ left” ). Detecting the second repetition, Beta takes the initiative of 
“pass2learn” (action decision 9). 

 

Goal State   

Hyp - action2   

Hyp - action1   

Initial State   

�� ��

 

Figure 7.5. β detects repetition. 

Alpha, getting the opportunity to make an extra movement decision, will apply action 
A (“up”) (Hyp-action1) and will detect that this action has no effect on this state. 
Based on this, and on the fact that Hyp-action2 leads to an ineffective neighbor state, 
the current state will be represented as ineffective. When Alpha applies action B 
(“ left” ), we are back in the situation depicted in figure 7.3. In addition, this state will 
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be represented as ineffective by Alpha. Beta again selects D (“right”) in this state 
because its world representation did not change in the intervening period. Now Alpha 
detects the cyclic pattern first and takes the initiative of “pass2learn” when the 
repetition level is 2 (see action decision 15) granting Beta an extra movement decision. 
Again, Beta will apply D (“right”) restoring the situation depicted in figure 7.4. When 
agent Alpha again selects action B (“ left” ), this sequence of actions results again in a 
cyclic pattern of agent decision behavior, because the agents are back in the same state 
as when action decision 6 was taken. Of course, agent Alpha could have selected 
action C (“down”) resulting in a different action selection pattern. The point is, 
however, to show that the cyclic pattern remains because the pass2learn mechanism 
fails in this situation in that the knowledge gained from the additional pass2learn 
decision is either the wrong piece of information or none at all. As a result, state {1 7 
13 19}  has been represented within Alpha as ineffective, while Beta has no such 
knowledge and has therefore no intention of avoiding that state. This will be explained 
as follows. 

In the example run we describe, agent Beta detects the repetition first (the 
transformation from figure 7.5 back into figure 7.4, see also action decision 9 in table 
7.3) and takes the initiative for applying the pass2learn rule. Consequently, agent 
Alpha makes an extra movement decision and the deadlock situation is solved. 
However, when returning to state {1 6 9 18}  Beta will keep trying to reach state {1 7 
13 19}  with action D (“right”), being Hyp-action 1, and Alpha tries to avoid it because 
of the inefficiency representation of that state. In other words, agent Alpha did gain 
additional world knowledge from the pass2learn decision but the problem is that in 
this situation Beta should learn that state {1 7 13 19}  is indeed inefficient and should 
avoid it. The vital differences in world representations remain therefore and the 
pass2learn decision of Beta does not result in the required change of behavior. From 
this it follows that the pass2learn rule must be applied more intelligently, that is, we 
must add more knowledge to the rule. 

7.2.5 Adding more knowledge to the pass2learn rule 

If, in the same situation, Alpha were to take the initiative for the pass2learn decision 
instead of Beta (see action decision 10 in table 7.4), then Beta would gain additional 
environmental knowledge. In the situation depicted in figure 7.4, Beta wants to apply 
action D (“right”) and in doing so move to a state {1 7 13 19}  represented within 
Alpha as ineffective. In the case where Beta would know that D (“right”) cannot be 
applied in state {1 7 13 19} , another movement decision would have been made in 
state {1 6 9 18} . Therefore, the most rational thing to do in this situation is for Alpha 
to take the initiative for a pass2learn decision since Beta would learn the appropriate, 
i.e. missing, knowledge. 



On agent Cooperation 170 

Table 7.4. The action sequence and items learned as occurs within the example run 
demonstrating the knowledge-based pass2learn rule. 

Action 
decision 

State Agent 
Applied 
action 

Items learned 

1 { 1 5 9 17}  Alpha  No-effect  
2  Alpha   
3 { 1 6 9 18}  Beta   
4 { 1 7 13 19}  Alpha  No-effect  
5  Alpha  No-effect  
6  Alpha   
7 { 1 6 9 18}  Beta  Repetition 1 
8 { 1 7 13 19}  Alpha  Repetition 1 
9 { 1 6 9 18}  Beta  Repetition 2 
10 { 1 7 13 19}  Alpha Pass2learn Repetition 2 
11  Beta  No-effect  

12  Beta  
No-effect 
Ineffective state 

13  Beta   
14 { 2 7 14 19}  Alpha   
15 { 1 7 13 19}  Beta  Repetition 1 

16 { 2 7 14 19}  Alpha  
(Neighbor relation!); 
Repetition 1 

17 { 2 8 14 20}  Beta  No-effect  
18  Beta   
 { 1 8 13 20}  Beta  Goal attainment 

The question now is: How does an agent determine what knowledge the “other”  lacks 
and whether or not it can be learned by applying the pass2learn rule? To be able to do 
so, an agent must have some sort of model of the other agent. In this case, it means 
that the agents must be able to detect which piece of information the other agent lacks. 
An agent model in the general sense is a representation that an agent holds about the 
abilities, goals, and preferences of the other agents within the multiagent task 
environment with which it interacts. 

As we have stated, the knowledge advantage in this situation is for agent Alpha 
because agent Alpha holds knowledge of the fact that in state {1 7 13 19}  action D 
(“right”) has no effect, see figure 7.5. Furthermore, agent Alpha knows that agent Beta 
wants to apply action D (“right”). This is established by observing that the situation 
has been reversed, which can only be brought about by an action antagonistic to the 
action last applied by Alpha. In this case, D (“right”) is the reverse of Alpha’s last-
applied action B (“ left” ). Thus, Alpha’s “Beta model”  holds that Beta wants to apply 
action D. Alpha’s world representation holds that applying D in state {1 6 9 18}  would 
result in a transition to state {1 7 13 19}  in which action D can not be applied. 
Combining the knowledge of what Beta wants to achieve and knowing that this makes 
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no sense provides Alpha with the knowledge to take the initiative of making the 
pass2learn decision. 

The pass2learn rule has been extended and enriched by adding a simple agent model. 
The effect of the knowledge-based rule is that it provides an agent with the 
opportunity of deciding to apply the pass2learn action instead of the simpler “ first to 
detect”  criterion. Knowledge-based means in this situation that the pass2learn decision 
is based on the knowledge that an agent has of both the simulated task environment 
and the knowledge that the other agent has or apparently lacks. This conclusion 
following the bottom-up experimental cycle must be that taking the initiative of 
breaking the detected action-repetition deadlock must be based on the knowledge that 
one has of the other. 

The implemented agent model is indeed a very simple model even to the extent that 
one could argue if it is in fact a model. The information on the basis of which an agent 
takes the pass2learn initiative is in fact a memory trace, i.e. a piece of information held 
within the short-term memory. The decision of whether to apply a pass2learn action 
will be taken based on comparing this piece of information and what is known of the 
task environment contained within the task-environment model. Because this 
information is contained within the short-term memory only, it means that in the next 
situation this information is not available. It also means that an agent cannot trace back 
and tell which action the other applied three decision cycles before, for instance, and 
why this was wrong based on its own knowledge. When one defines a mental model 
as a model that: 

1. Contains information about an external item, 

2. Resides in long-term memory, and 

3. Can be used at any time within the problem-solving process, 

then the implemented model does not match this definition. 

This definition furthermore implies that an agent model will be available from the very 
start, at which stage it contains only initial or general information about the social 
agents that the multiagent environment contains and of which our subject agent is part. 
Based on experience in dealing with other agents, the knowledge contained within the 
agent model will increase, as was the case with the task environment model. 

As we have said, the implemented agent model is not very sophisticated. However, 
this is simply to do with the implementation level. A more elaborate and durable agent 
model could well be implemented and applied if wanted. The current implementation 
level has proven to be essential in demonstrating that information about the other 
should be incorporated in one’s own decisions in order to cooperate successfully. 
Furthermore, the agent model proved to be indispensable because otherwise 
cooperative deadlock could not be solved, which would hamper the cooperation work 
condition in a severe way. 
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Despite the fact that the current implementation of the knowledge-based pass2learn 
rule should be considered an ad-hoc solution—because it is tied to a specific task 
environment—a general principle can be distilled from this cooperation experiment. 
The general principle is that in order to function in a multiagent social context, it is 
necessary for the agents to be able to model each other. In other words, the agent must 
not only deal with the other agents as physical (possibly dynamic) objects, as it would 
if the object was in some nonsocial task situation. Other agents also must be treated as 
having goals and taking actions to attain those goals (Carley & Newell, 1994). In this 
sense, the knowledge-based application of the pass2learn rule could be viewed as 
“social”  knowledge in dealing with the “social”  goal of overcoming the cooperative 
deadlock. The label “social”  is used because the solutions evolve—as opposed to 
emerge—during interaction and so are the result of cognitive activity. They are not 
social in the sense that they are the product of a particular cultural-historical 
environment (Carley & Newell, 1994). 

7.2.6 Summary and conclusion 

This section described the cooperative work condition of the alignment experiment. 
Within the cooperative work condition, two Soar agents must cooperate in order to 
accomplish the same model task. The simulation showed the emergence of “social 
conflict”  between the agents. The conflict as a social phenomenon emerged because 
the agents hold different views of the task environment. Differences in perception of 
reality are identified of one of the causes of individual conflict by March & Simon 
(1993). The cooperation deadlocks are solved by the agent through the coordination 
mechanism of changing the “pass control”  sequence. Specific knowledge has been 
added to the agents in order for them to be able to determine which agent at which 
point in the coordinated problem-solving effort should hand over control instead of 
applying an action. It proved to be vital that the agents model each other in this 
coordination effort. The knowledge-based coordination mechanism that has been 
established proved successful in that no conflicts emerged that could not be solved. 

7.3 The experimental results 

Table 7.5 presents an overview of the results of the alignment experiment. The first 
three rows contain data that has been presented earlier. The first two rows contain the 
data of both experimental conditions of the original experiment; presented in chapter 
5. The last two rows contain the data of both experimental conditions of the replicated 
experiment. The data of the single Soar agent (third row) has been presented in chapter 
6. Furthermore, section 6.4 presented a discussion about the difference of learning 
performance between a single Soar agent and a single Cohen agent (comparison 1). 
The data concerning the cooperative work condition of the replicated experiment (last 
row) is new and has not been discussed yet. 
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Table 7.5. The results of the alignment study. 

Condition Mean 
Standard 

Dev. 
N 

Average path 
length 

1 Cohen agent 66.03 19.73 30 15.14 

2 Cohen agents 88.03 14.22 30 11.36 

1 Soar agent 167.87 9.07 30 5.96 

2 Soar agents 165.87 8.97 30 6.03 

Therefore, we will present and elaborate on the cooperative work data of the replicated 
experiment first in section 7.3.1. After that, three discussions will take place. First, we 
will compare and discuss the performance of the multi Soar agent condition in relation 
to the single Soar agent condition (comparison 2) in section 7.4. The second 
discussion will focus on comparing the multi Cohen agent performance with the single 
Cohen agent performance (comparison 3) 7.5. The third discussion will focus on 
comparing the multi Cohen agent performance with the multi Soar agent performance 
(comparison 4) in section 7.6. 

7.3.1 The results of the cooperative work condition of the replicated 
experiment 

Table 7.5 presents the multiagent performance (last row) as the average number of 
goal-state attainments (165,87) and the average solution path expressed as state 
transitions (6.03). These numbers are based on the goal-state attainment count, i.e. the 
number of times the goal state has been reached within an experimental run, of the 30 
runs, and are depicted in figure 7.6. The number on the x-axis represents the run 
number. The number on the y-axis represents the goal-state attainment count within 
that run. For the sake of convenience, the maximum number of goal-state attainments 
for each run has been printed below the run number. Each single experimental run 
must be viewed as a separate simulation experiment in which the agents were reloaded 
and set to the task based on a priori knowledge only. This means that the model of the 
task environment created within a particular run did not transfer to the next run 
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Figure 7.6. The distribution of maximum goal-state attainments for the multiagent 
condition over 30 runs. 

The average goal-state attainment count over 30 experimental runs is 165.87 with a 
standard deviation of 8.97. This is based on the total number of goal-state attainments 
(4976) divided by the number of runs (30). The number of state transitions (1000) 
divided by the average goal-state attainment count (165.87), produces an average path 
length of 6.03 over 30 runs. 

As was the case within the non-cooperative work condition (chapter 6), the 
performance of the cooperative work condition will be expressed as the average 
number of state transitions needed to attain the goal state. The learning curves of the 
multiagent condition are depicted in figure 7.7. 
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Figure 7.7. Multiagent learning curves. 

The curves shown in figure 7.7 are of the same type as those used in the non-
cooperative work condition—discussed in chapter 6—and, consequently, are 
computed in the same way. Full details of the multiagent performance data can be 
found in Appendix E. What figure 7.7 makes clear is that the multiagent learning 
characteristics are not different in the qualitative sense, i.e. their shape, from those of 
the single agent condition. The two conditions differ however in the quantitative sense 
concerning the specific performance levels. For instance, the average number of state 
transitions for the first goal-state attainment is 37.33 for the cooperative condition and 
23.57 for the non-cooperative condition. The difference of 13.76 is considered as the 
coordination costs of the cooperation effort. Coordination costs are involved because 
cooperative deadlocks, in the form of action-repetition deadlocks, emerged within the 
multiagent condition. 

To make the coordination costs visible, we need to compare the average path lengths 
of both experimental conditions; this is done in figure 7.8. 
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Figure 7.8. The learning curves of the non-cooperative work and the cooperative 
work condition based on the average cumulative path length. 

What figure 7.8 shows, is that the difference between the two conditions in terms of 
average path length diminishes as the problem-solving process evolves. This means 
that the coordination costs decrease because the learning of the agents progresses. The 
finding that the coordination costs are especially high in the first stage of the 
cooperation process is in line with what one would expect in real-world terms. When 
people start cooperating, they need to work at coordinating the effort. As the 
cooperation process evolves, the coordination costs will diminish as the agents have 
learned to “ tune in” . Whether the coordination costs will delimit to zero or remain, 
either as a constant or periodically, depends on the task domain involved. 

The trend of diminishing coordination costs becomes even more clear when the 
performance of both conditions are expressed as the average path lengths measured 
per goal attainment, instead of a cumulative measure. The average solution paths per 
goal attainment are represented in figure 7.9. 
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Figure 7.9. Average solution paths measured for each goal attainment of both 
conditions. 

The third curve expresses the difference between the average solution paths of the 
non-cooperative work condition (second curve) and the cooperative one (first curve). 
figure 7.9 demonstrates that the initial difference in terms of path length is, again, 
13.76 state transitions. The second time that a goal state is achieved, the difference is 
reduced to 4.6 state transitions1. Around the sixth goal attainment occasion, the 
performance difference between the two conditions is reduced to zero. The variation 
beyond that point is due to a combination of variations of random placement over 30 
runs, and of not taking always the most efficient route. Therefore, we conclude that 
coordination costs are not involved beyond that point. 

7.3.1.1 Action-repetition deadlocks 

The largest part of the coordination costs concerns the fact that a number of additional 
actions have to be taken by the agents in order to resolve emerging action-repetition 
deadlocks. First, it takes a number of state transitions to detect the repetition deadlock, 
and then it takes a number of actions to solve it. Because the “repetition level”  has 
been set to two, this means that it is only in cases in which an agent has been put back 
two consecutive times to the same state, that the repetition will be detected. Since the 
pass2learn rule has been knowledge-based, it does not entail that the agent that detects 
the repetition deadlock takes action automatically. It is very well possible that the 

                                                        
1 The data can be obtained by subtracting curve 3 of Appendix E from curve 3 of Appendix D. For 
the first seven goal attainments, the differences are: 13.76; 4.6; 6.33; 4.63; 1.03; 0.07; 1.37  
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agent that detects the action-repetition will not apply the pass2learn action, but that the 
other agent, subsequently detecting the repetition deadlock, will. Thus, a repetition 
level of two does not mean that it always takes two state transitions to fire the 
pass2learn rule. It does mean, however, that it takes at least two state transitions and a 
maximum of three, depending on the contents of the task environment models of the 
agents. In addition to detecting the repetition deadlock, it takes one state transition for 
the other to learn that two states are directly related, and are neighboring states. 
Alternatively, it takes only one additional action when the task-related knowledge to 
be learned involves establishing that an action is not allowed. In summing up, each 
occurring repetition deadlock takes two or three transitions to detect and one action to 
fire the pass2learn rule. Furthermore, it takes one action for the other agent to learn the 
additional information. Whether the application of the action results in a state 
transition depends on the situation. When the learning involves establishing a neighbor 
relation, it will take an additional state transition. When the knowledge involves an 
action that is not allowed, it will not. This means that to resolve an action-repetition 
deadlock, it may take a maximum of four state transitions (involving five actions) and 
a minimum of two (involving four actions). 

Table 7.6 shows the number of times an action-repetition deadlock emerged over the 
30 experimental runs. The data covers only measurements over the first six goal 
attainments since beyond that point no action-repetition deadlocks emerged. 

Table 7.6. The distribution of emerging action-repetition deadlocks. 

Experiment 

Run # 

Goal 
Attainment 

1 

Goal 
Attainment 

2 

Goal 
Attainment 

3 

Goal 
Attainment 

4 

Goal 
Attainment 

5 

Goal 
Attainment 

6 

Total per 
experimental 

run 

Total 121 33 27 21 0 2 202 

Average 4,03 1,10 0,90 0,70 0,00 0,07 6,73 

Stand. Dev. 3,00 2,14 2,09 1,73 0,00 0,25 1,05 

By comparing the action-repetition deadlock totals per goal attainment, it becomes 
clear that the coordination costs are especially high in the first attempt at reaching the 
goal state. The next three goal-state attainment attempts show a gradual drop in the 
total number of occurrences. After that point, the occurrence of action-repetition 
deadlocks becomes incidental and beyond the sixth goal attainment non-existent. As 
an average over 30 experimental runs, an action-repetition deadlock emerged 6.73 
times. When we compare figure 7.9 and table 7.6 it becomes clear that both sets of 
data confirm, each in its on way, that the coordination costs occur within the first six 
goal-state attainments. 
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7.3.1.2 Coordination costs expressed as no-transition actions 

Besides coordination costs in the form of extra state transitions to solve action-
repetition deadlocks, another kind of coordination cost was involved within the 
cooperation process. It concerns the fact that each agent must discover which actions 
are not allowed, i.e. the actions that have no effect on particular states. The 
coordination costs emerge because each agent has to find this out and learn it. It takes 
one action for agent Alpha to detect that action A (“up”) is not possible in state {3, 8, 
15, 24} , but agent Beta also has to detect that this is not possible, at the cost of an 
action. This inefficiency of the cooperation process can only be observed by 
comparing data concerning the applied actions, instead of looking at the state 
transitions as has been done above. 

Figure 7.10 shows the average number of actions applied per goal-state attainment for 
both conditions, minus the number of transitions, times two2. The actions that remain 
and which are plotted concern the number of actions applied for detecting actions that 
are not allowed. More generally stated, the curves express the actions not involved in 
bringing about state transitions. 
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Figure 7.10. Comparing the average number of actions needed per goal attainment 
for both experimental conditions. 

                                                        
2 Because every state transition requires a “pass-control”  action. 
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The difference between the “no-transition action” curves indicates the coordination 
costs involved in terms of applied actions. Figure 7.10 also shows that after the sixth 
goal attainment, coordination costs in the form of extra action application are no 
longer involved. In other words, beyond that point the coordination costs are reduced 
to zero, because there is no need for exploring the task environment in terms of no-
transition situation, i.e., every relevant situation is known to both agents. 

7.3.2 Summary and conclusion 

This section presented the performance data of the cooperative work condition of the 
Van den Broek experiment. The last two rows of table 7.5 show that the cooperative 
work condition does not outperform the non-cooperative work condition. Instead, the 
multiagent effort actually performs less well. Figure 7.8 shows the same outcome in a 
different way in that the overall performance curve of the cooperative work effort does 
not cross the curve of the non-cooperative work performance curve. The reason that 
the non-cooperative work condition outperforms the cooperative work condition is due 
to the coordination costs. The emergence of cooperation deadlocks in the form of 
action-repetition deadlocks is the main reason why coordination costs are involved. 
The coordination costs have been expressed as longer solution paths. This means that 
more state transitions are needed in order to solve the differences of perceptions. 
Additionally, coordination costs have also been expressed as the application of 
additional actions because both agents have to augment and change their task 
environment model. The involvement of coordination costs is the reason why the 
cooperative work condition performs less well. The coordination costs decrease very 
rapidly. Beyond the sixth goal attainment attempt, the coordination costs are reduced 
to zero. In that problem-solving phase, the cooperative-work condition performs at the 
same level as the non-cooperative condition. 

7.4 Conclusions and discussion concerning the replicated experiment 

Within the replicated experiment, the learning performance of the multiagent 
condition cannot outperform the learning performance of the single agent condition, in 
principle. The simple reason is that the cooperative condition cannot gain since there 
are no augmentative grounds for cooperating. Section 3.2.2 discussed a number of 
reasons why people may cooperate. One of the reasons was augmentative cooperation, 
which is based on the idea that people are limited in their information-processing 
capacities. By combining their capacities and aggregating their efforts, an ensemble of 
individuals can perform a task that would have been impossible, or would have been 
performed less well by each one of them individually. However, this is not the case. 
Even more strongly, the single agent performs at almost the theoretical best level. 
Therefore, the multiple agent condition cannot perform better than best! 
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The conclusion is therefore that the Soar agent performing the task does not need 
cooperation, nor does it gain from it; consequently, the cooperation will only hamper 
the task performance because of the cooperation costs involved. 

The second conclusion is that cognitive agents need agent models in order to be able 
to cooperate and coordinate their actions. The agents must view the other as having 
goals and taking action to attain those goals. It is only by modeling the agents in this 
way, that the agents can determine the need for information and knowledge within the 
other, and are able to coordinate as appropriate. It means that the agents need a 
knowledge-based coordination mechanism to solve social conflict. 

The general principle that emerged from the experiment is that it takes considerable 
effort to coordinate the cooperation process even under the conditions of: 

1. A common goal, 

2. Complete benevolence to cooperate, and 

3. A task assignment applies. 

This means that even when cooperation takes place based on the benevolence and 
veracity assumption, cooperation and coherent coordination are far from guaranteed. 
Difficulties of timing and local perspectives can lead to uncooperative and 
uncoordinated activity. The cooperation condition of the replicated experiment showed 
that by incorporating the possibility of different interpretations of reality within the 
multiple agent decision-making models, the plausibility of the model increases, 
because it mimics real-world situations in which conflicts emerge. 

7.5 Conclusions and discussion concerning the original experiment 

The first two rows of table 7.5 clearly show that the multiagent condition of the 
original experiment outperforms that of the single agent. In this version of the 
experiment, the cooperation effort does pay off. This makes sense because the 
performance of the single Cohen agent (66.03) is 2.7 times below that of the 
theoretical best level performance (178.6). Hence, there is considerable room for 
improvement, and cooperation on augmentative grounds makes sense. The question 
however is how this augmentative gain has been achieved. 

According to Cohen, “ this question sheds light on the organizational aspects of 
organizational learning, the way in which learning of the whole may be greater than 
the sum of the learning of its parts”  (p. 175). The relevance of the simulation 
experiment for organization theory, according to Cohen, is the following. “ If, for a 
given task, the results of learning by multiple agents can be shown to differ from those 
of learning by a single agent, we can begin to broaden the discussion of the 
organizational design to include its impact on the ability of the organization3 to learn, 
as well as on more traditional questions of efficiency” (p. 175). In my opinion, the 
                                                        
3 Italics added 
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Cohen experiment clearly demonstrates that the cooperative gain of the multiagent 
problem-solving effort was based on individual learning characteristics and was not 
based on the ability of the organization to learn. 

Chapter 6 presented a functional account for the reason why the Cohen agent does not 
perform as well as the Soar agent. The problem of learning capacity as explained is 
also the source of the performance improvement of the cooperation condition. The 
overall performance within the multiagent condition was positively influenced due to 
the cooperation effort. The representational problems reported proved to have less of a 
delusive or hampering influence within this cooperative work condition. This effect 
occurs because the multiagent condition has been based on two matrices in which 
feature-action associations accumulate instead of one matrix. The effect of two 
learning engines makes the representational situation quite different. In the two-agent 
condition, much less “ transfer of knowledge” between the states occurs. We will make 
this clear by returning to the same example used in chapter 6 (see section 6.4) but now 
from the multiagent perspective. In state {3 6 11 22} , agent X will go “down”. This 
will be an improvement and features 6 and 22 will now be more strongly associated 
with “down” in matrix M(x). In the two-agent condition, however, this implication will 
not be carried over to the new state {4 6 12 22}  because agent Y selects the action on 
the basis of the contents of matrix M(y). When the system eventually goes “ left”  from 
this state, on the basis of matrix M(y) the resultant strengthening of the “ left”  
association with features 6 and 22, again, will not weaken what was learned earlier. In 
this way, there is much less interference from previous experience, which results in a 
better overall performance within the multiagent condition. In this way, the two 
memories work in an augmentative fashion. 

Based on the above discussion, three conclusions can be drawn. The first is that for a 
given task, the results of learning by multiple agents can be shown to differ from 
learning by a single agent in the case of augmentative gain. The required condition is 
that the agent must perform significantly below that of the theoretical optimum 
performance due to a cognitive or learning overload of the task. This is the case in the 
Cohen model. The capacity of the learning engine to hold information was 
significantly inadequate. Within the cooperative effort, part of this limitation was 
lifted. The second is that if it is demonstrated that the results of learning by multiple 
agents can be shown to differ from those of learning by a single agent, this does not 
automatically mean that we can begin to broaden the discussion of the organizational 
design to include its impact on the ability of the organization to learn. The explanation 
presented above is entirely based on learning characteristics of the individual agent 
and does not postulate any organizational learning effect. The prospect that learning 
performance improvements within groups can be explained and understood based on 
cognitive characteristics is seen as support for the methodological individualistic 
position defended and explained in chapter 2. The third is that the omission of 
coordination costs within the cooperation process of the Cohen experiment makes the 
outcome less plausible. From the point of view of organization theory, it is not 
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plausible that agents do not need to invest in the cooperation process in terms of effort 
or time, and that they only seem to gain. In contrast, within the replicated experiment, 
coordination cost was involved in the form of resolving cooperative deadlocks. 

7.6 Conclusions and discussion concerning the multiagent level of both 
experiments 

When comparing the multilevel performance of both versions of the experiment, 
noticeable differences occurred between the two versions. The multiagent performance 
can be discussed in a quantitatively and a qualitatively way. 

The quantitative aspect is that the multiagent condition of the Van den Broek 
experiment performed better than the multiagent condition of the Cohen experiment, 
see table 7.5. The performance of Soar agents was double that of the Cohen agents. 

The qualitative aspect shows a paramount difference in that in the Van den Broek 
experiment, “social conflict”  emerged, which resulted in coordination costs because 
the agents put in effort to solve them. The cooperation condition of the replicated 
experiment showed that by incorporating the possibility of different interpretations of 
reality within the multiple-agent decision-making model, the plausibility of the model 
is enhanced, because it mimics real-world situations in which conflicts emerge. 
Differences in perception of reality are identified as one of the causes of individual 
conflict. Because conflict does not emerge within the Cohen experiment, no 
coordination costs are involved. Therefore, the cooperative work condition of the 
Cohen experiment only gains from the augmentative effects and performs better than 
the non-cooperative condition, which is considered implausible from the point of view 
of organization theory. 

 


