
 

 

 University of Groningen

Formalizing the minimalist program
Veenstra, Mettina Jolanda Arnoldina

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Veenstra, M. J. A. (1998). Formalizing the minimalist program. Groningen: s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://www.rug.nl/research/portal/en/publications/formalizing-the-minimalist-program(68df2cfc-c80e-4627-9f47-baeedb8736a2).html


Chapter 10

Concluding remarks

The objective of this thesis is to provide a formalization of a minimalist
description of a small fragment of Dutch. The fragment that is described
is outlined in Section 3.4. Although the Minimalist Program is still in
development precise de�nitions of the theory in its current stage of the
development will be of use for linguists working inside and outside the
Minimalist Program.

As a �rst attempt to formalization two small implementations in
Prolog were made. These implementations are described in Chapter 2.

The �rst implementation, which is outlined in Section 2.1, gives a survey
of the two structure-building operations Merge and Move. This implemen-
tation reveals that the two structure-building operations the Minimalist
Program presupposes actually both consist of more disjunctively speci�ed
sub-cases. The structure-building operation Merge has three sub-cases: tree
insertion in the complement position, tree insertion in the speci�er position,
and lexical insertion in the head position. The structure-building operation
Move has two sub-cases: head movement and to-speci�er movement. Fur-
thermore a new de�nition of the Move operation is given. This de�nition
states that the moved element in a Move operation has to be contained in
the complement domain of the head of the target tree, not in the target
tree as the original de�nition says. From this new de�nition we can derive
that movement to the complement position is impossible. An element (tree)
cannot be moved to a position that contains the tree from which the moved
element must originate.

The second implementation, which is outlined in Section 2.2, is a
head-corner parser for a fragment of the Minimalist Program. I argue
that because of the nature of the structure-building operations of the
Minimalist Program head-corner parsing is a suitable parsing technique

169



170 CHAPTER 10. CONCLUDING REMARKS

for the Minimalist Program. The idea of head-corners from head-corner
parsing resembles closely the idea of target trees from the Minimalist
Program, as we see in Subsection 2.2.2.

In the Chapters 4 through 9 the actual formalization of the minimal-
ist description of the fragment of Dutch is given. The formalization is
written in the formal-speci�cation language AFSL. Afterwards, the entire
formalization was validated by implementing it in Prolog. The formaliza-
tion is declaratively stated, not derivationally as the Minimalist Program
itself: it describes which trees are correct according to the Minimalist
Program.

In Chapter 4 I give a description of trees. By considering minimalist
trees as some kind of directed graphs, we can omit indices. The function
ConnectionTarget represents connections between nodes. It is used instead
of indices to indicate movements within trees.

In Chapter 5 minimalist ideas on features are formalized. I argue that
the notion `feature structure' be introduced in order to be able to treat the
features of a node as a unit, although feature structures are not applied
in the Minimalist Program. Furthermore I introduce some new features,
among which the features [object], [subject], [compcat] and [speccat]. The
�rst two features are used to refer to the object and the subject features of
the verb. Since a verb must agree with both its subject and its object (if it is
a transitive verb), we need a way to separate the subject agreement features
from the object agreement features of the verb. Furthermore, the verb as-
signs case to the object. This case feature is also, as the agreement feature,
a part of the value of the [object] feature. The features [compcat] and [spec-
cat] are introduced to be able to implement subcategorization. The feature
[compcat] indicates the category of the complement of a given head, while
the feature [speccat] indicates the category of the speci�er of a given head.
Subcategorization receives no explicit mention in the Minimalist Program,
but it turns out to be vital for the formalization. It is important that there
is a way to represent what kind of complement or speci�er a given head
may select, because otherwise the formalization would for instance allow
transitive verbs to behave like intransitive verbs, by not forcing transitive
verbs to select both a subject and an object. This is especially essential
in Zwart's version (and Chomsky's 1995 version) since in this version the
derivation is not guided by the features of the lexical heads in a sentence.
In Chomsky's 1993 version all lexical heads need to check all their formal
features. Therefore the object features of the verb will require the verb to
select an object to check against. Furthermore, subcategorization proved
to be essential for the word order of sentences. In Chapter 5 I also give an
exact de�nition of the notion `feature checking'. I argue that the features of



171

a lexical constituent can only be checked against the features of a functional
constituent if the feature structure belonging to the lexical constituent con-
tains at least as many feature-value pairs as the feature structure belonging
to the functional head.

In Chapter 6 I describe the way the lexicon is treated in the Minimal-
ist Program. In Zwart's version of the Minimalist Program there are two
lexicons. The �rst lexicon, which I call the prelexicon, is consulted when
a lexical item enters the derivation. The second lexicon, which I call the
postlexicon, is consulted after the derivation (at PF) to obtain the phono-
logical features of a lexical item. I argue that the lexicon which is consulted
at the beginning of the derivation may not contain underspeci�ed feature
structures because of the nature of the feature checking operation. Checking
is only possible if a certain feature is present in a given functional head as
well as in the lexical constituent that checks its features against it. Hence,
we cannot indicate that any possible value for a given feature name can be
chosen by not representing it at all (under-speci�cation).

X-Theory is described in Chapter 7. In the X-rules that are speci�ed in
the formalization only bar-levels play a role, while in the original X-rules of
the Minimalist Program category features also play a role (for instance: X
! X, YP (where X and Y represent categories)). In the formalization, fea-
ture percolation, including the percolation of the category feature, is taken
care of separately. Feature percolation is based on the X-rules, since fea-
tures percolate up from the head with bar-level zero to higher bar-levels.
The positions of speci�ers, complements, heads and adjuncts are explicitly
de�ned in the X-module. This module seems to be the right location to rep-
resent this type of knowledge since in the literature X-rules often implicitly
de�ne notions such as `speci�er' and `complement'. Furthermore I argue
that the two-level X-Theory as applied in Zwart's version and Chomsky's
1995 version of the Minimalist Programs is problematic. X-Theory and the
theory of movement (or chains in our case) are mutually dependent. In the
new version of X-Theory heads do not always need to project, but with-
out projection we cannot maintain the notions `complement domain' and
`checking domain'.

In Chapter 8 I show that it is not problematic to treat head movement
in a representational way by considering traces to be copies (contra Rizzi
[Riz90] and Brody [Bro95]). Furthermore I argue that a [determiner] feature
is needed to distinguish the treatment of pronouns and interrogative words
on the one hand from nouns on the other hand with respect to the selection
of determiners. The former group requires an `empty' D (i.e. a D with no
phonological content), while nouns, except for the plural forms, require a D
with lexical content.

In Chapter 9 the interfaces (LF and PF) of the Minimalist Program are



172 CHAPTER 10. CONCLUDING REMARKS

described. The main result of the formalization of the interfaces is the dis-
covery that an additional lexicon, which contains templates for all types of
sentences covered by the formalization, is needed for Zwart's version of the
Minimalist Program. Since LF in Zwart's framework is reached when all
functional heads in a tree checked all their features, I needed something to
make sure that an LF-tree always contains the required functional projec-
tions. Otherwise an LF-tree consisting of only a VP could be approved of
by the formalization. In Chomsky's 1993 framework, lexical heads needed
to check all their features before LF, and to check their features they require
functional heads.

Suggestions for future research The formalization described in this
work shows that a more formal approach to minimalist ideas leads to clearer
de�nitions and sometimes to the discovery of inconsistencies and incom-
pleteness. Therefore I think it can be interesting and useful to develop tools
with which linguists, for instance, can compare several solutions to the same
problem or can test the result of a change in a de�nition. The formalization
described here could be used as a basis for a parser that could serve as such
a tool.

Furthermore, research on the comparison of aspects of the Minimalist
Program with other linguistic theories might be of interest. The formaliza-
tion presented here could help with such a comparison. For example, the
formalization lead to the conclusion that under-speci�cation in the lexicon
is not allowed in the Minimalist Program because of the nature of feature
checking, although under-speci�cation is common in feature-based theories
such as HPSG.


