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Dry bean water use/yield production function to estimate dryland yields in
the U.S. Central High Plains

David C. Nielsen
USDA-ARS, Central Great Plains Research Station, 40335 County Road GG, Akron, CO, United States

A B S T R A C T

Dry edible bean (Phaseolus vulgaris L.) could be used to diversify dryland rotational cropping systems in the U.S. Central High Plains. Dryland production potential of
dry bean is undocumented in this region. The objectives of this study were to determine dry bean yield and water use under a range of water availability conditions in
order to produce a water use-yield production function and to use that production function in conjunction with long-term precipitation records to estimate average
yields and probabilities of attaining given yields. Dry bean was grown over a six-yr period at Akron, CO under a line-source gradient irrigation system to impose a
range of water availability conditions. Seed yield was linearly correlated with water use resulting in a production function defined as seed yield (kg ha−1)= 8.24 X
(water use [mm] - 104). The slope was similar to another seed legume, field pea (Pisum sativum L.). This production function was used with the long-term pre-
cipitation record to determine an average dry bean yield of 1192 kg ha−1 (range 359–2514 kg ha−1). These yield estimates were used to create a cumulative
probability exceedance graph of yield that can be used to assess production risk as farmers consider the possibility of including dry bean as a component of a dryland
crop rotation.

1. Introduction

Dryland farmers in the U.S. Central High Plains region of the United
States could diversify the traditional winter wheat (Triticum aestivum
L.)-fallow cropping system if they had information about the pro-
ductivity of potential crops. One such crop is dry bean. It is traditionally
grown in this region as an irrigated crop. A water use-yield production
function would be a useful tool to help farmers assess the potential
productivity of dry bean grown under dryland conditions and to assess
risk involved in using dry bean as a rotation crop.

Yonts (2006) reported that irrigated dry bean uses 381 to 405 mm of
water during the growing season in western Nebraska, but he did not
present any corresponding yield data. Yonts et al. (2018) reported a 6-
yr average Great Northern dry bean crop water use value (as estimated
by the High Plains Regional Climate Center; https://hprcc.unl.edu/) of
379 mm (ranging from 362 to 432 mm) under non-water-stressed
conditions in western Nebraska. Non-water-stressed dry bean yield
from their study averaged 3555 kg ha−1, while rainfed yields averaged
1013 kg ha−1 over the six years of the study. However, they did not
present water use data that could be used to construct a water use-yield
production function. The yield, irrigation, and precipitation data they
presented did allow us to estimate that the average response of dry bean
yield to water availability in their western Nebraska environment was
approximately 10.7 kg ha−1 for each additional mm of water avail-
ability. Miller and Burke (1983) presented dry bean yield and irrigation
amount data from two years on a sandy soil in south-central

Washington from which yield responses of 16.2 and 17.4 kg ha−1 per
mm of applied irrigation were calculated.

Muñoz-Perea et al. (2007) provided two years (2003, 2004) of water
use and yield data for six dry bean varieties grown in south-central
Idaho. A production function constructed from these data varied be-
tween the two years, but in both years seed yield increased at a rate of
5.4 kg ha−1 per mm of water use. However, for any given water use,
yields in 2004 were approximately double what they were in 2003 due
to the more stressful environmental conditions in 2003 (much greater
evaporative demand and warmer temperatures). They cited Masaya and
White (1991) who showed that temperatures greater than 28 °C caused
excessive flower drop, a reduction in pollen viability, and abortion of
fertilized ovules. Likewise, Prasad et al. (2002), Laing et al. (1984), and
Gross and Kigel (1994) demonstrated that maximum air temperatures
greater than 31 °C could reduce pollen production per flower, seed size,
pollen viability, anther dehiscence, and pollen tube growth. Omae et al.
(2012) reviewed a number of previously conducted studies that de-
monstrated that dry bean yields were greatly reduced when daily
maximum temperatures were 32–35 °C during the reproductive growth
stage. A field bean production guide from Manitoba, Canada, states that
temperatures greater than 30 °C can cause flower blasting (dropping of
buds and flowers, https://www.gov.mb.ca/agriculture/crops/
production/print,field-beans.html)

Nielsen and Nelson (1998) showed that black bean seed yield was
most sensitive to water stress during the reproductive growth stage and
concluded that high temperatures and high evaporative demand during
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the growing season could lower seed yields. In that two-yr controlled
rainout shelter study, where water availability from available soil water
and applied irrigation were the same in both years, seed yields were
28% lower in the year with 33 days of maximum temperature greater
than 35 °C than in the year with only 4 days of maximum temperature
greater than 35 °C. Also in that study, water use efficiency ranged from
2.3 to 8.7 kg ha−1 mm−1, with the lowest value occurring when irri-
gation was withheld during the reproductive growth stage.

Lyon et al. (1995) presented dry bean (pinto) water use and yield
data for two years from western Nebraska, but did not calculate a water
use/yield production function. They did however show that dry bean
seed yield was strongly correlated with soil water at planting. The re-
sponses differed between years, with one year having seed yield in-
crease at a rate of 10.3 kg ha−1 per mm of additional soil water at
planting and the other year having a response of 17.9 kg ha−1 mm−1.
Water use/yield production functions constructed from the tabulated
data in their paper resulted in two very different production function
slopes (3.7 kg ha−1 per mm of water use in the first year of the study
and 24.4 kg ha−1 per mm of water use in the second year of the study).

In the classic water requirement study of Briggs and Shantz (1914),
they measured the water requirement of two species of Phaseolus vul-
garis L. based on one year of water use and seed yield data from a study
at Akron, CO in which plants were grown in above-ground lysimeters
with a soil volume of about 85 L. The average water requirement of the
two species was 1767 g of water to produce one g of seed. This value
converts to a water use efficiency of 5.72 kg ha−1 per mm of water use.
In the evaluation of dry bean water use efficiency under fully irrigated
and limited irrigation conditions in Idaho that was cited earlier, Muñoz-
Perea et al. (2007) reported water use ranging from 318 to 548mm
under non-water-stressed conditions and from 248 to 338mm under
intermittent drought stressed conditions. The water use efficiencies in
that study ranged from 3.4 to 10.9 kg ha−1 mm-1 (average 6.84 kg
ha−1 mm−1) under non-water-stressed conditions and from 1.1 to
10.4 kg ha−1 mm-1 (average 6.03 kg ha−1 mm−1) under the inter-
mittent drought stressed conditions. Soil water extraction was reported
to be generally from the 0–100 cm soil profile.

Al-Kaisi et al. (1999) reported dry bean water extraction in south-
western Colorado occurred in the 0–30 cm soil profile under non-water-
stress conditions and in the 0–60 cm layer under drought stressed
conditions. However, Nielsen and Nelson reported black bean water use
on a silt loam soil in northeast Colorado occurring from the entire
0–180 cm measured soil profile when available soil water at planting
was about 80% of field capacity and growing season conditions were
above average in temperature and evaporative demand. Actual root
observations of dry bean in North Dakota (Merrill et al., 2002) in-
dicated a median root length of 50 cm and a maximum rooting depth of
100 cm.

While water use/yield production functions for dry bean have not
been previously published, such a production function suitable to the
climate conditions of the U.S. Central High Plains should be close to the
function previously published for field pea by Nielsen (2001) with a
slope of 8.00 kg ha−1 per mm of water use and with a water use offset
of 22mm since both field pea and dry bean are non-oilseed legumes.
Previously published water use/yield production functions provided by
Nielsen et al. (2011) showed slopes of oilseeds < seed legumes < C3
grains < C4 grains due to the greater photosynthetic costs of produ-
cing oil compared with protein and starch (Nielsen et al., 2005) and the
more efficient photosynthetic pathway of C4 plants compared with C3
plants (Kellogg, 2013). The objectives of this study were to determine
dry bean yield and water use under a range of water availability con-
ditions in order to produce a water use-yield production function, and
to use that production function in conjunction with long-term pre-
cipitation records to estimate average yields and probabilities of at-
taining given yields.

2. Materials and methods

This study was conducted during the 1993–1998 growing seasons at
the USDA Central Great Plains Research Station, 6.4 km east of Akron,
CO (40°09′ N, 103°09′ W, 1384m). The soil type was a Weld silt loam
(fine, smectitic, mesic Aridic Argiustoll). Dry bean varieties, planting
dates, seeding rates, harvest dates, and harvest areas for the seven data
sets are shown in Table 1. Dry bean varieties ‘Othello’ and ‘Fisher’ were
pinto beans (race Durango; Type 3; Burke et al., 1995; Fisher et al.,
1995) and ‘Midnight’ was a black bean (race Mesoamerican; Type 2;
Sutton and Coyne, 2007). Higher seeding rates were used for black bean
production in 1993–1996 than for pinto beans in subsequent years
because of lower germination percentage. Seeds were inoculated with
an appropriate strain of rhizobium prior to planting. Additionally, the
experimental area was fertilized with 56–87 kg N ha−1 to ensure no
nitrogen deficiency was present. The experimental area was treated for
weed control with recommended rates of either Sonalan (ethal-
fluralin:N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(tri-
fluoromethyl)benzenamine) or Treflan (trifluralin: a,a,a-trifluoro-2,6-
dinitro-N, N-dipropyl-p-toluidine), lightly tilled for incorporation prior
to planting.

Plots were established under a line-source gradient irrigation system
(diagrammed and described in Nielsen, 2004) in which water applica-
tion amount declined linearly with distance from the irrigation line.
The experimental layout provided for four replications of four water
treatments. Individual plot size was 6.1 m by 12.2 m. Row spacing was
51 cm in 1993 and 1994, 56 cm in 1995, and 76 cm in 1996–1998. Row
direction was north-south. Irrigations were generally applied at ap-
proximately weekly intervals in the evening when wind speeds were
low to minimize differences in water application due to shifts in the
spray patterns. Water application amounts were aimed at maintaining
the plot area between the two irrigation lines (highest water treatment)
at nearly a non-water-stressed condition.

Water use was calculated for each plot by the water balance method
using soil water measurements at planting and physiological maturity,
and assuming runoff and deep percolation were negligible (a reasonable
assumption as plot area slope was less than 0.5% and amounts of
growing season precipitation were generally small). Irrigation amounts
were recorded with catch gauges located in the center of each plot. Soil
water measurements were made at planting and harvest in the center of
each plot. The measurements were made at 30-cm intervals down the
soil profile using a neutron probe (Model 503 Hydroprobe, CPN
International, Martinez, CA). The depth intervals were 30–60 cm,
60–90 cm, 90–120 cm, 120–150 cm, and 150–180 cm, with the neutron
probe source centered on each interval. Volumetric soil water in the
0–30 cm surface layer was determined using time-domain reflectometry
(Trase System I, Soil Moisture Equipment Corp., Santa Barbara, CA)
with 30−cm waveguides installed vertically approximately 40 cm from
the neutron probe measurement site to average the water content over
the entire 30−cm layer. The neutron probe was calibrated against

Table 1
Dry bean varieties planting dates, seeding rates, harvest dates and harvest areas
at Akron, CO (1993–1998).

Year Variety Planting Date Seeding Rate Harvest Date Harvest Area
Seeds/ha m2

1993 ‘Midnight’ 14 June 215,200 16 Sep 6.10
1994 ‘Midnight’ 6 June 215,200 2, 6 Sep 6.20
1995 ‘Midnight’ 28 Junea 195,600 28 Sep 3.41
1995 ‘Othello’ 28 June 195,600 28 Sep 3.41
1996 ‘Othello’ 5 June 84,700 26 Aug 13.94
1997 ‘Othello’ 6 June 84,700 4 Sep 13.94
1998 ‘Fisher’ 28 May 84,700 4-10 Sep 13.94

a The delayed planting date in 1995 was due to frequent precipitation events
totaling 176mm from 15 May to 21 June.
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gravimetric soil water samples taken in the plot area. Gravimetric soil
water was converted to volumetric water by multiplying by the soil
bulk density for each depth. Bulk density was determined from the dry
weight of the soil cores (38mm diameter by 300mm length) taken from
each depth at the time of neutron probe access tube installation.

Harvesting was done by hand-sampling areas surrounding the soil
water measurement sites. These areas varied in size from year to year
(6.2 m2 to 18.6 m2). Harvest samples were oven-dried for 72 h at 58 °C
and were then threshed with a plot combine. Seed yields are reported at
0.14 kg kg−1 moisture content.

Hourly average and daily maximum air temperatures and daily
average vapor pressure deficit were recorded by an automated weather
station located about 300m from the plot area. At this same weather
station location, daily Class A pan evaporation was recorded. Daily
precipitation amounts were measured in the plot area.

Averages of water use and seed yield were computed from the four
replicate measurements at each of the four water gradient positions in
each year. Seed yield was only available for the two lowest water use
treatments for 1995 black bean due to stand establishment problems.
Linear regressions of yield vs. water use were determined with Statistix
10 software (Analytical Software, Tallahassee, FL).

3. Results

3.1. Weather

The weather during the six years of the study varied in precipitation
amount and timing, maximum air temperatures, and evaporative de-
mand (Table 2). June, July, and August precipitation ranged from
105mm (1994) to 215mm (1996). The driest July/August period, the
time of flowering and pod and seed development, occurred in 1995
(57mm) and the wettest July/August period occurred in 1998
(160mm). Evaporative demand ranged from 823mm of pan evapora-
tion (1993) to 1043mm (1994). The coolest growing season occurred in
1993 with a mean 3-month maximum temperature of 28.2 °C and the
warmest growing season occurred in 1994 with a mean 3-month

maximum temperature of 32.1 °C. The year with the least number of
days with a maximum temperature greater than 32 °C was 1993 (24
days) and the year with the most number of days with a maximum
temperature greater than 32 °C was 1994 (50 days).

3.2. Water use/yield production function

Dry bean seed yield was linearly related to water use (Fig. 1,
Table 3). The regression slopes ranged from −21.04 kg ha−1 per mm of
water use (1996 ‘Othello’) to 10.97 kg ha−1 per mm of water use. Al-
though the 1996 data set is anomalous because of the negative slope of
the relationship over a fairly small water use range (294–313mm), the
four data points are in the same general region of the water use/yield
data distribution as the points from the other six data sets. The four
points from the 1997 ‘Othello’ data set define a relationship somewhat
different from the other six data sets (greater yield for a given water
use). These higher yields can be attributed to precipitation timing.
August rainfall was greatest in 1997 (87mm) with 55mm coming
during the August 4–6 period (corresponding to late flowering and early
pod filling), a critical period for water stress effects on seed yield
(Nielsen and Nelson, 1998). No other year had August precipitation
comprising such a high percentage of June, July, and August pre-
cipitation (44%).

The three data sets for the ‘Midnight’ black bean collected in
1993–1995 provide a very uniform response of yield to water use, with
a slope of 8.86 kg ha−1 per mm of water use and a water use offset of
151mm. The coefficient of determination for this regression was 0.98.
A regression using all seven of the data sets produced a production
function with a slope of 6.99 kg ha−1 per mm of water use with an
offset of 41mm of water use. However, because the 1997 ‘Othello’
yields were higher for any given water use value than seen with the
other data sets due to the fortuitous timing of August precipitation, it
seems prudent to ignore this data set when choosing data for the de-
termination of a production function that will conservatively estimate
yields. The production function defined by all of the data collected
excluding the 1997 ‘Othello’ data had a slope of 8.24 kg ha−1 per mm of

Table 2
Monthly (June, July, August) maximum temperature, number of days with maximum temperature greater than 32 C, vapor pressure deficit, precipitation, and pan
evaporation at Akron, CO.1993–1998.

Year Month Maximum Temperature Number of Days with Tmax>32 C Vapor Pressure Deficit Precipitation Pan Evaporation
C kPa mm mm

1993 June 26.8 8 1.116 44 269
July 29.4 9 1.098 122 311
August 28.4 7 1.022 23 243
Average or sum 28.2 24 1.078 189 823

1994 June 32.3 18 1.955 6 371
July 31.6 15 1.417 69 341
August 32.3 17 1.552 30 331
Average or sum 32.1 50 1.634 105 1043

1995 June 25.2 4 0.779 125 239
July 31.6 16 1.620 39 317
August 34.3 26 1.969 18 318
Average or sum 30.4 46 1.456 182 874

1996 June 28.2 4 1.002 63 284
July 29.9 13 1.383 79 294
August 29.4 8 0.949 73 284
Average or sum 29.2 25 1.113 215 862

1997 June 28.1 8 1.044 79 291
July 32.5 16 1.689 29 365
August 29.3 12 1.116 87 249
Average or sum 30.0 36 1.286 196 905

1998 June 27.1 9 1.319 9 369
July 31.3 15 1.367 98 313
August 30.9 13 1.397 62 290
Average or sum 29.8 37 1.362 169 972
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water use with a water use offset of 104mm and a coefficient of de-
termination of 0.87 (Table 3).

Tanner and Sinclair (1983) pointed out that water use efficiency
(basically the slope of the water use/yield production function) was
influenced by vapor pressure deficit, with water use efficiency declining
as vapor pressure deficit increased. Even though a single production
function was determined the fit most of the data collected in this study,
the data do show that the conclusion of Tanner and Sinclair (1983) is
correct (Fig. 2). In general, production function slopes decreased as the
average June, July, and August vapor pressure deficit increased.

3.3. Estimated yields from precipitation record

The production function defined in this study (using all of the data
sets except 1997) was used with the historical precipitation record at
Akron (1908–2017) to estimate the distribution of estimated dry been
seed yields. In order to do so, an estimate of soil water extraction by dry
bean is needed. The average soil water extracted by dry bean varied by
gradient position in the plot area, with water extraction of 108mm for

the rainfed plots (gradient position 1), 87mm for gradient position 2,
59mm for gradient position 3, and 40mm for gradient position 4 (the
wettest treatment). These soil water extraction results are in agreement
with root observations reported by Benjamin and Nielsen (2006) that
greater proportions of chickpea (Cicer arietinum L.) and field pea roots
were found in deeper soil layers under non-irrigated conditions than
under irrigated conditions. The growing season (9 June to 8 September)
precipitation over the 1908–2017 period ranged from 40mm to
369mm (Supplemental Fig. 1). Since the soil water extraction appears
to vary with growing season precipitation, the following soil water
extraction values were arbitrarily chosen when estimating yields with
the production function. For the 7.3% of the driest years (growing
season precipitation less than 102mm), 108mm of soil water was as-
sumed to be extracted. For years with growing season precipitation
between 102 and 178mm (53.6% of the 110 years), 87mm of soil
water was assumed to be extracted. For years with growing season
precipitation between 178 and 254mm (30.9% of the 110 years),
59mm of soil water was assumed to be extracted, and for the wettest
years (greater than 254mm of growing season precipitation, 8.7% of
the 110 years), 40mm of soil water was assumed to be extracted. Using
these values of soil water extraction with the 110 years of growing

Fig. 1. Water use vs. seed yield for dry bean grown at Akron, CO (1993–1998). Yields reported at 0.014 kg kg−1 moisture content. Linear regression coefficients for
the lines shown and other regressions are reported in Table 3.

Table 3
Linear regression slope, water use offset, and coefficient of determination va-
lues for dry bean water use and yield data collected at Akron, CO from 1993 to
1998. The linear regression has the form of Yield (kg ha−1) = slope X (Water
use [mm] - offset).

Data Set Slope Offset R2

kgha−1per mm mm

1993 ‘Midnight’ black bean 9.94 185 0.99
1994 ‘Midnight’ black bean 7.35 79 0.99
1995 ‘Midnight’ black bean 9.62 171 1.00
1995 ‘Othello’ pinto bean 10.97 139 0.98
1996 ‘Othello’ pinto bean −21.04 389 0.71
1997 ‘Othello’ pinto bean 10.42 55 0.95
1998 ‘Fisher’ pinto bean 9.82 132 0.93

‘Midnight’ black bean 1993-1995 8.86 151 0.98
All sets except 1997 ‘Othello’ pinto bean 8.24 104 0.87
All data sets 6.99 41 0.71

Fig. 2. Relationship between dry bean production function slope and average
June, July, and August vapor pressure deficit at Akron, CO.
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season precipitation data as estimates of water use in the production
function, estimated seed yields ranged from 359 kg ha−1 to 2514 kg ha-
1, and averaged 1192 kg ha-1 (Fig. 3, inset box plot, dashed line). This
average is about 18% greater than the six-yr average rainfed dry bean
yield reported by Yonts et al. (2018) at Scottsbluff, NE (193 km
northwest of Akron) of 1013 kg ha-1. Fifty percent of the estimated seed
yields fell between 878 (25th percentile) and 1402 kg ha-1 (75th per-
centile). The whiskers of the box plot indicate the 10th and 90th per-
centiles (747 and 1662 kg ha-1).The dots indicate the 5th and 95th
percentiles (723 and 1914 kg ha-1).

Because of the close agreement between the estimated average yield
in this study (1192 kg ha−1) and the field-measured average yield of
Yonts et al. (2018) (1013 kg ha−1), these estimated yields can be con-
fidently used in a cumulative probability exceedance graph of dry bean
yield for Akron (Fig. 3). This figure can be used by farmers to assess the
risk in producing dry bean in this region due to variability in growing
season precipitation. For example, if a farmer had a yield goal of 800 kg
ha−1, Fig. 3 indicates that there is an 83% chance of obtaining at least
that yield. As another example, there is a 50% chance of obtaining at
least a yield of 1187 kg ha−1. Of course, these yield expectations are
based on yield response to water availability and assuming that to be
the only factor that is affecting yield, whereas in reality timing of
precipitation (Nielsen and Nelson, 1998), high temperature stress
(Omae et al., 2012), plant stand, fertility, insects, diseases, weeds,
shattering losses at harvest, etc. (Kandel, 2013) can potentially affect
yield. In any case, Fig. 3 provides a good first estimate of the risk in-
volved in producing acceptable yields of dry bean at Akron, CO based
on growing season precipitation variability.

4. Discussion

In recent publications, Nielsen et al. (2017a,b) showed that there
were numerous production functions for grain sorghum (Sorghum bi-
color L. Moench) and proso millet (Panicum miliaceum L.), even for data
that came from the same location. They acknowledged that the varia-
bility could arise from differences in growing season conditions, such as
timing of precipitation, evaporative demand, extreme temperatures,
seed shattering, etc. The 1997 ‘Othello’ data set that produced greater
yields for given water use amounts than the other data sets in this ex-
periment appears to be such a case. The different production function
for this data set compared with the other six data sets is likely attri-
butable to very favorable timing of precipitation in early August.

It appears that 1993 might be considered a low stress year because

of low evaporative demand, moderate precipitation and relatively
cooler temperatures, while 1994 was a much more stressful year be-
cause of high evaporative demand, very low growing season pre-
cipitation, and the warmest growing season temperatures (Table 2). The
conditions in 1995 were intermediate to those two years. Yet the data
points of yield vs water use for all three years appear to fall on nearly
the same production function line (Fig. 1, Table 3). It is also interesting
to note that, aside from the 1997 ‘Othello’ data set, all of the other data
sets are adequately represented by one production function, even
though ‘Othello’ and ‘Fisher’ are Durango race dry beans and ‘Midnight’
is a Mesoamerican race dry bean with very different origins (Singh
et al., 1991).

The slope of the production function defined in the current study for
dry bean (8.24 kg ha−1 mm−1) compares well with a previously de-
fined production function for another seed legume (field pea) at Akron,
CO (slope=8.00 kg ha−1 mm−1; Nielsen, 2001). The magnitude of the
production function slope for dry bean also fits the expected order of
slopes compared with previously published slopes obtained at Akron,
where oilseeds < seed legumes < C3 grains < C4 grains. For ex-
ample, previously published production function slopes for oilseeds
were 7.73 kg ha−1 mm−1 for canola (Brassica napus L., Nielsen, 1998);
6.64 kg ha−1 mm−1 for sunflower (Helianthus annuus L., Nielsen, 1999);
and 6.53 kg ha−1 mm−1 for soybean [Glycine max (L.) Merrill, Nielsen,
1990]. A previously published production function for a C3 grain
(winter wheat) had a slope of 12.49 kg ha−1 mm−1 (Nielsen et al.,
2011), while production function slopes for C4 grains were reported as
26.57, 30.2. and 32.57 kg ha−1 mm−1 for corn (Zea mays L., Nielsen
et al., 2011), grain sorghum (Nielsen and Vigil, 2017a), and proso
millet (Nielsen and Vigil, 2017b)

As stated earlier, there appear to be no other published production
functions for dry bean. However, relationships constructed from pre-
viously published yield and water use, irrigation, or soil water data (as
noted in the introduction of this paper) showed dry bean yields re-
sponding to available water at a rate varying from 3.7 to 24.4 kg
ha−1 mm−1. Such a large range in the reported response of dry bean
yield to water availability would appear to argue against the productive
use of a single water use/yield production function for dry bean, Yet
this current study did find that such a single production function was
applicable to data collected over several years varying in climatic
conditions and over dry bean cultivars varying in origin, type, and
market class.

Lyon et al. (1995) found that there was a strong correlation between
dry bean yield in western Nebraska and soil water in the 0–120 cm
profile at planting, arguing for using soil water contents at planting to
estimate growing season yields and for making crop choice decisions.
Contrary to the finding of Lyon et al. (1995), the data in the current
study (Supplemental Fig. 2) did not strongly define a useable re-
lationship between dry bean yield and available soil water at planting
(calculated as amounts of available soil water in the 0–120 cm,
0–150 cm, and 0–180 cm soil profiles). It is not clear why different re-
sults were obtained at these two locations separated by only 112 km.

While there might be some uncertainty regarding the geographic
transferability of the production function defined in this study, it is
probably not too dangerous to assume its applicability to a restricted
area of the U.S. Central High Plains in order to get an idea of the po-
tential average dry bean yield grown under dryland conditions. Average
growing season precipitation values (1981–2010, usclimatedata.com)
for Akron, CO and eight other locations within 320 km of Akron were
combined with four levels of extracted soil water to estimate dry bean
water use across the region and used with the production function to
estimate dry bean yields (Fig. 4). As expected, yields increased from
west to east in response to the east-west precipitation gradient that is
primarily due to the effect of the rain shadow of the Rocky Mountains
(Nielsen, 2018). Assuming 40mm of growing season soil water ex-
traction leads to an estimated average dryland yield ranging from
915 kg ha−1 at Akron, CO to 1327 kg ha−1 at McCook, NE and Colby,

Fig. 3. Cumulative probability exceedance graph of dry bean yield at Akron, CO
(1908–2017) using the production function, seed yield (kg ha−1)= 8.24 X
(water use [mm] - 104), where water use is the sum of growing season pre-
cipitation and average soil water extraction. Inset is a box plot of estimated seed
yield where the solid line is the median yield, the dashed line is the mean yield,
the bottom and top of the box are the 25th and 75th percentile yields, the
bottom and top whiskers are the 10th and 90th percentile yields, and the
bottom and top dots are the 5th and 95th percentile yields, respectively.
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KS (Fig. 4, upper left panel). Assuming 108mm of growing season soil
water extraction leads to an estimated average dryland yield ranging
from 1475 kg ha−1 at Akron, CO to 1887 kg ha−1 at McCook, NE and
Colby, KS (Fig. 4, lower right panel).

A potential problem with these regional yield estimates that are
based only upon the water use/yield relationships reported here is that
they probably do not account for the increased heat stress effects on
yield that are likely to reduce yields for the southern locations (Tribune,
Walsh, Garden City). Yet, as noted earlier, evidence of that detrimental
temperature effect was not observed in the data collected in this study
in 1993, 1994, and 1995.

The production function could be useful for farmers who wish to
estimate dry bean yields in order to make crop choice decisions prior to
planting in flexible fallow or opportunity cropping systems (as de-
scribed by Nielsen et al., 2011). A farmer could estimate growing

season water use as the sum of an estimate of growing season pre-
cipitation and measured or estimated available soil water at planting
and then use that value in the production function to get an estimate of
the expected dry bean yield. For example, if the famer estimated that
growing season precipitation at Akron would be 80% of normal
(140mm) and that there was 70mm of available soil water at planting,
then the estimated growing season water use would be 210mm. The
production function would predict a dry bean yield of 873 kg ha−1.
Then the farmer could decide if that yield would be profitable enough
to justify the expense and risk of planting dry bean that year.

The production function could also be potentially useful in quanti-
fying the effects of future climate change or increased climate varia-
bility on dry bean yield. Simulated precipitation records from future
decades would be used to calculate likely future water use values to be
used with the production function. As an example, if average growing

Fig. 4. Estimated average dry bean yield for Central High Plains locations in Colorado, Nebraska, and Kansas using the production function, seed yield (kg
ha−1)= 8.24 X (water use [mm] - 104), where water use is the sum of average (1981–2010) growing season precipitation and four levels of soil water extraction.
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season precipitation at Akron were to increase by 3% by 2050 (as re-
ported by Kennedy, 2014), the production function would predict an
expected increase in dry bean yield of 3 to 5%, depending on the soil
water extracted. However, use of this technique fails to incorporate the
detrimental effects on yield of the predicted greater temperatures that
climate models generally predict for 2050. Hence, use of cropping
systems models would be a better approach to use for determining ef-
fects of climate change on dry bean yield.

The production function defined in this study could be transferrable
to other semi-arid environments around the world that have similar
vapor pressure deficit conditions and similar timing of precipitation
during the growing season. However, even for those semi-arid en-
vironments which differ in vapor pressure deficit and precipitation
timing and amount, the production function defined in this study serves
as a benchmark for comparison of other production functions locally
determined at other locations around the world.

As stated earlier, Briggs and Shantz (1914) reported one year of seed
yield and water use data for two dry bean species grown in 85 L lysi-
meters at Akron, CO. These values produced an average water use ef-
ficiency of 5.72 kg ha−1 mm−1. Water use efficiency calculated for each
data point shown in Fig. 1 resulted in an average value of 6.11 kg
ha−1 mm−1 (range of 1.55 to 8.83 kg ha−1 mm−1, Supplemental
Table 1). This result would seem to support the conclusion of Tanner
and Sinclair (1983) that it is unlikely that major improvements to WUE
can be made through plant breeding. Therefore, even though the water
use and yield data sets used in the current study to define a production
function for dry bean are 20–25 years old, they are still likely valid for
such a purpose today. However, readers should be aware that some
authors disagree with Tanner and Sinclair (1983) and report that im-
provements in water use efficiency have occurred through plant
breeding changes that better match phenology to prevailing climate,
increase harvest index, and support increased plant populations
(Richards et al., 1993; Basso and Ritchie, 2018). Yet even in 1993,
Richards et al. (1993) stated that further major improvements to har-
vest index were not likely as that value approached its theoretical limit.
Readers are cautioned to not extrapolate the use of the production
function defined in this study to water use values greater than the data
used to generate the production function (about 550mm) as other
factors may become limiting factors to yield.

5. Conclusions

As with many crops, dry bean exhibits a well-defined linear re-
sponse of seed yield to water use with the magnitude of the slope of the
response being similar to a previously reported slope for another seed
legume, field pea. This linear relationship can be used as a production
function to estimate dry bean seed yields. While there are many caveats
associated with the use of production functions to estimate dry bean
yields based on precipitation records, this method does provide a first
approximation of the average dry bean yields, range of yields, and
probabilities of achieving minimum specified yields in the U.S. Central
High Plains, and can be used to assess risk in dryland dry bean pro-
duction in this region.

Ultimately, whether dry bean is used successfully as an alternative
dryland rotational crop in the U.S. Central High Plains depends upon
the economic return produced for the farmer. The average yields esti-
mated by the production function determined in this study can be used
with costs of production to further quantify production risk.
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