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RESEARCH ARTICLE Open Access

Using RNA-seq to characterize responses to
4-hydroxyphenylpyruvate dioxygenase
(HPPD) inhibitor herbicide resistance in
waterhemp (Amaranthus tuberculatus)
Daniel R. Kohlhase1, Jamie A. O’Rourke2, Micheal D. K. Owen1* and Michelle A. Graham2*

Abstract

Background: Waterhemp (Amaranthus tuberculatus (Moq.) J.D. Sauer) is a problem weed commonly found in the
Midwestern United States that can cause crippling yield losses for both maize (Zea mays L.) and soybean (Glycine
max L. Merr). In 2011, 4-hydroxyphenylpyruvate-dioxygenase (HPPD, EC 1.13.11.27) inhibitor herbicide resistance was
first reported in two waterhemp populations. Since the discovery of HPPD-herbicide resistance, studies have
identified the mechanism of resistance and described the inheritance of the herbicide resistance. However, no
studies have examined genome-wide gene expression changes in response to herbicide treatment in herbicide
resistant and susceptible waterhemp.

Results: We conducted RNA-sequencing (RNA-seq) analyses of two waterhemp populations (HPPD-herbicide resistant
and susceptible), from herbicide-treated and mock-treated leaf samples at three, six, twelve, and twenty-four hours
after treatment (HAT). We performed a de novo transcriptome assembly using all sample sequences. Following
assessments of our assembly, individual samples were mapped to the de novo transcriptome allowing us to identify
transcripts specific to a genotype, herbicide treatment, or time point. Our results indicate that the response of HPPD-
herbicide resistant and susceptible waterhemp genotypes to HPPD-inhibiting herbicide is rapid, established as soon as
3 hours after herbicide treatment. Further, there was little overlap in gene expression between resistant and susceptible
genotypes, highlighting dynamic differences in response to herbicide treatment. In addition, we used stringent
analytical methods to identify candidate single nucleotide polymorphisms (SNPs) that distinguish the resistant and
susceptible genotypes.

Conclusions: The waterhemp transcriptome, herbicide-responsive genes, and SNPs generated in this study provide
valuable tools for future studies by numerous plant science communities. This collection of resources is essential to
study and understand herbicide effects on gene expression in resistant and susceptible weeds. Understanding how
herbicides impact gene expression could allow us to develop novel approaches for future herbicide development.
Additionally, an increased understanding of the prolific traits intrinsic in weed success could lead to crop improvement.
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Background
Over the past 30 years, waterhemp (Amaranthus tuber-
culatus (Moq.) J.D. Sauer) has evolved into a major
problem weed species in agricultural production systems
across the Midwestern United States [1]. If not properly
managed, fields infested with waterhemp can suffer yield
losses up to 74% in maize (Zea mays L.) and 56% in soy-
bean (Glycine max (L.) Merr.) [2, 3]. Waterhemp is na-
tive to the Midwestern United States and is dioecious;
the male and female reproductive structures are on
separate plants. As a dioecious species, waterhemp is an
obligatory outcrosser, resulting in high levels of genetic
recombination and variability. Obligatory outcrossing
facilitates the movement of ecologically valuable traits,
such as herbicide resistance, among and between water-
hemp populations. Additional biological traits that con-
tribute to the weediness of waterhemp include prolific
seed production [4], extended and opportunistic germin-
ation [5], and rapid growth rate [6].
Herbicides are currently the most important tool in

weed management for most crop production systems in
many parts of the world [7]. A major concern of modern
weed management is evolved resistance to herbicides.
One of the first documented cases of evolved herbicide
resistance in weeds was reported in 1970 and since then,
the number of unique cases (an individual species x
specific herbicide site of action) has grown to 498 glo-
bally and continues to increase [8, 9].
In 2011, two waterhemp populations with evolved

resistance to 4-hydroxyphenylpyruvate dioxygenase
(HPPD, EC 1.13.11.27) inhibiting herbicides, including
mesotrione, were discovered in seed maize fields in Iowa
and Illinois [10, 11]. Mesotrione (2-(4-Mesyl-2-nitroben-
zoyl)-1,3-cyclohexanedione, Herbicide Group (HG) 27)
is a selective herbicide that is commonly used for broad-
leaf weed control in maize [12]. HPPD converts
4-hydroxyphenylpyruvate (4-HPP) to homogentisate
(2,5-dihydroxyphenylacetate; HGA), which is an import-
ant precursor in carotenoid biosynthesis. The herbicidal
activity of mesotrione is characterized by the bleaching
of new tissue followed by tissue necrosis. While the
resistance mechanisms in the Iowa population have not
been determined, in the Illinois population, herbicide re-
sistance was conferred by the metabolism of mesotrione
to non-herbicidal metabolites, reportedly attributable to
increased cytochrome P450 monooxygenase (CYP P450,
EC 1.14.14.1) activity [13]. In 2017, mesotrione resist-
ance was confirmed in two waterhemp populations from
Nebraska (Columbus, NE, [14] and Tarnov, NE, [15]). In
the Tarnov population, which was used in this study,
Kaundun et al. [15] found the HPPD gene had no target
site mutations associated with mesotrione resistance,
nor was the HPPD gene duplicated or overexpressed.
However, they observed increased mesotrione metabolism

in the resistant population, again attributed to cytochrome
P450 activity. Finding similar resistance mechanisms in
distant populations (Nebraska and Illinois) suggests resist-
ance occurs through spontaneous evolution of standing
genetic variation [16]. Further, in the HPPD-resistant pop-
ulations examined thus far [17–19], resistance is poly-
genic, making identification of causal genes more difficult.
None of these studies examined genome wide expression
changes in response to mesotrione in resistant and sus-
ceptible waterhemp populations. Characterizing gene ex-
pression differences in HPPD-resistant and susceptible
waterhemp populations at time points well before meta-
bolic responses are detected could help identify major
genes contributing to resistance and may provide insight
into managing the evolution of resistance to other herbi-
cides in waterhemp and possibly other weed species.
Advances in sequencing technologies have created

opportunities to study the genomics of non-model or-
ganisms [20]. Due to a lack of weed-related genomic
resources, Lee et al. [20] sampled 43 million base pairs
of the waterhemp genome using 454 pyrosequencing
(Roche Sequencing, Pleasanton, CA, USA). While this
sequencing approach covered less than 10% of the
waterhemp genome, it demonstrated that cutting-edge
sequencing technology could be applied to weed species.
Riggins et al. [21] used 454 pyrosequencing to analyze
the waterhemp transcriptome. To maximize transcrip-
tome coverage, the study pooled RNA samples from dif-
ferent individuals, sexes, tissues, life stages, herbicide
treatments, and cold stress. These studies contributed to
a better understanding of the waterhemp genome and
provided sequence-based details for key enzymes tar-
geted by herbicides and potentially prone to herbicide
resistance evolution [21]. However, the experimental de-
signs and sequencing platforms used in these studies
made it impossible to identify the genes and gene
networks that regulate susceptibility, tolerance and re-
sistance to herbicides. Since these initial studies,
RNA-sequencing (RNA-seq) has become the standard
method for transcriptome analyses for species lacking
genomic resources.
The increasing prominence of waterhemp as an econom-

ically important and ubiquitous weed in the Midwestern
United States and the demonstrated ability to evolve resist-
ance to herbicides makes this species an important model
for studying herbicide resistance evolution in weeds. Here
we report on the sequencing of the waterhemp transcrip-
tome using high throughput RNA-seq technology. This
study identifies the genes and gene networks responding to
the HPPD-inhibiting herbicide mesotrione in susceptible
and resistant waterhemp genotypes over a 24-h exposure
time course. In addition, our study provides a publicly
available sequence-based platform for the weed science
community to study this agronomically important weed.
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Methods
Tissue collection
Two waterhemp populations with different susceptibility
phenotypes to HPPD-inhibiting herbicides (susceptible
and resistant) were selected. The susceptible waterhemp
population was collected from the Curtis Farm at Iowa
State University (Ames, IA, USA) in 2006. The resistant
population was from Tarnov, Nebraska (USA) and was
collected in 2014 from a field with a history of seed
maize production after reports of waterhemp surviving
multiple applications of mesotrione [15].
Each genotype was planted in 40 individual 15.2 cm in

diameter round pots using a 4:1 ratio of Sunshine pot-
ting mix #1/LC1 (Sun Gro Horticulture, Agawam, MA,
USA) to sand, respectively. We added 1 tsp. of Osmo-
cote Flower Food Granules (14–14-14) (The Scotts
Miacle-Gro Company, Marysville, OH, USA) to each pot
at the time of planting. Plants were grown in a green-
house set to 24 °C with a 14-h photoperiod supple-
mented by high-pressure sodium bulbs. Plants were
watered every other day. After 2 weeks, seedlings were
thinned to 3 plants per pot. Each plant within each pot
was randomly assigned a label of A, B, or C. The pots
were placed in the greenhouse in a randomized block.
When plants reached a minimum height of 7.6 cm,

they were treated with mesotrione applied in a CO2

powered spray chamber equipped with TeeJet®
80015EVS nozzles (Spraying Systems Co., Wheaton, IL,
USA) at a carrier volume of 191.76 L ha− 1. Half of each
population (20 pots of each genotype) was treated with
105.36 g ai ha− 1 of mesotrione, 1% (v/v) crop oil concen-
trate (COC), 2.5% (v/v) urea (CH4N2O) ammonium ni-
trate (NH4NO3) solution (UAN; 28% nitrogen), and tap
water. The other half was treated with water, represent-
ing a mock treatment. The plants were then returned to
the greenhouse into 4 blocks separated by treatment and
genotype. To determine other reagents used in conjunc-
tion with the herbicide affected plant growth, a separate
study was used to evaluate the phenotypic response of
plants that were untreated, mock-treated, and treated
with 1% (v/v) COC, 2.5% (v/v) UAN (28% nitrogen), and
tap water (data not provided). No difference in pheno-
typic response was identified.
Each genotype within a treatment was separated into 4

groups of 5 pots. The 4 groups were randomly assigned
a time point of 3, 6, 12, or 24 HAT. Within each time
point 4 pots were labeled 1–4. The fifth pot was used as
a control for verification of the phenotypic response and
was also used as a buffer against greenhouse variation in
the bench space adjacent to the wall. Leaf tissue from
each plant within the four labeled pots was collected at
12:00 PM CDT (3 HAT), 3:00 PM CDT (6 HAT), 9:00
PM CDT (12 HAT), and 9:00 AM CDT (24 HAT) on
May 22 and 23 of 2015. Sunrise occurred at 5:49 AM,

while sunset occurred at 8:34 PM. A given plant was
only sampled at one time point. To obtain the highest
quality RNA, the four youngest fully-developed leaves of
each plant were excised at the base of each leaf, placed
in a 50 mL Falcon® tube (Thermo Fisher Scientific, Wal-
tham, MA, USA), flash frozen in liquid nitrogen, and
then maintained at − 80 °C. Tissues from individual plant
samples were stored in a separate Falcon® tube. Plants
continued to grow for 3 weeks after treatment to verify
the phenotypic response to mesotrione.

RNA isolation
Frozen tissue in the 50mL Falcon® tubes was crushed by
inverting an 11.11 cm pestle, dipped in liquid nitrogen,
into the tubes. Crushing the leaf samples within a Fal-
con® tube mixed the tissue from an individual plant pro-
viding a more homogeneous collection of leaves from
each plant. One full microspatula scoop (approximately
100 mg) of crushed frozen tissue from each Falcon® tube
was added to a 2mL Safe-Lock™ microcentrifuge tube
(Eppendorf, Hamburg, Germany) kept on dry ice with a
3 mm tungsten carbide bead. Prepared microtubes were
placed in TissueLyser Adapter sets precooled at − 80 °C
and then processed in a Qiagen TissueLyser II (Qiagen,
Valencia, CA, USA) for 1 min at 30 Hz. RNA extraction
was performed as recommended by the manufacturer
using the RNeasy® Plant Mini Kit (Qiagen, Valencia, CA,
USA). To check for RNA concentration and quality, a
NanoDrop™ 1000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) was used.
Prior to DNase treatment, to remove genomic DNA

contamination, RNA samples from plants growing in the
same pot were pooled together. 6 μg of pooled RNA
(2 μg of RNA per sample) were used in a 50 μL DNase
reaction using the Ambion® TURBO DNA-free™ Kit
(Thermo Fisher Scientific, Waltham, MA, USA). Imme-
diately after DNase treatment, samples were further
purified using the RNeasy® MinElute® Cleanup Kit fol-
lowing the manufacturer’s recommendations. RNA
concentration and quality of the samples were checked
using the NanoDrop™ 1000 Spectrophotometer.

RNA-Seq and de novo transcriptome assembly
The extracted RNA was sequenced by the Iowa State
University DNA Facility using the Illumina HiSeq 2500
(Illumina, Inc., San Diego, CA, USA) platform. Prior to
sequencing, the quality of all samples was confirmed
using an Agilent® 2100 Bioanalyzer™ (Agilent®, Santa
Clara, CA). RNA was considered acceptable if the RNA
integrity number (RIN) was greater than seven. Se-
quences were generated in High Output Mode with 100
base pair read length and paired-end sequencing. The
paired-end protocol, sequencing the RNA from both di-
rections of the strand, enables better transcriptome
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coverage. Forty-eight samples were run on one eight-
lane flow cell, six samples per lane. Each lane contained
three samples of each treatment (herbicide or mock), of
one waterhemp genotype (resistant or susceptible), at
one time point (3, 6, 12, or 24 HAT).
The programs Scythe [22] and Sickle [23] were used to

remove sequencing artifacts, low-quality bases (q < 20)
and short reads (l < 50) from all 48 sequenced samples.
Trinity (version 2.0.6, [24]) was used to produce multiple
de novo transcriptome assemblies. Three separate
assemblies (versions 1–3) were made using kmer lengths
of 25, 29, and 32 (Additional file 1). After comparing
assembly statistics (total number of transcripts, contig
N50, median contig length, and average contig size), ver-
sion 3 (kmer length 32) was selected because this assem-
bly resulted in the longest N50 (Table 1). However,
assembly version 3 still contained contigs that lacked
open reading frames or were expressed at very low
levels. Therefore, in order to create an improved assem-
bly that could be used for measuring differential gene
expression, this assembly was processed with three
additional steps. First, the TransDecoder utility within
Trinity [25] was used to return transcripts that con-
tained an open reading frame (ORF) of at least 100
amino acids. Second, the program kallisto [26] was used
to estimate the number of counts per transcript. Any
transcripts with less than 10 counts were removed. Fi-
nally, BLASTN analyses (E-value cutoff of E < 10− 20,
[27]) was used to compare the v3 assembly to predicted
transcripts in the sugar beet genome (Beta vulgaris L.,
Refbeet v1.2, [28]), representative species of the ten
plant clades of Phytozome (version 10, [29]), and all
sequences available in the GenBank nucleotide (NT)
database (version 1/22/2016, [30]). Any transcript that
was best matched to a non-plant species or had no sig-
nificant hits was not included in the final assembly.
These filtering steps resulted in the final transcriptome,
version 4 (v4, Additional file 2).

Functional annotation
The v4 transcriptome was annotated (Additional file 3)
using BLASTX (E < 10− 10, [27]) against proteins from
Arabidopsis thaliana (The Arabidopsis Information
Resource version 10 [TAIR10], [31]), sugar beet (Refbeet
v1.2, [28]) and Uniref100 (version 1/22/2016, [32]) and
using BLASTN (E < 10− 20, [27]) against nucleotides from
grain amaranth (Phytozome v12.1, Amaranthus hypo-
chondriacus v2.1, [33]). Custom Perl scripts were used
to assign gene ontology (GO) biological processes and
molecular function terms [34] based on the top A. thali-
ana hit. To measure the breadth of the de novo v4 tran-
scriptome relative to related species with complete
genome sequences, predicted proteins from poplar
(Phytozome v12.1.6, Populus trichocarpa v3.1, [35]), pa-
paya (Phytozome v12.1.6, Carica papaya ASGPBv0.4,
[36]), asparagus (Phytozome v12.1.6, Asparagus officina-
lis V1.1, [37]), sugar beet (Refbeet v1.2, [28]), and grain
amaranth (Phytozome v12.1, Amaranthus hypochondria-
cus v2.1, [33]) genomes were also compared to A. thali-
ana (TAIR version 10, [31]) using BLASTP (E < 10− 10,
[27]). Custom Perl scripts were then used to assign GO
biological process and GO slim information based on
the best A. thaliana homolog. Within each species,
the total number of each GO slim count was divided
by the total count of all GO slims to adjust for gen-
ome duplications.

Differential expression analyses
The individual sample reads were mapped to the version 4
transcriptome assembly using Bowtie [38]. RNA-seq by
Expectation-Maximization (RSEM) software [39] was used
to account for reads that could re-align to multiple assem-
bled transcripts in the de novo assembly due to alterna-
tively spliced isoforms. The raw expression counts were
normalized across samples using the Trimmed Mean of
M-values (TMM) method [40] in edgeR [41]. GGplot2
(CRAN, [42]) was used to compare and visualize read

Table 1 Comparison of waterhemp transcriptome assemblies

v1 (k-mer = 25) v2 (k-mer = 29) v3 (k-mer = 32) v4

Total ‘gene’ count 269,388 238,782 226,402 42,040

Total transcript count 512,945 471,767 451,199 113,893

All Transcripts Contig N50 762 926 1029 1709

Median Contig Length 390 424 448 1094

Average Contig Length 598.54 669.21 713.94 1317.45

Longest Isoform Contig N50 662 747 792 1816

Median Contig Length 359 371 375 998

Average Contig Length 549.32 590.09 609.47 1301.70

Trinity (version 2.0.6, [24]) was used to generate three unique de novo waterhemp transcriptome assemblies: v1, v2, and v3 based on different kmer length
requirements. With each assembly, the number of total transcripts decreased while average contig length increased (see Additional file 1). A total of 2.3 billion
reads representing different genotypes, treatments and time points were used in the assembly. The v4 assembly is a subset of the v3 assembly, with transcripts
that were redundant, lacking open reading frames or expressed at low levels removed
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counts across replicate samples for technical reproducibil-
ity. Transcripts with a log count per million less than one
(log CPM< 1) across all samples were excluded from the
analyses, leaving 72,697 expressed transcripts (v4 iso-
forms). edgeR was also used to identify significantly (false
discovery rate (FDR) < 0.05, [43]) differentially expressed
transcripts (DETs, Table 2, Additional file 4) responding to
treatment (mesotrione treatment vs. mock) in each geno-
type at each time point (R3, R6, R12, R24, S3, S6, S12 and
S24) and across all time points (R and S).
Overrepresented GO terms associated with DETs of

interest were identified using a Fisher’s exact test [44]
to compare the number of times each GO term was
found within a list DETs of interest relative to the num-
ber of times each GO term was found among all tran-
scripts in the v4 assembly (Additional file 5). A
Bonferroni correction (P < 0.05, [45]) was applied to
correct for over testing.

Clustering of herbicide-responsive DETs
To determine if herbicide-responsive DETs might
physically cluster in the genome, we took advantage of
the closely related grain amaranth genome [33].
BLASTN (E < 10− 20, [27]) was used to compare water-
hemp transcripts to predicted transcripts from the grain
amaranth genome (Phytozome v12.1, Amaranthus
hypochondriacus v2.1, [33]). BLASTN was then used to
compare the top grain amaranth hit (E < 10− 20, [27])
back to all waterhemp transcripts. Waterhemp tran-
scripts were considered orthologous to grain amaranth
transcripts if reciprocal BLAST identified any of the
original waterhemp transcript isoforms as a top hit. Cus-
tom Perl scripts were used to identify the genomic loca-
tion of the orthologous grain amaranth transcript from
the general feature format (GFF) file corresponding to
grain amaranth genome.
A window size of 100,000 bp, centered on transcrip-

tion start sites, was used to identify clusters of DETs.
DETs that overlapped by ±50,000 bp from transcription
start sites were considered part of the same cluster. Start
site positions from transcripts in the same cluster were

used to calculate an average position for the cluster.
Only clusters with four or more DETs are reported
(Additional file 6). For clustering, multiple isoforms
mapping to the same cluster were considered a single
DET transcript.

Identification of candidate single nucleotide
polymorphisms between resistant and susceptible
waterhemp genotypes
The sequence alignment files generated for differential
expression analysis were sorted using samtools and then
merged by genotype into two master files. The samtools
pipeline was used to identify biallelic single nucleotide
polymorphisms (SNPs) relative to the v4 assembly. The
samtools output was filtered to identify SNPs between
the resistant and susceptible genotypes and to only in-
clude SNPs with a minimum Phred-scaled probability
score of QUAL ≥25 and homozygous within a genotype
(GT) but unique to each genotype (Additional file 7).
Genotype likelihoods (PL ≥ 200 and PL = 0; Phred-scaled
data likelihoods of possible genotypes) were used to in-
crease the confidence of reported genotypes for reported
SNPs. As RNA samples were pooled from multiple re-
sistant or susceptible plants, only SNPs with at least 90%
of a single allele in the resistant and susceptible popula-
tions are reported. To predict the relative location of
SNPs in the waterhemp genome, we again used the grain
amaranth genome, taking advantage of the reciprocal
BLASTN (E < 10− 20, [27]) described previously.

Results
Phenotypic assessment of mesotrione responses in
resistant and susceptible waterhemp genotypes
Samples used for RNA-seq were harvested prior to the
development of visual mesotrione treatment symptoms;
therefore, herbicide-treated and mock-treated control
plants were maintained in the greenhouse for 3 weeks
after mesotrione application to assess phenotype re-
sponses. Both genotypes responded to the mesotrione
application as expected. The resistant population initially
displayed the major HPPD-inhibiting herbicide charac-
teristics of chlorosis and bleached meristematic growth
followed by necrosis but recovered by the third week
after application. Visual comparison of mock-treated
resistant and mock-treated susceptible to mesotrione-
treated resistant (Fig. 1) at 3 weeks after treatment
showed slight differences, primarily minor stunting and
sparse tissue damage within the canopy of the
mesotrione-treated resistant population. Conversely, the
mesotrione-treated susceptible population sustained
heavy tissue bleaching and eventually necrosis and plant
death. These observations and comparisons verified the
proper herbicide response of both genotypes to meso-
trione treatment.

Table 2 Summary of the differentially expressed transcripts
(DETs) responding to mesotrione treatment in waterhemp

Genotype Hours After Treatment

3 6 12 24 Across Time

Resistant 89 62 61 1983 2091

Susceptible 500 77 61 565 1246

Overlap 42 5 9 83 330

Percent Overlap 7.7% 3.7% 8.0% 3.4% 11.0%

DETs were identified at 3, 6, 12, and 24 h after treatment (HAT) in the resistant
and susceptible waterhemp genotypes. Percent overlap between genotypes at
a specific time point was calculated by dividing the number of DETs in
common between genotypes by the total number of unique DETs at
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RNA-Seq and de novo assembly of the waterhemp
transcriptome
Purified RNA from three replicates of 16 samples (3, 6,
12, and 24-h samples of mesotrione-treated or mock-
treated susceptible and resistant genotypes) were sent to
the Iowa State University DNA Facility for the creation
and sequencing (100 base pair, paired-end sequencing)
of 48 multiplex libraries. A total of 2.45 billion raw reads
were produced. Following the sequence clean up
described in the Materials and Methods, 2.36 billion
sequences were used for de novo transcript assembly
using the program Trinity (version 2.0.6, [24]) with three
different kmer lengths (k = 25, 29, and 32). Sequences
from all samples were used to yield a broad representa-
tion of the waterhemp transcriptome and allow the iden-
tification of genes expressed in a genotype, treatment or
time-specific manner.
When comparing the three assemblies (v1, v2 and v3)

generated with differing kmer lengths (25, 29, and 32,
respectively) we noted that as the kmer length increased,
transcript number decreased and Contig N50 increased
(Table 1). The Contig N50 is a weighted median of con-
tig (contiguous overlapping sequences) length where
50% of the assembled nucleotides are contained in con-
tigs greater than or equal to the length of the Contig
N50; it can be used as an important measurement in
assembly evaluations and was a major factor in the

decision of which assembly to use for our analysis [46,
47]. In addition, we visualized contig length distribution
for each of our different assemblies (Additional file 1).
As suggested by the contig statistics, increasing kmer
size increased average contig length and decreased the
number of contigs. This was especially evident for con-
tigs smaller than 1000 base pairs (Log10 3). Therefore,
we chose to focus on the third assembly (v3, kmer = 32)
for subsequent analysis. Following selection of the v3
assembly, we still needed to remove sequences that
lacked open reading frames (ORFs), were redundant, or
were expressed at extremely low levels. From the initial
v3 assembly containing 451,199 transcripts, TransDeco-
der [25] was used to identify all transcripts with ORFs>
100 base pairs and remove redundant transcripts, leav-
ing 128,737 transcripts. Similarly, kallisto [26] identified
97,944 lowly-expressed transcripts in the v3 assembly.
Cross-referencing the TransDecoder and kallisto data-
sets resulted in 119,635 transcripts with ORFs> 100 bp
and read counts > 10. Finally, a series of BLASTN
analyses described in the materials and methods were
used to eliminate transcripts with the best homology to
non-plant species or transcripts with no significant hits.
This left 113,893 transcripts as the basis of our de novo
waterhemp transcriptome (v4) used for differential ex-
pression analyses. Sequences for the v4 assembly can be
found in Additional file 2.

Fig. 1 Phenotyping for mesotrione resistance. To confirm that the waterhemp samples used for RNA-seq analyses were properly treated, an
additional set of plants was grown simultaneously with the plants sampled for RNA-seq. No tissues were collected from these plants, instead they
were allowed to continue growing for three additional weeks after treatment to assess mesotrione herbicide injury. All plants exhibited the
expected phenotype
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Functional annotation of the waterhemp transcriptome
The waterhemp v4 assembly was annotated using
BLASTX (E < 10− 10

, [27]) against predicted proteins
from A. thaliana (The Arabidopsis Information
Resource version 10 [TAIR10], [31]), sugar beet (Refbeet
v1.2, [28]) and Uniref100 (version 1/22/2016, [32]) and
using BLASTN (E < 10− 20, [27]) against predicted tran-
scripts from grain amaranth (Phytozome v12.1, Amar-
anthus hypochondriacus v2.1, [33]). The best A. thaliana
hits were used to assign the gene ontology (GO) bio-
logical processes and the molecular function terms [34]
to each transcript of the v4 assembly. Annotations for
the v4 assembly can be found in Additional file 3.
To verify the accuracy and coverage of the v4 assem-

bly, GO biological process terms inferred from hom-
ology with A. thaliana were mapped to GO slim terms
using custom Perl scripts. GO slim term abundance was
then compared between the waterhemp v4 transcrip-
tome assembly and all predicted proteins of the A. thali-
ana, poplar, papaya, asparagus, sugar beet, and grain
amaranth genomes (Fig. 2). Waterhemp, sugar beet, and
grain amaranth all belong to the Amaranthaceae family
[28, 33], poplar, papaya and asparagus are dioecious
species [35–37], and A. thaliana is a well-established
plant model [48]. For each GO slim term, the abundance
of assigned transcripts was measured as a percentage
relative to the entire transcriptome or genome, allowing
us to normalize for any potential genome duplications
within a given species. We found that for thirteen of the
fourteen GO slim terms, the v4 waterhemp transcriptome

assembly was comparable to the genomes of the six other
species. This suggests the breadth of the waterhemp v4
transcriptome is consistent with the breadth of the A.
thaliana, poplar, papaya, asparagus, sugar beet, and grain
amaranth genomes. The only exception was the GO slim
term ‘unknown biological process’ which was overrepre-
sented in A. thaliana, compared to the six other species.

Identification of waterhemp transcripts differentially
expressed in response to mesotrione
To allow identification of DETs responding to meso-
trione treatment in each genotype, individual samples
were mapped to the v4 waterhemp assembly using the
protocol described in the Trinity user manual [24]. In
total, 782,456,581 reads were mapped to the assembly.
The raw expression counts were normalized across sam-
ples using the Trimmed Mean of M-values (TMM)
method [40] in edgeR [41]. Following visual inspection,
all replicate samples were considered good quality.
Isoforms were considered expressed if they contained at
least 1 count per million across three samples or repli-
cates. Of the 113,893 isoforms in the v4 assembly,
72,697 were considered expressed (v4 isoforms). The
average length for the expressed isoforms was 1580 base
pairs and contigs assumed a normal distribution
(Additional file 1).
edgeR was used to identify DETs responding to meso-

trione treatment relative to mock-treated controls within
each genotype (herbicide resistant and susceptible)
across time and at specific time points (3, 6, 12, and 24 h

Fig. 2 Comparing the breadth of the waterhemp v4 transcriptome to genomes of related species. Gene ontology biological process (GOBP) slim
terms were used to compare the breadth of the waterhemp v4 transcriptome relative to predicted proteins from the Populus trichocarpa, Carica
papaya, Asparagus officinalis, Beta vulgaris, Amaranthus hypochondriacus, and Arabidopsis thaliana genomes. The percentage of annotations
associated with each GOBP slim term is consistent across all seven species, confirming the waterhemp v4 transcriptome is a suitable proxy to use
in the absence of a genome sequence
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after treatment (HAT)). DET expression is reported as a
log2 fold change (log2 FC). A log2 FC greater than 1 indi-
cates a DET is induced by the mesotrione treatment, while
a log2 FC less than one indicates a DET is repressed by
the mesotrione treatment. DETs with an FDR < 0.05 [43]
are considered significantly differentially expressed in re-
sponse to mesotrione treatment (Additional file 4).
We identified 89, 62, 61, and 1983 DETs in the resist-

ant waterhemp genotype at 3, 6, 12, and 24 HAT,
respectively, and 500, 77, 61, and 565 DETs were identi-
fied in the susceptible waterhemp genotype at 3, 6, 12,
and 24 HAT, respectively (Table 2). We plotted the
number of DETs per genotype within each time point to
analyze expression trends across time (Fig. 3). The sus-
ceptible waterhemp genotype exhibited large fluxes in
DET expression across time. At 3 HAT the susceptible
genotype induced 409 transcripts suggesting a quick ini-
tial response to the mesotrione treatment. The response
diminishes in the middle two time points but then
increases again at 24 HAT. In contrast, the resistant
waterhemp genotype demonstrated little response to
mesotrione treatment at 3, 6 and 12 HAT while a large
number of transcripts respond at 24 HAT. Remarkably,
while symptoms in response to HPPD herbicide treat-
ments can take as long as 1 week to develop, both resist-
ant and susceptible waterhemp genotypes responded
within three HAT. Furthermore, few DETs overlapped
between time points within a given genotype (Fig. 4) or
between genotypes (Table 2). At 3, 6, 12, and 24 HAT

we found 7.7, 3.7, 8, and 3.4% of DETs were com-
mon to both waterhemp genotypes, respectively, sug-
gesting a rapid and dynamic response to mesotrione
treatment (Table 2).
In addition to identifying transcripts responding to

mesotrione treatment at specific time points, we also iden-
tified transcripts responding to mesotrione treatment
across time. We identified 2091 and 1246 DETs respond-
ing to mesotrione treatment across time in the resistant
and susceptible genotypes, respectively (Additional file 4).
Of these, only 330 DETs were common to both water-
hemp genotypes. This reaffirms that the resistant and sus-
ceptible genotypes have different responses to the
mesotrione treatment.

Characterization of mesotrione responsive transcripts
While differential expression is useful in identifying indi-
vidual transcripts found in response to the mesotrione
treatment, we were interested in identifying transcripts
responding to mesotrione treatment that might have
similar functions or act in the same molecular pathway.
Therefore, for each time point by genotype combination,
we used a Fisher’s Exact Test [44] with a Bonferroni cor-
rection [45] to identify gene ontology biological process
terms [49] significantly overrepresented (P < 0.05) among
DETs, relative to the waterhemp v4 assembly (Additional
file 5). In the resistant waterhemp genotype, we identi-
fied 11 and 12 GO terms significantly overrepresented at
3 and 24 HAT. No significant GO terms were identified

Fig. 3 Identification of waterhemp differentially expressed transcripts (DETs) responding to mesotrione treatment across time. To identify DETs at
each time point (3, 6, 12, and 24 h after treatment (HAT)), transcript expression in resistant (green) or susceptible (magenta) genotypes treated
with mesotrione was compared to mock-treated controls. The values above and below the bars represent the number of DETs that were induced
and repressed, respectively
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at 6 and 12 HAT. Combining all DETs from the resistant
waterhemp genotype, we identified 18 significantly over-
represented GO terms. In the susceptible waterhemp
genotype, we identified 34, 3, 2 and 24 significant GO
terms at 3, 6, 12 and 24 HAT, respectively. Combining
all DETs from the susceptible waterhemp genotype, we
identified 39 significantly overrepresented GO terms.
To allow direct comparison between resistant and sus-

ceptible waterhemp genotypes, we compared unique
transcript counts for significant GO terms (P < 0.05)
identified at specific time points and over time in both
genotypes (Fig. 5). To aid in data visualization, GO
terms with DETs that perfectly overlapped with a larger,
significant GO term were removed. In addition, only GO
terms with at least 10 DETs in either the resistant or
susceptible waterhemp genotype are shown. Using this

approach, we were able to identify 18 GO terms signifi-
cantly overrepresented only in the susceptible
waterhemp genotype, nine GO terms significantly over-
represented only in the resistant waterhemp genotype
and nine GO terms significantly overrepresented in both
waterhemp genotypes.
GO terms uniquely overrepresented in the susceptible

waterhemp genotype response were largely associated
with stress and defense responses including ‘response to
osmotic stress’ (GO:0006970), ‘response to hyperosmotic
salinity’ (GO:0042538), ‘response to other organism’
(GO:0051707), ‘response to virus’ (GO:0009615),
‘response to wounding’ (GO:0009611), and ‘respiratory
burst involved in defense response’ (GO:0002679). Other
significantly overrepresented GO terms were associated
with metabolism including ‘lignin metabolism’ (GO:00
09809), ‘flavonoid metabolism’ (GO:0009813), ‘coumarin
metabolism’ (GO:0009805), ‘cellular modified amino acid’
(GO:0042398), ‘pentacyclic triterpenoid biosynthesis’
(GO:0019745), ‘sterol biosynthesis’ (GO:0016126),
‘acetyl-CoA metabolism’ (GO:0006084), ‘phenylpropa-
noid metabolism’ (GO:0009698), and ‘polyamine catab-
olism’ (GO:0006598). Other significant GO terms
included ‘protein peptidyl-prolyl isomerization’ (GO:00
00413), ‘peptidyl-proline modification’ (GO:0018208),
and ‘chaperone-mediated protein complex assembly’
(GO:0051131). For 11 of the 18 significantly overrepre-
sented GO terms unique to the susceptible waterhemp
genotype, we observed more DETs in the susceptible
than the resistant genotype.
GO terms significantly overrepresented in both water-

hemp genotypes included ‘response to cyclopentenone’
(GO:0010583), ‘response to endoplasmic reticulum
stress’ (GO:0034976), ‘response to hydrogen peroxide’
(GO:0042542), ‘response to high light intensity’ (GO:00
09644), ‘response to reactive oxygen species’ (GO:00
00302), ‘response to cadmium ion stress’ (GO:0046686),
and ‘response to salt stress’ (GO:0009651), ‘heat acclima-
tion’ (GO:0010286), and ‘toxin catabolism’ (GO:00
09407). For five of the nine GO terms significant in both
genotypes, a greater number of DETs were observed in
the susceptible waterhemp genotype.
GO terms uniquely overrepresented in the resistant

waterhemp genotype were quite varied in their
functions. Similar to the responses in the susceptible
waterhemp genotype, we identified GO terms associated
with response to stress (i.e., ‘hyperosmotic response’
(GO:0006972), ‘response to temperature stimulus’
(GO:0009266), and ‘response to karrikin’ (GO:0080167)).
Interestingly, a number of GO terms were associated
with energy metabolism including ‘amylopectin biosyn-
thesis’ (GO:0010021), ‘proteasomal protein catabolism’
(GO:0010498), ‘gluconeogenesis’ (GO:0006094) and
‘trehalose biosynthesis’ (GO:0005992). Other significant

Fig. 4 Mesotrione responsive differentially expressed transcripts
(DETs) show little overlap between timepoints. a Comparison of
DETs in the resistant genotype at 3, 6, 12, and 24 h after treatment
(HAT). b Comparison of DETs in the susceptible genotype at 3, 6, 12,
and 24 HAT
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GO terms observed in the resistant waterhemp genotype
included ‘cytoskeleton reorganization’ (GO:0007010) and
‘transcription’ (GO:0006351).
To understand how DETs in these GO terms

responded to mesotrione treatment, we compared their

expression patterns and expression profiles between re-
sistant and susceptible waterhemp genotypes (Fig. 6). Of
the 4799 total DETs, 1311 and 3034 were uniquely
significantly differentially expressed in response to meso-
trione treatment in the susceptible and resistant

Fig. 5 Characterization of mesotrione responsive differentially expressed transcripts (DETs) using gene ontology (GO) overrepresentation. A
Fisher’s Exact Test [44] with a Bonferroni correction [45] was used to identify significantly (P < 0.05) overrepresented gene ontology biological
process terms associated with genotype-specific DETs at a given time point or across time, relative to all transcripts in the waterhemp v4
transcriptome (Additional file 6). For each GO term, all significant time points are indicated in parentheses. To aid in data visualization, GO terms
with DETs that perfectly overlapped with a larger, significant GO term were removed. In addition, only GO terms with at least 10 DETs in either
the resistant or susceptible genotype are shown. Data is divided to demonstrate significant GO processes unique or common to resistant and
susceptible genotypes
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waterhemp genotypes, respectively. A total of 454 DETs
were significantly differentially expressed in both geno-
types. We compared DET expression patterns across ten
overrepresented gene ontology terms identified above in-
cluding ‘cytoskeleton organization’, ‘gluconeogenesis’,
‘hyperosmotic response’, ‘response to cadmium’, ‘response
to high light intensity’, ‘response to salt stress’, ‘response
to wounding’, ‘sterol biosynthesis’, ‘toxin catabolism’, and
‘trehalose biosynthesis’. When we examined the DETs
common to both the resistant and susceptible water-
hemp genotypes, we found that the majority of these
genes were induced in both genotypes. However, in the
susceptible genotype, expression was strongly induced 3
HAT, weakly expressed 6 and 12 HAT, and again
strongly induced 24 HAT. A similar response occurred
in the resistant genotype, however the dip in gene ex-
pression was largely restricted to the 12 HAT timepoint.
In contrast, genes repressed in response to mesotrione
were weakly repressed at 3, 6, and 12 HAT, but strongly
repressed at 24 HAT.

For DETs unique to the susceptible or resistant
waterhemp genotypes, we observed differences in the
number and expression of DETs depending on the GO
terms of interest. The GO terms ‘cytoskeleton
organization’, ‘gluconeogenesis’, and ‘trehalose biosyn-
thesis’ were largely unique to the resistant waterhemp
genotype response and were repressed by mesotrione
treatment. Aside from those DETs common to both ge-
notypes, few DETs were observed in the susceptible
waterhemp genotype. For the GO terms, ‘response to
cadmium’, ‘response to salt stress’, ‘response to high light
intensity’, and ‘toxin catabolism’, DETs unique to the
susceptible waterhemp genotype were largely induced,
while DETs associated with these GO terms in the re-
sistant waterhemp genotype were largely repressed.
Unique DETs associated with the GO term ‘sterol bio-
synthesis’ were repressed in the susceptible waterhemp
genotype but had mixed expression in the resistant
waterhemp genotype, while unique DETs associated
with the GO terms ‘response to wounding’ and

Fig. 6 Characterizing DET expression patterns within a subset of significantly (FDR < 0.05, [43]) overrepresented GO terms. A core subset of ten
gene ontology (GO) terms identified in Fig. 5 were chosen to examine the expression of differentially expressed transcripts (DETs) unique to the
resistant (unique to R) or susceptible (unique to S) waterhemp genotypes or common to both (common to R and S). Black lines join portions of
the heatmaps for a particular GO term of interest. While DETs common to both genotypes are largely induced, DETs unique to resistant or
susceptible genotypes tend to have mixed expression patterns. Further, for some GO terms expression patterns are opposite between unique
resistant and unique susceptible DETs. Overall, the expression pattern of induced versus repressed DETs is quite different across time
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‘hyperosmotic response’ had mixed expression among
unique susceptible and unique resistant DETs.

Clustering of herbicide-responsive DETs
To identify DETs likely clustered in the waterhemp gen-
ome, we used reciprocal BLASTN (E < 10− 20, [27]) to
predict transcript location relative to the grain amaranth
genome (Phytozome v12.1, Amaranthus hypochondria-
cus v2.1, [33]) and then tested for overlap using a sliding
window of 100,000 bp centered on transcription start
sites. We identified 302 unique DETs that fell into 67
clusters (Fig. 7, Additional file 6). Sixty clusters had mul-
tiple genotypes, 7 clusters were unique to the resistant
genotype, and no cluster was only associated with the
susceptible genotype. DET clusters were identified on all
grain amaranth chromosomes except for chromosome
16. The most clusters were found on grain amaranth
chromosome 6 and the most unique DETs were found
on grain amaranth chromosome 12. The biggest cluster
of DETs consisted of 8 transcripts. Finding evidence of
DET clustering relative to the grain amaranth genome
suggests coordinate regulation of gene expression in
response to herbicide treatment within clusters.

Identification of candidate single nucleotide
polymorphisms
To identify candidate SNPs that could be used for map-
ping herbicide resistance and other traits in the future,
we called variants between the resistant and susceptible
genotypes relative to the v4 transcriptome. We identified
189 high-quality candidate SNPs (Fig. 8, Additional file
7). Accounting for multiple SNPs located on the same
transcript we identified 137 transcripts that contained at
least one SNP. To determine if SNP-containing tran-
scripts were associated with specific functions, we quer-
ied the biological process GO terms associated with
these transcripts. Identified GO terms included: ‘nucle-
ar-transcribed mRNA catabolic process’ (GO:0000956),
‘DNA-templated regulation of transcription’ (GO:00
06355), ‘protein glycosylation’ (GO:0006486), ‘response to
xenobiotic stimulus’ (GO:0009410), ‘DNA-templated
positive regulation of transcription’ (GO:0045893),
‘response to ethylene’ (GO:0009723), ‘response to absci-
sic acid’ (GO:0009737), ‘response to gibberellin’
(GO:0009739), ‘response to salicylic acid’ (GO:0009751),
‘response to jasmonic acid’ (GO:0009753), and ‘response
to cadmium ion’ (GO:0046686). Collectively, these data
suggest that SNP-containing transcripts can be associ-
ated with defense and stress responses.
To predict the location of SNP-containing transcripts

we used reciprocal BLASTN (E < 10− 20, [27]) against
transcripts from grain amaranth (Phytozome v12.1,
Amaranthus hypochondriacus v2.1, [33]) to identify
orthologous genes. SNPs for which a putative ortholog

could not be confirmed were removed from the mapping
analysis. We found candidate SNPs distributed across
the grain amaranth genome (Fig. 8, Additional file 7). A
high concentration of SNPs (64 of the 118 mapped) was
located on chromosome 15. These SNPs correspond to
43 unique transcripts. Several of these transcript

Fig. 7 Clustering of waterhemp DETs based on predicted location
relative to Amaranthus hypochondriacus genome. BLASTN (E < 10− 20,
[27]) was used to predict relative transcript location based on
ortholog location in the grain amaranth genome (Phytozome v12.1,
Amaranthus hypochondriacus v2.1, [33]). Differentially expressed
transcripts (DETs) were tested for overlap in a 100,000 bp window
on center (± 50,000 bases) from the transcript start site. Neighboring
DETs that fell into this window contributed to an average position
of the cluster and the number of stacked transcripts. The DETs are
color-coded based on the associated genotype(s). Blue circles
indicate DETs associated with both the resistant and susceptible
genotypes, green circles represent DETs associated with the resistant
genotype and magenta circles represent DETs associated with the
susceptible genotype. Transcript clusters were identified on all
chromosomes except for chromosome 16
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annotations were associated with defense responses. The
SNP concentration and transcript annotations suggest this
chromosome could be important for determining herbi-
cide responses in resistant and susceptible populations.

Discussion
Weeds are the major pest complex in global agricultural
systems and will continue to be a problem given the in-
creasing prevalence of herbicide resistance. Soybean and
maize fields with high waterhemp population pressure
can experience severe yield loss [2, 3]. Waterhemp is
one of the most prolific and ecologically adapted herbi-
cide resistant weeds found in agricultural fields of the
Midwestern United States. Populations with evolved re-
sistance to six different herbicide sites of action including
acetolactate synthase (ALS, HG 2, EC 2.2.1.6) inhibitors,
synthetic auxins (HG 4), photosystem II (PS II, HG 5, EC
1.10.3.9), 5-enolpyruvyl-shikimate-3-phosphate synthase
(EPSPS synthase, HG 9, EC 2.5.1.19), protoporphyrinogen
oxidase (PPO, HG 14, EC 1.3.3.4) and 4-hydroxyphenyl-
pyruvate dioxygenase (HPPD, HG 27, EC 1.13.11.27) inhi-
biting herbicides have been identified [9]. Weediness
characteristics associated with waterhemp include rapid
growth, self-incompatibility, high seed output and disper-
sal and ability to compete for space and nutrients with
crop species. These characteristics enhance the ability to
evolve herbicide resistance and the potential for crop yield
loss and subsequent economic impact on farmers and

agricultural production. Thus, waterhemp is an important
species to study by agricultural and plant science
communities.
Several Amaranthus species, including waterhemp,

have been discussed as potential candidates for genomic
efforts [50, 51]. Supporting the waterhemp initiative was
the identification of populations with five-way resistance
to herbicides with different sites of action in Iowa in
2011 [52]. In this study, we used the mesotrione resist-
ant population characterized by Kaundun et al. [15].
Mesotrione resistance in this population was not due to
mutation, amplification, or increased expression of the
herbicide target gene HPPD. Rather, biochemical ana-
lyses suggest cytochrome P450s contribute to increased
herbicide metabolism. Significant differences in herbi-
cide metabolism were not detected until 48 h after treat-
ment. This suggests that herbicide responses are
inducible and genes upstream of the cytochrome P450s
directly or indirectly respond to herbicide treatment. To
identify these early-acting genes and gene networks, we
needed to establish genomic technologies for water-
hemp. These tools are critically important for global
food security [53].

Development of genomic resources for studying traits of
interest in waterhemp
Initial genomic studies of waterhemp using 454 pyrose-
quencing were able to characterize several herbicide

Fig. 8 Mapping of candidate waterhemp single nucleotide polymorphisms (SNPs) relative to the Amaranthus hypochondriacus genome. SNPs
were identified by calling SNPs between the resistant and susceptible genotypes relative to the waterhemp v4 transcriptome. BLASTN (E < 10− 20,
[27]) was used to predict relative transcript and SNP location based on ortholog location in the grain amaranth genome (Phytozome v12.1,
Amaranthus hypochondriacus v2.1, [33]). Of the 189 high-quality SNPs identified, 118 could be reliably mapped to the grain amaranth genome.
The highest concentration of SNPs was found on chromosome 15

Kohlhase et al. BMC Plant Biology          (2019) 19:182 Page 13 of 19



resistance target genes [20, 21]. However, these studies
pooled RNA samples of different tissues and treatments
prior to sequencing, making it impossible to directly dif-
ferentiate herbicide treatment responses in resistant and
susceptible waterhemp genotypes. In contrast, our se-
quencing and de novo transcriptome assembly approach
used 48 multiplexed libraries representing resistant and
susceptible waterhemp genotypes, treated and mock-
treated with the HPPD herbicide mesotrione across a
twenty-four hour time course. Assembling RNA-seq data
across libraries allowed us to develop a comprehensive
waterhemp leaf transcriptome, which represents an im-
portant asset to various scientific communities. Compar-
isons of expressed genes in crop species verses weeds
could provide insights into novel targets for weed spe-
cific genes for future weed control. Ecologists, plant and
weed scientists could utilize this tool to study import-
ant weed traits or provide information on leaf devel-
opment and photosynthesis that might be applied to
crop improvement.
Assembly statistics of our waterhemp transcriptome

(Table 1, Additional file 2) coupled with comparisons to
predicted proteins from the model species A. thaliana,
and the related species sugar beet and grain amaranth
(Fig. 2) confirm the quality and breadth of our assembly.
To increase the utility of the waterhemp transcriptome,
the Additional data files include assembled sequences
for the v4 assembly and a database of annotated tran-
scripts. Furthermore, raw sequences have been deposited
in the National Center for Biotechnology Small Reads
Archive (NCBI SRA, Bioproject PRJNA432348 and SRA
Study SRP132642) allowing for reassembly and contin-
ued improvement as more sequences from waterhemp
populations become available.
To demonstrate how these data can be used by the

weed science community, we mined the waterhemp
transcriptome (Additional file 3) for any transcript con-
taining ‘CYP’ or ‘P450’ in its annotation (Table 3). Re-
cently, Kaundun et al. [15] attributed HPPD-resistance

in the Tarnov, Nebraska population to increased herbi-
cide metabolism through the activity of cytochrome
P450s. We identified 970 putative cytochrome P450s.
Similar mining of the DET file (Additional file 4) identi-
fied 79 herbicide responsive DETs with homology to
cytochrome P450s. Of these 29 were significantly differ-
entially expressed in the resistant population, 34 were
significantly differentially expressed in the susceptible
population and 16 were differentially expressed in both.
Of great interest was transcript TR102135, which was
the only transcript significantly induced in the resistant
genotype at 3 hours. Ten cytochrome P450 transcripts
were identified only in the resistant genotype at 24 HAT.
Kaundun et al. [15], found the mesotrione metabolite
4-hydroxymesotrione began to accumulate in the resist-
ant parent between 24 and 48 h after herbicide treat-
ment. However, we detected differential expression of
cytochrome P450s in the resistant population well before
this time. This suggests genes upstream of cytochrome
P450s can recognize and respond to herbicide treatment.
Of the 79 herbicide-responsive transcripts with hom-

ology to cytochrome P450s, three were clustered relative
to the grain amaranth genome (cluster 21, TR87604,
TR34266 and TR3711, Additional file 6). We also identi-
fied two SNP-containing transcripts (TR33255 and
TR9764) annotated as cytochrome P450s from our SNP
data (Additional file 7). TR33255 was homologous to the
Arabidopsis gene, AT2G29090.2, which encodes a cyto-
chrome P450 (CYP707A2) with abscisic acid (ABA)
8′-hydroxylase activity [31, 54]. This protein belongs to
the CYP707A gene family and is associated with control-
ling ABA levels in late seed maturation through germin-
ation [55]. ABA is a phytohormone involved in plant
response to abiotic stress and has also been associated
with protecting plants from herbicide damage [56, 57].
Devine et al. [57] demonstrated that applying exogenous
ABA helped protect oats (Avena sativa L.) against appli-
cations of diclofop-methyl or low rates of tralkoxydim.
While these transcripts did not respond to herbicide

Table 3 Summary of candidate DETs for non-target site herbicide resistance and circadian rhythm associated proteins

Keywords used
in file search

Number of Hits

Whole Transcriptome Differentially Expressed

Cytochrome P450 “CYP”
“P450”

970 79

Glutathione Stransferase “GST”
“Glutathione Stransferase”

157 47

Glycosyltransferase “glycosyltransferase”
“glucosyltransferase”

689 69

ABC transporter
protein

“ABC transporter”
“ABC protein”

644 35

Circadian rhythm “circadian” 833 42

The waterhemp transcriptome (Additional file 3) and significantly differentially expressed transcripts (Additional file 4) were mined for non-target site herbicide
resistance and circadian rhythm associated transcripts using combinations of keywords to identify putative candidate transcripts for further investigation
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treatment in our analyses, they could represent non-in-
ducible cytochrome P450s that could be differentially
expressed between the resistant and susceptible geno-
types or may be differentially expressed at timepoints
not evaluated in this study. Similar approaches could be
used to mine the data for sites-of-action for other
important herbicides, non-target site herbicide resistance
associated genes, or for traits of interest.

Identification of transcripts responding to mesotrione
treatment in waterhemp
Mapping of reads from specific waterhemp genotypes,
mesotrione and mock treatments and time points
allowed us to leverage our waterhemp transcriptome to
identify the genes and gene networks responding to
mesotrione treatment in waterhemp. A general trend we
observed was that the number of DETs was greatest at 3
and 24 HAT (Fig. 3) in both the resistant and susceptible
genotype, suggesting a biphasic response to herbicide
treatment. In both the resistant and susceptible water-
hemp genotypes, mesotrione treatment resulted in the
differential expression of transcripts associated with
stress and defense responses. When we compared gene
expression patterns in genes common to the resistant
and susceptible interaction (Fig. 6), we again see a
biphasic response. Given that DETs in both waterhemp
genotypes at 3 and 24 HAT were significantly overrepre-
sented with GO terms associated with light (i.e.,
‘response to high light intensity’, ‘response to red light’,
and ‘response to far red light’), it’s possible that circadian
rhythm could influence differential gene expression in
response to herbicide treatment. However, the 3, 6 and
24 HAT timepoints were collected during daylight, so it
seemed unlikely circadian rhythm was involved. To con-
firm this, we mined the DETs in each genotype by time-
point combination for the term ‘circadian’ (Table 3). We
identified 28 and 17 herbicide responsive DETs with
annotations associated with circadian rhythm in the re-
sistant and susceptible genotype, respectively. In the
resistant genotype, 0, 0, 0, and 15 circadian clock associ-
ated DETs were expressed specifically at R3, R6, R12,
and R24. In the susceptible genotype, we identified 8, 1,
1, and 5 circadian clock associated DETs at S3, S6, S12,
and S24, respectively. This suggests herbicide treatment
could impact circadian rhythm.
Biphasic gene expression patterns have been observed

in response to biotic (reviewed by [58]) and abiotic
[59, 60] stress and in response to mechanical wound-
ing [61]. Reactive oxygen species (ROS) have now
been tied to biphasic gene expression in defense, re-
sponse to wounding, high light conditions, and abiotic
stress (reviewed by [62]). HPPD-inhibitor herbicides
disrupt photosynthesis and the production of caroten-
oids that protect plants from UV damage leading to

the accumulation of ROS [63]. The GO terms ‘re-
sponse to hydrogen peroxide’ (FDR < 0.05, R, R3, R24,
S, S3, and S24) and ‘response to reactive oxygen
species’ (FDR < 0.05, R3, R, and S) were both signifi-
cantly overrepresented in resistant and susceptible
genotypes, suggesting that herbicide treatment can
also induce biphasic responses in weeds, likely
through the action of ROS.
When we compared DET expression in transcripts

unique to the resistant or susceptible waterhemp geno-
types, we observed that DETs associated with ‘response
to cadmium’, ‘response to high light’, ‘hyperosmotic re-
sponse’, ‘response to salt stress’, and ‘toxin catabolism’
were largely induced by mesotrione treatment in the
susceptible genotype across the time course. In contrast,
DETs unique to the resistant waterhemp genotype and
associated with these same GO terms were largely re-
pressed across time (Fig. 6). These data highlight several
remarkable features of the resistant waterhemp geno-
type’s response to mesotrione. First, responses to meso-
trione treatment were detected very quickly, within
three HAT in both resistant and susceptible waterhemp
genotypes. Second, while the susceptible waterhemp
genotype continued to induce stress responses over the
experiment time course, by three HAT the resistant
waterhemp genotype was already repressing differential
expression of stress-associated genes. This suggested
that by three HAT, the resistant waterhemp genotype
began to neutralize herbicidal activity and was likely
returning to normal physiological function.
Using the reference genome of grain amaranth, we

were able to identify groups of DETs that clustered to-
gether by predicted genomic locations. The clustered
DETs were generally associated with detoxification and
stress responses. Toxin metabolism in plants occurs in
three phases: transformation, conjugation and compart-
mentation. The two major enzymes associated with
phase I and phase II of detoxification (cytochrome P450
monooxygenase and glutathione transferase, respect-
ively) were among the clustered DETs [64]. Among the
annotations for the clustered DETs we found multiple
enzymes associated with all three phases of pesticide and
xenobiotic metabolism such as alcohol or aldehyde de-
hydrogenase, glycosyltransferase, methyltransferase, and
ATP-binding cassette (ABC) transporters [65] (Table 3).
Other DETs have associations with stress response and
signaling such as heat shock proteins and lipoxygenase
[66, 67]. These associations of clustered DETs with
xenobiotic detoxification and stress signaling support
potential coordinate regulation of defense response genes
by waterhemp in response to mesotrione treatment.
We cross-referenced the 189 SNP-containing tran-

scripts with the total 4799 herbicide responsive DETs.
We identified 18 unique herbicide responsive transcripts
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that contained SNPs. Four transcripts with docu-
mented herbicide response were easily identifiable.
TR45906|c2_g1_i2 was homologous to the Arabidopsis
gene CYP73A5, a member of the cytochrome P450 enzyme
family [68]. TR16523|c2_g1_i4 and TR36394|c2_g7_i1 were
homologous to the UDP-glucosyl transferase, UGT73B3.
Lim et al. [69] found UGT73B3 recessive mutants resistant
to paraquat, a photosystem I (PSI, HG 22, EC 1.97.1.12)
electron diverting herbicide. TR18103|c1_g2_i1 was hom-
ologous to UGT74E2, which was also reported in the differ-
ential response of Arabidopsis to ALS-inhibiting (HG 2)
and EPSPS-inhibiting (HG 9) herbicides [70]. Given that
these SNPs correspond to herbicide responsive DETs, they
are high priority candidates for future marker development.
While responses to light and stress were expected, our

analyses determined that DETs unique to the resistant
waterhemp genotype were significantly overrepresented
with the GO terms ‘cytoskeleton organization’, ‘gluconeo-
genesis’, and ‘trehalose biosynthesis’. Genes within these

GO terms were significantly repressed in response to the
mesotrione treatment, especially at 24 HAT. To connect
these responses and examine the underlying gene net-
works, we took advantage of the waterhemp annotation
platform to identify the best A. thaliana homologs for
DETs associated with these GO terms. Unique A. thali-
ana identifiers were then submitted to the STRING
website to identify gene networks [71]. Networks in
STRING are established using a variety of methods in-
cluding but not limited to experiments, public databases
and co-expression. Collectively, the three GO terms con-
tained 91 DETs which corresponded to 45 unique A.
thaliana identifiers. Of these, 36 could be assigned to
the same network with a confidence score ranging from
0.41 to 0.99 (Fig. 9). Interestingly, the network also con-
tained several genes associated with herbicide resistance.
This included two beta-tubulins inhibitors (AtTUB6 and
AtTUB8), a glutamyl-tRNA synthetase (At5g26710), an
ascorbate peroxidase (APX1), a superoxide dismutase

Fig. 9 Identification of gene networks unique to mesotrione resistance associated with the GO terms gluconeogenesis, cytoskeleton organization
and trehalose biosynthesis. We took advantage of the waterhemp (Amaranthus tuberculatus) annotation platform to identify the best Arabidopsis
thaliana homologs for 91 unique resistant DETs associated with these GO terms. Forty-five unique A. thaliana identifiers were then submitted to
the STRING website to identify potential gene networks [71]. All 45 unique A. thaliana identifiers were present in the database and 36 could be
combined in a single network. Lines linking proteins indicate connections between proteins. The numbers in parentheses indicate the number of
unique resistant DETs that correspond to each Arabidopsis gene ID. The yellow nodes highlight genes that have associations with dinitroaniline
(HG 3) herbicide resistance, the purple node highlights an association with 2,4-D (HG 4) herbicide resistance, the orange nodes highlight
associations with atrazine (HG 5) herbicide resistance and the green nodes highlight associations with paraquat (HG 22) herbicide resistance. The
blue node highlights the only node in this network that interacted with all six nodes associated with herbicide resistance
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(CSD1) and a monodehydroascorbate reductase
(MDAR1). Anthony et al. [72] found that co-overexpres-
sion of mutant alpha and beta tubulins generated dini-
troaniline (HG 3) herbicide-resistant tobacco (Nicotiana
tabacum L.). While studying gene expression patterns of
naturally tolerant wheat (Triticum aestivum L., variety
Greina), Pasquer et al. [73] found glutamyl-tRNA syn-
thetase was significantly induced by 2,4-D (2,4-dichloro-
phenoxyacetic acid, HG 4). Jiang et al. [74] found
increased expression of superoxide dismutase and ascor-
bate peroxidase in response to atrazine (HG 5) treat-
ment in pearl millet (Pennisetum americanum (L.) K.
Schum). Murgia et al. [75] found that overexpression of
ascorbate peroxidase in Arabidopsis also conferred re-
sistance to paraquat (HG 22). Monodehydroascorbate
reductase activity was correlated to paraquat (HG 22)
resistance in horseweed (Conyza canadensis (L.)
Cronquist) [76]. Interestingly, all six gene nodes inter-
acted with the heat shock 70 kDa protein (HSC70–1)
node in our network (Fig. 9). Additionally, two genes
were identified that had associations with herbicide re-
sistance but did not interact with the larger gene net-
work, a trehalose-6-phosphate phosphatase (TPPD) and
a regulatory particle AAA-ATPase 2A (RPT2a) [77, 78].
These findings, mirroring the expression we observe in
the waterhemp DETs, suggest that many herbicides
thought to have unique targets may actually be acting on
the same gene networks.

Conclusions
Many important plant species to agriculture lack
well-curated reference genomes. However, RNA-seq has
allowed scientific communities to develop transcrip-
tomes for characterizing genes and traits important for
agronomic performance of both crops and weeds. In this
study, we provide a comprehensive resource for water-
hemp genomics, including the first waterhemp transcrip-
tome, identification of DETs responding to herbicide
treatment in HPPD-resistant and susceptible genotypes
and candidate SNPs for future marker development.
While other studies have sequenced the waterhemp
transcriptome and identified important herbicide target-
sites, this is the first transcriptomic analysis that identi-
fies genes and gene networks that are differentially
expressed in response to HPPD inhibiting herbicides in
HPPD-resistant and susceptible waterhemp. Our
analyses reveal 1) that waterhemp responses to meso-
trione are quick and detectable in as little as 3 hours, 2)
differential gene expression in resistant and susceptible
waterhemp genotypes show little overlap in mesotrione
responses, 3) genes targeted by other herbicides may
belong to the same gene networks providing insight into
the evolution of herbicide resistance and 4) predicted
locations of DETs suggest coordinate regulation of

defense responses in HPPD-resistant waterhemp. These
findings lay a strong foundation for future research and
will improve opportunities to better understand and
manage weeds with evolved resistances to herbicides.
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