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Abstract 
In precision manufacturing enterprises, machine parts at nonstandard temperatures are often soaked 
to standard temperature prior to making any dimensional measurements. The soakout times are 
usually determined using lumped heat-transfer models where the part temperatures are assumed to 
be uniform. This article discusses conditions under which lumped model assumptions are valid by 
comparing lumped analyses for various shapes and materials with the more general finite element 
results. In addition, the effect of ambient temperature cycling on part response is also studied. 
 
Keywords: dimensional measurements, thermal errors, soakout time, metrology, lumped models, 
finite element methods 
 
1. Introduction 
 
The size and form of mechanical parts are specified according to a standard temperature 
[1] and, in precision manufacturing enterprises, verification procedures are often carried 
out at this standard temperature. Commonly, however, mechanical parts are manufac-
tured or operated in a nonstandard thermal environment. While thermal compensation 
techniques can be used for verification of part size and form at nonstandard temperatures, 
a simpler and more repeatable approach is to bring the mechanical part into a standard 
thermal environment and allow the part to soak until it is at the standard temperature. The 
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soakout time is the time required for the temperature of the part to cool to within some 
acceptably small range of the standard temperature. 

Verification procedures are exposed to many different sources of uncertainty. Thermal 
distortions due to nonstandard temperature are an uncertainty source that can be con-
trolled by soaking each part to the standard temperature. An optimal soakout time mini-
mizes the uncertainty due to thermal distortion while also minimizing the time and 
resources required for the verification procedure. To balance these two competing objec-
tives, the soakout time is chosen so that any expected thermal distortion is small with re-
spect to the tolerances that are evaluated during the verification procedure. For example, 
for a part with larger tolerances, some distortion can be allowed and verification time and 
resources can be reduced. To use this approach of balancing soakout time and uncertainty, 
an accurate prediction of the soakout time is required. 

Two possibilities exist for predicting the soakout time of parts of arbitrary shapes and 
arbitrary cooling conditions. The first method involves using the finite element method to 
solve the 3-dimensional heat-conduction problem. However, this method is time consum-
ing and cannot be easily used to predict soakout times in real-time. The second method, 
also applicable to bodies of arbitrary shapes, is the lumped model where it is assumed that 
the entire body is at a uniform temperature at any given time. Clearly this is a gross ap-
proximation to the actual temperature in the part during soakout. However, an attractive 
feature of the lumped model approach is that analytical expressions for soakout time can 
be obtained and used to predict soakout times for parts of arbitrary shapes almost instan-
taneously. 

The purpose of this paper is to investigate the conditions under which lumped models 
can be used to predict soakout times accurately. Analytical expressions for temperature in 
parts of arbitrary shapes are derived and formulae for soakout times (appropriately de-
fined) are provided. Several examples involving various geometries and materials with 
both forced and natural convective cooling conditions are considered. The lumped model 
results are compared with the results from the commercial finite element software package 
ANSYS. The results from ANSYS are assumed to be exact. Comparisons of analytical and 
FEA results with experiments and issues related to dimensional uncertainties and the de-
gree to which thermal uncertainties affect the overall uncertainties will be discussed in a 
forthcoming paper. 

In addition, the problem of the effect of environmental temperature cycling on a part is 
also considered in the context of lumped models. Specifically, the environmental temper-
ature is assumed to vary about a mean temperature in a sinusoidal fashion. Part response 
to this variation is considered in detail and conditions under which the temperature cy-
cling does not have significant effect on the part are investigated. 

Several excellent prior investigations related to the subject matter of this paper exist in 
the literature. A comprehensive study of the effects of thermal variations on the accuracy 
of machined parts was first presented in the doctoral dissertation of McClure [2]. In [3], a 
thorough investigation of various factors affecting the thermal response of mechanical 
parts under a variety of conditions was provided. The article [4] reviews the field of ther-
mal error research till 1990. The ANSI article [5] provides description of procedures for 
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controlling environment and for estimating the magnitudes of errors associated with di-
mensional measurements made at nonstandard temperatures. The report [6] examines the 
effects of uncertainties in temperature and material properties on the dimensional meas-
urements made at nonstandard temperatures. An excellent example illustrating the uncer-
tainties in dimensional measurements due to nonstandard thermal environments is 
considered in [7] where a profile measuring device is used to measure the profile of a space 
shuttle solid rocket motor. 

The primary purpose of the above mentioned references was to examine the dimen-
sional errors and uncertainties involved in measurements made at nonstandard tempera-
tures. The subject of soakout time, which is the subject of this paper, has not been explicitly 
considered previously in the literature. 
 
2. Determination of soakout time 
 

 
 

Figure 1. Lumped heat transfer model 
 
Let us consider a body of an arbitrary shape as shown in Figure 1. We assume that the 
body is at a uniform initial temperature θ0 and that it is placed in an environment where 
the temperature is θ∞ and the heat transfer coefficient is h. Let us now assume that the 
change in the temperature of the body is uniform, i.e., the temperature in the body is a 
function only of time t. An application of the balance of energy (assuming uncoupled ther-
momechanical behavior) leads to  
 

 
(1) 

where V is the volume, A is the surface area over which there is heat-transfer, U is the 
internal energy per unit volume, and q is the heat flux normal to the surface. The dot on U 
represents differentiation with respect to time. Noting that 
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and q = h(θ – θ∞), the earlier equation can be rewritten as 
 

 
(2) 

or 

 
(3) 

where 
𝛽𝛽 = ℎ𝐴𝐴

𝜌𝜌𝜌𝜌𝜌𝜌
. 

(4) 

Here, c is the specific heat and ρ is the mass density of the part under consideration. 
Upon solving Equation (3) for θ, we find 

 
𝜃𝜃(𝑡𝑡) = 𝜃𝜃∞ + (𝜃𝜃0 − 𝜃𝜃∞)𝑒𝑒−𝛽𝛽𝛽𝛽 

(5) 

or 
𝜃𝜃(𝑡𝑡) − 𝜃𝜃∞
𝜃𝜃0 − 𝜃𝜃∞

= 𝑒𝑒−𝛽𝛽𝛽𝛽 

(6) 

Next, let us define soakout time ts as the time required for the temperature of the body to 
cool to within ε of the ambient temperature, i.e., to cool to θ(t) = ε + θ∞. Then Equation (6) 
leads to 

𝑡𝑡𝑠𝑠 =
1
𝛽𝛽
𝑙𝑙𝑙𝑙 �

𝜃𝜃0 − 𝜃𝜃∞
𝜀𝜀

� 

(7) 

The above relation can be generalized to the case where the heat-transfer rate is different 
on different faces. Let us assume that the body surface area consists of n different areas 
with n different heat-transfer coefficients. Let Ai denote the ith area and hi the heat-transfer 
coefficient on this area. Assuming that the body temperature is a function only of time, 
balance of energy can then be shown to lead to 
 

 
(8) 

where 
 

𝛽𝛽𝑖𝑖 = ℎ𝑖𝑖𝐴𝐴𝑖𝑖
𝜌𝜌𝜌𝜌𝜌𝜌

, with i = 1, 2, . . ., n. 

(9) 
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The solution of Equation (8) is given by 
 

θ(t) = θ∞ + (θ0 – θ∞)e –(β1 + β2 + . . . βn)t 

(10) 

The soakout time ts in this case is given by 
 

𝑡𝑡𝑠𝑠 =
1

(𝛽𝛽1 + 𝛽𝛽2+ . . . +𝛽𝛽𝑛𝑛) ln �
𝜃𝜃0 − 𝜃𝜃∞

𝜀𝜀
� 

(11) 
 
3. Environmental temperature cycling 
 
Let us now consider the case when the environmental temperature is varying periodically 
in time, i.e., 
 

𝜃𝜃∞(𝑡𝑡) = 𝜃𝜃∞0 + 𝜉𝜉 sin𝜔𝜔𝑡𝑡 
(12) 

where ω is the frequency of variation and ξ is the amplitude of the variation. In this case, 
the differential equation (3) becomes 
 

 
(13) 

The solution of equation (13) can be written as the sum of a steady part θS(t) and a transient 
part θT(t) 
 

θ(t) = θS(t) + θT(t) 
(14) 

where 
 

𝜃𝜃𝑆𝑆(𝑡𝑡) = 𝜃𝜃∞0 +
𝜉𝜉𝛽𝛽

�𝛽𝛽2 + 𝜔𝜔2
sin(𝜔𝜔𝑡𝑡 − 𝜑𝜑), with 𝜑𝜑 = arctan

𝛽𝛽
𝜔𝜔

 

(15) 

and 
 

𝜃𝜃𝑇𝑇(𝑡𝑡) = 𝑒𝑒−𝛽𝛽𝛽𝛽

𝛽𝛽2+𝜔𝜔2 [𝜉𝜉𝛽𝛽𝜔𝜔 + (𝜃𝜃0 − 𝜃𝜃∞0 )(𝜔𝜔2 + 𝛽𝛽2)]. 

(16) 

The transient term θT(t) → 0 as t → ∞. Therefore, at late times, 
 

𝜃𝜃(𝑡𝑡) → 𝜃𝜃𝑆𝑆(𝑡𝑡) = 𝜃𝜃∞0 + 𝜉𝜉𝛽𝛽
�𝛽𝛽2+𝜔𝜔2 sin(𝜔𝜔𝑡𝑡 − 𝜑𝜑). 

(17) 
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The result shows that the part temperature lags behind the ambient temperature by a phase 
angle φ with a decreased amplitude. The amplitude ratio of the part temperature variation 
with respect to the ambient temperature variation is given by 
 

amplitude ratio =
𝛽𝛽

�𝛽𝛽2 + 𝜔𝜔2
=

1

�1 + �𝜔𝜔𝛽𝛽�
2

=
1

�1 + �2𝜋𝜋
𝑇𝑇𝛽𝛽�

2
 

(18) 

where T is the time period of the environmental temperature fluctuation. The steady-state 
temperature in the context of a thin slab of a material was also given in [3]. Here, we have 
included the transient part in our solution and extended the validity of the model to bodies 
of arbitrary shapes. 
 
3.1. Limitations of the lumped analysis model 
As mentioned earlier, the lumped models assume that the temperature in the body is uni-
form at all times. Such an assumption is valid only in the limiting case of infinite thermal 
conductivity or in the trivial case where the body temperature is constant. However, we 
can expect the lumped models to give reasonably accurate results when the thermal con-
ductivity is large or when the heat-transfer from the surface is small. In non-dimensional 
terms, one can show [8] that the temperature variation across the body is negligible when 
the Biot number Bi is small compared to unity, i.e., 
 

Bi = ℎ𝐿𝐿
𝑘𝑘
≪ 1 

 
where L is an appropriately chosen length-scale of the body and k is the coefficient of thermal 
conductivity. Thus, for a given body, lumped models are expected to give more accurate 
results for natural convective conditions than for forced convective conditions. Neverthe-
less, we show below that even when there is significant amount of forced convection, the 
error involved in predicting temperature using lumped models is of the order no more 
than 20% for moderately large bodies. 
 
4. Results 
 
In this section, several numerical examples are presented that illustrate the theory pre-
sented above and its limitations. 
 
4.1. Prediction of soakout time for various geometries 
The range of validity of the lumped models developed above is examined by considering 
various geometries of practical interest and comparing the lumped analysis results with 
those predicted by finite element analyses. The results from finite element analyses are 
treated as exact and the relative errors involved in using lumped models for the prediction 
of temperature, soakout time and dimensional variations are calculated. The finite element 
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analyses are conducted using the commercial package ANSYS v5.4. The meshes used are 
sufficiently fine to give very accurate temperatures at the nodal points. 

The geometries considered are listed in Table 1. These geometries are chosen in order 
to study the accuracy of lumped models compared with the exact models under both nat-
ural and forced cooling conditions, small and large volumes and surface areas, and for 
materials with high and low thermal conductivities. For all the cases, it is assumed that the 
heat-transfer to the environment is through convection. 
 

Table 1. List of different cases considered in the present work 
Case Geometry Cooling Conditions 

1 Steel sphere of 76.2 mm diameter Natural convection with h = 30W/(m2 – K) 
2 Steel sphere of 500 mm diameter Forced convection with h = 300W/(m2 – K) 
3 Granite sphere of 500 mm diameter Forced convection with h = 300W/(m2 – K) 
4 Steel Rectangular Block (254 mm × 25.4 mm × 25.4 mm) Natural convection with h = 30W/(m2 – K) 
5 Steel Rectangular Block with 4 holes (254 mm × 25.4 mm 

   × 25.4 mm) Holes are perpendicular to the length 
   with a diameter of 12.7 mm each. 

Natural convection with h = 30W/(m2 – K) 

6 Gear pump housing Forced convection with h = 300W/(m2 – K) 

 
The primary interest is in the verification of soakout times predicted by the lumped 

models. From equation (7), we recall that the soakout time is given by 
 

𝑡𝑡𝑠𝑠 =
1
𝛽𝛽

ln �
𝜃𝜃0 − 𝜃𝜃∞

𝜀𝜀
� 

(19) 

where ε is the temperature difference between the part and the environment at soakout 
time. Here we consider two different values 0.5°C and 0.1°C for ε. The soakout time based 
on ε = 0.5°C is denoted by t1s and the soakout time based on ε = 0.1°C is denoted by t2s, i.e., 
 

𝑡𝑡𝑠𝑠1 =
1
𝛽𝛽

ln �
𝜃𝜃0 − 𝜃𝜃∞

0.5
�  and 𝑡𝑡𝑠𝑠2 =

1
𝛽𝛽

ln �
𝜃𝜃0 − 𝜃𝜃∞

0.1
� 

(20) 

The large value of ε = 0.5°C is deliberately chosen to study the validity of the lumped mod-
els even when there may be thermal gradients present in the body. In a typical measure-
ment application, ε is much smaller than 0.5°C. 

In the numerical examples considered below, it is assumed that the initial part temper-
ature is 25°C whereas the environment is at the standard temperature of 20°C. Heat trans-
fer between the part and the environment is assumed to take place through convection. 
The finite element analyses consider the problem of unsteady heat conduction for each of 
the cases and take into account the symmetry of the problem along with the appropriate 
boundary conditions. It is worth noting that the temperature predicted by the FEA anal-
yses are both spatially and temporally nonuniform whereas the lumped model predictions 
are only nonuniform in time. In each case, the part temperature predicted by the lumped 
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model is compared with the temperature evolution at two points in the part as predicted 
by ANSYS. The two points in the FEA models correspond to the points where the maxi-
mum and minimum temperatures occur in the part during cooling. The point with the 
minimum temperature is denoted by Ps and is on the surface of the part. The point where 
the maximum temperature occurs is denoted by Pc and is an interior point. For each of 
these points, the error involved in using lumped models is defined as 
 

Relative Error =
𝜃𝜃Lumped − 𝜃𝜃ANSYS

𝜃𝜃ANSYS
× 100 

(21) 

The results for each of the cases listed in Table 1 are shown in Figures 2 through 9. For each 
case, the temperature predictions by lumped analysis and ANSYS results for the points Ps 
and Pc are plotted. The corresponding relative errors as given by Equation (21) are also 
calculated for these two points. The soakout times t1s and t2s are marked by circles and 
squares, respectively. 

First we consider the effect of Biot number Bi. In Figure 2, the cooling of a steel sphere 
of diameter 76.2 mm is considered. The cooling is by natural convection (h = 30W/(m2 – K)) 
at the outer surface. In this case, Bi = 0.0189 ≪ 1 and hence the temperature predicted by 
lumped models is expected to be very accurate. This is confirmed by Figure 2 according to 
which the relative error is at most 0.7% and the error in temperature at the soakout times 
t1s and t2s is even smaller. 
 

 
 

Figure 2. Comparison of ANSYS and lumped analysis results for temperature distribution 
for case 1: (left). Temperature (right). Relative error. 

 
Next, we consider the cooling of a steel sphere of diameter 500mm. The cooling is as-

sumed to be by forced convection with h = 300W/(m2 – K). In this case, Bi ≈ 1.2395. The 
temperature and relative error plots shown in Figure 3 indicate that the error involved is 
at most 6% and at the two soakout times, the errors are about 3% and 1%, which are higher 
than that for the smaller sphere considered above. 
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Figure 3. Comparison of ANSYS and lumped analysis results for temperature distribution 
for case 2: (left). Temperature (right). Relative error. 

 
When the material is different from steel, the relative error due to the lumped models 

will be smaller if the thermal conductivity k of the material is larger than that of steel. Sev-
eral commonly used materials such as Aluminum and its alloys, Copper and its alloys, 
many types of steels, Nickel, Tungsten, and Zinc fall in this category. For those materials 
for which the thermal conductivity is much smaller than that of steel, the relative error in 
temperature due to lumped models will be larger. This is illustrated in Figure 4 by consid-
ering a sphere made of granite and of diameter 500mm. Cooling is again by forced convec-
tion with h = 300W/(m2 – K). In this case Bi ≈ 27 ≫ 1. Consequently, as the plots in Figure 4 
show, the maximum relative error is quite large (20%). It is interesting to note that the 
temperature in the granite sphere is highly nonuniform at the soakout times t1s and t2s, the 
definitions of which are based on the lumped model. Although t2s ≈ 2500s, we note that the 
ANSYS results indicate that the difference between the temperatures at the surface and at 
the center is approximately 2°C even at times as late as 10000s. Thus, we note that in the 
cases where Bi ≫ 1, lumped models grossly underestimate the soakout times. 
 

 
 

Figure 4. Comparison of ANSYS and lumped analysis results for temperature distribu-
tion for case 3: (left). Temperature (right). Relative error. 

 
It is to be noted, however, that when natural convective cooling is used in place of forced 

convection, the heat-transfer coefficient will be substantially smaller and therefore Bi will 
be smaller as well. Consequently, lumped models yield more accurate results for natural 
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convection than for forced convection with all the other parameters remaining the same. 
In fact, our results indicate that when natural convection (with h = 30W/(m2 – K)) is used 
for the granite sphere considered above, the agreement between lumped and ANSYS is 
significantly better. 

Next, we consider the lumped model temperature predictions for the cooling of a multiply-
connected region. In particular, we consider a steel rectangular block of dimensions (254 mm 
× 25.4 mm × 25.4 mm) with four holes, each of diameter 12.7 mm (see Fig. 5). For compari-
son purposes, we consider a rectangular solid block of identical external dimensions. 
 

 
 

Figure 5. Cooling of a rectangular block with 4 holes. 
 

The temperature predictions of lumped model along with ANSYS results for the solid 
rectangular block and the block with holes are shown in Figures 6 and 7, respectively. 

Comparing the two cases in figures 6 and 7, we see that the soakout times for the block 
with holes are smaller than those for the solid block. Further, we note from the error plots 
that at the soakout times, the relative error for the block with holes is also smaller. This can 
be explained by noting from Equation (7) that the soakout time is inversely proportional 
to the time constant β given by 
 

𝛽𝛽 =
ℎ𝐴𝐴
𝜌𝜌𝜌𝜌𝜌𝜌

 

(22) 

where A is the surface area and V is the volume. When holes are introduced in a solid 
block, the surface area increases while the total volume decreases. Consequently, when the 
two blocks are at the same initial temperature, the block with holes has less total heat en-
ergy stored with a larger surface area to lose heat through. Thus, the block with holes soaks 
faster than the solid block. Further, due to the presence of holes, the effective Biot number 
Bi will now be smaller than that for the solid block and hence the lumped model is more 
accurate for the block with holes. 
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Figure 6. Comparison of ANSYS and lumped analysis results for temperature distribu-
tion for case 4: (left). Temperature (right). Relative error. 

 

 
 

Figure 7. Comparison of ANSYS and lumped analysis results for temperature distribu-
tion for case 5: (left). Temperature (right). Relative error. 

 
We conclude this section by considering an industrial part, the gear pump housing 

shown in Figure 8. Only the essential dimensions are shown in the figure for clarity. ANSYS 
and lumped analysis results for this part when cooled by forced convection with h = 
300W/(m2 – K) are shown in Figure 9. As the results indicate, the maximum error in using 
the lumped model is approximately 1.5% and at the soakout times, the error is even smaller. 
 

 
 

Figure 8. A gear-pump housing considered in the present work. The sketch is drawn to 
scale and not all the dimensions are shown for the sake of clarity. 



C H A K R A V A R T H Y ,  C H E R U K U R I ,  A N D  W I L H E L M ,  P R E C I S I O N  E N G I N E E R I N G  2 6  (2 0 0 2 )  

12 

 
 

Figure 9. Comparison of ANSYS and lumped analysis results for temperature distribution 
for case 6: (left). Temperature (right). Relative error. 

 
4.2. Periodic environmental temperature variations 
Next, we consider the response of a part to periodic temperature variations of the environ-
ment. Here we use the lumped analysis model developed in section 3 for this purpose. 

We will consider a steel block of dimensions 254 mm × 25.4 mm × 25.4 mm. As before, 
the block is assumed to be at a constant initial temperature of 25°C and the environmental 
temperature is assumed to be of the form 
 

𝜃𝜃∞(𝑡𝑡) = �20 + 0.5 sin
2𝜋𝜋𝑡𝑡
𝑇𝑇
� °C 

(23) 

where T is the time-period. Thus, in the example considered here, the environment tem-
perature oscillates about the standard temperature with an amplitude of 0.5C and a time 
period of T. The heat transfer is assumed to be by natural convection with h = 30W/(m2 – 
K). In figures 10 and 11, the part response given by Equation (14) is plotted against time. 
As can be seen from these figures, in each case, the initial transient period where the con-
tribution of θT(t) given by Equation (16) to T is significant. The part temperature reaches 
the steady-state given by Equation (15) once the transients die out. The amplitude ratio of 
the part temperature variation with respect to the ambient temperature variation given by 
Equation (18) indicates that as T decreases, the amplitude ratio decreases as well. This is 
evident from a comparison of the Figures 10 and 11 corresponding to T = 15 minutes and 
T = 1 hour, respectively. As these figures suggest, the part temperature variation can be 
kept below a certain acceptable value (for example, 0.1°C) by keeping T, i.e., the time-period 
of ambient temperature variation, sufficiently small. A similar conclusion was also reached 
in [3]. 
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Figure 10. Comparison of ANSYS and lumped analysis results for temperature distribu-
tion in a rectangular block with the ambient temperature varying with time with a period 
of 15 minutes. 

 

 
 

Figure 11. Comparison of ANSYS and lumped analysis results for temperature distribu-
tion in a rectangular block. Ambient temperature is varying with time with a period of 1 
hour. 

 
In the numerical example considered here, the Biot number is very small compared to 

unity. Hence, the lumped model is expected to accurately predict the temperature in the 
block. This is confirmed by the ANSYS results also shown in Figures 10 and 11. 

From the expression for amplitude ratio given in Equation (18), one can obtain an esti-
mate for an upper bound on the heat-transfer coefficient that can be used to keep the part 
temperature variation to within a prescribed limit δ. Thus, from Equation (18), we have 
 

𝛿𝛿 ≥
1

�1 + �2𝜋𝜋
𝑇𝑇𝛽𝛽�

2
 

(24) 
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or 
 

𝛽𝛽 = ℎ𝐴𝐴
𝜌𝜌𝜌𝜌𝜌𝜌

≤ 𝜔𝜔𝜔𝜔
�1−𝜔𝜔2

≈ 𝜔𝜔𝛿𝛿 for 𝛿𝛿 ≪ 1. 

(25) 

Clearly, if h = 0, that is, if the part surface is insulated, then the amplitude ratio would be 
zero. A method of achieving this is to add a thermal insulation to the part surface (see [3]). 
However, we note that using thermal insulation would lead to inordinately long periods 
of time for the part to soak to the standard temperature, since in this case the transient part 
of the temperature given by Equation (16) takes a long time to die out. 
 
5. Conclusions 
 
An expression for the estimation of soakout time for a body of arbitrary shape has been 
derived. The soakout time given by Equation (7) and restated here for convenience, 
 

𝑡𝑡𝑠𝑠 = 𝜌𝜌𝜌𝜌𝜌𝜌
ℎ𝐴𝐴

ln �𝜃𝜃0−𝜃𝜃∞
𝜀𝜀

�, 
(26) 

is based on lumped analysis where the entire body is assumed to be at a uniform temper-
ature that varies only with time. Based on the examples considered in the previous sec-
tions, the following observations can be made. 

• When Bi ≪ 1, the lumped model predictions differ from the more exact FEA mod-
els by less than 1%. This is the case for small parts made of materials with high 
thermal conductivity in the presence of natural convection. 

• When Bi = O(1), the lumped model predictions differ from the more exact FEA 
models by less than 5%. This is the case for moderately large parts (length scale in 
the range of 1/2 meter to 1 meter) made of materials with high thermal conductiv-
ity in the presence of natural convection or forced convective cooling in air. 

• When Bi = O(10), the difference between lumped model and FEA predictions in-
creases and the relative error can be as large as 20%–30%. This is the case for mod-
erately large parts (length scale in the range of 1/2 meter to 1 meter) made of 
materials with low thermal conductivity in the presence forced convective cooling 
in air. 

• In all the cases, the soakout time given by Equation (26) underestimates the actual 
soakout time. However, the error is relatively small for many practical cases in 
natural or forced convective cooling in air. 

• Equation (26) provides a means to quickly estimate the soakout time for a given 
part without resorting to the costly exercise of finite element modeling. 

• As indicated by Equation (26), the soakout time ts is directly proportional to the 
time constant T given by 
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𝜏𝜏 = time constant =  
1
𝛽𝛽

=
𝜌𝜌𝜌𝜌𝜌𝜌
ℎ𝐴𝐴

 

 
Thus, we note that the time constant alone is not sufficient to predict the soakout time. 
Depending on the magnitude of ε, the soakout time can be several orders of magnitude 
larger than τ. 

In addition, thermal response of a part of arbitrary shape to periodic environmental 
temperature cycling has been studied. Our results indicate that the temperature changes 
in the part can be kept below a certain value by increasing the frequency of variation of the 
environment temperature and by decreasing the heat-transfer between the part surface 
and the environment. This can be achieved by placing a thermal insulation over the part 
as was originally suggested in [3]. 
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