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Abstract
Rice, an important food resource, is highly sensitive to salt stress, which is directly 
related to food security. Although many studies have identified physiological mecha‐
nisms that confer tolerance to the osmotic effects of salinity, the link between rice 
genotype and salt tolerance is not very clear yet. Association of gene co‐expression 
network and rice phenotypic data under stress has penitential to identify stress‐re‐
sponsive genes, but there is no standard method to associate stress phenotype with 
gene co‐expression network. A novel method for integration of gene co‐expression 
network and stress phenotype data was developed to conduct a system analysis to 
link genotype to phenotype. We applied a LASSO‐based method to the gene co‐ex‐
pression network of rice with salt stress to discover key genes and their interactions 
for salt tolerance‐related phenotypes. Submodules in gene modules identified from 
the co‐expression network were selected by the LASSO regression, which establishes 
a linear relationship between gene expression profiles and physiological responses, 
that is, sodium/potassium condenses under salt stress. Genes in these submodules 
have functions related to ion transport, osmotic adjustment, and oxidative tolerance. 
We argued that these genes in submodules are biologically meaningful and useful 
for studies on rice salt tolerance. This method can be applied to other studies to ef‐
ficiently and reliably integrate co‐expression network and phenotypic data.

K E Y W O R D S

co‐expression network, data integration, gene modules, LASSO regression, linkage between 
genome to phenotype

www.wileyonlinelibrary.com/journal/pld3
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/359364
mailto:hwalia2@unl.edu
mailto:qi.zhang@unl.edu
mailto:czhang5@unl.edu


2  |     DU et al.

1  | INTRODUC TION

Rice (Oryza sativa) is arguably the most important crop worldwide. 
Approximately 3.5 billion people globally rely on the cultivation 
and distribution of rice for food and economic security. Given its 
economic importance, considerable efforts are continually made 
to maximize productivity. However, environmental factors such as 
drought, salinity, high heat, and submergence are major constraints. 
Especially, rice is highly sensitive to salt stress (Flowers & Colmer, 
2015). This sensitivity is driven by the osmotic effects of excessive 
Na+ in the soil–plant relations and the toxic effects of Na+. Therefore, 
study on salt tolerance in rice is important for food security. Although 
many studies have identified physiological mechanisms that confer 
tolerance to the osmotic effects of salinity and documented several 
mechanisms to limit the toxic effects of Na+ on plant growth, the 
link between rice genotype and salt tolerance is not very clear yet, 
because salt tolerance is a complex quantitative trait, which involves 
numerous changes in metabolic pathways and related physiological 
processes. Since many genes are involved in the regulation of salinity 
tolerance, traditional approaches that examine one or a few genes in 
response to salinity may fail to capture and characterize the complex 
responses at the molecular level. Thus, for such quantitative traits, 
identifying functional gene clusters would be much more meaningful 
than searching for a single gene. With the advent of next‐generation 
sequencing technology, transcriptional responses to an environmen‐
tal stimuli can be examined at a genome‐wide level and provide a 
comprehensive understanding of the complex processes underlying 
environmental adaptation and abiotic stress responses.

RNA‐sequencing data provide valuable information on gene ex‐
pression across different experimental conditions, time points, tis‐
sues, or genotypes. Traditionally, in co‐expression network analysis, 
genes with similar expression pattern are grouped, with the under‐
lying rationale being “guilt by association.” This extensively validated 
principle states that transcriptionally coordinated genes are often 
functionally related. Once co‐expression modules are identified, it 
is challenging to determine which modules are associated with the 
phenotypic response, and which biological processes in the same 
module are involved. To link modules to phenotype, one approach is 
to calculate the correlation between physiological traits and eigen‐
genes of the given modules, which are defined as the first principal 
component (PC) of a specific module (Virlouvet et  al., 2018). The 
first PC accounts for the largest variance of the gene expression for 
genes within the module and thus can describe the major expres‐
sion pattern. This method is reasonable when the major variation in 
the data is caused by a treatment or condition. However, in practice, 
genes in the same module are not necessarily in the biological pro‐
cess due to different locations of gene products in cells, and math‐
ematically, module‐discovery methods may introduce large variance 
in the clustering process. The correlation approach based on single 
average patterns may fail to identify modules associated with the 
trait.

To reveal the substructure of modules and identify submodules 
that are associated with the observed trait, principal component 

analysis (PCA) was used to break down modules and multivariate re‐
gression analysis was used to test the most significant submodules. 
Specifically, the variable selection method least absolute shrinkage 
and selection operator (LASSO) was employed to identify the sub‐
structure of gene modules and find the clusters of genes highly rele‐
vant to salt stress response in rice. Although various algorithms were 
developed for variable selection, LASSO is well known for its statis‐
tical accuracy, computational feasibility, and broad applicability to 
adaptation. In this work, we applied LASSO to the gene co‐expres‐
sion network of rice with salt stress to discover key genes and their 
interactions for salt tolerance‐related phenotypes. LASSO‐based 
methods were applied to different biological research before. For 
example, it has been used GWAS analysis (Wu, Chen, Hastie, Sobel, 
& Lange, 2009), eQTL analysis (Cheng, Zhang, Guo, Shi, & Wang, 
2014), transcriptome assembly (Li, Feng, & Jiang, 2011), and gene 
regulatory network analysis (Gustafsson, Hornquist, & Lombardi, 
2005). However, it is the first application of LASSO method for the 
identification of submodules in gene co‐expression networks in 
plants.

2  | METHOD AND MATERIAL S

2.1 | Plant growth conditions and phenotyping

All phenotypic data were collected from large‐scale phenotyping of 
a diverse panel of rice varieties. The greenhouse conditions and ex‐
perimental description for these experiments can be found in the 
reference (Campbell et al., 2017). Briefly, the study used 383 of the 
421 original RDP1 accessions and seven check varieties (Zhao et al., 
2011; Famoso et al., 2011, Eizenga et al., 2014). According to the clas‐
sification by Famoso et al., the subset of RDP1 included 77 indica, 52 
aus, 92 temperate japonica, 85 tropical japonica, 12 groupV/aromatic, 
and 56 highly admixed accessions (the subpopulation assignment 
was not provided for nine accessions) (Famoso et al., 2011). The phe‐
notyping experiments were conducted between July and September 
in 2013 in a controlled greenhouse at Lincoln, NE. The greenhouse 
was maintained at 25–28°C with relative humidity at 50%–80%, 
and a photoperiod of 16 hr:8 hr (day:night). Seedlings were germi‐
nated in the dark for 2 days, exposed to light for 12 hr, and were 
transplanted into pots filled with Turface (Profile Products, LLC). 
The seedlings were grown in tap water for 4 days after transplanting 
and were supplemented with half‐strength Yoshida solution (pH 5.8) 
for the remainder of the experiment. For salt treatment, NaCl was 
mixed with CaCl2 in a 6:1 molar ratio and was added after 10 days of 
seedling growth. The stress treatment was started at 2.5 dS/m and 
was increased gradually up to 9.5 dS/m in four steps over a period 
of 4 days. The stress treatment was maintained at 9.5 dS/m for the 
remaining 2 weeks. Root and shoot samples were collected sepa‐
rately and rinsed 3 times in tap water and once in deionized water 
to remove excess NaCl after the experiment (14 days of 9.5 dS/m; 
28 days after transplant). The samples were oven‐dried at 60°C for 
1 week prior to measuring root and shoot biomass. Shoot and roots 
from two plants were taken for biomass measurement. Dried shoot 
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samples were ground and 200–300 g of total material was digested 
with 0.1 N Nitric acid (Fisher Scientific) at 70°C for 8 hrs, while root 
samples were weighed and digested without any grinding. The sam‐
ples were diluted, and cation (Na+ and K+) concentrations were de‐
termined with an appropriate standard by dual‐flame photometry 
(Cole Parmer). Phenotypic data were combined across periods, and 
a linear model was fit to calculate adjusted means for individual ac‐
cession using the PROC GLM procedure of the Statistical Analysis 
System (SAS Institute Inc). The linear model included a period (i.e., 
June–July or August–September), replication nested within a period, 
tub nested within replication, accession, and accession‐by‐period 
interaction.

2.2 | Transcriptome experiment and RNA‐
sequencing

RNA‐seq data were generated from shoot tissues of 92 diverse rice 
accessions. These accessions were randomly selected from the Rice 
Diversity Panel 1 (Zhao et  al., 2011) and consist of 34 subspecies 
Indica, while 52 accessions were from subspecies Japonica. For each 
accession, gene expression profiles of shoot tissues were measured 
for both control condition and salt condition after exposing the 
rice seedlings to 6 dS/m (~60 mM NaCl) salt stress for 24 hr. The 
RNA‐seq data can be accessed through GEO database (Accession 
#: GSE98455).

2.3 | RNA‐seq data analysis and Co‐expression 
network analysis

By using Trimmomatic (Bolger, Lohse, & Usadel, 2014), each 101 bp 
RNA‐seq read was trimmed to make sure the average quality score 
larger than 25 and having the minimum length of 75 bp. All trimmed 
short reads were mapped to the rice Genome (version 6) using 
TopHat (Trapnell, Pachter, & Salzberg, 2009), allowing up to two 
base mismatches per read. Reads mapped to multiple locations were 
discarded. Numbers of reads in genes were counted by the HTSeq‐
count tool using corresponding rice gene annotations (Anders, 
2010). DEseq (Anders & Huber, 2010) was used to do normalization 
for read counts of all genes.

Co‐expression network analysis was used to identify genes with 
coordinated transcriptional responses (modules). Genes exhibiting 
low variance or low expression across both control and salt samples 
were removed, as these genes could introduce noise with the co‐ex‐
pression pattern measured with Pearson correlation. Two criterions 
were used for this purpose: (a) the ratio of upper quantile to lower 
quantile of normalized read count smaller than 1.5; (b) for more than 
80% samples, normalized read count smaller than 10. To capture the 
signal of changes caused by salinity stress, a log2 fold change matrix 
was calculated by dividing the salt count with corresponding con‐
trol count and further stabilized through log transformation. For this 
log2 fold change matrix used for co‐expression network construc‐
tion, genes with the ratio of upper quantile to lower quantile larger 
than 0.25 were kept. Among the total of 57,840 rice genes, 8,953 

genes displaying sufficiently high variation were identified, and 
their values were used to construct a correlation matrix using the R 
package, WGCNA (Langfelder & Horvath, 2008). The soft threshold 
was set as 4 to ensure the scale‐free topology to be higher than 0.9. 
Due to the complexity of the hierarchical clustering tree, method 
dynamic hybrid cut was implemented to get modules. Dynamic tree 
cutting was adopted to identify modules with minModuleSize of 25 
(Langfelder & Horvath, 2007).

2.4 | Algorithm for linking phenotyping data to 
submodules in gene co‐expression network

Figure  1 shows the workflow of the algorithm to link phenotyp‐
ing data to submodules in the gene co‐expression network. For all 
modules identified by WGCNA, the first step is breaking down all 
modules into submodules. PCA was used for all modules. The first, 
second, and third components were considered, and the eigenvec‐
tors of the first three PCs were used as the virtual genes to represent 
genes in these components. Then, LASSO method was employed to 
select the most significant virtual genes associated with phenotyping 
data. The following section describes the details of the LASSO step. 
Once significant virtual genes identified, all genes in the same mod‐
ule were compared with a significant virtual gene to identify the most 
correlated genes with a statistical test based on the broken‐stick 
model. The details of this test are described in the following sections.

2.5 | Variable selection with LASSO

Various algorithms were developed for variable selection, but 
LASSO is well known for its statistical accuracy, computational fea‐
sibility, and broad applicability to adaptation. In this manuscript, we 
applied LASSO to the gene co‐expression network of rice with salt 
stress. To link the phenotypic data to gene expression profiles, a lin‐
ear model was fitted: 

F I G U R E  1  Flowchart of the algorithm to link phenotyping data 
to submodules in the gene co‐expression network

info:ddbj-embl-genbank/GSE98455
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where Yi are the phenotypic response for the i
th (i = 1…92) genotype, 

Xi(jk) is the PC matrix that Xi(jk) represents the log2 PC value from the j
th 

(j = 1…3) PC of the kth (k = 0…16) module for the ith genotype, and is the 
coefficient of the jth PC from kth module and its absolute value quan‐
tifies the contribution effects. The phenotypic response, for example, 
the physiological vector, was log2 of Na

+/K+ ratio. The LASSO method 
was used to shrink coefficients of virtual genes with trivial effects into 
zeroes while keeping virtual genes with large effects by minimizing the 
residual sum of squares with an additional L1 norm, shown in Equation : 

The optimal penalty parameter λ is a constant larger than zero, 
and the optimum value was determined with leave‐one‐out cross‐
validation. To determine the optimal set of parameters selected by 
LASSO, we adopted the most regularized model such that error is 
within one standard error of the minimum.

2.6 | Identification of significant genes with broken‐
stick model

After significant PCs selected by the linear regression, we developed a 
broken‐stick model to identify genes significantly associated with the 
selected PCs. In stick‐breaking theory, a stick of length one would be 
literately broken into pieces and the length of broken pieces just follow 
the Dirichlet distribution. Here, we take the contribution values of genes 
from the same module as the lengths of pieces from a broken stick. The 
random sampling from the Dirichlet distribution was repeated for many 
times, and for each time, the broken pieces were sorted by their lengths 
in a descending order. The gene with the largest contribution would be 
compared with the upper quantile of the empirical distribution 
constructed by the largest lengths of broken pieces. If the contribution 
value is larger than the upper quantile from the random background, this 
gene would be regarded as genes that have an unusual contribution to 
the selected PC. For a module with K genes, a stick, whose length is unit 
1,  needs to be broken into K pieces. The lengths of those K pieces were 
got from the following the Dirichlet distribution. We denote the length 

of the ith (0 < i < K) piece as xi (0 < xi < 1) and, therefore,  
K∑
i=1

xi=1. In 

addition, for each xi, we have the corresponding αi (αi > 0). Then, random 
variables X = (X1, X2,…, Xk) have the following PMF (Equation ): 

In our case, to make sure that X follows uniform distribution in 
the kth dimension, αi (0 < i < K) was set as one. The sampling process 
was repeated for 10 thousand times, and for each time, the resulting 
lengths were further sorted in the descending order x(1) < x(2) < … < p(m) 
< … < x(k). Values of x(m) from 10 thousand simulations would be used 
to construct the corresponding empirical distribution E(m). Meanwhile, 
the proportions of contribution denoted as p(m), of genes in the module 

were sorted in the descending order p(1) < p(2) < …p(m) < … < p(k). The 
value of p(m) was then compared with upper quantile of E(m).

2.7 | Real data‐driven simulation

Two different types of simulations were conducted to compare 
LASSO and correlation in selecting expression patterns.

2.8 | Simulation I

In simulation I, LASSO method and a simple method based on the 
correlation were compared to test which one has a better perfor‐
mance in selecting the true PC patterns. A real data‐driven simula‐
tion was performed to evaluate whether LASSO is better in picking 
up correct expression patterns, for example, PCs, than the simple 
correlation comparison. In the simulation, the real PC matrix con‐
taining 51 PCs from 17 gene modules was used, and the same 8 PCs 
selected by LASSO with real data were assumed to be positives to 
contribute to the observed change in Na+/K+ ratio. The absolute 
value of their coefficients estimated by the linear regression without 
penalty is called effect sizes on the dependent variable. For the real 
case, the values of effect sizes are in the range of .034 to .1596. The 
comparison between LASSO and the correlation method was con‐
ducted by changing effect sizes obtained by multiplying the original 
coefficients of those 8 PCs with a series of multiplying factors rang‐
ing from .3 to 2. For other PCs not chosen, their coefficients were 
set as zeroes. Equation  describes the formula used in the simulation 
to calculate the dependent variables with the real PC matrix and pre‐
defined coefficients of all PCs.

where XN×M is the same PC matrix as what we used in real data anal‐
ysis. �sim

M×1
 is the assumed coefficient for all PCs. The residual error �sim

N×1
 

follows a normal distribution N(0, σ2), where the variance σ2 was es‐
timated with the residual values from the linear regression with eight 
PCs. With the formula above, for each multiplying factor, we gen‐
erated Ysim

N×1
 for 100 times using different simulation seed. For each 

round of simulation, the ability of LASSO in identifying correct the 
PC pattern was compared with that of correlation method. Due to the 
skewed dataset that the number of true negatives dwarf the number 
of true positives, the area under precision‐recall curve (PR AUC) is 
used as the standard of comparison. The ranking of PC patterns for 
calculating PR AUC is based on the absolute values of the correlation 
between PC patterns and the simulated Y. For LASSO, the ranking is 
obtained from the Coefficient Shrinkage curve, in which coefficients 
of PCs would shrink to zeroes in order. If the shrinkage curves of PCs 
are shrunk to zero at the same time, they are further ranked by the 
absolute values of their coefficients at the optimum lambda.

2.9 | Simulation II

We randomly choose eight PCs and set their coefficients as non‐zero 
values so that four of them had the same positive number and the 

(1)Yi=Xi�i+�0i+e,

(2)min
∑(

Yi−�0i−X�i
)2

+�

[(
1−�

) ||||�i||
2

2
+�|||| �i||

2

1

]
.

(3)f(X,�)=

Γ

�∑K

i=1
�i

�

ΠK
i=i
Γ(�i)

Π
K

i=1
(xi)

�i−1,

(4)Ysim
(N×1)

=X(N×M)�
sim

(M×1)
+�sim

(N×1)
,
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other four had the same negative number. The maximum coefficient 
size from the real data analysis is .1596, and the minimum size is 
.034. Based on the scale of the original coefficients, coefficient se‐
ries in our simulation is .03, .05, .1, .15, .3, and .5. For each effect 
size, we did 100 simulations. However, PCs set to have a non‐zero 
effect size are the same as what we picked from real data analysis. 
Moreover, the signs of their coefficients are unchanged, and their 
effect sizes are either decreased or increased in the same propor‐
tion. To make our conclusion more robust, eight PCs were randomly 
chosen out of the 51 PCs. The absolute values of their coefficients 
were set the same and four of them were assumed to have positive 
effects, while the other four were assumed to have negative effects. 
Based on the effect size in real data analysis, we tested a series of 
effect size, .03, .05, .08, .1, .15, .3, and .5. For each effect size, we 
repeat for 100 times with different seeds.

2.10 | GO term enrichment analysis

GO::TermFinder (Boyle et  al., 2004) was used to identify modules 
significantly enriched by genes belonging to GO terms. The p value 
was calculated with hypergeometric distribution and further ad‐
justed with Bonferroni to correct multiple hypothesis testing. The 
cutoff used is adjusted p value < .05. The GO term association files 
for rice were obtained from http://rice.plant​biolo​gy.msu.edu/.

3  | RESULTS

3.1 | Phenotypic data and gene co‐expression 
network in response to salinity stress

For this study, the primary aim was to identify genes or gene clus‐
ters whose expression patterns were highly associated with physi‐
ological responses to salinity stress. After a 9 dS/m (~90 mM NaCl) 
salt stress was imposed gradually over 4 days (in four increments of 
20–30 mM) to 2‐week‐old rice seedlings, tolerance‐associated traits 
in rice, such as shoot biomass and shoot Na+ content, were meas‐
ured at the end of a 2‐week stress period. In this study, the shoot 

Na+ content was used to represent the plant response to the salt 
stress. The inherent differences in growth rate between lines were 
controlled, and hence, the saline‐induced growth response was nor‐
malized by corresponding parameters in control conditions. To iden‐
tify the gene clusters responding to salinity stress, a co‐expression 
network was constructed, in which genes are referred to as nodes 
and an edge between two nodes indicates that the corresponding 
two genes have similar expression patterns. The expression profiles 
used to construct the gene co‐expression network come from RNA‐
sequencing data of shoot tissues across 92 diverse rice accessions. 
We performed the weighted gene co‐expression network analysis 
(WGCNA) on 8953 genes just for those 184 samples exposed to salt 
stress, and the clustering result is shown in Figure 2. Please see the 
Section of Material and Methods for more details. All those genes 
were distributed into 17 modules, with the size ranging from 34 to 
2,963 genes. These modules and the shoot Na+ content were inte‐
grated with a linear model to link transcriptomic changes to rice phe‐
notypic response to salinity stress.

3.2 | Module features selected by LASSO

Once co‐expression modules are identified, we next sought to iden‐
tify modules that are related to salinity stress. Traditionally, PCA 
would be performed on gene expression profiles of each module to 
get the first PC of each module (also called the eigengene), and the 
importance of each module was evaluated by the strength of cor‐
relation between eigengenes and the physiological trait (Virlouvet 
et  al., 2018). However, genes in a module identified in the co‐ex‐
pression network are heterogeneous and could be involved in 
many different biological processes and respond to variant signals. 
Therefore, we hypothesized that one module has substructures, and 
a submodule responds to a specific signal. A new method to select 
submodules associated with the trait of interest (i.e., shoot Na+ con‐
tent) was developed. In the first step, PCA was performed on each 
module and extracted the top three PCs of each module to form a 
PC matrix (total of 51 PCs from 17 modules). Only top three PCs 
were taken from each module because the higher‐order PCs have 

F I G U R E  2  The clustering result of 
WGCNA to the gene co‐expression 
network with a heatmap plot. The 
heatmap shows the topological overlap 
matrix among all genes in different 
clusters, and blocks of darker colors along 
the diagonal are related to genes from the 
same modules

http://rice.plantbiology.msu.edu/
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a very low contribution to the entire module and hence can give 
rise of an overwhelming noise level. One can find if display genes in 
the eigengene space, such as PC1 and PC2, genes can be grouped 
into different clusters: Some genes are close to PC1 and the other 
to PC2. This indicates that genes in the same module still can be 
further split into submodules. The second step is the statistical fea‐
ture selection step—a regularized regression model, a LASSO‐based 
method, was applied to quantify the relationship between module 
expression patterns and the physiological data. The fitted model can 
find the expression patterns contributing the most to the observed 
physiological data. During the PC selection step, using LASSO, the 
optimal λ values were identified with a leave‐one‐out cross‐valida‐
tion. The result is shown in Figure 3, where the cross‐validation er‐
rors were plotted against varying log(λ) values in the search range. 
The error bars show the standard deviation of the errors calculated 
from the cross‐validation. The dotted line indicates the λ giving the 
minimum mean squared error, and the corresponding value of the 
parameter is .0429. Therefore, eight PCs were identified as the op‐
timal feature set. In other words, eight significant PCs from seven 
modules were selected to have non‐zero effects on the stress 
(Table 1). Interestingly, for most modules, the selected PCs are the 
second (module 15, 16) or the third PC (module 4, 6, 7, 14, 15, and 

16), which would be missing by traditional methods using the first PC 
only. This result is reasonable because genes contributing to the first 
PCs are expressed for the maintenance of basic cellular functions, 
and genes’ expression for the response to environmental perturba‐
tion is a small part of the entire transcriptome. The last step is to 
identify genes significantly associated with the selected PCs. This 
step was implemented with a statistical test based on the broken‐
stick model. In on gene module, the contribution of genes to a PC 
is considered as the lengths of broken pieces from a stick. Sorted 
contributions of genes would be compared with the upper quantile 
of the empirical distribution constructed by the largest lengths of 
broken pieces. If the contribution value of a given gene is larger than 
the upper quantile from the random background, this gene would be 
regarded as genes that have an unusual contribution to the selected 
PC. Figure 4 shows the comparison for genes to PC3 in Module #14, 
and three genes have significant combustion to PC3. The numbers 
of significant genes for nine PCs from eight modules are listed in 
Table 2. The distributions of genes with respect to the correlation to 
each specific PCs are shown in Figure 5. One may note that selected 
genes for a second or third PC in each module form a small peak 
before a large peak, which further indicates there are substructures 
in modules. For second and third CPs, the selected genes are a small 

F I G U R E  3  For LASSO training result, the cross‐validation errors 
were plotted against varying log(λ) values in the search range

TA B L E  1  Significant submodules after LASSO selection based on their coefficient values

Module # 4 6 7 11 14 15 16

1st PC       −.0325   −.0111  

2nd PC           .0862 .0869

3rd PC −.0275 .01257 .0463   .0889    

F I G U R E  4  The contribution of genes to PC2 in Module #14 with 
the background
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portion of the entire module, and these genes have high potential to 
respond to the stress.

3.3 | Significant genes selected by LASSO are 
relevant to salt stress

All selected significant submodules are enriched with genes in GO 
terms relevant to salt stress (Table  2). Some of them are genes 

responding to stress and stimulus. For example, sixteen genes re‐
spond to the 3rd PC in Module #6 are enriched by genes belonging 
to the GO term of “Response to Stress.” In this submodule, several 
genes encode transcription factors in the WRKY family, and overex‐
pression of these genes resulted in enhanced salt and drought toler‐
ance, in addition to increased disease resistance (Jiang & Deyholos, 
2009; Ma et al., 2017; Qiu & Yu, 2009) or improves the osmotic stress 
tolerance (Song, Jing, & Yu, 2009). WRKY genes were also identified 

Module #‐PC

No. of 
genes in 
modules

No. of genes in 
submodules

Enriched with genes belong‐
ings GO terms Adj. p‐value

4‐3 891 67 Transport (20/67) 1.9 × 10−5

6‐3 313 53 Response to stress (16/53) 1.58 × 10−5

7‐3 184 24    

11‐1 110 110 Response to stress 7.86 × 10−9

14‐3 46 3    

15‐1 46 18 Response to abiotic stimulus .0089

15‐2 46 8    

16‐2 34 7 Cellular homeostasis (3/7) 4.46 × 10−12

TA B L E  2  Overview of all significant 
modules

F I G U R E  5  The distributions of genes with respect to the correlation to each specific PCs. 
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to respond to stress by an eQTL method in barley (Wehner, Balko, 
Humbeck, Zyprian, & Ordon, 2016). Some submodules are directly 
related to salinity conditions. For example, 20 genes associated with 
the third PC in Module #4 are enriched with genes in “Transport” 
(p‐value = 1.9 × 10−5). For example, gene LOC_Os01g37690 encodes 
a protein in NCX family and this protein also has a CAX domain H+/
Ca2+ exchanging. The sodium/calcium exchanger protein that can 
maintain cellular homeostasis of Ca2+ or Na+. While one calcium 
ion is pumped outside of the cell, three sodium ions would be trans‐
ported into the cell in exchange. This process could work in another 
direction depending on the concentration gradient of ions (Yu & 
Choi, 1997). Its homolog gene in Arabidopsis, AtNCL, is broadly ex‐
pressed in Arabidopsis, and abiotic stresses stimulated its transcript 
expression. Loss‐of‐function AtNCL mutants were less sensitive to 
salt stress than wild‐type or transgenic overexpression lines (Wang 
et al., 2012). Another gene, LOC_Os12g07270, encodes a protein of 
BASS2, which is responsible for pyruvic acid uptake into the chloro‐
plast, an essential precursor of ABA. It has been proved that a pyru‐
vate transporter, TaBASS2, positively regulates salinity tolerance in 
wheat (Zhao, Ai, Wang, Xiao, & Xia, 2016). Other submodules, such 
as in Module #16, #7, #15, are also enriched with genes specifically 
responding to the salinity conditions.

Module #16 has a total of 34 genes, and only seven genes are 
significantly aligned into the subgroup represented by the second 
PC. Three out of seven genes in this submodule have clues about 
their functions, and interestingly, these functions are highly rele‐
vant to salt stress. LOC_Os12g01530 and LOC_Os11g01530, two 
ferritin homologs, are function‐unknown genes in rice, but their ho‐
mologs in other plants have functions to store ferrous iron in chlo‐
roplasts in a non‐toxic form and to protect plants from oxidative 
damage induced by different stresses, including salt stress (Deak 
et al., 1999; Foyer, Lelandais, & Kunert, 1994). Especially, with sa‐
linity stress, rice highly prone to have iron deficiency due to a lower 
release of Fe‐chelating compounds (Abbas, 2015). The correlation 
between expression levels of these two genes and Na+ concentra‐
tion in shoot gives rise to a hypothesis that upregulated ferritin in 
salt‐tolerant rice helps the plant to survive under the salinity con‐
dition. LOC_Os09g23300, the third gene in this submodule, codifies 
a vacuolar iron transporter and also responds to salt stress. It has 
been reported that both LOC_Os12g01530/LOC_Os11g01530, en‐
coding iron storage proteins, and LOC_Os09g23300, encoding one 
putative vacuolar iron transporter, are upregulated in shoot tissue 
caused by the stress of phosphate derivation (Secco et al., 2013).

In Module #7, there are 184 genes, but 24 genes consist of 
the submodule represented by the 3rd PC. Out of 24 genes, the 
most interesting gene is LOC_Os07g19030, which can encode a 
tic22‐like family domain‐containing protein. Tic22, translocon at 
the inner envelope membrane of chloroplasts, is majorly involved 
in protein precursor import into chloroplasts (Kessler & Schnell, 
2009). It has been reported that this protein can be induced and 
accumulated in salt‐acclimated cells in Synechocystis sp. strain PCC 
6803 (Fulda et al., 2006). LOC_Os10g30540 is a putative lectin‐like 
receptor kinase (LecRLK), which is well known for its role in plant 

stress and developmental pathways. For example, in Arabidopsis, 
LecRLK can respond to salt within the ethylene signaling pathway 
(He, Zhang, Yan, Zhang, & Chen, 2004). LecRLK in pea plant, being 
shown to phosphorylate MBP, has a unique response to Na+, and 
the transcript of the LecRLK accumulates in roots and shoots with 
salt stress (Joshi, Dang, Vaid, & Tuteja, 2010). LOC_Os07g14100 
is a gene coding a polygalacturonase (PG), one of the hydrolases 
responsible for cell wall pectin degradation, which is involved in 
organ consenescence and biotic stress in plants. In rice, the tran‐
scription of PG is induced by cold, salinity, and drought stresses, as 
well as by abscisic acid (ABA) treatment, and overexpression of PG 
can enhance sensitivity to cold, salinity, and drought stresses (Liu 
et  al., 2014). Reduced violaxanthin de‐epoxidase, the gene prod‐
uct of LOC_Os04g31040, is instrumental in the regulation of the 
xanthophyll cycle, which can reduce reactive oxygen species (ROS) 
damage to cell structure during salinity stresses (Borah et al., 2017; 
Latowski, Kuczynska, & Strzalka, 2011).

Module #15 has a total of 46 genes and both PC1 and PC2 are sig‐
nificant. Genes in these two submodules have functions to respond to 
stress. For example, LOC_Os10g16974 and LOC_Os10g17260, genes 
codifying for cytochrome P450, are involved in growth and drought 
stress responses in rice (Tamiru et  al., 2015). The gene product of 
LOC_Os02g14680 is a UDP‐glucuronosyl and UDP‐glucosyl trans‐
ferase domain‐containing protein and that of LOC_Os01g71670 is a 
glycosyl hydrolase. Both genes are related to glcosylation. It is known 
that glycosylation is important for plants to respond to stresses; 
manipulation of glycosylation alters tolerance to biotic and abiotic 
stresses (Bowles, Isayenkova, Lim, & Poppenberger, 2005; Bowles, 
Lim, Poppenberger, & Vaistij, 2006). LOC_Os10g38140 encodes a 
glutathione S‐transferase, by which the salt stress‐induced lipid 
peroxidation is reduced (Katsuhara, Otsuka, & Ezaki, 2005). LOC_
Os11g30500 is an HVA22 protein gene. In Barley and Arabidopsis, 
aleurone cells transformed with HVA22 inhibited the formation of 
GA‐induced formation of vacuoles and programmed cell death (Guo 
& Ho, 2008). Since vacuoles are important for Na+ storage, HVA22 
is a promising candidate protein for salt tolerance. For example, a 
homolog gene of HVA22 from barley, HVA1, can increase tolerance 
to water deficit and salt stress in transgenic rice (Xu et al., 1996).

4  | DISCUSSION

4.1 | Linking gene expression to phenotypic data

The gene co‐expression network models have been used for the ex‐
ploration, interpretation, and visualization of the relationship among 
genes in a wide range of biological applications (Kadarmideen & 
Watson‐Haigh, 2012; Tan et al., 2017; Yang et al., 2014), but was not 
integrated with phenotyping data directly yet. The method describes 
in this manuscript provide an approach to link phenotyping data to 
transcriptomic data, which provide complementary integration to 
QTL, the linkage between phenotyping data and genomic data, and 
eQTL, the linkage between phenotyping data and transcriptomic 
data. Co‐expression network analysis was combined with eQTLs 
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(Villa‐Vialaneix et  al., 2013), studying gene‐phenotype association 
(Ficklin, Luo, & Feltus, 2010), and GWAS (Schaefer et al., 2018). The 
discovered gene submodules and genes in these submodules from 
the method described in the manuscript can also be further com‐
bined with eQTL, QTL, and/or GWAS to prioritize genes responding 
to stress.

4.2 | Response to stress with multiple submodules

To link modules to phenotype, the naive way (Virlouvet et al., 2018) 
is calculating the correlation between physiological traits and ei‐
gengenes of given modules, which are defined as the first PC of 
a specific module, accounting for the largest variance of the gene 
expression within the module. However, in practice, genes in the 
same module are not necessarily in the same biological process due 
to different locations of gene products in cells, and mathematically, 
module‐discovery methods may introduce large variance in the clus‐
tering process. Therefore, the correlation approach based on single 
average patterns may fail to identify modules associated with the 
trait. Therefore, multiple PCs in on modules need to be considered, 
and more than one significant PCs can be selected by LASSO. On the 
other hand, to generate a given type of response to environments by 
organisms, many genes or various pathways need to work together. 
Multiple submodules associated with different PCs are integrated to‐
gether by the linear model can quantitatively describe the different 
levels of contributions of genes in these submodules and pathways 

enriched by these genes in the biological systems. At a certain level, 
the weight parameters of submodules assigned by LASSO can re‐
flect the size of their contributions to the entire system.

4.3 | Variability for different PCs and high‐
order PCs

We used the top three PCs to represent the different submodules 
in one given module because they already dominate the contribu‐
tions from all PCs. PCA was performed on all 17 modules. The first 
PC of each module accounts for 35%~62% of the total variation in 
gene expression, and the top three PCs could explain 42%~70% of 
the module variance. Some modules have less variation, that is, PC1 
contributing a high percentage to the total variation, but the other 
modules have more variations. The total variation in gene expression 
could come from the response to the environmental perturbation, 
but also comes from the genetic population and even experimental 
artifacts.

4.4 | Simulation study

A real data‐driven simulation was used to evaluate whether or not 
LASSO has a better performance in terms of picking up all correct 
expression patterns, a specific set of PCs, when compared with 
direct selection based on correlation. The details of the algorithm 
about the simulation are described in the section of Method.

F I G U R E  6  Simulation results of PR AUC comparison between 
LASSO and correlation method. The x‐axis represents the different 
multiplying factors. The box plot displays the 25th and 75th 
percentiles around the median value. Magenta box stands for 
LASSO method, whereas the cyan box represents the correlation 
method. The significance was calculated with Wilcoxon signed‐
ranks test and p < .05 is labeled as *, p < .01 is labeled as **, and 
p < .001 is ***

F I G U R E  7  Simulation results of PR AUC comparison between 
LASSO and correlation method. The x‐axis represents different 
effect size. The box plot displays the 25th and 75th percentiles 
around the median value. Magenta box stands for LASSO method, 
whereas the cyan box represents the correlation method. The 
significance was calculated with Wilcoxon signed‐ranks test and 
p < .05 is labeled as *, p < .01 is labeled as **, and p < .001 is ***
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From Figure 6, one can see that, as the effect size increases, the 
PR AUC values increases for both LASSO method and correlation 
method. (Please see the section of Method for the definition of the 
effect size.) It is suggested from the simulation result that PCs with 
larger coefficients have higher possibilities to be the true patterns 
associated with the phenotype. Although the PR AUC values are not 
high, the power of the LASSO method is significantly higher than 
that of correlation method. In practical research, biological anno‐
tation and GO annotation could further help remove those false 
positives.

From Figure 7, one can see that, as the effect size increases, 
the PR AUC values for both LASSO method and correlation 
method increase. A sharp increase could be observed when the 
effect size reaches .08. When we have low effect size, like .03, 
.05, and .08, there is no difference between LASSO method and 
correlation method. That means, for modules with trivial effect 
on the phenotype, we might do not have enough power to detect 
them even with LASSO method. The advantage of LASSO method 
begins to show up when the effect size climbs to 0.1. Also, the PR 
AUC values could reach around 0.8, which endows us with more 
confidence.

5  | CONCLUSION

To link gene co‐expression network to stress phenotype data, 
a linear model based on LASSO method was applied to the gene 
co‐expression network of rice with salt stress to discover key 
genes and their interactions for salt tolerance‐related phenotypes. 
Submodules in gene modules were identified, and the linear rela‐
tionship between these submodules and physiological responses of 
rice under salt stress was discovered. Genes in these submodules 
have functions related to ion transport, osmotic adjustment, and 
oxidative tolerance, which are biologically meaningful and useful for 
studies on rice salt tolerance. This method can be applied to other 
studies to efficiently and reliably integrate co‐expression network 
and phenotypic data, and also can be integrated with QTL, eQTL, 
and GWAS studies.
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