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Abstract
Rice,	an	important	food	resource,	is	highly	sensitive	to	salt	stress,	which	is	directly	
related	to	food	security.	Although	many	studies	have	identified	physiological	mecha‐
nisms	that	confer	tolerance	to	the	osmotic	effects	of	salinity,	the	link	between	rice	
genotype	and	salt	tolerance	is	not	very	clear	yet.	Association	of	gene	co‐expression	
network	and	rice	phenotypic	data	under	stress	has	penitential	to	identify	stress‐re‐
sponsive	genes,	but	there	is	no	standard	method	to	associate	stress	phenotype	with	
gene	co‐expression	network.	A	novel	method	for	integration	of	gene	co‐expression	
network	and	stress	phenotype	data	was	developed	to	conduct	a	system	analysis	to	
link	genotype	to	phenotype.	We	applied	a	LASSO‐based	method	to	the	gene	co‐ex‐
pression	network	of	rice	with	salt	stress	to	discover	key	genes	and	their	interactions	
for	salt	tolerance‐related	phenotypes.	Submodules	in	gene	modules	identified	from	
the	co‐expression	network	were	selected	by	the	LASSO	regression,	which	establishes	
a	linear	relationship	between	gene	expression	profiles	and	physiological	responses,	
that	is,	sodium/potassium	condenses	under	salt	stress.	Genes	in	these	submodules	
have	functions	related	to	ion	transport,	osmotic	adjustment,	and	oxidative	tolerance.	
We	argued	that	 these	genes	 in	submodules	are	biologically	meaningful	and	useful	
for	studies	on	rice	salt	tolerance.	This	method	can	be	applied	to	other	studies	to	ef‐
ficiently	and	reliably	integrate	co‐expression	network	and	phenotypic	data.
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1  | INTRODUC TION

Rice (Oryza sativa)	 is	arguably	the	most	 important	crop	worldwide.	
Approximately	 3.5	 billion	 people	 globally	 rely	 on	 the	 cultivation	
and	 distribution	 of	 rice	 for	 food	 and	 economic	 security.	Given	 its	
economic	 importance,	 considerable	 efforts	 are	 continually	 made	
to	maximize	productivity.	However,	environmental	 factors	such	as	
drought,	salinity,	high	heat,	and	submergence	are	major	constraints.	
Especially,	 rice	 is	highly	sensitive	 to	salt	 stress	 (Flowers	&	Colmer,	
2015).	This	sensitivity	is	driven	by	the	osmotic	effects	of	excessive	
Na+	in	the	soil–plant	relations	and	the	toxic	effects	of	Na+.	Therefore,	
study	on	salt	tolerance	in	rice	is	important	for	food	security.	Although	
many	studies	have	identified	physiological	mechanisms	that	confer	
tolerance	to	the	osmotic	effects	of	salinity	and	documented	several	
mechanisms	 to	 limit	 the	 toxic	effects	of	Na+	 on	plant	growth,	 the	
link	between	rice	genotype	and	salt	tolerance	is	not	very	clear	yet,	
because	salt	tolerance	is	a	complex	quantitative	trait,	which	involves	
numerous	changes	in	metabolic	pathways	and	related	physiological	
processes.	Since	many	genes	are	involved	in	the	regulation	of	salinity	
tolerance,	traditional	approaches	that	examine	one	or	a	few	genes	in	
response	to	salinity	may	fail	to	capture	and	characterize	the	complex	
responses	at	the	molecular	level.	Thus,	for	such	quantitative	traits,	
identifying	functional	gene	clusters	would	be	much	more	meaningful	
than	searching	for	a	single	gene.	With	the	advent	of	next‐generation	
sequencing	technology,	transcriptional	responses	to	an	environmen‐
tal	 stimuli	 can	be	examined	at	a	genome‐wide	 level	and	provide	a	
comprehensive	understanding	of	the	complex	processes	underlying	
environmental	adaptation	and	abiotic	stress	responses.

RNA‐sequencing	data	provide	valuable	information	on	gene	ex‐
pression	across	different	experimental	conditions,	 time	points,	 tis‐
sues,	or	genotypes.	Traditionally,	in	co‐expression	network	analysis,	
genes	with	similar	expression	pattern	are	grouped,	with	the	under‐
lying	rationale	being	“guilt	by	association.”	This	extensively	validated	
principle	 states	 that	 transcriptionally	 coordinated	 genes	 are	 often	
functionally	 related.	Once	co‐expression	modules	are	 identified,	 it	
is	challenging	to	determine	which	modules	are	associated	with	the	
phenotypic	 response,	 and	which	 biological	 processes	 in	 the	 same	
module	are	involved.	To	link	modules	to	phenotype,	one	approach	is	
to	calculate	the	correlation	between	physiological	traits	and	eigen‐
genes	of	the	given	modules,	which	are	defined	as	the	first	principal	
component	 (PC)	 of	 a	 specific	module	 (Virlouvet	 et	 al.,	 2018).	 The	
first	PC	accounts	for	the	largest	variance	of	the	gene	expression	for	
genes	within	 the	module	and	 thus	can	describe	 the	major	expres‐
sion	pattern.	This	method	is	reasonable	when	the	major	variation	in	
the	data	is	caused	by	a	treatment	or	condition.	However,	in	practice,	
genes	in	the	same	module	are	not	necessarily	in	the	biological	pro‐
cess	due	to	different	locations	of	gene	products	in	cells,	and	math‐
ematically,	module‐discovery	methods	may	introduce	large	variance	
in	the	clustering	process.	The	correlation	approach	based	on	single	
average	patterns	may	 fail	 to	 identify	modules	 associated	with	 the	
trait.

To	reveal	the	substructure	of	modules	and	identify	submodules	
that	 are	 associated	 with	 the	 observed	 trait,	 principal	 component	

analysis	(PCA)	was	used	to	break	down	modules	and	multivariate	re‐
gression	analysis	was	used	to	test	the	most	significant	submodules.	
Specifically,	the	variable	selection	method	least	absolute	shrinkage	
and	selection	operator	(LASSO)	was	employed	to	identify	the	sub‐
structure	of	gene	modules	and	find	the	clusters	of	genes	highly	rele‐
vant	to	salt	stress	response	in	rice.	Although	various	algorithms	were	
developed	for	variable	selection,	LASSO	is	well	known	for	its	statis‐
tical	 accuracy,	 computational	 feasibility,	 and	broad	 applicability	 to	
adaptation.	In	this	work,	we	applied	LASSO	to	the	gene	co‐expres‐
sion	network	of	rice	with	salt	stress	to	discover	key	genes	and	their	
interactions	 for	 salt	 tolerance‐related	 phenotypes.	 LASSO‐based	
methods	were	 applied	 to	 different	 biological	 research	 before.	 For	
example,	it	has	been	used	GWAS	analysis	(Wu,	Chen,	Hastie,	Sobel,	
&	 Lange,	 2009),	 eQTL	 analysis	 (Cheng,	 Zhang,	 Guo,	 Shi,	 &	Wang,	
2014),	 transcriptome	 assembly	 (Li,	 Feng,	&	 Jiang,	 2011),	 and	 gene	
regulatory	 network	 analysis	 (Gustafsson,	 Hornquist,	 &	 Lombardi,	
2005).	However,	it	is	the	first	application	of	LASSO	method	for	the	
identification	 of	 submodules	 in	 gene	 co‐expression	 networks	 in	
plants.

2  | METHOD AND MATERIAL S

2.1 | Plant growth conditions and phenotyping

All	phenotypic	data	were	collected	from	large‐scale	phenotyping	of	
a	diverse	panel	of	rice	varieties.	The	greenhouse	conditions	and	ex‐
perimental	 description	 for	 these	experiments	 can	be	 found	 in	 the	
reference	(Campbell	et	al.,	2017).	Briefly,	the	study	used	383	of	the	
421	original	RDP1	accessions	and	seven	check	varieties	(Zhao	et	al.,	
2011;	Famoso	et	al.,	2011,	Eizenga	et	al.,	2014).	According	to	the	clas‐
sification	by	Famoso	et	al.,	the	subset	of	RDP1	included	77	indica,	52	
aus,	92	temperate japonica,	85	tropical japonica,	12	groupV/aromatic,	
and	 56	 highly	 admixed	 accessions	 (the	 subpopulation	 assignment	
was	not	provided	for	nine	accessions)	(Famoso	et	al.,	2011).	The	phe‐
notyping	experiments	were	conducted	between	July	and	September	
in	2013	in	a	controlled	greenhouse	at	Lincoln,	NE.	The	greenhouse	
was	 maintained	 at	 25–28°C	 with	 relative	 humidity	 at	 50%–80%,	
and	a	photoperiod	of	16	hr:8	hr	 (day:night).	Seedlings	were	germi‐
nated	 in	 the	dark	 for	2	days,	exposed	 to	 light	 for	12	hr,	 and	were	
transplanted	 into	 pots	 filled	 with	 Turface	 (Profile	 Products,	 LLC).	
The	seedlings	were	grown	in	tap	water	for	4	days	after	transplanting	
and	were	supplemented	with	half‐strength	Yoshida	solution	(pH	5.8)	
for	the	remainder	of	the	experiment.	For	salt	treatment,	NaCl	was	
mixed	with	CaCl2	in	a	6:1	molar	ratio	and	was	added	after	10	days	of	
seedling	growth.	The	stress	treatment	was	started	at	2.5	dS/m	and	
was	increased	gradually	up	to	9.5	dS/m	in	four	steps	over	a	period	
of	4	days.	The	stress	treatment	was	maintained	at	9.5	dS/m	for	the	
remaining	2	weeks.	Root	 and	 shoot	 samples	were	 collected	 sepa‐
rately	and	rinsed	3	times	in	tap	water	and	once	in	deionized	water	
to	remove	excess	NaCl	after	the	experiment	 (14	days	of	9.5	dS/m;	
28	days	after	transplant).	The	samples	were	oven‐dried	at	60°C	for	
1	week	prior	to	measuring	root	and	shoot	biomass.	Shoot	and	roots	
from	two	plants	were	taken	for	biomass	measurement.	Dried	shoot	
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samples	were	ground	and	200–300	g	of	total	material	was	digested	
with	0.1	N	Nitric	acid	(Fisher	Scientific)	at	70°C	for	8	hrs,	while	root	
samples	were	weighed	and	digested	without	any	grinding.	The	sam‐
ples	were	diluted,	and	cation	(Na+ and K+)	concentrations	were	de‐
termined	with	 an	 appropriate	 standard	 by	 dual‐flame	 photometry	
(Cole	Parmer).	Phenotypic	data	were	combined	across	periods,	and	
a	linear	model	was	fit	to	calculate	adjusted	means	for	individual	ac‐
cession	using	the	PROC	GLM	procedure	of	the	Statistical	Analysis	
System	(SAS	Institute	Inc).	The	linear	model	 included	a	period	(i.e.,	
June–July	or	August–September),	replication	nested	within	a	period,	
tub	 nested	 within	 replication,	 accession,	 and	 accession‐by‐period	
interaction.

2.2 | Transcriptome experiment and RNA‐
sequencing

RNA‐seq	data	were	generated	from	shoot	tissues	of	92	diverse	rice	
accessions.	These	accessions	were	randomly	selected	from	the	Rice	
Diversity	Panel	1	 (Zhao	et	 al.,	 2011)	 and	consist	of	34	 subspecies	
Indica,	while	52	accessions	were	from	subspecies	Japonica.	For	each	
accession,	gene	expression	profiles	of	shoot	tissues	were	measured	
for	 both	 control	 condition	 and	 salt	 condition	 after	 exposing	 the	
rice	 seedlings	 to	6	dS/m	 (~60	mM	NaCl)	 salt	 stress	 for	24	hr.	The	
RNA‐seq	data	 can	 be	 accessed	 through	GEO	database	 (Accession	
#:	GSE98455).

2.3 | RNA‐seq data analysis and Co‐expression 
network analysis

By	using	Trimmomatic	(Bolger,	Lohse,	&	Usadel,	2014),	each	101	bp	
RNA‐seq	read	was	trimmed	to	make	sure	the	average	quality	score	
larger	than	25	and	having	the	minimum	length	of	75	bp.	All	trimmed	
short	 reads	 were	 mapped	 to	 the	 rice	 Genome	 (version	 6)	 using	
TopHat	 (Trapnell,	 Pachter,	 &	 Salzberg,	 2009),	 allowing	 up	 to	 two	
base	mismatches	per	read.	Reads	mapped	to	multiple	locations	were	
discarded.	Numbers	of	reads	in	genes	were	counted	by	the	HTSeq‐
count	 tool	 using	 corresponding	 rice	 gene	 annotations	 (Anders,	
2010).	DEseq	(Anders	&	Huber,	2010)	was	used	to	do	normalization	
for	read	counts	of	all	genes.

Co‐expression	network	analysis	was	used	to	identify	genes	with	
coordinated	 transcriptional	 responses	 (modules).	 Genes	 exhibiting	
low	variance	or	low	expression	across	both	control	and	salt	samples	
were	removed,	as	these	genes	could	introduce	noise	with	the	co‐ex‐
pression	pattern	measured	with	Pearson	correlation.	Two	criterions	
were	used	for	this	purpose:	(a)	the	ratio	of	upper	quantile	to	lower	
quantile	of	normalized	read	count	smaller	than	1.5;	(b)	for	more	than	
80%	samples,	normalized	read	count	smaller	than	10.	To	capture	the	
signal	of	changes	caused	by	salinity	stress,	a	log2	fold	change	matrix	
was	calculated	by	dividing	 the	 salt	 count	with	corresponding	con‐
trol	count	and	further	stabilized	through	log	transformation.	For	this	
log2	fold	change	matrix	used	for	co‐expression	network	construc‐
tion,	genes	with	the	ratio	of	upper	quantile	to	lower	quantile	larger	
than	0.25	were	kept.	Among	 the	 total	of	57,840	 rice	genes,	8,953	

genes	 displaying	 sufficiently	 high	 variation	 were	 identified,	 and	
their	values	were	used	to	construct	a	correlation	matrix	using	the	R	
package,	WGCNA	(Langfelder	&	Horvath,	2008).	The	soft	threshold	
was	set	as	4	to	ensure	the	scale‐free	topology	to	be	higher	than	0.9.	
Due	 to	 the	 complexity	 of	 the	 hierarchical	 clustering	 tree,	method	
dynamic	hybrid	cut	was	implemented	to	get	modules.	Dynamic	tree	
cutting	was	adopted	to	identify	modules	with	minModuleSize	of	25	
(Langfelder	&	Horvath,	2007).

2.4 | Algorithm for linking phenotyping data to 
submodules in gene co‐expression network

Figure	 1	 shows	 the	 workflow	 of	 the	 algorithm	 to	 link	 phenotyp‐
ing	data	 to	submodules	 in	 the	gene	co‐expression	network.	For	all	
modules	 identified	by	WGCNA,	 the	 first	 step	 is	breaking	down	all	
modules	into	submodules.	PCA	was	used	for	all	modules.	The	first,	
second,	and	third	components	were	considered,	and	the	eigenvec‐
tors	of	the	first	three	PCs	were	used	as	the	virtual	genes	to	represent	
genes	in	these	components.	Then,	LASSO	method	was	employed	to	
select	the	most	significant	virtual	genes	associated	with	phenotyping	
data.	The	following	section	describes	the	details	of	the	LASSO	step.	
Once	significant	virtual	genes	identified,	all	genes	in	the	same	mod‐
ule	were	compared	with	a	significant	virtual	gene	to	identify	the	most	
correlated	 genes	 with	 a	 statistical	 test	 based	 on	 the	 broken‐stick	
model.	The	details	of	this	test	are	described	in	the	following	sections.

2.5 | Variable selection with LASSO

Various	 algorithms	 were	 developed	 for	 variable	 selection,	 but	
LASSO	is	well	known	for	its	statistical	accuracy,	computational	fea‐
sibility,	and	broad	applicability	to	adaptation.	In	this	manuscript,	we	
applied	LASSO	to	the	gene	co‐expression	network	of	rice	with	salt	
stress.	To	link	the	phenotypic	data	to	gene	expression	profiles,	a	lin‐
ear	model	was	fitted:	

F I G U R E  1  Flowchart	of	the	algorithm	to	link	phenotyping	data	
to	submodules	in	the	gene	co‐expression	network

info:ddbj-embl-genbank/GSE98455
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where Yi	are	the	phenotypic	response	for	the	i
th (i = 1…92)	genotype,	

Xi(jk)	is	the	PC	matrix	that	Xi(jk)	represents	the	log2	PC	value	from	the	j
th 

(j = 1…3)	PC	of	the	kth (k = 0…16)	module	for	the	ith	genotype,	and	is	the	
coefficient	of	the	jth	PC	from	kth	module	and	its	absolute	value	quan‐
tifies	the	contribution	effects.	The	phenotypic	response,	for example, 
the	physiological	vector,	was	log2	of	Na

+/K+	ratio.	The	LASSO	method	
was	used	to	shrink	coefficients	of	virtual	genes	with	trivial	effects	into	
zeroes	while	keeping	virtual	genes	with	large	effects	by	minimizing	the	
residual	sum	of	squares	with	an	additional	L1	norm,	shown	in	Equation	:	

The	optimal	penalty	parameter	λ	 is	a	constant	larger	than	zero,	
and	the	optimum	value	was	determined	with	 leave‐one‐out	cross‐
validation.	To	determine	the	optimal	set	of	parameters	selected	by	
LASSO,	we	adopted	the	most	 regularized	model	such	that	error	 is	
within	one	standard	error	of	the	minimum.

2.6 | Identification of significant genes with broken‐
stick model

After	significant	PCs	selected	by	the	linear	regression,	we	developed	a	
broken‐stick	model	 to	 identify	genes	 significantly	associated	with	 the	
selected	PCs.	 In	stick‐breaking	theory,	a	stick	of	 length	one	would	be	
literately	broken	into	pieces	and	the	length	of	broken	pieces	just	follow	
the	Dirichlet	distribution.	Here,	we	take	the	contribution	values	of	genes	
from	the	same	module	as	the	lengths	of	pieces	from	a	broken	stick.	The	
random	sampling	from	the	Dirichlet	distribution	was	repeated	for	many	
times,	and	for	each	time,	the	broken	pieces	were	sorted	by	their	lengths	
in	a	descending	order.	The	gene	with	the	largest	contribution	would	be	
compared	 with	 the	 upper	 quantile	 of	 the	 empirical	 distribution	
constructed	by	the	largest	lengths	of	broken	pieces.	If	the	contribution	
value	is	larger	than	the	upper	quantile	from	the	random	background,	this	
gene	would	be	regarded	as	genes	that	have	an	unusual	contribution	to	
the	selected	PC.	For	a	module	with	K	genes,	a	stick,	whose	length	is	unit	
1,		needs	to	be	broken	into	K	pieces.	The	lengths	of	those	K	pieces	were	
got	from	the	following	the	Dirichlet	distribution.	We	denote	the	length	

of	the	 ith (0 < i < K)	piece	as	xi (0 < xi	<	1)	and,	therefore,		
K∑
i=1

xi=1. In 

addition,	for	each	xi,	we	have	the	corresponding	αi (αi	>	0).	Then,	random	
variables	X = (X1, X2,…, Xk)	have	the	following	PMF	(Equation	):	

In	our	 case,	 to	make	 sure	 that	X	 follows	uniform	distribution	 in	
the	kth	dimension,	αi (0 < i < K)	was	set	as	one.	The	sampling	process	
was	repeated	for	10	thousand	times,	and	for	each	time,	the	resulting	
lengths	were	further	sorted	in	the	descending	order	x(1) < x(2) < … < p(m) 
< … < x(k).	Values	of	x(m)	from	10	thousand	simulations	would	be	used	
to	construct	the	corresponding	empirical	distribution	E(m).	Meanwhile,	
the	proportions	of	contribution	denoted	as	p(m),	of	genes	in	the	module	

were	sorted	in	the	descending	order	p(1) < p(2) < …p(m) < … < p(k). The 
value	of	p(m)	was	then	compared	with	upper	quantile	of	E(m).

2.7 | Real data‐driven simulation

Two	 different	 types	 of	 simulations	 were	 conducted	 to	 compare	
LASSO	and	correlation	in	selecting	expression	patterns.

2.8 | Simulation I

In	simulation	 I,	LASSO	method	and	a	simple	method	based	on	the	
correlation	were	compared	 to	 test	which	one	has	a	better	perfor‐
mance	in	selecting	the	true	PC	patterns.	A	real	data‐driven	simula‐
tion	was	performed	to	evaluate	whether	LASSO	is	better	in	picking	
up	 correct	 expression	 patterns,	 for example,	 PCs,	 than	 the	 simple	
correlation	 comparison.	 In	 the	 simulation,	 the	 real	 PC	matrix	 con‐
taining	51	PCs	from	17	gene	modules	was	used,	and	the	same	8	PCs	
selected	by	LASSO	with	real	data	were	assumed	to	be	positives	to	
contribute	 to	 the	 observed	 change	 in	Na+/K+	 ratio.	 The	 absolute	
value	of	their	coefficients	estimated	by	the	linear	regression	without	
penalty	is	called	effect	sizes	on	the	dependent	variable.	For	the	real	
case,	the	values	of	effect	sizes	are	in	the	range	of	.034	to	.1596.	The	
comparison	between	LASSO	and	the	correlation	method	was	con‐
ducted	by	changing	effect	sizes	obtained	by	multiplying	the	original	
coefficients	of	those	8	PCs	with	a	series	of	multiplying	factors	rang‐
ing	from	.3	to	2.	For	other	PCs	not	chosen,	their	coefficients	were	
set	as	zeroes.	Equation		describes	the	formula	used	in	the	simulation	
to	calculate	the	dependent	variables	with	the	real	PC	matrix	and	pre‐
defined	coefficients	of	all	PCs.

where XN×M	is	the	same	PC	matrix	as	what	we	used	in	real	data	anal‐
ysis.	�sim

M×1
	is	the	assumed	coefficient	for	all	PCs.	The	residual	error	�sim

N×1
 

follows	a	normal	distribution	N(0,	σ2),	where	the	variance	σ2	was	es‐
timated	with	the	residual	values	from	the	linear	regression	with	eight	
PCs.	With	 the	 formula	 above,	 for	 each	multiplying	 factor,	we	 gen‐
erated	Ysim

N×1
	 for	100	times	using	different	simulation	seed.	For	each	

round	of	simulation,	 the	ability	of	LASSO	in	 identifying	correct	the	
PC	pattern	was	compared	with	that	of	correlation	method.	Due	to	the	
skewed	dataset	that	the	number	of	true	negatives	dwarf	the	number	
of	 true	positives,	 the	area	under	precision‐recall	 curve	 (PR	AUC)	 is	
used	as	the	standard	of	comparison.	The	ranking	of	PC	patterns	for	
calculating	PR	AUC	is	based	on	the	absolute	values	of	the	correlation	
between	PC	patterns	and	the	simulated	Y.	For	LASSO,	the	ranking	is	
obtained	from	the	Coefficient	Shrinkage	curve,	in	which	coefficients	
of	PCs	would	shrink	to	zeroes	in	order.	If	the	shrinkage	curves	of	PCs	
are	shrunk	to	zero	at	the	same	time,	they	are	further	ranked	by	the	
absolute	values	of	their	coefficients	at	the	optimum	lambda.

2.9 | Simulation II

We	randomly	choose	eight	PCs	and	set	their	coefficients	as	non‐zero	
values	so	that	four	of	them	had	the	same	positive	number	and	the	
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other	four	had	the	same	negative	number.	The	maximum	coefficient	
size	 from	 the	 real	 data	 analysis	 is	 .1596,	 and	 the	minimum	 size	 is	
.034.	Based	on	the	scale	of	the	original	coefficients,	coefficient	se‐
ries	 in	our	simulation	 is	 .03,	 .05,	 .1,	 .15,	 .3,	and	 .5.	For	each	effect	
size,	we	did	100	simulations.	However,	PCs	set	to	have	a	non‐zero	
effect	size	are	the	same	as	what	we	picked	from	real	data	analysis.	
Moreover,	 the	 signs	of	 their	 coefficients	are	unchanged,	and	 their	
effect	sizes	are	either	decreased	or	 increased	 in	 the	same	propor‐
tion.	To	make	our	conclusion	more	robust,	eight	PCs	were	randomly	
chosen	out	of	the	51	PCs.	The	absolute	values	of	their	coefficients	
were	set	the	same	and	four	of	them	were	assumed	to	have	positive	
effects,	while	the	other	four	were	assumed	to	have	negative	effects.	
Based	on	the	effect	size	in	real	data	analysis,	we	tested	a	series	of	
effect	size,	 .03,	.05,	.08,	.1,	 .15,	.3,	and	.5.	For	each	effect	size,	we	
repeat	for	100	times	with	different	seeds.

2.10 | GO term enrichment analysis

GO::TermFinder	 (Boyle	et	 al.,	 2004)	was	used	 to	 identify	modules	
significantly	enriched	by	genes	belonging	to	GO	terms.	The	p value 
was	 calculated	 with	 hypergeometric	 distribution	 and	 further	 ad‐
justed	with	Bonferroni	 to	 correct	multiple	hypothesis	 testing.	The	
cutoff	used	is	adjusted	p	value	<	.05.	The	GO	term	association	files	
for	rice	were	obtained	from	http://rice.plant	biolo	gy.msu.edu/.

3  | RESULTS

3.1 | Phenotypic data and gene co‐expression 
network in response to salinity stress

For	this	study,	the	primary	aim	was	to	identify	genes	or	gene	clus‐
ters	whose	expression	patterns	were	highly	associated	with	physi‐
ological	responses	to	salinity	stress.	After	a	9	dS/m	(~90	mM	NaCl)	
salt	stress	was	imposed	gradually	over	4	days	(in	four	increments	of	
20–30	mM)	to	2‐week‐old	rice	seedlings,	tolerance‐associated	traits	
in	rice,	such	as	shoot	biomass	and	shoot	Na+	content,	were	meas‐
ured	at	the	end	of	a	2‐week	stress	period.	 In	this	study,	the	shoot	

Na+	 content	was	used	 to	 represent	 the	plant	 response	 to	 the	 salt	
stress.	The	inherent	differences	in	growth	rate	between	lines	were	
controlled,	and	hence,	the	saline‐induced	growth	response	was	nor‐
malized	by	corresponding	parameters	in	control	conditions.	To	iden‐
tify	the	gene	clusters	responding	to	salinity	stress,	a	co‐expression	
network	was	constructed,	 in	which	genes	are	referred	to	as	nodes	
and	an	edge	between	two	nodes	 indicates	 that	 the	corresponding	
two	genes	have	similar	expression	patterns.	The	expression	profiles	
used	to	construct	the	gene	co‐expression	network	come	from	RNA‐
sequencing	data	of	shoot	tissues	across	92	diverse	rice	accessions.	
We	performed	 the	weighted	gene	co‐expression	network	analysis	
(WGCNA)	on	8953	genes	just	for	those	184	samples	exposed	to	salt	
stress,	and	the	clustering	result	is	shown	in	Figure	2.	Please	see	the	
Section	of	Material	and	Methods	for	more	details.	All	 those	genes	
were	distributed	into	17	modules,	with	the	size	ranging	from	34	to	
2,963	genes.	These	modules	and	the	shoot	Na+	content	were	inte‐
grated	with	a	linear	model	to	link	transcriptomic	changes	to	rice	phe‐
notypic	response	to	salinity	stress.

3.2 | Module features selected by LASSO

Once	co‐expression	modules	are	identified,	we	next	sought	to	iden‐
tify	 modules	 that	 are	 related	 to	 salinity	 stress.	 Traditionally,	 PCA	
would	be	performed	on	gene	expression	profiles	of	each	module	to	
get	the	first	PC	of	each	module	(also	called	the	eigengene),	and	the	
importance	of	each	module	was	evaluated	by	 the	strength	of	cor‐
relation	between	eigengenes	and	 the	physiological	 trait	 (Virlouvet	
et	 al.,	 2018).	However,	 genes	 in	 a	module	 identified	 in	 the	 co‐ex‐
pression	 network	 are	 heterogeneous	 and	 could	 be	 involved	 in	
many	different	biological	processes	and	respond	to	variant	signals.	
Therefore,	we	hypothesized	that	one	module	has	substructures,	and	
a	submodule	responds	to	a	specific	signal.	A	new	method	to	select	
submodules	associated	with	the	trait	of	interest	(i.e.,	shoot	Na+ con‐
tent)	was	developed.	In	the	first	step,	PCA	was	performed	on	each	
module	and	extracted	the	top	three	PCs	of	each	module	to	form	a	
PC	matrix	 (total	 of	 51	PCs	 from	17	modules).	Only	 top	 three	PCs	
were	 taken	 from	each	module	because	 the	higher‐order	PCs	have	

F I G U R E  2  The	clustering	result	of	
WGCNA	to	the	gene	co‐expression	
network	with	a	heatmap	plot.	The	
heatmap	shows	the	topological	overlap	
matrix	among	all	genes	in	different	
clusters,	and	blocks	of	darker	colors	along	
the	diagonal	are	related	to	genes	from	the	
same	modules

http://rice.plantbiology.msu.edu/
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a	 very	 low	 contribution	 to	 the	 entire	module	 and	 hence	 can	 give	
rise	of	an	overwhelming	noise	level.	One	can	find	if	display	genes	in	
the	eigengene	space,	such	as	PC1	and	PC2,	genes	can	be	grouped	
into	different	clusters:	Some	genes	are	close	to	PC1	and	the	other	
to	PC2.	 This	 indicates	 that	 genes	 in	 the	 same	module	 still	 can	 be	
further	split	into	submodules.	The	second	step	is	the	statistical	fea‐
ture	selection	step—a	regularized	regression	model,	a	LASSO‐based	
method,	was	applied	to	quantify	 the	relationship	between	module	
expression	patterns	and	the	physiological	data.	The	fitted	model	can	
find	the	expression	patterns	contributing	the	most	to	the	observed	
physiological	data.	During	the	PC	selection	step,	using	LASSO,	the	
optimal	λ	values	were	identified	with	a	leave‐one‐out	cross‐valida‐
tion.	The	result	is	shown	in	Figure	3,	where	the	cross‐validation	er‐
rors	were	plotted	against	varying	log(λ)	values	in	the	search	range.	
The	error	bars	show	the	standard	deviation	of	the	errors	calculated	
from	the	cross‐validation.	The	dotted	line	indicates	the	λ	giving	the	
minimum	mean	squared	error,	 and	 the	corresponding	value	of	 the	
parameter	is	.0429.	Therefore,	eight	PCs	were	identified	as	the	op‐
timal	 feature	set.	 In	other	words,	eight	significant	PCs	 from	seven	
modules	 were	 selected	 to	 have	 non‐zero	 effects	 on	 the	 stress	
(Table	1).	Interestingly,	for	most	modules,	the	selected	PCs	are	the	
second	(module	15,	16)	or	the	third	PC	(module	4,	6,	7,	14,	15,	and	

16),	which	would	be	missing	by	traditional	methods	using	the	first	PC	
only.	This	result	is	reasonable	because	genes	contributing	to	the	first	
PCs	are	expressed	for	 the	maintenance	of	basic	cellular	 functions,	
and	genes’	expression	for	the	response	to	environmental	perturba‐
tion	 is	a	 small	part	of	 the	entire	 transcriptome.	The	 last	 step	 is	 to	
identify	 genes	 significantly	 associated	with	 the	 selected	PCs.	This	
step	was	 implemented	with	a	statistical	test	based	on	the	broken‐
stick	model.	 In	on	gene	module,	the	contribution	of	genes	to	a	PC	
is	 considered	as	 the	 lengths	of	broken	pieces	 from	a	 stick.	Sorted	
contributions	of	genes	would	be	compared	with	the	upper	quantile	
of	 the	empirical	distribution	 constructed	by	 the	 largest	 lengths	of	
broken	pieces.	If	the	contribution	value	of	a	given	gene	is	larger	than	
the	upper	quantile	from	the	random	background,	this	gene	would	be	
regarded	as	genes	that	have	an	unusual	contribution	to	the	selected	
PC.	Figure	4	shows	the	comparison	for	genes	to	PC3	in	Module	#14,	
and	three	genes	have	significant	combustion	to	PC3.	The	numbers	
of	 significant	 genes	 for	 nine	PCs	 from	eight	modules	 are	 listed	 in	
Table	2.	The	distributions	of	genes	with	respect	to	the	correlation	to	
each	specific	PCs	are	shown	in	Figure	5.	One	may	note	that	selected	
genes	 for	 a	 second	or	 third	PC	 in	 each	module	 form	a	 small	 peak	
before	a	large	peak,	which	further	indicates	there	are	substructures	
in	modules.	For	second	and	third	CPs,	the	selected	genes	are	a	small	

F I G U R E  3  For	LASSO	training	result,	the	cross‐validation	errors	
were	plotted	against	varying	log(λ)	values	in	the	search	range

TA B L E  1  Significant	submodules	after	LASSO	selection	based	on	their	coefficient	values

Module # 4 6 7 11 14 15 16

1st	PC    −.0325  −.0111  

2nd	PC      .0862 .0869

3rd	PC −.0275 .01257 .0463  .0889   

F I G U R E  4  The	contribution	of	genes	to	PC2	in	Module	#14	with	
the	background
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portion	of	the	entire	module,	and	these	genes	have	high	potential	to	
respond	to	the	stress.

3.3 | Significant genes selected by LASSO are 
relevant to salt stress

All	selected	significant	submodules	are	enriched	with	genes	in	GO	
terms	 relevant	 to	 salt	 stress	 (Table	 2).	 Some	 of	 them	 are	 genes	

responding	 to	 stress	 and	 stimulus.	 For	example,	 sixteen	genes	 re‐
spond	to	the	3rd	PC	in	Module #6	are	enriched	by	genes	belonging	
to	the	GO	term	of	“Response	to	Stress.”	In	this	submodule,	several	
genes	encode	transcription	factors	in	the	WRKY	family,	and	overex‐
pression	of	these	genes	resulted	in	enhanced	salt	and	drought	toler‐
ance,	in	addition	to	increased	disease	resistance	(Jiang	&	Deyholos,	
2009;	Ma	et	al.,	2017;	Qiu	&	Yu,	2009)	or	improves	the	osmotic	stress	
tolerance	(Song,	Jing,	&	Yu,	2009).	WRKY	genes	were	also	identified	

Module #‐PC

No. of 
genes in 
modules

No. of genes in 
submodules

Enriched with genes belong‐
ings GO terms Adj. p‐value

4‐3 891 67 Transport	(20/67) 1.9 × 10−5

6‐3 313 53 Response	to	stress	(16/53) 1.58	×	10−5

7‐3 184 24   

11‐1 110 110 Response	to	stress 7.86	×	10−9

14‐3 46 3   

15‐1 46 18 Response	to	abiotic	stimulus .0089

15‐2 46 8   

16‐2 34 7 Cellular	homeostasis	(3/7) 4.46 × 10−12

TA B L E  2  Overview	of	all	significant	
modules

F I G U R E  5  The	distributions	of	genes	with	respect	to	the	correlation	to	each	specific	PCs.	
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to	respond	to	stress	by	an	eQTL	method	in	barley	(Wehner,	Balko,	
Humbeck,	Zyprian,	&	Ordon,	2016).	Some	submodules	are	directly	
related	to	salinity	conditions.	For	example,	20	genes	associated	with	
the	 third	PC	 in	Module #4	are	enriched	with	genes	 in	 “Transport”	
(p‐value	=	1.9	×	10−5).	For	example,	gene	LOC_Os01g37690	encodes	
a	protein	in	NCX	family	and	this	protein	also	has	a	CAX	domain	H+/
Ca2+	 exchanging.	 The	 sodium/calcium	 exchanger	 protein	 that	 can	
maintain	 cellular	 homeostasis	 of	 Ca2+	 or	 Na+.	While	 one	 calcium	
ion	is	pumped	outside	of	the	cell,	three	sodium	ions	would	be	trans‐
ported	into	the	cell	in	exchange.	This	process	could	work	in	another	
direction	 depending	 on	 the	 concentration	 gradient	 of	 ions	 (Yu	 &	
Choi,	1997).	 Its	homolog	gene	 in	Arabidopsis, AtNCL,	 is	broadly	ex‐
pressed	in	Arabidopsis,	and	abiotic	stresses	stimulated	its	transcript	
expression.	Loss‐of‐function	AtNCL	mutants	were	 less	sensitive	 to	
salt	stress	than	wild‐type	or	transgenic	overexpression	lines	(Wang	
et	al.,	2012).	Another	gene,	LOC_Os12g07270,	encodes	a	protein	of	
BASS2,	which	is	responsible	for	pyruvic	acid	uptake	into	the	chloro‐
plast,	an	essential	precursor	of	ABA.	It	has	been	proved	that	a	pyru‐
vate	transporter,	TaBASS2,	positively	regulates	salinity	tolerance	in	
wheat	(Zhao,	Ai,	Wang,	Xiao,	&	Xia,	2016).	Other	submodules,	such	
as	in	Module	#16,	#7,	#15,	are	also	enriched	with	genes	specifically	
responding	to	the	salinity	conditions.

Module #16	has	a	total	of	34	genes,	and	only	seven	genes	are	
significantly	aligned	into	the	subgroup	represented	by	the	second	
PC.	Three	out	of	seven	genes	in	this	submodule	have	clues	about	
their	 functions,	and	 interestingly,	 these	functions	are	highly	 rele‐
vant	 to	 salt	 stress.	 LOC_Os12g01530 and LOC_Os11g01530,	 two	
ferritin	homologs,	are	function‐unknown	genes	in	rice,	but	their	ho‐
mologs	in	other	plants	have	functions	to	store	ferrous	iron	in	chlo‐
roplasts	 in	a	non‐toxic	 form	and	 to	protect	plants	 from	oxidative	
damage	 induced	by	different	 stresses,	 including	 salt	 stress	 (Deak	
et	al.,	1999;	Foyer,	Lelandais,	&	Kunert,	1994).	Especially,	with	sa‐
linity	stress,	rice	highly	prone	to	have	iron	deficiency	due	to	a	lower	
release	of	Fe‐chelating	compounds	(Abbas,	2015).	The	correlation	
between	expression	levels	of	these	two	genes	and	Na+	concentra‐
tion	in	shoot	gives	rise	to	a	hypothesis	that	upregulated	ferritin	in	
salt‐tolerant	rice	helps	the	plant	to	survive	under	the	salinity	con‐
dition.	LOC_Os09g23300,	the	third	gene	in	this	submodule,	codifies	
a	vacuolar	iron	transporter	and	also	responds	to	salt	stress.	It	has	
been	reported	that	both	LOC_Os12g01530/LOC_Os11g01530,	en‐
coding	iron	storage	proteins,	and	LOC_Os09g23300,	encoding	one	
putative	vacuolar	iron	transporter,	are	upregulated	in	shoot	tissue	
caused	by	the	stress	of	phosphate	derivation	(Secco	et	al.,	2013).

In Module #7,	 there	 are	 184	 genes,	 but	 24	 genes	 consist	 of	
the	 submodule	 represented	 by	 the	 3rd	 PC.	 Out	 of	 24	 genes,	 the	
most	 interesting	 gene	 is	 LOC_Os07g19030,	 which	 can	 encode	 a	
tic22‐like	 family	 domain‐containing	 protein.	 Tic22,	 translocon	 at	
the	 inner	envelope	membrane	of	chloroplasts,	 is	majorly	 involved	
in	 protein	 precursor	 import	 into	 chloroplasts	 (Kessler	 &	 Schnell,	
2009).	 It	 has	been	 reported	 that	 this	protein	 can	be	 induced	and	
accumulated	in	salt‐acclimated	cells	in	Synechocystis	sp.	strain	PCC	
6803	(Fulda	et	al.,	2006).	LOC_Os10g30540	is	a	putative	lectin‐like	
receptor	kinase	(LecRLK),	which	is	well	known	for	 its	role	 in	plant	

stress	 and	 developmental	 pathways.	 For	 example,	 in	Arabidopsis, 
LecRLK	can	respond	to	salt	within	the	ethylene	signaling	pathway	
(He,	Zhang,	Yan,	Zhang,	&	Chen,	2004).	LecRLK	in	pea	plant,	being	
shown	to	phosphorylate	MBP,	has	a	unique	response	to	Na+,	and	
the	transcript	of	the	LecRLK	accumulates	in	roots	and	shoots	with	
salt	 stress	 (Joshi,	 Dang,	 Vaid,	 &	 Tuteja,	 2010).	 LOC_Os07g14100 
is	 a	 gene	 coding	 a	 polygalacturonase	 (PG),	 one	 of	 the	 hydrolases	
responsible	 for	 cell	 wall	 pectin	 degradation,	 which	 is	 involved	 in	
organ	consenescence	and	biotic	stress	 in	plants.	 In	 rice,	 the	tran‐
scription	of	PG	is	induced	by	cold,	salinity,	and	drought	stresses,	as	
well	as	by	abscisic	acid	(ABA)	treatment,	and	overexpression	of	PG	
can	enhance	sensitivity	to	cold,	salinity,	and	drought	stresses	 (Liu	
et	 al.,	 2014).	 Reduced	 violaxanthin	 de‐epoxidase,	 the	 gene	 prod‐
uct	 of	 LOC_Os04g31040,	 is	 instrumental	 in	 the	 regulation	 of	 the	
xanthophyll	cycle,	which	can	reduce	reactive	oxygen	species	(ROS)	
damage	to	cell	structure	during	salinity	stresses	(Borah	et	al.,	2017;	
Latowski,	Kuczynska,	&	Strzalka,	2011).

Module #15	has	a	total	of	46	genes	and	both	PC1	and	PC2	are	sig‐
nificant.	Genes	in	these	two	submodules	have	functions	to	respond	to	
stress.	For	example,	LOC_Os10g16974 and LOC_Os10g17260,	genes	
codifying	for	cytochrome	P450,	are	involved	in	growth	and	drought	
stress	 responses	 in	 rice	 (Tamiru	 et	 al.,	 2015).	The	 gene	product	 of	
LOC_Os02g14680	 is	 a	 UDP‐glucuronosyl	 and	 UDP‐glucosyl	 trans‐
ferase	domain‐containing	protein	and	that	of	LOC_Os01g71670	is	a	
glycosyl	hydrolase.	Both	genes	are	related	to	glcosylation.	It	is	known	
that	 glycosylation	 is	 important	 for	 plants	 to	 respond	 to	 stresses;	
manipulation	 of	 glycosylation	 alters	 tolerance	 to	 biotic	 and	 abiotic	
stresses	 (Bowles,	 Isayenkova,	 Lim,	&	Poppenberger,	 2005;	Bowles,	
Lim,	 Poppenberger,	 &	 Vaistij,	 2006).	 LOC_Os10g38140	 encodes	 a	
glutathione	 S‐transferase,	 by	 which	 the	 salt	 stress‐induced	 lipid	
peroxidation	 is	 reduced	 (Katsuhara,	 Otsuka,	 &	 Ezaki,	 2005).	 LOC_
Os11g30500	 is	 an	HVA22	protein	 gene.	 In	Barley	 and	Arabidopsis,	
aleurone	 cells	 transformed	with	HVA22	 inhibited	 the	 formation	of	
GA‐induced	formation	of	vacuoles	and	programmed	cell	death	(Guo	
&	Ho,	2008).	Since	vacuoles	are	important	for	Na+	storage,	HVA22	
is	 a	 promising	 candidate	 protein	 for	 salt	 tolerance.	 For	 example,	 a	
homolog	gene	of	HVA22	from	barley,	HVA1,	can	increase	tolerance	
to	water	deficit	and	salt	stress	in	transgenic	rice	(Xu	et	al.,	1996).

4  | DISCUSSION

4.1 | Linking gene expression to phenotypic data

The	gene	co‐expression	network	models	have	been	used	for	the	ex‐
ploration,	interpretation,	and	visualization	of	the	relationship	among	
genes	 in	 a	 wide	 range	 of	 biological	 applications	 (Kadarmideen	 &	
Watson‐Haigh,	2012;	Tan	et	al.,	2017;	Yang	et	al.,	2014),	but	was	not	
integrated	with	phenotyping	data	directly	yet.	The	method	describes	
in	this	manuscript	provide	an	approach	to	link	phenotyping	data	to	
transcriptomic	 data,	 which	 provide	 complementary	 integration	 to	
QTL,	the	linkage	between	phenotyping	data	and	genomic	data,	and	
eQTL,	 the	 linkage	 between	 phenotyping	 data	 and	 transcriptomic	
data.	 Co‐expression	 network	 analysis	 was	 combined	 with	 eQTLs	
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(Villa‐Vialaneix	 et	 al.,	 2013),	 studying	 gene‐phenotype	 association	
(Ficklin,	Luo,	&	Feltus,	2010),	and	GWAS	(Schaefer	et	al.,	2018).	The	
discovered	gene	submodules	and	genes	 in	these	submodules	from	
the	method	described	 in	 the	manuscript	 can	also	be	 further	 com‐
bined	with	eQTL,	QTL,	and/or	GWAS	to	prioritize	genes	responding	
to	stress.

4.2 | Response to stress with multiple submodules

To	link	modules	to	phenotype,	the	naive	way	(Virlouvet	et	al.,	2018)	
is	 calculating	 the	 correlation	 between	 physiological	 traits	 and	 ei‐
gengenes	 of	 given	modules,	 which	 are	 defined	 as	 the	 first	 PC	 of	
a	 specific	module,	 accounting	 for	 the	 largest	variance	of	 the	gene	
expression	within	 the	module.	 However,	 in	 practice,	 genes	 in	 the	
same	module	are	not	necessarily	in	the	same	biological	process	due	
to	different	locations	of	gene	products	in	cells,	and	mathematically,	
module‐discovery	methods	may	introduce	large	variance	in	the	clus‐
tering	process.	Therefore,	the	correlation	approach	based	on	single	
average	patterns	may	 fail	 to	 identify	modules	 associated	with	 the	
trait.	Therefore,	multiple	PCs	in	on	modules	need	to	be	considered,	
and	more	than	one	significant	PCs	can	be	selected	by	LASSO.	On	the	
other	hand,	to	generate	a	given	type	of	response	to	environments	by	
organisms,	many	genes	or	various	pathways	need	to	work	together.	
Multiple	submodules	associated	with	different	PCs	are	integrated	to‐
gether	by	the	linear	model	can	quantitatively	describe	the	different	
levels	of	contributions	of	genes	in	these	submodules	and	pathways	

enriched	by	these	genes	in	the	biological	systems.	At	a	certain	level,	
the	weight	parameters	of	 submodules	 assigned	by	LASSO	can	 re‐
flect	the	size	of	their	contributions	to	the	entire	system.

4.3 | Variability for different PCs and high‐
order PCs

We	used	the	top	three	PCs	to	represent	the	different	submodules	
in	one	given	module	because	 they	already	dominate	 the	contribu‐
tions	from	all	PCs.	PCA	was	performed	on	all	17	modules.	The	first	
PC	of	each	module	accounts	for	35%~62%	of	the	total	variation	in	
gene	expression,	and	the	top	three	PCs	could	explain	42%~70%	of	
the	module	variance.	Some	modules	have	less	variation,	that	is,	PC1	
contributing	a	high	percentage	to	the	total	variation,	but	the	other	
modules	have	more	variations.	The	total	variation	in	gene	expression	
could	come	from	the	response	to	 the	environmental	perturbation,	
but	also	comes	from	the	genetic	population	and	even	experimental	
artifacts.

4.4 | Simulation study

A	real	data‐driven	simulation	was	used	to	evaluate	whether	or	not	
LASSO	has	a	better	performance	in	terms	of	picking	up	all	correct	
expression	 patterns,	 a	 specific	 set	 of	 PCs,	when	 compared	with	
direct	selection	based	on	correlation.	The	details	of	the	algorithm	
about	the	simulation	are	described	in	the	section	of	Method.

F I G U R E  6  Simulation	results	of	PR	AUC	comparison	between	
LASSO	and	correlation	method. The x‐axis	represents	the	different	
multiplying	factors.	The	box	plot	displays	the	25th	and	75th	
percentiles	around	the	median	value.	Magenta	box	stands	for	
LASSO	method,	whereas	the	cyan	box	represents	the	correlation	
method.	The	significance	was	calculated	with	Wilcoxon	signed‐
ranks	test	and	p	<	.05	is	labeled	as	*,	p	<	.01	is	labeled	as	**,	and	
p	<	.001	is	***

F I G U R E  7  Simulation	results	of	PR	AUC	comparison	between	
LASSO	and	correlation	method.	The	x‐axis	represents	different	
effect	size.	The	box	plot	displays	the	25th	and	75th	percentiles	
around	the	median	value.	Magenta	box	stands	for	LASSO	method,	
whereas	the	cyan	box	represents	the	correlation	method.	The	
significance	was	calculated	with	Wilcoxon	signed‐ranks	test	and	
p	<	.05	is	labeled	as	*,	p	<	.01	is	labeled	as	**,	and	p	<	.001	is	***
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From	Figure	6,	one	can	see	that,	as	the	effect	size	increases,	the	
PR	AUC	values	 increases	 for	both	LASSO	method	and	correlation	
method.	(Please	see	the	section	of	Method	for	the	definition	of	the	
effect	size.)	It	is	suggested	from	the	simulation	result	that	PCs	with	
larger	coefficients	have	higher	possibilities	to	be	the	true	patterns	
associated	with	the	phenotype.	Although	the	PR	AUC	values	are	not	
high,	 the	power	of	 the	 LASSO	method	 is	 significantly	higher	 than	
that	 of	 correlation	method.	 In	 practical	 research,	 biological	 anno‐
tation	 and	 GO	 annotation	 could	 further	 help	 remove	 those	 false	
positives.

From	Figure	7,	one	can	see	 that,	as	 the	effect	size	 increases,	
the	 PR	 AUC	 values	 for	 both	 LASSO	 method	 and	 correlation	
method	 increase.	A	 sharp	 increase	 could	 be	 observed	when	 the	
effect	 size	 reaches	 .08.	When	we	 have	 low	 effect	 size,	 like	 .03,	
.05,	and	 .08,	there	 is	no	difference	between	LASSO	method	and	
correlation	method.	 That	means,	 for	modules	 with	 trivial	 effect	
on	the	phenotype,	we	might	do	not	have	enough	power	to	detect	
them	even	with	LASSO	method.	The	advantage	of	LASSO	method	
begins	to	show	up	when	the	effect	size	climbs	to	0.1.	Also,	the	PR	
AUC	values	could	reach	around	0.8,	which	endows	us	with	more	
confidence.

5  | CONCLUSION

To	 link	 gene	 co‐expression	 network	 to	 stress	 phenotype	 data,	
a	 linear	model	 based	 on	 LASSO	method	was	 applied	 to	 the	 gene	
co‐expression	 network	 of	 rice	 with	 salt	 stress	 to	 discover	 key	
genes	and	their	interactions	for	salt	tolerance‐related	phenotypes.	
Submodules	 in	 gene	modules	were	 identified,	 and	 the	 linear	 rela‐
tionship	between	these	submodules	and	physiological	responses	of	
rice	under	salt	 stress	was	discovered.	Genes	 in	 these	submodules	
have	 functions	 related	 to	 ion	 transport,	 osmotic	 adjustment,	 and	
oxidative	tolerance,	which	are	biologically	meaningful	and	useful	for	
studies	on	rice	salt	tolerance.	This	method	can	be	applied	to	other	
studies	to	efficiently	and	reliably	 integrate	co‐expression	network	
and	phenotypic	data,	and	also	can	be	 integrated	with	QTL,	eQTL,	
and	GWAS	studies.
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